US9256260B2 - Processing system, processing device and power supply control method - Google Patents

Processing system, processing device and power supply control method Download PDF

Info

Publication number
US9256260B2
US9256260B2 US13/808,007 US201113808007A US9256260B2 US 9256260 B2 US9256260 B2 US 9256260B2 US 201113808007 A US201113808007 A US 201113808007A US 9256260 B2 US9256260 B2 US 9256260B2
Authority
US
United States
Prior art keywords
signal
processing
communication
power
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/808,007
Other languages
English (en)
Other versions
US20130103959A1 (en
Inventor
Yoshiaki Hatta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Assigned to SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., AUTONETWORKS TECHNOLOGIES, LTD. reassignment SUMITOMO ELECTRIC INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HATTA, YOSHIAKI
Publication of US20130103959A1 publication Critical patent/US20130103959A1/en
Application granted granted Critical
Publication of US9256260B2 publication Critical patent/US9256260B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40039Details regarding the setting of the power status of a node according to activity on the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/40208Bus networks characterized by the use of a particular bus standard
    • H04L2012/40215Controller Area Network CAN
    • Y02B60/1282
    • Y02B60/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present invention relates to power supply control of a system in which a plurality of processing devices communicate with one another, and more specifically to a processing system, a processing device and a power supply control method that can individually control the power supply of the processing devices connected to one communication medium, and thus can reduce power consumption in the entire system.
  • Such a system that includes a plurality of processing devices connected with one another through a communication medium to exchange information and to realize various types of signal processing has been used in a number of fields.
  • the ECUs connected to the same communication line are basically activated all at once.
  • all the ECUs that are connected to the same communication line are ready to be switched to the power-saving state.
  • Each of the ECUs is switched to the power-saving state only after communication on the communication line is stopped.
  • all the ECUs connected thereto sense the input of the communication signal and are activated.
  • some ECUs may be unnecessary to be activated among the ECUs connected to the same communication line.
  • a technique therefore, has been devised in that information regarding activation or switching to the power-saving state of an ECU is separately transmitted and received between ECUs so that each ECU can individually be activated or switched to the power-saving state on the basis of the information.
  • the ECUs are connected through a dedicated signal line so as to separately transmit and receive signals different from an existing communication protocol (e.g., CAN (Controller Area Network)), to mutually control activation or switching to the power-saving state.
  • an existing communication protocol e.g., CAN (Controller Area Network)
  • Japanese Patent Application Laid-Open No. 2008-193606 discloses a system and a method for superposing the second signal on a twist pair cable in the same phase between ECUs communicating with each other according to the CAN protocol using a differential signal, making it possible to transmit data different from a communication signal in CAN.
  • Japanese Patent Application Laid-Open No. 2008-290538 discloses a system for superposing a different modulation signal to communication according to the CAN protocol, to increase an amount of information that can be transmitted and received without the need for an extra communication line.
  • the modulation signal is transmitted at the same timing as the data field of the CAN message. It is thus difficult to transmit and receive a modulation signal independently from the signal of CAN.
  • the present invention has been devised in view of the above circumstances, and its object is to provide a processing system, a processing device and a power supply control method that can individually perform power supply control of the processing device connected to one same communication medium while maintaining an existing form of communication without the need for connection through a special dedicated line.
  • a processing system includes a plurality of processing devices connected via a communication line, each of the processing devices including: a processing part performing signal processing on an input signal and outputting the signal; a communication part connected to a communication line including two signal lines, receiving a signal transmitted using a differential signal on the basis of the first communication system to the communication line, outputting the received signal to the processing part and transmitting on the basis of the first communication system, the signal output from the processing part to the communication line; and a power supply control part controlling on/off of power supply from an outside to the processing part, and is characterized in that, in one processing device among the plurality of processing devices, the processing part outputs a control signal for controlling power-on/off to another processing device, and the above-described one processing device includes a transmission part transmitting on the basis of a second communication system, the control signal output by the processing part and directed to the above-described another processing device in the same phase to signal lines of the communication line, wherein in the another processing device, a reception part is provided for
  • the above-described another processing device further includes an input/output part to which the first signal received by the reception part, input to the communication part and output from the communication part to the processing part, and the second signal received by the reception part are input, and outputting the signals respectively to the power supply control part and the processing part on the basis of the input signal.
  • the input/output part includes determination means for determining whether or not the input second signal is a control signal indicating power-off, and means for cutting off communication between the communication part and the processing part in a case where the determination means determines that the second signal is the control signal indicating power-off.
  • the input/output part turns on the power supply at the power supply control part and cancels cutting-off of communication between the communication part and the processing part in a case where the determination means determines that the second signal is a control signal indicating power-on.
  • control signal includes destination information for identifying a processing device to be controlled for power-on/off
  • the input/output part further includes means for determining whether or not the input second signal is directed to the above-described another processing device, and when the means for determining determines as not, the input/output part ignores the input second signal.
  • control signal includes information indicating power-on/off for each of a plurality of other processing devices.
  • a communication speed in the second communication system is lower than a communication speed in the first communication system.
  • a processing device includes: a processing part performing signal processing on an input signal and outputting the signal; and a communication part connected to a communication line including two signal lines, receiving a signal transmitted using a differential signal on the basis of a first communication system to the communication line, outputting the received signal to the processing part, and transmitting on the basis of the first communication system, a signal output from the processing part to the communication line, and is characterized in that the processing part outputs a control signal for controlling power-on/off to another processing device.
  • the processing device includes a transmission part transmitting on the basis of a second communication system, the control signal output from the processing part and directed to another processing device, to signal lines of the communication line in a same phase.
  • a processing device includes: a processing part performing signal processing on an input signal and outputting the signal; a communication part connected to a communication line including two signal lines, receiving a signal transmitted using a differential signal on the basis of a first communication system to the communication line, outputting the received signal to the processing part, and transmitting on the basis of the first communication system, the signal output from the processing part to the communication line; and a power supply control part controlling on/off of power supply from an outside to the processing part, and is characterized by including a reception part receiving a first signal based on the first communication system and a second signal based on a second communication system from the communication line, the first signal received by the reception part is input to the communication part and the second signal received by the reception part is input to the power supply control part, and the power supply control part controls on/off of the power supply on the basis of an input signal.
  • a power supply control method for controlling power consumption of a plurality of processing devices in a processing system in which the plurality of the processing devices are connected via a communication line, each of the processing devices including: a processing part performing signal processing on an input signal and outputting the signal; a communication part connected to a communication line including two signal lines, receiving a signal transmitted using a differential signal on the basis of a first communication system to the communication line, outputting the received signal to the processing part, and transmitting on the basis of the first communication system, the signal output from the processing part to the communication line; and a power supply control part controlling on/off of power supply from an outside to the processing part, is characterized in that, in one processing device among the plurality of processing devices, the processing part outputs a control signal for controlling power-on/off to another processing device, and the control signal output by the processing part and directed to the another processing device is transmitted to signal lines of the communication line in a same phase on the basis of a second communication system.
  • a first signal based on the first communication system and a second signal based on the second communication system are received from the communication line, the received first signal is received by the communication part, the received second signal is input to the power supply control part, and the power supply control part controls on/off of power supply on the basis of an input control signal.
  • one processing device among the plurality of processing devices transmits a control signal for controlling power-on/off of another processing device to the signal lines of the communication line, on which a differential signal based on the first communication system is transmitted and received, in the same phase on the basis of the second communication system.
  • a signal based on the first communication system and a signal based on the second communication system are superposed. It is possible to prevent one signal from interfering with the other signal, since one is a differential signal whereas the other is an in-phase signal.
  • the another processing device for which on/off of the power supply is to be controlled receives a signal based on the first communication system and a signal based on the second communication system.
  • the signal based on the first communication system is received at the conventional communication part while the signal based on the second communication system is input to the power supply control part, which controls on/off of the power supply to the processing part on the basis of a control signal output from the one processing device.
  • the processing device in which the power supply to the processing part is turned off ignores a signal input from the communication part. This allows the plurality of processing devices connected to the same communication line to be turned off individually.
  • another processing device to be controlled for its on/off of the power supply receives the first signal based on the first communication system and the second signal based on the second communication system from the same communication line and includes an input/output part input a signal after input of the first signal to the communication part and the second signal to determine for the two signals in an integrated manner.
  • the input/output part turns off power supply to the processing part and also cuts off communication between the communication part and the processing part. This prevents the communication part from inputting any signal based on the first communication system sent out onto the communication line from other processing device, and thus the processing part from activating, so that the another processing device can independently maintain the power supply to be off.
  • another processing device which turned off the power supply to the processing part in response to the reception of the control signal indicating power-off, and which cut off the communication between the communication part and the processing part can, upon receiving the control signal indicating power-on, turn on the power supply to the processing part while canceling the cut-off, allowing signals to be input/output between the communication part and the processing part.
  • This also enables another processing device to independently return to the power-on state from the power-off state.
  • the control signal for power-on/off transmitted from one processing device to another processing device includes destination information that can identify which one of a plurality of other processing devices is to be controlled. This enables another processing device to determine whether or not the control signal transmitted onto the communication line on the basis of the second communication system is directed to itself, and enables one processing device to individually control power-on/off of another processing device.
  • the destination information is identification information such as an identification number for a processing device.
  • the control signal transmitted at a time includes information for power-on/off which is directed to a plurality of processing devices. Accordingly, one transmission of control signal can control power-on/off of the plurality of the processing devices, thereby improving the efficiency.
  • the control signal may be configured to be divided into a plurality of units in advance, and to include the information on power-on/off for each unit in a predetermined order of the processing devices.
  • the power-on/off for each processing device may be indicated bit by bit in the increasing order of identification numbers, i.e., the smallest number being first, so that one byte can control the power-on/off for eight processing devices.
  • the communication speed in the second communication system is lower than the communication speed in the first communication system. This can distinguish signals from one another, avoiding mutual interferences. Since the information on power-on/off can have a smaller amount of information compared to the information to be a target for signal processing performed by the processing part, no problem arises with a low communication speed.
  • a differential signal such as CAN is used, while in the second communication system serial communication is executed.
  • the communication part for CAN, serial communication part and the like installed in the existing processing device can be utilized, thereby allowing the existing system to be utilized.
  • each power of a plurality of processing devices connected to the same communication medium can individually be turned off, so that the power consumption of the entire system including the processing devices can further be reduced.
  • an existing device may be used for the communication part.
  • FIG. 1 is a configuration view illustrating a configuration of an in-vehicle communication system according to the present embodiment
  • FIG. 2 is a block diagram illustrating an internal configuration of an ECU according to the present embodiment
  • FIG. 3 is a schematic view schematically illustrating a principle of a signal superposition circuit
  • FIG. 4 is a waveform illustrating a superposition signal implemented by the signal superposition circuit
  • FIG. 5 is a flowchart illustrating an example of the processing procedure in an ECU of a master according to the present embodiment
  • FIG. 6 is a flowchart illustrating an example of the processing procedure in an input/output control circuit of an ECU according to the present embodiment.
  • FIG. 7 is a flowchart illustrating an example of the processing procedure performed when power of a microcomputer in an ECU is turned on in the present embodiment.
  • FIG. 1 is a configuration view illustrating a configuration of an in-vehicle communication system according to the present embodiment.
  • the in-vehicle communication system includes ECU 1 , ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d as well as a CAN bus 3 .
  • Each of the ECU 1 , ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d is a control device for executing control by a processor in accordance with a computer program, i.e. a microcomputer, for each device mounted on a vehicle for realizing various functions of the vehicle. While the ECU 1 , ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d are configured to perform processing for implementing different functions, they are connected to the same CAN bus 3 and mutually transmit and receive data on the basis of a CAN protocol to perform processing.
  • the CAN bus 3 is a twist pair cable used in the communication according to the CAN protocol.
  • a shielded twist pair cable is desirable to be used as the CAN bus 3 .
  • the ECU 1 , ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d basically perform CAN communication using a differential signal via the CAN bus 3 .
  • the ECU 1 includes, for example, a function of power supply control which controls power-on/off of a device mounted on a vehicle and controls an amount of power consumption for the entire system mounted on the vehicle.
  • the ECU 1 may be connected to a battery sensor (not shown) and may have a function of monitoring a remaining amount of a battery and performing power-supply control on the basis of the remaining amount of battery.
  • the ECU 1 serves as a master for the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d , and includes a function of individually controlling power-on/off of each of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 c 1 , which serves as a slave.
  • each of the ECU 1 , ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d is assigned with an ID number, while storing its own ID number.
  • the ECU 2 a and ECU 2 b operate when a vehicle is halted, especially when the ignition switch is off, whereas the ECU 2 c and ECU 2 d operate regardless of whether or not the vehicle is moving.
  • the ECU 2 a is a device for performing processing of locking/unlocking of a door and power of ECU 2 a may be turned off while the vehicle is moving.
  • the ECU 2 b is a device for security processing such as issuance of a warning by detecting, for example, forcible unlocking of a door, an impact on the vehicle body and a jack-up while the vehicle is halted, and thus power of ECU 2 b may be turned off while the vehicle is moving.
  • the ECU 1 individually controls power-on/off in each of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d according to a circumstance.
  • each of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d determines for itself whether or not its power may be turned off (or whether or not it may be switched to a power-saving state), and turns the power off when it may be switched to the power-off, while the ECU 1 controls to turn on the power supply in each of the ECU 2 a , ECU 2 b , ECU 2 c , and ECU 2 d when they are to be activated individually. It should be understood that the ECU 1 may also control to turn off the power supply for each of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d.
  • FIG. 2 is a block diagram illustrating an internal configuration of the ECUs 1 , 2 a , 2 b , 2 c and 2 d according to the present embodiment.
  • the solid lines indicate input/output of signals
  • the broken lines indicate power supply
  • the thick lines indicate communication lines. Since the internal configuration of the ECU 2 a is similar to that of the other ECUs 2 b , 2 c and 2 d , only the internal configuration of the ECU 2 a will specifically be described below whereas the internal configuration of the ECUs 2 b , 2 c and 2 d will not be described in detail.
  • the ECU 1 includes a microcomputer 10 , a power supply circuit 11 , a CAN transceiver 12 and a signal superposition circuit 13 .
  • the microcomputer 10 receives power from a battery (+B) (not shown) which is supplied by the power supply circuit 11 through a Vcc terminal and operates.
  • the microcomputer 10 is connected to the CAN transceiver 12 at transmission/reception terminals Tx, Rx.
  • the microcomputer 10 is also connected to the signal superposition circuit 13 by serial communication.
  • the CAN transceiver 12 is connected to the signal superposition circuit 13 and further to the communication line 3 via the signal superposition circuit 13 .
  • the microcomputer 10 internally includes a CPU (Central Processing Unit), a ROM (Read Only Memory) and a RAM (Random Access Memory) (none of those are shown). In the microcomputer 10 the CPU reads out and executes a computer program pre-stored in the ROM to implement the function of the ECU 1 .
  • the microcomputer 10 has the function of a CAN communication controller and performs CAN communication by the CAN transceiver 12 connected through transmission/reception terminals Tx, Rx.
  • the microcomputer 10 determines whether the power supply needs to be turned on or off for the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d from the information obtained by the CAN communication on the basis of the computer program stored in the ROM.
  • the microcomputer 10 then outputs, by serial communication, a power supply control signal indicating on or off of the power supply to any one of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d for which it is determined that the on/off state of the power supply needs to be changed.
  • the power supply circuit 11 is connected to the battery (+B), to appropriately adjust a voltage value and a current value and supply power from the battery to each of the components in the ECU 1 .
  • the CAN transceiver 12 implements transmission and reception of differential signals based on CAN at a physical layer.
  • the CAN transceiver 12 converts a signal applied from the transmission terminal Tx of the microcomputer 10 into a CAN signal and outputs the converted signal.
  • the CAN transceiver 12 also receives on the basis of the CAN protocol via the signal superposition circuit 13 , the signal sent out to the CAN bus 3 and inputs the received signal to the reception terminal Rx of the microcomputer 10 .
  • the signal superposition circuit 13 sends out the transmission signal output from the CAN transceiver 12 to the pair cable of the CAN bus 3 , while transmitting the power supply control signal output from the microcomputer 10 in the same phase to each one of the pair cable of the CAN bus 3 by serial communication.
  • the signal superposition circuit 13 can simultaneously superpose the CAN communication signal and the power supply control signal, and transmit them to the CAN bus 3 . It is noted that the signal superposition circuit 13 can also input the differential signal output to the CAN bus 3 to the CAN transceiver 12 .
  • the signal superposition circuit 13 specifically includes a circuit which connects inductances to each one of the pair cable of the CAN bus 3 to transmit a CAN_High signal and a CAN_Low signal respectively, and a circuit provided in parallel with the above-described circuit, connecting coupling inductances to each one of the pair cable of the CAN bus 3 to allow transmission of in-phase signals respectively.
  • FIG. 3 is a schematic view schematically illustrating the principle of the signal superposition circuit 13 . As shown in FIG.
  • the signal superposition circuit 13 is realized by a circuit which connects the coupling inductances to each of the terminals connected to each one of the pair cable and connects a resistance for matching a signal to the coupling terminals of the coupling inductances so as to input/output an in-phase signal on the resistance side, and by a circuit which is connected in parallel with the above-described circuit and inputs the CAN_High signal and the CAN_Low signal through the inductances respectively to the terminals connected to each one of the pair cable.
  • the signal superposition circuit 13 allows the signal superposition circuit 13 to send out the CAN transmission signal output from the CAN transceiver 12 to the CAN bus 3 and also to send out the power supply control signal which is a serial communication signal applied from the microcomputer 10 to the CAN bus 3 as in-phase signals.
  • FIG. 4 is a waveform illustrating a superposition signal implemented by the signal superposition circuit 13 . Shown from the top of FIG. 4 are: the CAN_High signal (indicated as CAN_H in FIG. 4 ) and CAN_Low signal (indicated as CAN_L in FIG. 4 ) that are output from the CAN transceiver 12 ; the power supply control signal which is a serial signal directly output from the microcomputer 10 ; and the superposition signal sent out to each one of the pair cable of the CAN bus 3 as a result of superposition.
  • the CAN_High signal indicated as CAN_H in FIG. 4
  • CAN_Low signal indicated as CAN_L in FIG. 4
  • the serial signal is lower in the communication speed compared to the CAN signal.
  • the information included in several bits of the CAN signal corresponds to one bit of the power supply control signal.
  • the power supply control signal which will be described below includes data bits corresponding to eight bits (D 0 -D 7 ) between a start bit (ST), a parity bit (P) and a stop bit (SP) in the serial communication.
  • the eight bits are used to identify IDs for the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d to be controlled.
  • the power supply control signal is interpreted as a signal for instructing to turn the power on (power off is determined by each of the ECUs 2 a to 2 d ).
  • each ID of the slave ECU 2 a , ECU 2 b , ECU 2 c or ECU 2 d is represented by data bits corresponding to eight bits, for example “00010000” (Number 16). It is understood that the power supply control signal may have a meaning of any one of power-on or power-off.
  • the first seven bits (D 0 -D 6 ) in the data bits represent an ID for the slave ECU 2 a , ECU 2 b , ECU 2 c or ECU 2 d
  • the eighth bit (D 7 ) represents the power-on as “1” or power-off as “0.”
  • the eight bits may represent power-on/off for all the ECUs 2 a , 2 b , 2 c and 2 d .
  • the first bit (D 0 ) corresponds to the ECU 2 a
  • the second bit (D 1 ) corresponds to the ECU 2 b
  • the third bit (D 2 ) corresponds to the ECU 2 c
  • the fourth bit (D 3 ) corresponds to the ECU 2 d
  • the power is on if a bit is “1” whereas the power is off if a bit is “0.”
  • the ECU 1 configured as described above determines which one of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d is to be turned on from the power-off state by the processing of the CPU in the microcomputer 10 , and transmits a power supply control signal to the CAN bus 3 by the signal superposition circuit 13 .
  • ECU 2 a and ECU 2 b respectively determines that power of the ECU 2 a and the ECU 2 b can be turned off after the vehicle starts moving and the speed is increased to 20 km/h or higher, and the ECU 2 a and the ECU 2 b respectively turn off the power for themselves.
  • the ECU 1 transmits a power supply control signal for instructing to turn on the power so as to turn on the ECU 2 a .
  • the power supply control signal includes node IDs for distinguishing the slave ECUs 2 a , 2 b , 2 c and 2 d from one another.
  • the power supply control signal enables each of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d to determine whether or not the power supply control signal is directed to itself.
  • the ECU 2 a includes a microcomputer 20 a , a power supply circuit 21 a , a CAN transceiver 22 a , a signal separation circuit 23 a and an input/output control circuit 24 a .
  • the microcomputer 20 a is connected to the power supply circuit 21 a through a Vcc terminal, and is further connected to the input/output control circuit 24 a at transmission/reception terminals Tx, Rx and an input/output terminal.
  • the power supply circuit 21 a is connected not only to the microcomputer 20 a but also to the CAN transceiver 22 a , the signal separation circuit 23 a and the input/output control circuit 24 a through an electric power line (not shown).
  • the input/output control circuit 24 a is connected to the CAN transceiver 22 a so as to be able to input and output a transmission signal and a reception signal, and is also connected to the signal separation circuit 23 a by serial communication and further to the power supply circuit 21 a so as to be able to input and output power-on/off signals.
  • the signal separation circuit 23 a is not only connected directly to the input/output control circuit 24 by serial communication but also connected to the CAN transceiver 22 a.
  • the microcomputer 20 a internally includes a CPU, a ROM and a RAM, and realizes the processing of locking/unlocking of a door by the CPU reading out and executing a computer program pre-stored in the ROM.
  • the microcomputer 20 a includes a Vcc terminal for receiving power supply, a transmission/reception terminal for communication and an input/output terminal.
  • the microcomputer 20 a accepts, at the reception terminal Rx, a CAN reception signal input via the input/output control circuit 24 a , obtains information by CAN communication, and outputs the information transmitted by CAN communication from the transmission terminal Tx.
  • the microcomputer 20 a is activated in a case where microcomputer 20 a senses the input of a reception signal at the reception terminal Rx even when the microcomputer 20 a is in a power-saving state (sleep state).
  • the microcomputer 20 a determines that it is switched to the power-off state
  • the microcomputer 20 a outputs a power-off request signal from the output terminal to the input/output control circuit 24 a .
  • the microcomputer 20 a determines for itself that it is to be switched to the power-off state when the microcomputer 20 a senses on the basis of information on the ignition switch and the travelling speed obtained by CAN communication, that the ignition switch is turned on and the travelling speed reached 20 km/h or higher.
  • the power supply circuit 21 a is connected to the battery (+B), and appropriately adjusts a voltage value as well as a current value with respect to each of the components in the ECU 2 a , to supply power from the battery. Note that the power supply circuit 21 a has a function of switching on/off of the power supply to the microcomputer 20 a on the basis of the power-on/off signals input from the input/output control circuit 24 a .
  • the power supply circuit 21 a stops power supply to the microcomputer 20 a on the basis of the power-off signal, whereas the power supply circuit 21 a starts the power supply when a power-on signal is input to the power supply circuit 21 a.
  • the CAN transceiver 22 a implements transmission and reception of a differential signal based on CAN at a physical layer.
  • the CAN transceiver 22 a converts into a CAN signal, a signal applied from the transmission terminal Tx of the microcomputer 20 a and input via the input/output control circuit 24 a and outputs the converted signal.
  • the CAN transceiver 22 a receives according to the CAN protocol via the signal separation circuit 23 a , a signal sent out to the CAN bus 3 , and inputs the received signal to the reception terminal Rx of the microcomputer 20 a via the input/output control circuit 24 a.
  • the signal separation circuit 23 a inputs a differential signal output onto the CAN bus 3 to the CAN transceiver 22 a , while inputting the in-phase signal output onto the CAN bus 3 to the input/output control circuit 24 a .
  • the signal separation circuit 23 a can receive both the differential signal and the in-phase signal simultaneously generated on the CAN bus 3 and can separate the superposition signal into the differential signal and the in-phase signal.
  • the signal separation circuit 23 a can separate the superposition signal shown in FIG. 4 into a CAN communication signal and a power supply control signal shown at the upper part of FIG. 4 , and can input them to the CAN transceiver 22 a and the input/output control circuit 24 a , respectively.
  • the signal separation circuit 23 a further has a function of outputting the transmission signal, transmitted from the transmission terminal Tx of the microcomputer 20 a and sent through the input/output control circuit 24 a , as a differential signal according to the CAN protocol.
  • the specific configuration of the signal separation circuit 23 a includes, as in the signal superposition circuit 13 shown in FIG. 3 , coupling inductances connected respectively at the connecting parts of the CAN transceiver 22 a and the CAN bus 3 and coupling inductances are connected in parallel.
  • the CAN transceiver 22 a may be input the CAN_High signal and the CAN_Low signal and the input/output control circuit 24 a to receive a serial communication signal generated in the same phase at the superposed CAN_High and CAN_Low.
  • the signal separation circuit 23 a may be provided with one stage of a differential amplifier.
  • the input/output control circuit 24 a interprets the serial communication signal received at the signal separation circuit 23 a as a power supply control signal, and inputs a power-on/off signal to the power supply circuit 21 a on the basis of the received power supply control signal in a case where the received power supply control signal is directed to the ECU 2 a . Moreover, the input/output control circuit 24 a cuts off the input and output of the CAN transmission signal between the CAN transceiver 22 a and the microcomputer 20 a when the input/output control circuit 24 a receives the power supply control signal directed to the ECU 2 a and the received power supply control signal is a signal for instructing to turn off the power.
  • the connection between the CAN transceiver 22 a and the microcomputer 20 a may physically be cut off, or power of the microcomputer 20 a may be turned off so as to logically prevent the microcomputer 20 a from accepting a CAN communication signal. Furthermore, a reception signal input from the CAN transceiver 22 a may logically be cut off so as not to be input to the reception terminal Rx of the microcomputer 20 a .
  • the input/output control circuit 24 a inputs a power-on signal to the power supply circuit 21 a , while cancelling the cutting-off of communication between the CAN transceiver 22 a and the microcomputer 20 a to recover such that communication is possible.
  • microcomputer 20 a determines whether or not it is to be switched to the power-off state, and when it is to be switched, the microcomputer 20 a outputs a power-off request signal to the input/output control circuit 24 a to stop power supply. In such a case, when the power is off, the ECU 2 a ignores any CAN communication signal transmitted onto the CAN bus 3 and will not be in the operating state. This is because the input/output control circuit 24 a cuts off input and output of the CAN communication signal.
  • the microcomputer 20 a is not activated even when the CAN reception signal is input to the microcomputer 20 a in the state where the microcomputer 20 a is not supplied with power. This allows, in a case where the vehicle is moving, the ECUs 2 a and 2 b to maintain the power-off state even when the other ECUs 2 c and 2 d connected to the CAN bus 3 are activated, thereby reducing the amount of power consumption in the entire in-vehicle communication system.
  • FIG. 5 is a flowchart illustrating an example of the processing procedure in the ECU 1 of a master according to the present embodiment.
  • the example illustrated in the flowchart of FIG. 5 describes a processing procedure performed when requesting the ECU 2 a which is already in the power-off state to unlock a door.
  • the microcomputer 10 in the ECU 1 can sense the power-off state of the ECU 2 a on the basis of the circumstance in that the CAN communication is not performed with the ECU 2 a.
  • the microcomputer 10 determines whether or not there is a request for unlocking a door on the basis of a CAN message received at the CAN transceiver 12 and obtained at the reception terminal Rx (step S 11 ). For example, when the driver turns on a switch for unlocking a door in a driver's seat while the driver is operating a moving car, an ECU to which information from the switch is input transmits a CAN message including a request for unlocking a door to the CAN bus 3 .
  • the ECU 2 a is already in the power-off state, so that it cannot receive the CAN message.
  • the microcomputer 10 determines that there is no request for unlocking a door (S 11 : NO)
  • the microcomputer 10 terminates the processing. Note that the microcomputer 10 regularly repeats the processing of FIG. 5 . Thus, the microcomputer 10 starts the processing again from the step S 11 .
  • the microcomputer 10 determines that there is a request for unlocking a door (S 11 : YES)
  • the microcomputer 10 outputs a power supply control signal which instructs to turn on power of the ECU 2 a from an output terminal through serial communication (step S 12 ).
  • the power supply control signal output from the microcomputer 10 is transmitted to the CAN bus 3 through the signal superposition circuit 13 .
  • the microcomputer 10 outputs a CAN message which is a request for unlocking a door from the transmission terminal Tx (step S 13 ), and terminates the processing.
  • the CAN message output from the transmission terminal Tx of the microcomputer 10 is transmitted to the CAN bus 3 by the CAN transceiver 12 via the signal superposition circuit 13 .
  • the microcomputer 10 may confirm whether or not a door is unlocked on the basis of the information obtained through CAN communication, and output the power supply control signal and CAN message several times until the door is unlocked.
  • the microcomputer 10 may determine whether or not it is required to be turned off from the power-on state or to be turned on from the power-off state for each of the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d (S 11 ), and when the microcomputer 10 determines as “required” (S 11 : YES), the microcomputer 10 may perform the processing of outputting a power supply control signal indicating the power-off or power-on (S 12 ). Though in the flowchart of FIG.
  • the microcomputer 10 executes the step of transmitting the request for unlocking a door through CAN communication (S 13 ) because the microcomputer 10 determines that there is a request for unlocking a door for the basis of determination that the power needs to be turned on at step S 11 , the step of transmitting the CAN message through CAN communication is not essential.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure in the input/output control circuit 24 a of the ECU 2 a according to the present embodiment.
  • the processing procedure in the ECU 2 a is similar to the processing procedure in the other slaves of ECUs 2 b , 2 c and 2 d . Therefore, the processing procedure in the ECU 2 a will hereinafter be described in detail, while the processing procedure in the other ECUs 2 b , 2 c and 2 d will not be described in detail.
  • the input/output control circuit 24 a in the ECU 2 a determines whether or not a power supply control signal directed to itself (ECU 2 a ) is received from the signal separation circuit 23 a (step S 21 ).
  • the input/output control circuit 24 a determines that the input/output control circuit 24 a receives the power supply control signal directed to the ECU 2 a (S 21 : YES)
  • the input/output control circuit 24 a inputs a power-on signal to the power supply circuit 21 a (step S 22 ) since the power supply control signal is a signal for instructing to turn on the power in the present embodiment, cancels cutting-off (connects) between the transmission/reception terminals Tx, Rx of the microcomputer 20 a and the CAN transceiver 22 a (step S 23 ), and terminates the processing.
  • the input/output control circuit 24 a determines whether or not a power-off request signal is input from the microcomputer 20 a (step S 24 ).
  • the input/output control circuit 24 a determines that a power-off request signal is input (S 24 : YES)
  • the input/output control circuit 24 a inputs a power-off signal to the power supply circuit 21 a (step S 25 ), and terminates the processing.
  • the microcomputer 20 a is turned off, so that the communication between the CAN transceiver 22 a and the microcomputer 20 a is cut off.
  • the input/output control circuit 24 a may intentionally cut off the physical connection between the microcomputer 20 a and the CAN transceiver 22 a after the input/output control circuit 24 a outputs the power-off signal to the power supply circuit 21 a at step S 25 .
  • the input/output control circuit 24 a determines that power-off request signal is not input (S 24 : NO)
  • the input/output control circuit 24 a returns the processing to step S 21 .
  • the input/output control circuit 24 a determines, after step S 21 , whether or not the received power supply control signal is the one indicating power-on. When the input/output control circuit 24 a determines that the received power supply control signal is the one indicating power-on, the input/output control circuit 24 a performs processing at steps S 22 and S 23 . When, on the contrary, the input/output control circuit 24 a determines that the received power supply control signal is the one indicating the power-off, the input/output control circuit 24 a performs the processing at step S 25 .
  • the input/output control circuit 24 a may cut off the physical connection between the microcomputer 20 a and the CAN transceiver 22 a.
  • FIG. 7 is a flowchart illustrating an example of the processing procedure performed when power of the microcomputer 20 a in the ECU 2 a is turned on in the present embodiment.
  • the microcomputer 20 a is activated when the power supply circuit 21 a accepts an input of a power-on signal to start power supply (step S 31 ), and obtains the CAN message transmitted by the transmission/reception terminals Tx, Rx through CAN communication (step S 32 ).
  • the microcomputer 20 a determines whether or not the obtained CAN message is a request for unlocking a door (step S 33 ), and when the microcomputer 20 a determines as the request for unlocking (S 33 : YES), the microcomputer 20 a performs processing of unlocking a door (step S 34 ), and terminates the processing.
  • the microcomputer 20 a determines that the message is not the request for unlocking at step S 33 (S 33 : NO)
  • the microcomputer 20 a terminates the processing without any further procedure.
  • the ECU 1 that is a master and the ECU 2 a , ECU 2 b , ECU 2 c and ECU 2 d that are slaves transmit and receive power supply control signals so as to be able to superpose the power supply control signal with the CAN communication.
  • power of the slave ECUs 2 a , 2 b , 2 c and 2 d can be turned on (or turned off) individually and an amount of power consumption in the entire in-vehicle communication system can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Power Sources (AREA)
US13/808,007 2010-08-05 2011-08-03 Processing system, processing device and power supply control method Expired - Fee Related US9256260B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-176634 2010-08-05
JP2010176634A JP2012038040A (ja) 2010-08-05 2010-08-05 処理システム、処理装置及び電源制御方法
PCT/JP2011/067726 WO2012018033A1 (ja) 2010-08-05 2011-08-03 処理システム、処理装置及び電源制御方法

Publications (2)

Publication Number Publication Date
US20130103959A1 US20130103959A1 (en) 2013-04-25
US9256260B2 true US9256260B2 (en) 2016-02-09

Family

ID=45559529

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/808,007 Expired - Fee Related US9256260B2 (en) 2010-08-05 2011-08-03 Processing system, processing device and power supply control method

Country Status (5)

Country Link
US (1) US9256260B2 (zh)
JP (1) JP2012038040A (zh)
CN (1) CN103053137B (zh)
DE (1) DE112011102625B4 (zh)
WO (1) WO2012018033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11082253B2 (en) 2018-10-18 2021-08-03 Yazaki Corporation Communication system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2585336A2 (en) * 2010-06-23 2013-05-01 Johnson Controls Saft Advanced Power Solutions LLC Battery power source device
EP2424174A1 (de) * 2010-08-27 2012-02-29 ELMOS Semiconductor AG Verfahren zum Betreiben eines Bus-Systems
US8928465B2 (en) * 2012-05-30 2015-01-06 GM Motors LLC Aftermarket module arrangement and method for communicating over a vehicle bus
KR101394815B1 (ko) 2012-12-24 2014-05-13 주식회사 유라코퍼레이션 통합형 제어기의 전원 보상용 회로 장치
JP5720707B2 (ja) 2013-02-13 2015-05-20 株式会社デンソー 通信システム及び通信ノード
JP6160382B2 (ja) * 2013-09-11 2017-07-12 株式会社デンソー 車載装置、車載通信システム
US9329611B2 (en) * 2013-12-02 2016-05-03 Nxp B.V. Power control
CN105607583A (zh) * 2014-10-29 2016-05-25 中兴通讯股份有限公司 一种监控方法、装置及电源系统中的第一监控单元
JP6471540B2 (ja) * 2015-03-04 2019-02-20 株式会社デンソー 車載通信システム、端末装置
US9768977B2 (en) * 2015-07-01 2017-09-19 QUALCOMM Technologies International, Ltd Low-power can management
JP6535039B2 (ja) * 2017-02-14 2019-06-26 株式会社東海理化電機製作所 電子制御装置
JP7006876B2 (ja) * 2017-05-01 2022-01-24 ラピスセミコンダクタ株式会社 半導体装置、電池監視システム、および半導体装置の起動方法
JP6981470B2 (ja) * 2017-06-12 2021-12-15 株式会社オートネットワーク技術研究所 分配器及び車載システム
KR102410515B1 (ko) * 2017-12-07 2022-06-20 현대자동차주식회사 제어장치 및 이를 제어하는 방법
DE102018110252A1 (de) * 2018-04-27 2019-10-31 Infineon Technologies Ag Transceiver, System mit Transceivern und Signal
CN209351354U (zh) * 2018-09-28 2019-09-06 深圳市道通科技股份有限公司 Can电路结构及其车辆诊断设备
JP7238647B2 (ja) * 2019-07-08 2023-03-14 オムロン株式会社 信号処理装置
JP7238650B2 (ja) 2019-07-09 2023-03-14 トヨタ自動車株式会社 車載ネットワークシステム
JP7283412B2 (ja) * 2020-02-14 2023-05-30 株式会社デンソー 通信システム
US11614792B2 (en) * 2020-11-20 2023-03-28 Ford Global Technologies, Llc Coordinating vehicle controller shutdown

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040083043A1 (en) * 2002-10-18 2004-04-29 Susumu Akiyama Integrated vehicle control system
US20040207263A1 (en) * 2002-09-03 2004-10-21 Yo Yanagida Power line communication device for vehicle
US20040223275A1 (en) * 2002-09-03 2004-11-11 Yo Yanagida Relay unit of power line communication device for vehicle
US6862508B2 (en) * 2002-10-18 2005-03-01 Denso Corporation Vehicle data communication system having supervised coordination of networks which control respective basic operating functions of vehicle
US20050049722A1 (en) * 2003-08-28 2005-03-03 Denso Corporation Vehicle control system for executing a series of processes in electronic control units
JP2006180205A (ja) 2004-12-22 2006-07-06 Denso Corp 車載送信装置およびプログラム。
US20060224278A1 (en) * 2005-03-31 2006-10-05 Yazaki Corporation Power line communication system
JP2008193606A (ja) 2007-02-07 2008-08-21 Auto Network Gijutsu Kenkyusho:Kk データ伝送システム及びデータ伝送方法
JP2008290538A (ja) 2007-05-23 2008-12-04 Auto Network Gijutsu Kenkyusho:Kk 車載用の電子制御ユニット
US20100070106A1 (en) * 2007-01-18 2010-03-18 Keisuke Okamoto Vehicle control system
US20100211676A1 (en) * 2008-10-15 2010-08-19 National University Corporation Nagoya University Communication apparatus, communication system, and communication method
US20110064126A1 (en) * 2008-05-29 2011-03-17 Autonetworks Technologies, Ltd. Communication apparatus, communication system, wire harness and communication method
US20140108545A1 (en) * 2007-11-30 2014-04-17 Autonetworks Technologies, Ltd. Vehicle-mounted communication system
US8874298B2 (en) * 2010-06-23 2014-10-28 Johnson Controls—SAFT Advanced Power Solutions LLC. Battery power source device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10060539C1 (de) * 2000-12-06 2002-06-20 Daimler Chrysler Ag System zur Steuerung oder Regelung
JP2003058285A (ja) * 2001-08-10 2003-02-28 Fujitsu Ten Ltd 制御システム
US20110046844A1 (en) * 2007-10-22 2011-02-24 Mats Honner System and method for changing the state of vehicle components
CN101734210B (zh) * 2009-12-24 2011-05-18 厦门金龙联合汽车工业有限公司 客车空调控制系统及控制方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040207263A1 (en) * 2002-09-03 2004-10-21 Yo Yanagida Power line communication device for vehicle
US20040223275A1 (en) * 2002-09-03 2004-11-11 Yo Yanagida Relay unit of power line communication device for vehicle
US20040083043A1 (en) * 2002-10-18 2004-04-29 Susumu Akiyama Integrated vehicle control system
US6862508B2 (en) * 2002-10-18 2005-03-01 Denso Corporation Vehicle data communication system having supervised coordination of networks which control respective basic operating functions of vehicle
US20050049722A1 (en) * 2003-08-28 2005-03-03 Denso Corporation Vehicle control system for executing a series of processes in electronic control units
JP2006180205A (ja) 2004-12-22 2006-07-06 Denso Corp 車載送信装置およびプログラム。
US20060224278A1 (en) * 2005-03-31 2006-10-05 Yazaki Corporation Power line communication system
US20100070106A1 (en) * 2007-01-18 2010-03-18 Keisuke Okamoto Vehicle control system
JP2008193606A (ja) 2007-02-07 2008-08-21 Auto Network Gijutsu Kenkyusho:Kk データ伝送システム及びデータ伝送方法
JP2008290538A (ja) 2007-05-23 2008-12-04 Auto Network Gijutsu Kenkyusho:Kk 車載用の電子制御ユニット
US20140108545A1 (en) * 2007-11-30 2014-04-17 Autonetworks Technologies, Ltd. Vehicle-mounted communication system
US20110064126A1 (en) * 2008-05-29 2011-03-17 Autonetworks Technologies, Ltd. Communication apparatus, communication system, wire harness and communication method
US8428154B2 (en) * 2008-05-29 2013-04-23 Autonetworks Technologies, Ltd. Communication apparatus, communication system, wire harness and communication method
US20100211676A1 (en) * 2008-10-15 2010-08-19 National University Corporation Nagoya University Communication apparatus, communication system, and communication method
US8874298B2 (en) * 2010-06-23 2014-10-28 Johnson Controls—SAFT Advanced Power Solutions LLC. Battery power source device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sep. 13, 2011 International Search Report issued in International Application No. PCT/JP2011/067726.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11082253B2 (en) 2018-10-18 2021-08-03 Yazaki Corporation Communication system

Also Published As

Publication number Publication date
DE112011102625B4 (de) 2016-08-18
CN103053137A (zh) 2013-04-17
WO2012018033A1 (ja) 2012-02-09
US20130103959A1 (en) 2013-04-25
JP2012038040A (ja) 2012-02-23
CN103053137B (zh) 2015-07-22
DE112011102625T5 (de) 2013-06-27

Similar Documents

Publication Publication Date Title
US9256260B2 (en) Processing system, processing device and power supply control method
JP5776779B2 (ja) 車載ゲートウェイ装置及び車両用通信システム
CN100417121C (zh) 在车辆电气部件之间传输信息的方法和供电线路结构
JP4483694B2 (ja) 車両用通信システム
JP5725058B2 (ja) データ中継装置
CN106465083B (zh) 通过紧急呼叫控制设备对机动车天线的二次使用
US20190118736A1 (en) Onboard relay device, information processing method, storage medium storing program, relay device, and information processing system
JP6052228B2 (ja) 車載制御システム
JP5598259B2 (ja) 処理システム、処理装置及び電源制御方法
JP2009302783A (ja) 通信ネットワークの故障検知方法及び故障検知システム
WO2021084845A1 (ja) 車載通信装置及び車両用通信方法
JP6273792B2 (ja) 車両データ取得装置及び車両ネットワークの通信負荷制御プログラム
CN102668462B (zh) 用于在重起动前将通信网络的电子构件置于等待的控制设备
JP2009292330A (ja) 車載システム及び制御方法
JP2007030714A (ja) 車両用通信システム
CN101539775A (zh) 一种自动识别地址的汽车控制模块系统
JP2010171910A (ja) 車載通信装置及び通信制御プログラム
JP5359449B2 (ja) 中継システム及び制御装置
CN107800599B (zh) 车载控制装置
CN201124812Y (zh) 汽车防盗模块
JP2020065333A (ja) 車載通信装置
JP2005335622A (ja) 車載装置及び通信装置
CN109167712B (zh) 车辆网络拓扑结构
US20240132058A1 (en) Vehicle system
US20240227787A9 (en) Vehicle system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HATTA, YOSHIAKI;REEL/FRAME:029601/0175

Effective date: 20121127

Owner name: SUMITOMO WIRING SYSTEMS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HATTA, YOSHIAKI;REEL/FRAME:029601/0175

Effective date: 20121127

Owner name: AUTONETWORKS TECHNOLOGIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HATTA, YOSHIAKI;REEL/FRAME:029601/0175

Effective date: 20121127

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200209