US9803162B2 - Liquid composition for cleaning semiconductor device, and method for cleaning semiconductor device - Google Patents
Liquid composition for cleaning semiconductor device, and method for cleaning semiconductor device Download PDFInfo
- Publication number
- US9803162B2 US9803162B2 US15/118,230 US201515118230A US9803162B2 US 9803162 B2 US9803162 B2 US 9803162B2 US 201515118230 A US201515118230 A US 201515118230A US 9803162 B2 US9803162 B2 US 9803162B2
- Authority
- US
- United States
- Prior art keywords
- mass
- phosphonic acid
- hydrogen peroxide
- semiconductor device
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 127
- 239000004065 semiconductor Substances 0.000 title claims abstract description 66
- 239000000203 mixture Substances 0.000 title claims abstract description 64
- 239000007788 liquid Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 36
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 172
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 138
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims abstract description 43
- 150000001412 amines Chemical class 0.000 claims abstract description 17
- 150000003851 azoles Chemical class 0.000 claims abstract description 16
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 claims description 53
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 claims description 24
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 claims description 18
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 claims description 17
- SDXAWLJRERMRKF-UHFFFAOYSA-N 3,5-dimethyl-1h-pyrazole Chemical compound CC=1C=C(C)NN=1 SDXAWLJRERMRKF-UHFFFAOYSA-N 0.000 claims description 12
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 claims description 10
- -1 methylene phosphonic acid Chemical compound 0.000 claims description 10
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims description 7
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 claims description 6
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 claims description 6
- LDZYRENCLPUXAX-UHFFFAOYSA-N 2-methyl-1h-benzimidazole Chemical compound C1=CC=C2NC(C)=NC2=C1 LDZYRENCLPUXAX-UHFFFAOYSA-N 0.000 claims description 6
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 claims description 6
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 claims description 6
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 claims description 6
- RIKMMFOAQPJVMX-UHFFFAOYSA-N fomepizole Chemical compound CC=1C=NNC=1 RIKMMFOAQPJVMX-UHFFFAOYSA-N 0.000 claims description 6
- 229960004285 fomepizole Drugs 0.000 claims description 6
- FBHPRUXJQNWTEW-UHFFFAOYSA-N 1-benzyl-2-methylimidazole Chemical compound CC1=NC=CN1CC1=CC=CC=C1 FBHPRUXJQNWTEW-UHFFFAOYSA-N 0.000 claims description 5
- LRUDIIUSNGCQKF-UHFFFAOYSA-N 5-methyl-1H-benzotriazole Chemical compound C1=C(C)C=CC2=NNN=C21 LRUDIIUSNGCQKF-UHFFFAOYSA-N 0.000 claims description 5
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 claims description 5
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 claims description 5
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 3
- 239000011229 interlayer Substances 0.000 abstract description 67
- 230000006378 damage Effects 0.000 abstract description 61
- 239000010941 cobalt Substances 0.000 abstract description 58
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 58
- 229910017052 cobalt Inorganic materials 0.000 abstract description 57
- 229910000531 Co alloy Inorganic materials 0.000 abstract description 51
- 239000010408 film Substances 0.000 description 94
- 229910052751 metal Inorganic materials 0.000 description 37
- 239000002184 metal Substances 0.000 description 37
- 239000000243 solution Substances 0.000 description 33
- 230000004888 barrier function Effects 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 28
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 28
- 238000000354 decomposition reaction Methods 0.000 description 26
- 239000007864 aqueous solution Substances 0.000 description 20
- 229920002120 photoresistant polymer Polymers 0.000 description 20
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910000881 Cu alloy Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000000463 material Substances 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 6
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 229960001484 edetic acid Drugs 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- QBPPRVHXOZRESW-UHFFFAOYSA-N 1,4,7,10-tetraazacyclododecane Chemical compound C1CNCCNCCNCCN1 QBPPRVHXOZRESW-UHFFFAOYSA-N 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 3
- NBYLBWHHTUWMER-UHFFFAOYSA-N 2-Methylquinolin-8-ol Chemical compound C1=CC=C(O)C2=NC(C)=CC=C21 NBYLBWHHTUWMER-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- JFEVWPNAOCPRHQ-UHFFFAOYSA-N chembl1316021 Chemical compound OC1=CC=CC=C1N=NC1=CC=CC=C1O JFEVWPNAOCPRHQ-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940012017 ethylenediamine Drugs 0.000 description 3
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 3
- 229960003540 oxyquinoline Drugs 0.000 description 3
- 229960003330 pentetic acid Drugs 0.000 description 3
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 3
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- XXQBEVHPUKOQEO-UHFFFAOYSA-N potassium superoxide Chemical compound [K+].[K+].[O-][O-] XXQBEVHPUKOQEO-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- RJLKIAGOYBARJG-UHFFFAOYSA-N 1,3-dimethylpiperidin-2-one Chemical compound CC1CCCN(C)C1=O RJLKIAGOYBARJG-UHFFFAOYSA-N 0.000 description 1
- HMBHAQMOBKLWRX-UHFFFAOYSA-N 2,3-dihydro-1,4-benzodioxine-3-carboxylic acid Chemical compound C1=CC=C2OC(C(=O)O)COC2=C1 HMBHAQMOBKLWRX-UHFFFAOYSA-N 0.000 description 1
- FCKYPQBAHLOOJQ-UWVGGRQHSA-N 2-[[(1s,2s)-2-[bis(carboxymethyl)amino]cyclohexyl]-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)[C@H]1CCCC[C@@H]1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UWVGGRQHSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 244000132059 Carica parviflora Species 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229940075419 choline hydroxide Drugs 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000003918 potentiometric titration Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- C11D11/0047—
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
- C11D7/04—Water-soluble compounds
- C11D7/06—Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3209—Amines or imines with one to four nitrogen atoms; Quaternized amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3281—Heterocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/36—Organic compounds containing phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/0206—Cleaning during device manufacture during, before or after processing of insulating layers
- H01L21/02063—Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
Definitions
- the present invention relates to a liquid cleaning composition used in a process of fabricating a semiconductor integrated circuit, and to a method for cleaning a semiconductor device using the same.
- the present invention particularly relates to a liquid cleaning composition for cleaning a semiconductor device which is obtained by: laminating a barrier dielectric film, a low-dielectric-constant interlayer dielectric film, a hard mask and a photoresist on a substrate having a barrier metal, metal wiring and a low-dielectric-constant interlayer dielectric film; subjecting the photoresist to selective exposure followed by development to form a photoresist pattern; subsequently subjecting the hard mask, the low-dielectric-constant interlayer dielectric film and the barrier dielectric film laminated on the substrate to dry etch treatment using this photoresist pattern as a mask, so as to remove said hard mask and the dry etch residue while suppressing damage to the low-dielectric-constant interlayer dielectric film, the metal wiring, the barrier metal and the barrier dielectric film, and to a cleaning method using the same.
- a highly integrated semiconductor device is fabricated by a series of steps comprising:
- a conductive thin film such as a metal film or the like as a conductive wiring material and an interlayer dielectric film for insulating between the conductive thin films on an element such as a silicon wafer, and then uniformly applying a photoresist onto the surface of the resultant to provide a photosensitive layer, which is subjected to selective exposure and development to make a desired photoresist pattern; then,
- dry etch residue completely removing the photoresist pattern as well as the residue resulting from the dry etch treatment (hereinafter, referred to as a “dry etch residue”) by oxygen plasma ashing, use of a cleaning solution, or the like.
- the interlayer dielectric film is making a shift from a silicon oxide film to a low-dielectric-constant interlayer dielectric film (a film with a dielectric constant of less than 3: hereinafter, referred to as a “low-dielectric-constant interlayer dielectric film”).
- a photoresist with a film thickness of 1 ⁇ m will result the aspect ratio of the pattern (a ratio obtained by dividing the thickness of the photoresist film by the line width of the photoresist) to be too large, causing problems such as destruction of the pattern.
- a hard mask technique is sometimes employed, in which a film of a titanium (Ti) series, a silicon (Si) series or the like (hereinafter, referred to as a “hard mask”) is inserted between the pattern film that is to be actually formed and the photoresist film so as to once transfer the photoresist pattern onto the hard mask by dry etch.
- this hard mask is used as an etch mask to transfer the pattern onto the film that is to be actually formed by dry etch.
- the gas used upon etching the hard mask is exchangeable with the gas used upon etching the film that is to be actually formed, one can select a gas that ensures selectivity between the photoresist and the hard mask upon etching the hard mask, and a gas that ensures selectivity between the hard mask and the film to be actually etched upon etching the actual film. Therefore, it is advantageous in that a pattern can be formed while causing minimum damage to the actual film.
- the low-dielectric-constant interlayer dielectric film may be exposed to the oxygen plasma or the like and may be damaged.
- a hard mask is removed by oxygen plasma after forming vias and trenches. Upon this removal, the low-dielectric-constant interlayer dielectric film of the vias and trenches is damaged, which causes a problem of significant deterioration of the electric characteristics.
- dry etch residues are attached to the wafer upon removal of the hard mask, the dry etch residues must also be removed at the same time.
- Patent Document 2 International Publication No. WO 2008/114616 proposes a method of cleaning a semiconductor device with a cleaning composition containing hydrogen peroxide, aminopolymethylene phosphonic acids, potassium hydroxide and water.
- Patent Document 3 Japanese Unexamined Patent Application Publication No. 2010-2324866 proposes an etch composition having pH greater than 8.5 and comprising at least one selected from the group consisting of ammonia, a compound having an amino group and a compound having a ring structure containing a nitrogen atom, and hydrogen peroxide in an aqueous medium.
- Patent Document 4 Japanese Unexamined Patent Application Publication (translation of PCT) No. 2005-529363 proposes a cleaning composition comprising a polar organic solvent selected from the group consisting of dimethylpiperidone, sulfones and sulfolanes, a base selected from the group consisting of tetraalkylammonium hydroxide, choline hydroxide, sodium hydroxide and potassium hydroxide, a chelator or a metal complexing agent selected from the group consisting of water and trans-1,2-cyclohexanediamine tetraacetic acid, and ethane-1-hydroxy-1,1-diphosphonate and ethylenediamine tetra(methylene phosphonic acid).
- a polar organic solvent selected from the group consisting of dimethylpiperidone, sulfones and sulfolanes
- a base selected from the group consisting of tetraalkylammonium hydroxide, choline hydroxide, sodium hydro
- Patent Document 5 Japanese Unexamined Patent Application Publication No. 2003-234307 proposes a method for cleaning a semiconductor device in which an aqueous sulfuric acid solution at 70° C. or higher is used for cleaning so that titanium nitride (TiN) film is removed while cobalt (Co) silicide is not etched.
- Patent Document 6 International Publication No. WO 2007/072727 proposes a residue removing composition for removing dry etch residues having pH of 1-7 and comprising hydrogen peroxide, an azole compound and a stabilizer for hydrogen peroxide.
- etch composition described in Patent Document 3 is insufficient to remove the hard mask and the dry etch residue, and cannot sufficiently suppress damage to cobalt and the low-dielectric-constant interlayer dielectric film. Therefore, it cannot be used for the intended purpose.
- ethylenediamine tetraacetic acid, diethylenetriamine pentaacetic acid, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,4,7,10-tetraazacyclododecane, 8-quinolinol, 8-hydroxyquinaldine and 2,2′-azodiphenol are ineffective as a stabilizing agent for hydrogen peroxide that is to be combined with a liquid cleaning composition of the present invention which comprises hydrogen peroxide, potassium hydroxide, an anticorrosive for cobalt and water (see Comparative Examples 2 and 9-17).
- Patent Document 4 The cleaning composition described in Patent Document 4 is insufficient to remove the hard mask and the dry etch residue, and cannot sufficiently suppress damage to cobalt and the low-dielectric-constant interlayer dielectric film. Therefore, it cannot be used for the intended purpose (see Comparative Example 3).
- Patent Document 5 The aqueous sulfuric acid solution described in Patent Document 5 is insufficient to remove the hard mask, and cannot sufficiently suppress damage to cobalt. Therefore, it cannot be used for the intended purpose (see Comparative Example 4).
- the objective of the present invention is to provide a liquid cleaning composition for removing a hard mask and a dry etch residue while suppressing damage to a low-dielectric-constant interlayer dielectric film, cobalt or a cobalt alloy upon fabricating a semiconductor device, and a cleaning method using the same.
- the present invention provides a method for solving the above-described problems.
- the present invention is as follows.
- the liquid cleaning composition according to Item 1 wherein the amines are 1,2-propanediamine and/or 1,3-propanediamine.
- liquid cleaning composition according to Item 1 wherein the azoles are one or more selected from the group consisting of 1-methylimidazole, 1-vinylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, N-benzyl-2-methylimidazole, 2-methylbenzimidazole, pyrazole, 4-methylpyrazole, 3,5-dimethylpyrazole, 1,2,4-triazole, 1H-benzotriazole, 5-methyl-1H-benzotriazole and 1H-tetrazole. 4.
- the azoles are one or more selected from the group consisting of 1-methylimidazole, 1-vinylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, N-benzyl-2-methylimidazole, 2-methylbenzimidazole, pyrazole, 4-methylpyrazole, 3,5-dimethylpyrazole, 1,2,4-triazole, 1H-benzotriazole
- liquid cleaning composition according to Item 1 wherein the aminopolymethylene phosphonic acid is one or more selected from the group consisting of amino tri(methylene phosphonic acid), ethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid) and 1,2-propylenediamine tetra(methylene phosphonic acid). 5.
- a cleaning method for removing, using a liquid cleaning composition, a hard mask and a dry etch residue in a semiconductor device provided with a low-dielectric-constant interlayer dielectric film, the hard mask and cobalt or a cobalt alloy while suppressing damage to the low-dielectric-constant interlayer dielectric film and the cobalt or the cobalt alloy comprising the step of bringing the liquid cleaning composition comprising hydrogen peroxide at 10-30% by mass, potassium hydroxide at 0.005-0.7% by mass, aminopolymethylene phosphonic acid at 0.00001-0.01% by mass, at least one selected from amines and azoles at 0.001-5% by mass and water into contact with the semiconductor device. 6.
- the cleaning method according to Item 5 wherein the amines are 1,2-propanediamine and/or 1,3-propanediamine.
- the azoles are one or more selected from the group consisting of 1-methylimidazole, 1-vinylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, N-benzyl-2-methylimidazole, 2-methylbenzimidazole, pyrazole, 4-methylpyrazole, 3,5-dimethylpyrazole, 1,2,4-triazole, 1H-benzotriazole, 5-methyl-1H-benzotriazole and 1H-tetrazole. 8.
- aminopolymethylene phosphonic acid is one or more selected from the group consisting of amino tri(methylene phosphonic acid), ethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid) and 1,2-propylenediamine tetra(methylene phosphonic acid).
- the hard mask and the dry etch residue on the surface to be processed can be removed while suppressing damage to the low-dielectric-constant interlayer dielectric film, the metal wiring, the barrier metal and the barrier dielectric film in the process of fabricating a semiconductor device, thereby fabricating a high-precision high-quality semiconductor device at good yield.
- FIG. 1 A cross-sectional view of one exemplary wiring structure (pattern 1) of a semiconductor device that is to be cleaned with a liquid cleaning composition of the present invention.
- FIG. 2 A cross-sectional view of one exemplary wiring structure (pattern 2) of a semiconductor device that is to be cleaned with a liquid cleaning composition of the present invention.
- a liquid cleaning composition of the present invention (hereinafter, sometimes simply referred to as a “cleaning solution”) contains hydrogen peroxide, potassium hydroxide, aminopolymethylene phosphonic acid, at least one selected from amines and azoles, and water.
- the liquid composition of the present invention for cleaning a hard mask and a dry etch residue is used during the process of fabricating a semiconductor device, and thus it must suppress damage to a low-dielectric-constant interlayer dielectric film, metal wiring, a barrier metal and a barrier dielectric film.
- the concentration range of hydrogen peroxide used with the present invention is 10-30% by mass, preferably 13-25% by mass and particularly preferably 15-20% by mass.
- concentration range of hydrogen peroxide is 10-30% by mass, the hard mask, the dry etch residue and the photoresist can be removed effectively while suppressing damage to the metal wiring and the barrier metal.
- the concentration range of potassium hydroxide used with the present invention is 0.005-0.7% by mass, preferably 0.01-0.5% by mass and particularly preferably 0.02-0.4% by mass.
- concentration range of potassium hydroxide is 0.005-0.7% by mass, the hard mask and the dry etch residue can be removed effectively while suppressing damage to the low-dielectric-constant interlayer dielectric film and the metal wiring.
- aminopolymethylene phosphonic acid used with the present invention examples include amino tri(methylene phosphonic acid), ethylenediamine tetra(methylene phosphonic acid), diethylenetriamine penta(methylene phosphonic acid) and 1,2-propylenediamine tetra(methylene phosphonic acid). These aminopolymethylene phosphonic acids may be used alone or two or more types of them may be used in combination.
- the concentration range of the above-mentioned aminopolymethylene phosphonic acid used with the present invention is 0.00001-0.01% by mass, preferably 0.00005-0.007% by mass and particularly preferably 0.0001-0.005% by mass.
- concentration range of aminopolymethylene phosphonic acid is 0.00001-0.01% by mass, decomposition of hydrogen peroxide as well as damage to the metal wiring can be suppressed.
- the amines used with the present invention are preferably 1,2-propanediamine and/or 1,3-propanediamine.
- the concentration range of said amines is 0.001-5% by mass, preferably 0.01-4% by mass and particularly preferably 0.05-3% by mass.
- concentration range of the amines is within a range of 0.001-5% by mass, damage to the metal wiring can be suppressed.
- the azoles used with the present invention are, but not limited to, one or more selected from the group consisting of 1-methylimidazole, 1-vinylimidazole, 2-phenylimidazole, 2-ethyl-4-methylimidazole, N-benzyl-2-methylimidazole, 2-methylbenzimidazole, pyrazole, 4-methylpyrazole, 3,5-dimethylpyrazole, 1,2,4-triazole, 1H-benzotriazole, 5-methyl-1H-benzotriazole and 1H-tetrazole.
- the above-mentioned amines and azoles used with the present invention may be used alone or two or more types of them may be used in combination.
- the concentration range of azoles is 0.001-5% by mass, preferably 0.01-4% by mass and particularly preferably 0.05-3% by mass. When the concentration of the azoles is within the above-mentioned range, damage to the metal wiring can be suppressed.
- the liquid cleaning composition of the present invention may be added with an additive that is conventionally used in a liquid composition for cleaning a semiconductor as long as the purpose of the present invention is not interfered.
- an additive that is conventionally used in a liquid composition for cleaning a semiconductor as long as the purpose of the present invention is not interfered.
- a surfactant, an antifoaming agent or the like may be added as such additive.
- the cleaning method of the present invention is a method for removing, using a liquid cleaning composition, a hard mask and a dry etch residue in a semiconductor device provided with a low-dielectric-constant interlayer dielectric film, the hard mask and cobalt or a cobalt alloy while suppressing damage to the low-dielectric-constant interlayer dielectric film and the cobalt or the cobalt alloy, the method comprising the step of bringing the liquid cleaning composition comprising hydrogen peroxide at 10-30% by mass, potassium hydroxide at 0.005-0.7% by mass, aminopolymethylene phosphonic acid at 0.00001-0.01% by mass, at least one selected from amines and azoles at 0.001-5% by mass, and water into contact with the semiconductor device.
- the method for bringing the liquid cleaning composition of the present invention into contact with the semiconductor device is not particularly limited.
- a method in which the semiconductor device is immersed in the liquid cleaning composition of the present invention or a method in which the semiconductor device is brought into contact with the liquid cleaning composition by dropping, spraying or the like may be employed.
- the temperature of the liquid cleaning composition of the present invention upon use is preferably 20-80° C. and more preferably in a range of 25-70° C., which may suitably be selected according to etch conditions and a semiconductor base to be used. If necessary, the cleaning method of the present invention may also employ ultrasonication in combination.
- the time to use the liquid cleaning composition of the present invention is preferably 0.3-20 minutes and particularly preferably in a range of 0.5-10 minutes, which may suitably be selected according to etch conditions and a semiconductor base to be used.
- a rinsing liquid after the usage of the liquid cleaning composition of the present invention may be an organic solvent such as alcohol, simply rinsing with water is also sufficient.
- a semiconductor device and a display element includes: a substrate material such as silicon, amorphous silicon, polysilicon or glass; an dielectric material such as silicon oxide, silicon nitride, silicon carbide or a derivative thereof; a barrier material such as tantalum, tantalum nitride, ruthenium or ruthenium oxide; a wiring material such as copper or a copper alloy; a compound semiconductor such as gallium-arsenic, gallium-phosphorus, indium-phosphorus, indium-gallium-arsenic or indium-aluminum-arsenic; and an oxide semiconductor such as chrome oxide.
- a low-dielectric-constant interlayer dielectric film OCD (trade name, Tokyo Ohka Kogyo) of a hydroxysilsesquioxane (HSQ) series or a methylsilsesquioxane (MSQ) series, Black Diamond (trade name, Applied Materials), Aurora (trade name, ASM International) or Coral (trade name, Novellus Systems) of a carbon-doped silicon oxide (SiOC) series or the like may be used, although the low-dielectric-constant interlayer dielectric film is not limited thereto.
- OCD trade name, Tokyo Ohka Kogyo
- HSQ hydroxysilsesquioxane
- MSQ methylsilsesquioxane
- Black Diamond trade name, Applied Materials
- Aurora trade name, ASM International
- Coral trademark, Novellus Systems
- SiOC carbon-doped silicon oxide
- barrier metal tantalum, tantalum nitride, ruthenium, manganese, magnesium, cobalt or an oxide thereof may be used, although the barrier metal is not limited thereto.
- barrier dielectric film silicon nitride, silicon carbide, silicon carbonitride or the like may be used, although the barrier dielectric film is not limited thereto.
- titanium nitride, titanium or the like may be used as a hard mask to which the present invention can be applied.
- cobalt or a cobalt alloy formed on copper or a copper alloy, cobalt or a cobalt alloy, or the like may be used.
- the copper or the copper alloy When cobalt or a cobalt alloy formed on copper or a copper alloy is used as the metal wiring, the copper or the copper alloy usually does not make contact with the cleaning solution since the copper or the copper alloy are completely covered by the cobalt or the cobalt alloy. If, however, there is even a slight defect in the cobalt or the cobalt alloy, the liquid cleaning composition will make contact with the copper or the copper alloy. Therefore, the liquid cleaning composition intended for the present invention needs to have an anticorrosion property against copper or a copper alloy. Since the liquid cleaning composition of the present invention has an anticorrosion property against copper or a copper alloy, it can be used for metal wiring which has cobalt or a cobalt alloy formed on copper or a copper alloy.
- a semiconductor device that is to be cleaned with the liquid cleaning composition of the present invention is not particularly limited as long as it is provided with a low-dielectric-constant interlayer dielectric film, a hard mask and cobalt or a cobalt alloy.
- the liquid cleaning composition of the present invention can be used for cleaning a semiconductor device obtained by: laminating a barrier dielectric film, a low-dielectric-constant interlayer dielectric film, a hard mask and a photoresist on a substrate having a barrier metal, metal wiring and a low-dielectric-constant interlayer dielectric film or a substrate having metal wiring and a low-dielectric-constant interlayer dielectric film; then subjecting the photoresist to selective exposure followed by development to form a photoresist pattern; and subjecting the hard mask, the low-dielectric-constant interlayer dielectric film and the barrier dielectric film laminated on the substrate to a dry etch treatment using this photoresist pattern as a mask.
- Examples of such a semiconductor device include semiconductor devices having wiring structures with the cross-sections shown in FIGS. 1 and 2 .
- a barrier dielectric film 5 , a low-dielectric-constant interlayer dielectric film 4 and a hard mask 2 are laminated on a substrate including a barrier metal 7 , metal wiring having cobalt or a cobalt alloy 1 formed on copper or a copper alloy 6 and a low-dielectric-constant interlayer dielectric film 4 , where a predetermined pattern is formed.
- a dry etch residue 3 is attached to the surface of the semiconductor device.
- the wiring structure shown in FIG. 2 is the same as FIG. 1 except that cobalt or a cobalt alloy 1 is used as the metal wiring.
- the liquid cleaning composition of the present invention can be used to clean such a semiconductor device to remove the hard mask and the dry etch residue while suppressing damage to the low-dielectric-constant interlayer dielectric film, the metal wiring, the barrier metal and the barrier dielectric film.
- the removal states of the hard mask and/or the dry etch residue from the substrate as well as damages to the low-dielectric-constant interlayer dielectric film and the cobalt or the cobalt alloy were assessed by SEM observation.
- a SEM instrument used was ultrahigh-resolution field emission type scanning electron microscope SU9000 from Hitachi High-Technologies Corporation.
- Rate of hydrogen peroxide decomposition was 5% or more and less than 10%
- Rate of hydrogen peroxide decomposition was 10% or more and less than 20%
- Rate of hydrogen peroxide decomposition was 20% or more
- Liquid cleaning composition did not contain hydrogen peroxide.
- Semiconductor devices having a wiring structure with the cross-section shown in FIG. 1 or 2 were used for the test.
- the semiconductor devices were immersed in the liquid cleaning compositions indicated in Table 1 at temperatures and for time indicated in Table 2. Then, the devices were rinsed with ultrapure water and dried with dry nitrogen gas jet. The semiconductor devices after washing were observed with SEM to assess the removal states of the hard masks 2 and the dry etch residues 3 as well as damage to the cobalt or the cobalt alloys 1 , the low-dielectric-constant interlayer dielectric films 4 , the barrier dielectric films 5 and the barrier metals 7 . In addition, stability of hydrogen peroxide was also examined.
- Example 1-29 in which the liquid cleaning compositions of the present invention indicated in Table 2 were applied, the hard masks 2 and the dry etch residues 3 were found to be removed while damage to the cobalt or the cobalt alloys 1 and the low-dielectric-constant interlayer dielectric films 4 were found to be prevented. In all examples, no damage to the barrier dielectric films 5 , the copper or the copper alloys 6 and the barrier metals 7 were observed. In addition, the rates of hydrogen peroxide decomposition were less than 10%.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution described in Patent Document 2 containing hydrogen peroxide at 15% by mass, potassium hydroxide at 0.02% by mass, 1,2-propylenediamine tetra(methylene phosphonic acid) at 0.0005% by mass and water at 84.9795% by mass (Table 3, cleaning solution 3A).
- the cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed, damage to the low-dielectric-constant interlayer dielectric film 4 was prevented and the rate of hydrogen peroxide decomposition was low, a large hole was found in the cobalt or the cobalt alloy 1 .
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution described in Patent Document 3 containing hydrogen peroxide at 0.35% by mass, 2-(2-aminoethylamino)ethanol at 2.0% by mass, tetramethylammonium hydroxide at 1.5% by mass, ethylenediamine tetraacetic acid at 1.2% by mass and water at 94.95% by mass (Table 3, cleaning solution 3B).
- the cleaning conditions and the assessment results are shown in Table 4. Although the rate of hydrogen peroxide decomposition was low, the hard mask 2 and the dry etch residue 3 were not removed and damage to the low-dielectric-constant interlayer dielectric film 4 was not prevented.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution described in Patent Document 4 containing hydrogen peroxide at 3% by mass, potassium hydroxide at 2% by mass, sulfolane at 70% by mass, diethylenetriamine penta(methylene phosphonic acid) at 1% by mass and water at 24% by mass (Table 3, cleaning solution 3C).
- the cleaning conditions and the assessment results are shown in Table 4.
- the rate of hydrogen peroxide decomposition was high, the hard mask 2 and the dry etch residue 3 were not removed and damage to the low-dielectric-constant interlayer dielectric film 4 was not prevented.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution described in Patent Document 5 containing sulfuric acid at 98% by mass and water at 2% by mass (Table 3, cleaning solution 3D).
- the cleaning conditions and the assessment results are shown in Table 4. Although the dry etch residue 3 was removed and damage to the low-dielectric-constant interlayer dielectric film 4 was prevented, the hard mask 2 was not removed and a large hole was found in the cobalt or the cobalt alloy 1 .
- Patent Documents 2-5 Comparative Examples 1-4 were found that they cannot be used as a cleaning solution for removing a hard mask and a dry etch residue while preventing damage to cobalt or a cobalt alloy and a low-dielectric-constant interlayer dielectric film since cleaning performance was insufficient, the cobalt or the cobalt alloy or the low-dielectric-constant interlayer dielectric film was damaged, or stability of the cleaning solution was poor (Table 4).
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, diethylenetriamine penta(methylene phosphonic acid) at 0.0005% by mass and water at 82.7995% by mass (Table 3, cleaning solution 3E).
- Table 3E cleaning solution 3E
- the cleaning conditions and the assessment results are shown in Table 4. Although the rate of hydrogen peroxide decomposition was low, the hard mask 2 and the dry etch residue 3 were removed and damage to the low-dielectric-constant interlayer dielectric film 4 was prevented, a large hole was found in the cobalt or the cobalt alloy 1 .
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, diethylenetriamine penta(methylene phosphonic acid) at 0.0005% by mass and water at 99.2995% by mass (Table 3, cleaning solution 3F).
- the cleaning conditions and the assessment results are shown in Table 4.
- the hard mask 2 and the dry etch residue 3 were not removed, and damage to the cobalt or a cobalt alloy and the low-dielectric-constant interlayer dielectric film 4 was not prevented.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, 1H-tetrazole at 0.5% by mass, diethylenetriamine penta(methylene phosphonic acid) at 0.0005% by mass and water at 82.4995% by mass (Table 3, cleaning solution 3F).
- Table 3F cleaning solution 3F
- the cleaning conditions and the assessment results are shown in Table 4. Although the rate of hydrogen peroxide decomposition was low and damage to the low-dielectric-constant interlayer dielectric film 4 was prevented, the hard mask 2 and the dry etch residue 3 were not removed and damage to the cobalt or the cobalt alloy 1 was not prevented.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass and water at 82.3% by mass (Table 3, cleaning solution 3H).
- Table 3 cleaning solution 3H
- the cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, ethylenediamine tetraacetic acid at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3I).
- Table 3, cleaning solution 3I The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, diethylenetriamine pentaacetic acid at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3J).
- Table 3, cleaning solution 3J The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, triethylenetetramine at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3K).
- Table 3, cleaning solution 3K The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, tetraethylenepentamine at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3L).
- Table 3, cleaning solution 3L The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, pentaethylenehexamine at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3M).
- Table 3, cleaning solution 3M The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, 1,4,7,10-tetraazacyclododecane at 1.2% by mass and water at 81.1% (Table 3, cleaning solution 3N).
- Table 3, cleaning solution 3N The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, 8-quinolinol at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3O).
- Table 3, cleaning solution 3O The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed, and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, 8-hydroxyquinaldine at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3P).
- Table 3, cleaning solution 3P The cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, 2,2′-azodiphenol at 1.2% by mass and water at 81.1% by mass (Table 3, cleaning solution 3Q).
- Table 3Q cleaning solution 3Q
- the cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, 1H-tetrazole at 0.5% by mass, phosphonic acid at 0.0005% by mass and water at 82.2995% by mass (Table 3, cleaning solution 3R).
- Table 3R cleaning solution 3R
- the cleaning conditions and the assessment results are shown in Table 4. Although the hard mask 2 and the dry etch residue 3 were removed and damage to the cobalt or the cobalt alloy 1 and the low-dielectric-constant interlayer dielectric film 4 was prevented, the rate of hydrogen peroxide decomposition was high.
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, ethylenediamine at 0.5% by mass, diethylenetriamine penta(methylene phosphonic acid) at 0.005% by mass and water at 82.2995% by mass (Table 3, cleaning solution 3S).
- Table 3 cleaning solution 3S
- the cleaning conditions and the assessment results are shown in Table 4. Although the rate of hydrogen peroxide decomposition was low, the hard mask 2 and the dry etch residue 3 were removed and damage to the low-dielectric-constant interlayer dielectric film 4 was prevented, a large hole was found in the cobalt or the cobalt alloy 1 .
- a semiconductor device shown in FIG. 1 was cleaned with an aqueous solution containing hydrogen peroxide at 17% by mass, potassium hydroxide at 0.2% by mass, ethanolamine at 0.5% by mass, diethylenetriamine penta(methylene phosphonic acid) at 0.005% by mass and water at 82.2995% by mass (Table 3, cleaning solution 3T).
- Table 3T cleaning solution 3T
- the cleaning conditions and the assessment results are shown in Table 4. Although the rate of hydrogen peroxide decomposition was low, the hard mask 2 and the dry etch residue 3 were removed and damage to the low-dielectric-constant interlayer dielectric film 4 was prevented, a large hole was found in the cobalt or the cobalt alloy 1 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Detergent Compositions (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-080944 | 2014-04-10 | ||
JP2014080944 | 2014-04-10 | ||
PCT/JP2015/060129 WO2015156171A1 (ja) | 2014-04-10 | 2015-03-31 | 半導体素子の洗浄用液体組成物、および半導体素子の洗浄方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170183607A1 US20170183607A1 (en) | 2017-06-29 |
US9803162B2 true US9803162B2 (en) | 2017-10-31 |
Family
ID=54287748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/118,230 Active US9803162B2 (en) | 2014-04-10 | 2015-03-31 | Liquid composition for cleaning semiconductor device, and method for cleaning semiconductor device |
Country Status (8)
Country | Link |
---|---|
US (1) | US9803162B2 (ja) |
EP (1) | EP3093875A4 (ja) |
JP (1) | JP5835534B1 (ja) |
KR (1) | KR101608952B1 (ja) |
CN (1) | CN105210176B (ja) |
IL (1) | IL247182A (ja) |
TW (1) | TWI541343B (ja) |
WO (1) | WO2015156171A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10035978B2 (en) * | 2014-05-02 | 2018-07-31 | Mitsubishi Gas Chemical Company, Inc. | Semiconductor element cleaning liquid and cleaning method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9847289B2 (en) * | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
JP6630183B2 (ja) * | 2016-02-19 | 2020-01-15 | 東京応化工業株式会社 | リソグラフィー用洗浄液及び洗浄方法 |
WO2017167797A1 (en) | 2016-03-29 | 2017-10-05 | Technic France | Solution and method for etching titanium based materials |
JP6808730B2 (ja) * | 2016-06-03 | 2021-01-06 | 富士フイルム株式会社 | 処理液、基板洗浄方法およびレジストの除去方法 |
CN106328544A (zh) * | 2016-08-24 | 2017-01-11 | 浙江德汇电子陶瓷有限公司 | 氮化物陶瓷覆铜板的图形化方法及氮化物陶瓷覆铜板 |
US10388753B1 (en) | 2017-03-31 | 2019-08-20 | National Technology & Engineering Solutions Of Sandia, Llc | Regrowth method for fabricating wide-bandgap transistors, and devices made thereby |
TWI848933B (zh) * | 2018-03-02 | 2024-07-21 | 日商三菱瓦斯化學股份有限公司 | 抑制氧化鋁之損害之組成物的用途及使用此組成物之半導體基板之製造方法 |
KR102067551B1 (ko) * | 2018-04-12 | 2020-01-17 | (주) 에프엔지리서치 | 오염토양 또는 오염수질 복원용 화합물 |
GB201813368D0 (en) * | 2018-08-16 | 2018-10-03 | Lam Res Ag | Etchant composition |
WO2020171003A1 (ja) * | 2019-02-19 | 2020-08-27 | 三菱ケミカル株式会社 | セリウム化合物除去用洗浄液、洗浄方法及び半導体ウェハの製造方法 |
CN110923716A (zh) * | 2019-11-22 | 2020-03-27 | 苏州博洋化学股份有限公司 | 一种半导体先进封测ti蚀刻液 |
US20230365893A1 (en) * | 2020-09-29 | 2023-11-16 | Mitsubishi Gas Chemical Company, Inc. | Composition for cleaning semiconductor substrate, and cleaning method |
US20240228912A9 (en) * | 2021-03-08 | 2024-07-11 | Mitsubishi Gas Chemical Company, Inc. | Composition for cleaning semiconductor substrate, and cleaning method |
WO2024172099A1 (ja) * | 2023-02-16 | 2024-08-22 | 三菱瓦斯化学株式会社 | 半導体基板洗浄用組成物及びそれを用いた洗浄方法 |
CN117747414B (zh) * | 2024-02-19 | 2024-04-23 | 中国科学院长春光学精密机械与物理研究所 | 一种半导体晶圆基底清洗方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030148624A1 (en) | 2002-01-31 | 2003-08-07 | Kazuto Ikemoto | Method for removing resists |
JP2003234307A (ja) | 2002-02-12 | 2003-08-22 | Matsushita Electric Ind Co Ltd | エッチング方法、基板洗浄方法及び半導体装置の製造方法 |
WO2003104901A2 (en) | 2002-06-07 | 2003-12-18 | Mallinckrodt Baker Inc. | Microelectronic cleaning and arc remover compositions |
US20040220065A1 (en) | 2001-07-09 | 2004-11-04 | Hsu Chien-Pin Sherman | Ammonia-free alkaline microelectronic cleaning compositions with improved substrate compatibility |
US20050288199A1 (en) | 2004-06-29 | 2005-12-29 | Kanto Kagaku Kabushiki Kaisha | Composition for removing photoresist residue and polymer residue |
WO2007072727A1 (ja) | 2005-12-20 | 2007-06-28 | Mitsubishi Gas Chemical Company, Inc. | 配線基板の残渣除去用組成物および洗浄方法 |
WO2008114616A1 (ja) | 2007-03-16 | 2008-09-25 | Mitsubishi Gas Chemical Company, Inc. | 洗浄用組成物、半導体素子の製造方法 |
US20090120457A1 (en) | 2007-11-09 | 2009-05-14 | Surface Chemistry Discoveries, Inc. | Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices |
US20100190347A1 (en) | 2009-01-23 | 2010-07-29 | Ramachandrarao Vijayakumar Subramanyarao | Removal chemistry for selectively etching metal hard mask |
JP2010232486A (ja) | 2009-03-27 | 2010-10-14 | Nagase Chemtex Corp | エッチング用組成物 |
JP2013187350A (ja) | 2012-03-08 | 2013-09-19 | Tokyo Electron Ltd | 半導体装置、半導体装置の製造方法、半導体製造装置 |
TW201406949A (zh) | 2012-06-13 | 2014-02-16 | Mitsubishi Gas Chemical Co | 清洗用液體組成物、半導體元件之清洗方法、及半導體元件之製造方法 |
US20150210966A1 (en) * | 2012-12-03 | 2015-07-30 | Mitsubishi Gas Chemical Company, Inc. | Cleaning liquid for semiconductor elements and cleaning method using same |
US20160130500A1 (en) * | 2013-06-06 | 2016-05-12 | Advanced Technology Materials, Inc. | Compositions and methods for selectively etching titanium nitride |
US20160177457A1 (en) * | 2013-07-05 | 2016-06-23 | Wako Pure Chemical Industries, Ltd. | Etching agent, etching method and etching agent preparation liquid |
-
2015
- 2015-03-31 EP EP15776802.9A patent/EP3093875A4/en not_active Withdrawn
- 2015-03-31 WO PCT/JP2015/060129 patent/WO2015156171A1/ja active Application Filing
- 2015-03-31 KR KR1020157030020A patent/KR101608952B1/ko active IP Right Grant
- 2015-03-31 CN CN201580000662.1A patent/CN105210176B/zh active Active
- 2015-03-31 US US15/118,230 patent/US9803162B2/en active Active
- 2015-03-31 JP JP2015533336A patent/JP5835534B1/ja active Active
- 2015-04-09 TW TW104111351A patent/TWI541343B/zh active
-
2016
- 2016-08-09 IL IL247182A patent/IL247182A/en active IP Right Grant
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040220065A1 (en) | 2001-07-09 | 2004-11-04 | Hsu Chien-Pin Sherman | Ammonia-free alkaline microelectronic cleaning compositions with improved substrate compatibility |
JP2004536910A (ja) | 2001-07-09 | 2004-12-09 | マリンクロッド・ベイカー・インコーポレイテッド | 基板適合性が改善されたアンモニア不含アルカリ性マイクロエレクトロニクス洗浄組成物 |
US20030148624A1 (en) | 2002-01-31 | 2003-08-07 | Kazuto Ikemoto | Method for removing resists |
JP2003234307A (ja) | 2002-02-12 | 2003-08-22 | Matsushita Electric Ind Co Ltd | エッチング方法、基板洗浄方法及び半導体装置の製造方法 |
WO2003104901A2 (en) | 2002-06-07 | 2003-12-18 | Mallinckrodt Baker Inc. | Microelectronic cleaning and arc remover compositions |
JP2005529363A (ja) | 2002-06-07 | 2005-09-29 | マリンクロッド・ベイカー・インコーポレイテッド | マイクロエレクトロニクス洗浄およびarc除去組成物 |
US20050288199A1 (en) | 2004-06-29 | 2005-12-29 | Kanto Kagaku Kabushiki Kaisha | Composition for removing photoresist residue and polymer residue |
CN1716104A (zh) | 2004-06-29 | 2006-01-04 | 关东化学株式会社 | 光致抗蚀剂残渣及聚合物残渣的除去组合物 |
WO2007072727A1 (ja) | 2005-12-20 | 2007-06-28 | Mitsubishi Gas Chemical Company, Inc. | 配線基板の残渣除去用組成物および洗浄方法 |
US20100051066A1 (en) | 2005-12-20 | 2010-03-04 | Eiko Kuwabara | Composition for removing residue from wiring board and cleaning method |
US20100029085A1 (en) | 2007-03-16 | 2010-02-04 | Mitsubishi Gas Chemical Company, Inc. | Cleaning composition and process for producing semiconductor device |
CN101632042A (zh) | 2007-03-16 | 2010-01-20 | 三菱瓦斯化学株式会社 | 洗涤用组合物、半导体元件的制造方法 |
KR20100014961A (ko) | 2007-03-16 | 2010-02-11 | 미츠비시 가스 가가쿠 가부시키가이샤 | 세정용 조성물, 반도체 소자의 제조 방법 |
WO2008114616A1 (ja) | 2007-03-16 | 2008-09-25 | Mitsubishi Gas Chemical Company, Inc. | 洗浄用組成物、半導体素子の製造方法 |
US20090120457A1 (en) | 2007-11-09 | 2009-05-14 | Surface Chemistry Discoveries, Inc. | Compositions and method for removing coatings and preparation of surfaces for use in metal finishing, and manufacturing of electronic and microelectronic devices |
US20100190347A1 (en) | 2009-01-23 | 2010-07-29 | Ramachandrarao Vijayakumar Subramanyarao | Removal chemistry for selectively etching metal hard mask |
JP2010232486A (ja) | 2009-03-27 | 2010-10-14 | Nagase Chemtex Corp | エッチング用組成物 |
JP2013187350A (ja) | 2012-03-08 | 2013-09-19 | Tokyo Electron Ltd | 半導体装置、半導体装置の製造方法、半導体製造装置 |
US20140374904A1 (en) | 2012-03-08 | 2014-12-25 | Tokyo Electron Limited | Semiconductor device, semiconductor device manufacturing method, and semiconductor manufacturing apparatus |
TW201406949A (zh) | 2012-06-13 | 2014-02-16 | Mitsubishi Gas Chemical Co | 清洗用液體組成物、半導體元件之清洗方法、及半導體元件之製造方法 |
US20150152366A1 (en) | 2012-06-13 | 2015-06-04 | Mitsubishi Gas Chemical Company, Inc. | Cleaning liquid composition, method for cleaning semiconductor element, and method for manufacturing semiconductor element |
US20150210966A1 (en) * | 2012-12-03 | 2015-07-30 | Mitsubishi Gas Chemical Company, Inc. | Cleaning liquid for semiconductor elements and cleaning method using same |
KR20150095615A (ko) | 2012-12-03 | 2015-08-21 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | 반도체소자용 세정액 및 이를 이용한 세정방법 |
US20160130500A1 (en) * | 2013-06-06 | 2016-05-12 | Advanced Technology Materials, Inc. | Compositions and methods for selectively etching titanium nitride |
US20160177457A1 (en) * | 2013-07-05 | 2016-06-23 | Wako Pure Chemical Industries, Ltd. | Etching agent, etching method and etching agent preparation liquid |
Non-Patent Citations (3)
Title |
---|
F. Chen et al. "A Comparative Study of ULK Conduction Mechanisms and TDDB Characteristics for Cu Interconnects with and without CoWP Metal Cap at 32nm Technology", 2010 IEEE International Interconnect Technology Conference, IEEE, 2010, pp. 93-95. |
International Search Report dated Jun. 23, 2015 in PCT/JP2015/060129, filed Mar. 31, 2015. |
Office Action dated Feb. 1, 2017, in European Patent Application No. 15776802.9. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10035978B2 (en) * | 2014-05-02 | 2018-07-31 | Mitsubishi Gas Chemical Company, Inc. | Semiconductor element cleaning liquid and cleaning method |
Also Published As
Publication number | Publication date |
---|---|
WO2015156171A1 (ja) | 2015-10-15 |
CN105210176B (zh) | 2016-09-28 |
CN105210176A (zh) | 2015-12-30 |
KR20150123959A (ko) | 2015-11-04 |
EP3093875A1 (en) | 2016-11-16 |
US20170183607A1 (en) | 2017-06-29 |
KR101608952B1 (ko) | 2016-04-05 |
TW201600596A (zh) | 2016-01-01 |
JP5835534B1 (ja) | 2015-12-24 |
EP3093875A4 (en) | 2017-03-08 |
IL247182A (en) | 2017-04-30 |
TWI541343B (zh) | 2016-07-11 |
JPWO2015156171A1 (ja) | 2017-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9803162B2 (en) | Liquid composition for cleaning semiconductor device, and method for cleaning semiconductor device | |
KR101562053B1 (ko) | 세정용 액체 조성물, 반도체소자의 세정방법, 및 반도체소자의 제조방법 | |
CN106601598B (zh) | 半导体元件的清洗用液体组合物、半导体元件的清洗方法及半导体元件的制造方法 | |
JP6493396B2 (ja) | 半導体素子の洗浄液及び洗浄方法 | |
EP3220409B1 (en) | Semiconductor element cleaning solution that suppresses damage to cobalt, and method for cleaning semiconductor element using same | |
US9422512B2 (en) | Cleaning liquid for semiconductor elements and cleaning method using same | |
US10301581B2 (en) | Liquid composition for cleaning semiconductor device, method for cleaning semiconductor device, and method for fabricating semiconductor device | |
US20240132805A1 (en) | Composition for cleaning semiconductor substrate, and cleaning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI GAS CHEMICAL COMPANY, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHIMADA, KENJI;REEL/FRAME:039407/0982 Effective date: 20150723 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |