US9233562B2 - Printer with rotary cutter including tape guide on rotary blade - Google Patents
Printer with rotary cutter including tape guide on rotary blade Download PDFInfo
- Publication number
- US9233562B2 US9233562B2 US14/154,222 US201414154222A US9233562B2 US 9233562 B2 US9233562 B2 US 9233562B2 US 201414154222 A US201414154222 A US 201414154222A US 9233562 B2 US9233562 B2 US 9233562B2
- Authority
- US
- United States
- Prior art keywords
- edge portion
- rotary
- rotation
- flat blade
- rotary body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J11/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
- B41J11/66—Applications of cutting devices
- B41J11/70—Applications of cutting devices cutting perpendicular to the direction of paper feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D1/00—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
- B26D1/01—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
- B26D1/12—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis
- B26D1/25—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member
- B26D1/34—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis parallel to the line of cut
- B26D1/38—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis parallel to the line of cut and coacting with a fixed blade or other fixed member
- B26D1/385—Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a cutting member moving about an axis with a non-circular cutting member moving about an axis parallel to the line of cut and coacting with a fixed blade or other fixed member for thin material, e.g. for sheets, strips or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J11/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
- B41J11/66—Applications of cutting devices
- B41J11/70—Applications of cutting devices cutting perpendicular to the direction of paper feed
- B41J11/703—Cutting of tape
Definitions
- the present disclosure relates to a rotary cutter apparatus for cutting an object to be cut and a printer using the rotary cutter apparatus.
- a rotary cutter apparatus which can cut the object to be cut which is being fed without stopping the feeding is already known.
- a spiral-shaped blade is provided on an outer periphery of a cylindrical body portion, and by making each part of the blade sequentially cut into the object to be cut, the object to be cut is cut linearly.
- a rotary cutter apparatus comprising a housing, a rotary body supported by the housing so as to rotate along a predetermined rotating direction around a rotation axis, and a holding body supported by the housing, the rotary body having a rotary blade including a first edge portion, the holding body having a fixed blade including a second edge portion, the first edge portion being configured to be in contact with the second edge portion from a first side in the rotating direction and to be rubbed with the second edge portion, the first edge portion and the second edge portion being configured to perform cutting of an object to be cut by the rubbing, the object being located in an introduction path passing in a vicinity of an end portion of the second edge portion, and the rotary cutter apparatus further comprising a guide member configured to be in contact with the object to be cut from the first side in the rotating direction and to guide the object to a second side in the rotating direction when the object is fed from a cutting position to an inside of a rotation trajectory of the
- a guide member is provided.
- the first edge portion of the rotary blade rotates along the rotating direction from the first side to the second side and is brought into contact with the second edge portion from the first side.
- the guide member is brought into contact with the object to be cut which has been fed to the introduction path from the first side and guides the object to be cut to the second side opposite thereto. That is, erroneous advance of the introduced object to be cut to the first edge portion side of the rotary blade and collision against or interference with the first edge portion before getting closer to the second edge portion can be prevented.
- the object to be cut can be stably cut when the first edge portion and the second edge portion rub each other.
- FIG. 1 is a perspective view illustrating an outline configuration of a label producing apparatus provided with a rotary cutter apparatus according to an embodiment of the present disclosure.
- FIG. 2 is a front view of the label producing apparatus illustrated in FIG. 1 .
- FIG. 3A is a side view of the label producing apparatus illustrated in FIG. 1 .
- FIG. 3B is a sectional view of the label producing apparatus illustrated in FIG. 1 .
- FIG. 4B is a bottom view illustrating an example of an appearance of a print label.
- FIG. 5 is a cross sectional view by a V-V′ section in FIG. 4A .
- FIG. 6 is a perspective view of the rotary cutter apparatus when seen from diagonally above on a front side.
- FIG. 7A is a perspective view of the rotary cutter apparatus when seen from diagonally above on a rear side.
- FIG. 7B is a perspective view of the rotary cutter apparatus when seen from diagonally above on the front side.
- FIG. 8A is a plan view of the rotary cutter apparatus.
- FIG. 8B is a rear view of the rotary cutter apparatus.
- FIG. 9A is a rear view and a side view illustrating a constitution of an essential part of the embodiment of the present disclosure in which a rotation axis of a rotary body is arranged diagonally with respect to a horizontal holding body.
- FIG. 9B is a rear view and a side view illustrating a variation in which the holding body is arranged diagonally with respect to the rotation axis of the horizontal rotary body.
- FIG. 10A is a perspective view of an essential part of the rotary cutter apparatus illustrating an introduction mode of a label tape into a space between the rotary body and the holding body.
- FIG. 10B is a conceptual side view when seen from an A direction in FIG. 10A , illustrating an introduction mode of a label tape into a space between the rotary body and the holding body.
- FIG. 11A is an explanatory diagram illustrating progress of cutting of the label tape by rubbing between a first edge portion of a first cutting blade of the rotary body and a second edge portion of a second cutting blade of the holding body.
- FIG. 11B is an explanatory diagram illustrating progress of cutting of the label tape by rubbing between a first edge portion of a first cutting blade of the rotary body and a second edge portion of a second cutting blade of the holding body.
- FIG. 11C is an explanatory diagram illustrating progress of cutting of the label tape by rubbing between a first edge portion of a first cutting blade of the rotary body and a second edge portion of a second cutting blade of the holding body.
- FIG. 11D is an explanatory diagram illustrating progress of cutting of the label tape by rubbing between a first edge portion of a first cutting blade of the rotary body and a second edge portion of a second cutting blade of the holding body.
- FIG. 11E is an explanatory diagram illustrating progress of cutting of the label tape by rubbing between a first edge portion of a first cutting blade of the rotary body and a second edge portion of a second cutting blade of the holding body.
- FIG. 12A is a conceptual side view illustrating a guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 12B is a conceptual side view illustrating a guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 12C is a conceptual side view illustrating a guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 12D is a conceptual side view illustrating a guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 12E is a conceptual side view illustrating a guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 13A is a plan view of the rotary cutter apparatus illustrating a variation in which a guide member is separately disposed for guiding the label tape.
- FIG. 13B is a rear view of the rotary cutter apparatus illustrating a variation in which a guide member is separately disposed for guiding the label tape.
- FIG. 13C is a side view of the rotary cutter apparatus illustrating a variation in which a guide member is separately disposed for guiding the label tape.
- FIG. 14A is a conceptual side view illustrating an example of the guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 14B is a conceptual side view illustrating an example of the guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 14C is a conceptual side view illustrating an example of the guide behavior of the label tape executed with progress of rotation of the rotary body.
- FIG. 14E is a conceptual side view illustrating an example of the guide behavior of the label tape executed with progress of rotation of the rotary body.
- the present embodiment is an embodiment if a rotary cutter apparatus of the present disclosure is applied to a label producing apparatus.
- a vertical direction, a longitudinal direction, and a lateral direction correspond to arrow directions indicated as appropriate in each figure.
- the label producing apparatus body 1 includes a housing 2 , an upper cover 5 made of a transparent resin, a power button 7 arranged on a front side of the housing 2 , and the like.
- a tape holder 3 is accommodated and arranged in a tape holder accommodating portion 4 arranged in the label producing apparatus body 1 .
- the upper cover 5 is mounted capable of being opened/closed on an upper end edge portion on a rear side so as to cover an upper side of the tape holder accommodating portion 4 .
- a label tape 3 A having a predetermined width is rotatably wound around a tape holder 3 . That is, the label tape 3 A is wound in a roll state around a winding core 3 B having a predetermined outer peripheral diameter and constitutes a tape roll.
- a holder shaft member 40 having a substantially cylindrical shape is disposed so as to be arranged in an axial direction.
- the label tape 3 A has a three-layer structure in this example (See a partially enlarged view), and a separation sheet 3 a , an adhesive layer 3 b , and a lengthy thermal paper 3 c having a self-coloring property are laminated and constituted in this order from a side (upper side in FIG. 3B ) to be wound around the outer side of the roll toward the side opposite to that (lower side in FIG. 3B ).
- a separation sheet 3 a On the back side of the thermal paper 3 c (upper side in FIG. 3B , the separation sheet 3 a is bonded by the adhesive layer 3 b .
- this separation sheet 3 a enables adhesion by the adhesive layer 3 b to the article or the like by separating this.
- a thermal head 31 for applying a desired print is disposed, and a platen roller 26 is arranged at a position facing this thermal head 31 .
- the platen roller 26 feeds out the label tape 3 A wound around the winding core 3 B and feeds it on the feeding path reaching a discharging exit E.
- the thermal head 31 is moved downward by rotationally moving a lever (not shown) upward for vertical operation thereof into a state away from the platen roller 26 and is moved upward by rotationally moving the lever downward into a printable state by pressing and urging the label tape 3 A onto the platen roller 26 .
- a pulse motor or a stepping motor
- the desired print is applied to a print area (not shown) provided on the label tape 3 A while the label tape 3 A is being fed.
- the label tape 3 A with print is discharged out of the discharging exit E and then, cut to a desired length by the rotary cutter apparatus 610 which will be described later, and whereby the print label T (See FIGS. 4A and 4B which will be described later) is produced.
- FIGS. 1 , 3 A, and 3 B indicate the feeding path of the label tape 3 A being fed.
- a guide placing base 700 On the front side of the label producing apparatus body 1 (downstream side in the feeding direction from the discharging exit E), a guide placing base 700 is installed. Further on the downstream side in the feeding direction from this guide placing base 700 , the rotary cutter apparatus 610 is arranged.
- the guide placing base 700 leads the label tape 3 A with print discharged out of the discharging exit E to a space between a first flat blade 621 (which will be described later) and a second flat blade 631 (which will be described later) of the rotary cutter apparatus 610 .
- the print label T formed by completing cutting of the label tape 3 A by the rotary cutter apparatus 610 is illustrated in FIGS. 4A , 4 B, and 5 .
- the print label T has the aforementioned three-layer structure, and the thermal paper 3 c , the adhesive layer 3 b , and the separation sheet 3 a are laminated in this order from the front surface side (upper side in FIG. 5 ) to the side opposite thereto (lower side in FIG. 5 ).
- a print R (in this example, characters “AA-AA”) is printed on the surface of the thermal paper 3 c as described above.
- the rotary cutter apparatus 610 is provided with a housing 612 , a rotary body 620 , and a holding body 630 .
- the rotary cutter apparatus 610 performs linear cutting on the label tape 3 A having a print formed by the thermal head 31 using the first flat blade 621 and the second flat blade 631 in collaboration.
- the housing 612 has a first wall surface 613 on one side (right side in this example) and a second wall surface 614 on the other side (left side in this example).
- the housing 612 is provided with a connection portion 611 connecting the first wall surface 613 and the second wall surface 614 to each other.
- the rotary cutter apparatus 610 is arranged in a posture that planar directions of the first wall surface 613 and the second wall surface 614 of the housing 612 are inclined slightly to the left side from a vertical direction, but for convenience of explanation and ease to see the illustration, illustration is made in a posture that the housing 612 is returned to the vertical direction in FIGS. 7A , 7 B, 8 A, 8 B, 10 A and 10 B.
- the rotary body 620 is provided with a first bracket 622 on one side, a second bracket 623 on the other side, a rotary shaft 650 disposed on the housing 612 so as to connect the first bracket 622 and the second bracket 623 to each other and rotatably around a rotation axis O, and a flat blade mounting portion 624 disposed on the rotary shaft 650 and mounted with the first flat blade 621 .
- the first flat blade 621 is provided with a substantially plate-shaped first base portion 621 a (See FIGS. 12A to 12E and 14 A to 14 E) and a first edge portion 621 b (See FIG. 10A ) extending linearly to an edge portion of this base portion 621 a .
- the first edge portion 621 b is, as illustrated in FIGS. 7A , 8 B and the like, supported by the flat blade mounting portion 624 and the rotary shaft 650 so as to be in parallel with the rotation axis O.
- the first edge portion 621 b draws a cylindrical rotation trajectory (not shown) around the rotation axis O.
- the holding body 630 has a plate-shaped holding portion 632 provided with the second flat blade 631 .
- the holding portion 632 is also provided with extended portions 634 and 634 on both left and right end portions and is supported by a swing support mechanism 635 (See FIG. 7B ), capable of swing with respect to the housing 612 through these extended portions 634 and 634 .
- the swing support mechanism 635 is, as illustrated in FIGS. 7A and 7B , provided with a pair of left and right hinge arms 641 and 641 installed upright on the connection portion 611 of the housing 612 , a support shaft 636 which is inserted capable of rotational movement through these hinge arms 641 and 641 and to the both ends of which the extended portions 634 of the holding portion 632 are fixed, and a coil-shaped coil spring 637 arranged around the support shaft 636 .
- the holding portion 632 is made capable of swing fore and aft with respect to the housing 612 since the support shaft 636 fixed to the extended portions 634 , 634 is supported capable of rotational movement by the hinge arms 641 . At this time, as illustrated in FIG.
- one end of the coil spring 637 (rear end) is fixed to the connection portion 611 , while the other end (upper end) of the coil spring 637 is brought into contact with a rear part of the holding portion 632 , and as a result, the coil spring 637 urges the holding portion 632 to a front (in other words, in a direction toward the rotary body 620 ).
- the holding portion 632 is supported capable of swing with respect to the housing 612 so as to be able to approach to/leave from a rotation trajectory (not shown) of the entire rotary body 620 .
- the second flat blade 631 is provided with a substantially plate-shaped second base portion 631 a and a second edge portion 631 b extending linearly in an edge portion of this second base portion 631 a .
- the second flat blade 631 is held by the holding portion 632 by fixation of the second base portion 631 a with a mounting screw 633 .
- the holding portion 632 is arranged capable of swing as above, but in any swing state, the holding portion 632 holds the second flat blade 631 so that the second edge portion 631 b of the second flat blade 631 is not in parallel (a position of twist) with respect to the rotation axis O.
- a planar direction of the second base portion 631 a of the second flat blade 631 (that is, a mounting surface direction of the second flat blade 631 ) becomes parallel with the rotation axis O at a predetermined interval (See FIGS. 8A and 8B ).
- the second flat blade 631 is arranged with a predetermined angle ⁇ formed between a straight line including the second edge portion 631 b and the rotation axis O, as illustrated in FIG. 8B , when seen from the front (in other words, from a side surface direction orthogonal to the planar direction of the second base portion 631 a ).
- an inclination angle (so-called shearing angle) when the first edge portion 621 b and the second edge portion 631 b are in contact accords with this angle ⁇ .
- the second edge portion 631 b is held so as to extend linearly in a feeding surface of the label tape 3 A during a cutting operation.
- the first flat blade 621 is supported by the flat blade mounting portion 624 so that a cylindrical first rotation trajectory drawn by the first edge portion 621 b when the rotary body 620 rotates is brought into contact with the second edge portion 631 b , and the second flat blade 631 is held by the holding portion 632 .
- a positional relationship is obtained that the second edge portion 631 b of the second flat blade 631 is oblique to an outer edge line of the cylindrical first rotation trajectory around the rotation axis O.
- the rotary body 620 and the holding body 630 are arranged so that the feeding path of the label tape 3 A (in other words, the second edge portion 631 b ) becomes horizontal when seen from the front side, and the rotation axis O of the rotary body 620 is inclined with respect to the horizontal direction, but this is not limiting. That is, as illustrated in FIG. 9B , the rotary body 620 and the holding body 630 may be arranged so that the rotation axis O of the rotary body 620 becomes horizontal and the feeding path of the label tape 3 A (in other words, the second edge portion 631 b ) is inclined with respect to the horizontal direction when seen from the front side.
- a motor 638 configured to drive the rotary body 620 is disposed below the second wall surface 614 side of the housing 612 .
- a driving transmission mechanism 639 composed of a gear train capable of operationally connecting a driving shaft 651 of the motor 638 penetrating the second wall surface 614 (See FIG. 7B ) and the rotary shaft 650 of the rotary body 620 penetrating the second wall surface 614 to each other is provided.
- the motor 638 rotates the rotary body 620 through the driving transmission mechanism 639 in a direction in which the first edge portion 621 b of the first flat blade 621 gets closer to the second edge portion 631 b of the second flat blade 631 (See FIG. 10B ).
- the label tape 3 A inserted into a space between the rotary body 620 and the holding body 630 is cut in a running state (without stopping feeding).
- FIGS. 11A to 11E An operation of the rotary cutter apparatus 610 will be described by using FIGS. 11A to 11E .
- the positional relationship is obtained that the second edge portion 631 b of the second flat blade 631 is oblique to the outer edge line of the cylindrical rotation trajectory around the rotation axis O drawn by the first edge portion 621 b when the rotary body 620 rotates.
- a portion getting closer to the second edge portion 631 b gradually moves linearly from the left end portion to the right side with progress of the rotation.
- FIGS. 11A to 11E sequentially illustrate the behavior at this time.
- FIG. 11A is a state in which a portion indicated by an L1-L1 section closer to the left end portion of the first edge portion 621 b is brought into contact with and rubbed with the second edge portion 631 b (See a white arrow).
- a posture (a rotation angle) of the rotary body 620 which realizes this state is assumed to have a rotation phase “0°”.
- FIG. 11B in which rotation of the rotary body 620 progresses, a portion indicated by an L2-L2 section slightly shifted to the right side from the L1-L1 section of the first edge portion 621 b is brought into contact with and rubbed with the second edge portion 631 b (See the white arrow).
- the rotation phase of the rotary body 620 at this time is “4°”, for example.
- FIG. 11C in which the rotation of the rotary body 620 further progresses, a portion indicated by an MID-MID section at a center part in a left and right direction slightly shifted to the right side from the L2-L2 section of the first edge portion 621 b is brought into contact with and rubbed with the second edge portion 631 b (See the white arrow).
- the rotation phase of the rotary body 620 at this time is “8°”, for example.
- FIG. 11D in which the rotation of the rotary body 620 further progresses, a portion indicated by an R2-R2 section slightly shifted to the right side from the MID-MID section of the first edge portion 621 b is brought into contact with and rubbed with the second edge portion 631 b (See the white arrow).
- the rotation phase of the rotary body 620 at this time is “12°”, for example.
- FIG. 11E in which the rotation of the rotary body 620 further progresses, a portion indicated by an R1-R1 section close to the right end portion and slightly shifted to the right side from the R2-R2 section of the first edge portion 621 b is brought into contact with and rubbed with the second edge portion 631 b (See the white arrow).
- the rotation phase of the rotary body 620 at this time is “16°”, for example.
- the label tape 3 A By introducing the label tape 3 A into a contact portion between the first edge portion 621 b and the second edge portion 631 b sequentially moving as above, the label tape 3 A can be gradually cut forward linearly to the right side after cutting into the label tape 3 A is started on the left end portion. At this time, since the aforementioned angle ⁇ functions as a shearing angle, cutting can be performed smoothly with a relatively small shearing force.
- a cutting mode similar to a usual rotary cutter which makes each portion of a spiral blade disposed on an outer periphery of a cylindrical body portion sequentially cut into an object to be cut and perform linear cutting can be easily realized by the configuration using the two flat blades 621 and 631 .
- the structure can be simplified and a manufacturing process can be also simplified, and moreover, a manufacturing cost can be reduced.
- smooth cutting can be performed reliably with a small shearing force.
- the holding portion 632 is supported capable of swing by providing the swing support mechanism 635 .
- FIGS. 12A to 12E the guide used when the label tape 3 A is introduced which is an essential part of the present embodiment will be described by using FIGS. 12A to 12E .
- the first edge portion 621 b of the first flat blade 621 is brought closer to the second edge portion 631 b from one side (from above in this example) along the rotating direction and is further brought into contact with and rubbed with the second edge portion 631 b .
- the label tape 3 A fed and introduced into the feeding path passing in a vicinity of the end portion of the second edge portion 631 b is cut by the first edge portion 621 b and the second edge portion 631 b in collaboration.
- the rotary shaft 650 of the rotary body 620 is brought into contact with the label tape 3 A from the one side (the upper side in this example) in the rotating direction and guides the label tape 3 A to the other side (the lower side in this example) in the rotating direction.
- a size of an outer diameter of the rotary shaft 650 is set so that an outer peripheral surface (particularly a lower surface in this example) of the rotary shaft 650 comes to the substantially equal height as that of the second edge portion 631 b of the second flat blade 631 .
- the rotary shaft 650 is arranged inside a rotation trajectory (See a two-dot chain line) of the first edge portion 621 b .
- a guide behavior of the label tape 3 A by this rotary shaft 650 is illustrated in order along the aforementioned rotation angle (indicating a value of the rotation phase based on the aforementioned rotation phase “0°”.
- FIG. 12A is a state in which the rotation phase of the rotary body 620 is “0°”, and the first edge portion 621 b is brought into contact with and rubbed with the second edge portion 631 b from the upper side so as to sandwich the label tape 3 A having been already guided correctly and in a stable cutting preparation completed state as will be described later.
- cutting of the label tape 3 A is started.
- the cutting is started with the rotation phase “0°” as above, for a period until the rotation phase of approximately “16°” is reached as described above, rubbing between the first edge portion 621 b and the second edge portion 631 b is performed, and linear cutting is executed to the label tape 3 A.
- FIG. 12B is a state of the rotation phase “60°” in which the rotation of the rotary body 620 further slightly progresses from the above state.
- the label tape 3 A on a front in the feeding direction of the cutting position is pushed by a front surface of the first base portion 621 a and further fed to the front, and the label tape 3 A on the rear of the cutting position is also fed to the front and introduced to the inside of the rotation trajectory of the first edge portion 621 b .
- a distal end of the label tape 3 A protrudes substantially horizontally toward the rotary shaft 650 inside the rotation trajectory.
- FIG. 12C is a state of the rotation phase “120°” in which the rotation of the rotary body 620 further slightly progresses.
- the distal end of the label tape 3 A having further progressed from the protruding state reaches and is brought into contact with the rotary shaft 650 and then, is started to be guided (substantially horizontally or slightly downward in this example) so as not to move further upward by the rotary shaft 650 . That is, in the present embodiment, the label tape 3 A is guided at a rotation position out of a rotation range from the first rotation position to the second rotation position.
- FIG. 12D is a state of the rotation phase “180°” in which the rotation of the rotary body 620 further slightly progresses. From this state, the label tape 3 A is fed to the front while being further guided by the rotary shaft 650 .
- FIG. 12E is a state of the rotation phase “270°” in which the rotation of the rotary body 620 further slightly progresses. From this state, the label tape 3 A further goes forward while being guided by the rotary shaft 650 , and the distal end portion of the label tape 3 A is in a state out of the rotation trajectory of the rotary body 620 . As a result, the label tape 3 A enters the cutting preparation completed state stably held in the feeding path, in which the lower surface is substantially brought into contact with the second edge portion 631 b , while the upper surface is substantially brought into contact with the lower part of the rotary shaft 650 . If the rotation of the rotary body 620 further progresses after this state, the label tape 3 A enters a cutting start state illustrated in FIG. 12A , and the similar procedure is repeated.
- the introduced label tape 3 A is prevented from erroneously advancing toward the first edge portion 621 b side of the rotary body 620 and colliding with or interfering with the first edge portion 621 b before getting closer to the second edge portion 631 b .
- the label tape 3 A can be cut stably (See FIG. 12A ).
- the object to be cut can be guided without adding a new member.
- a member different from the rotary shaft 650 may be newly provided. Such variations will be described by referring to FIGS. 13A to 13C and 14 .
- a guide member 900 having a downwardly curved section is provided on the back surface of the first flat blade 621 of the rotary body 620 so as to protrude to the side opposite to the first edge portion 621 b , that is, toward the rotation axis O side.
- the guide member 900 is brought into contact with the label tape 3 A from the one side (upper side in this example) in the rotating direction and guides the label tape 3 A to the other side (lower side in this example) in the rotating direction when the label tape 3 A is fed on the feeding path and further fed from the cutting position to the inside of the rotary body 620 similarly to the above.
- the guide member 900 is arranged inside the rotation trajectory (see the two-dot chain line) of the first edge portion 621 b .
- a center part in the axial direction (that is, the right-and-left direction) of the rotary shaft 650 is removed in order to install the guide member 900 .
- FIGS. 14A to 14E similarly to FIGS. 12A to 12E , the guide behavior of the label tape 3 A by the guide member 900 is illustrated in order along the aforementioned rotation angle.
- FIG. 14A is a state in which the rotation phase of the rotary body 620 is “0°”, and similarly to the above, the first edge portion 621 b is brought into contact with and rubbed with the second edge portion 631 b from the upper side, and cutting of the label tape 3 A is started.
- FIG. 14B is a state of the rotation phase “60°” in which the rotation the rotary body 620 further slightly progresses from the above state.
- the label tape 3 A on the front in the feeding direction of the cutting position is pushed by the front surface of the first base portion 621 a and further fed to the front, and the label tape 3 A on the rear of the cutting position is also fed to the front and introduced to the inside of the rotation trajectory of the first edge portion 621 b .
- the distal end of the label tape 3 A protrudes substantially horizontally toward the guide member 900 inside the rotation trajectory.
- FIG. 14C is a state of the rotation phase “120°” in which the rotation of the rotary body 620 further slightly progresses.
- the distal end of the label tape 3 A having further progressed from the protruding state reaches and is brought into contact with the guide member 900 and then, is started to be guided (slightly downward in this example) so as not to move further upward by the guide member 900 .
- FIG. 14D is a state of the rotation phase “180°” in which the rotation of the rotary body 620 further slightly progresses. From this state, the label tape 3 A is fed to the front while being further guided by the guide member 900 .
- FIG. 14E is a state of the rotation phase “270°” in which the rotation of the rotary body 620 further slightly progresses. From this state, the label tape 3 A further goes forward while being guided by the guide member 900 , and the distal end portion of the label tape 3 A is in a state out of the rotation trajectory of the rotary body 620 . As a result, the label tape 3 A is substantially brought into contact with the second edge portion 631 b on the lower surface and enters the cutting preparation completed state in which the upper surface is located below the guide member 900 and stably held in the feeding path. If the rotation of the rotary body 620 further progresses after this state, the label tape 3 A enters a cutting start state illustrated in FIG. 14A , and the similar procedure is repeated.
- the same advantages as those of the aforementioned embodiment are obtained.
- the rotation position where the guiding is started, the rotation position where the guiding is finished and the like can be freely set, and a guiding mode can be finely adjusted.
- the present disclosure may be applied to the rotary cutter apparatus in which the rotary body has the flat blade mounting portion arranged at a position away from the rotation axis on the plane crossing the rotation axis and arranged with inclination with respect to the rotation axis so that the radial dimension of the rotation trajectory by the end portion on the one side is larger than the radial dimension of the rotation trajectory by the end portion on the other side and the flat blade supporting portion supporting the first flat blade with respect to the flat blade mounting portion so that the end portion on the one side and the end portion on the other side of the first flat blade form the rotation trajectories having the same diameter by disposing the end portion on the other side of the first flat blade corresponding to the other side of the flat blade mounting portion so as to protrude more largely in the circumferential direction than the end portion on the one side of the first flat blade corresponding to the one side of the flat blade mounting portion, and the holding body is provided with a holding portion capable of holding the second flat blade so as to be substantially parallel with the rotation axis at
- the end portion on the one side of the first flat blade and the end portion on the other side of the first flat blade form rotation trajectories having the same diameter and as a result, the first flat blade of the rotary body rotates for the whole area from the one side to the other side by keeping the substantially same distance from the rotation axis. Therefore, by introducing the object to be cut at the position away only by the predetermined distance which is the same from the rotation axis, substantially linear cutting can be applied to the object to be cut for the whole area from the one side to the other side of the first flat blade. In such rotary cutter apparatus, the same advantages as those of the above can be obtained by disposing the guide member 900 and the like.
- the guide member 900 and the like may be arranged in an ordinary rotary cutter performing linear cutting by sequentially having each part of a spiral blade disposed on an outer periphery of a cylindrical body portion cut into the object to be cut. In this case, too, the same advantages as those of the above can be obtained.
- the print label T was produced by applying a print on the label tape 3 A and cutting the same, but this is not limiting. That is, the present disclosure may be applied to a type in which a print is applied to a print-receiving tape and then, the tape is bonded with a base tape, and the bonded tape is cut so as to produce a print label T (so-called laminate type). In this case, too, the same advantages as those of the above can be obtained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Handling Of Sheets (AREA)
- Details Of Cutting Devices (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-155886 | 2011-07-14 | ||
JP2011155886A JP5803365B2 (ja) | 2011-07-14 | 2011-07-14 | ロータリーカッタ装置及び印刷装置 |
PCT/JP2012/067562 WO2013008809A1 (ja) | 2011-07-14 | 2012-07-10 | ロータリーカッタ装置及び印刷装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067562 Continuation-In-Part WO2013008809A1 (ja) | 2011-07-14 | 2012-07-10 | ロータリーカッタ装置及び印刷装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20140126947A1 US20140126947A1 (en) | 2014-05-08 |
US9233562B2 true US9233562B2 (en) | 2016-01-12 |
Family
ID=47506092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/154,222 Active US9233562B2 (en) | 2011-07-14 | 2014-01-14 | Printer with rotary cutter including tape guide on rotary blade |
Country Status (3)
Country | Link |
---|---|
US (1) | US9233562B2 (ja) |
JP (1) | JP5803365B2 (ja) |
WO (1) | WO2013008809A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5979409B2 (ja) * | 2012-02-29 | 2016-08-24 | ブラザー工業株式会社 | ロータリーカッタ装置及び印刷装置 |
DE102014225760A1 (de) * | 2014-11-19 | 2016-05-19 | Cewe Stiftung & Co. Kgaa | Vorrichtung zum Erzeugen von Schnittobjekten |
DE102015200033A1 (de) | 2014-11-19 | 2016-05-19 | Cewe Stiftung & Co. Kgaa | Vorrichtung zum Erzeugen von Aufklebern |
JP6812676B2 (ja) * | 2016-06-29 | 2021-01-13 | セイコーエプソン株式会社 | 印刷装置及びカッター |
CN114131683B (zh) * | 2021-11-29 | 2024-04-12 | 上海酷幽网络科技有限公司 | 一种基于收银纸生产的分切机上料机构 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB245261A (en) * | 1924-12-05 | 1926-01-07 | Walter Everett Molins | Improvements in and relating to machines for automatically cutting moving webs of paper or other material into sheets |
US4114491A (en) * | 1974-09-24 | 1978-09-19 | Hitachi Metals, Ltd. | Full rotation type paper web cutting device |
JPS58223599A (ja) | 1982-06-21 | 1983-12-26 | 松下電送株式会社 | カツタ−装置 |
JPH05337885A (ja) | 1992-06-11 | 1993-12-21 | Brother Ind Ltd | 画像形成装置における記録用紙の切断装置 |
JPH061997A (ja) | 1992-06-17 | 1994-01-11 | Nippon Oil & Fats Co Ltd | 洗浄剤組成物 |
JPH09168995A (ja) * | 1995-12-18 | 1997-06-30 | Ricoh Co Ltd | 転写紙切断装置 |
US5690009A (en) * | 1995-01-11 | 1997-11-25 | Mita Industrial Co., Ltd. | Roll sheet cutter mechanism for use in image forming apparatus |
JP2001096492A (ja) * | 1999-09-29 | 2001-04-10 | Uno Seisakusho:Kk | 帯状印刷紙から単位印刷紙を断裁する方法 |
JP2009148875A (ja) | 2007-11-27 | 2009-07-09 | Hitachi Metal Precision:Kk | シート材切断装置 |
JP2011098419A (ja) | 2009-11-06 | 2011-05-19 | Toshiba Tec Corp | シート材切断装置及びこのシート材切断装置を用いたプリンター |
US20120053730A1 (en) * | 2010-08-31 | 2012-03-01 | Toshiba Tec Kabushiki Kaisha | Thermal printer and control method thereof |
-
2011
- 2011-07-14 JP JP2011155886A patent/JP5803365B2/ja not_active Expired - Fee Related
-
2012
- 2012-07-10 WO PCT/JP2012/067562 patent/WO2013008809A1/ja active Application Filing
-
2014
- 2014-01-14 US US14/154,222 patent/US9233562B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB245261A (en) * | 1924-12-05 | 1926-01-07 | Walter Everett Molins | Improvements in and relating to machines for automatically cutting moving webs of paper or other material into sheets |
US4114491A (en) * | 1974-09-24 | 1978-09-19 | Hitachi Metals, Ltd. | Full rotation type paper web cutting device |
JPS58223599A (ja) | 1982-06-21 | 1983-12-26 | 松下電送株式会社 | カツタ−装置 |
JPH05337885A (ja) | 1992-06-11 | 1993-12-21 | Brother Ind Ltd | 画像形成装置における記録用紙の切断装置 |
JPH061997A (ja) | 1992-06-17 | 1994-01-11 | Nippon Oil & Fats Co Ltd | 洗浄剤組成物 |
US5690009A (en) * | 1995-01-11 | 1997-11-25 | Mita Industrial Co., Ltd. | Roll sheet cutter mechanism for use in image forming apparatus |
JPH09168995A (ja) * | 1995-12-18 | 1997-06-30 | Ricoh Co Ltd | 転写紙切断装置 |
JP2001096492A (ja) * | 1999-09-29 | 2001-04-10 | Uno Seisakusho:Kk | 帯状印刷紙から単位印刷紙を断裁する方法 |
JP2009148875A (ja) | 2007-11-27 | 2009-07-09 | Hitachi Metal Precision:Kk | シート材切断装置 |
JP2011098419A (ja) | 2009-11-06 | 2011-05-19 | Toshiba Tec Corp | シート材切断装置及びこのシート材切断装置を用いたプリンター |
US20120053730A1 (en) * | 2010-08-31 | 2012-03-01 | Toshiba Tec Kabushiki Kaisha | Thermal printer and control method thereof |
Non-Patent Citations (2)
Title |
---|
International Search Report for PCT/JP2012/067562, mailed on Aug. 21, 2012. |
International Search Report issued in Application No. PCT/JP2012/067562 on Jan. 23, 2014. |
Also Published As
Publication number | Publication date |
---|---|
US20140126947A1 (en) | 2014-05-08 |
JP2013018108A (ja) | 2013-01-31 |
JP5803365B2 (ja) | 2015-11-04 |
WO2013008809A1 (ja) | 2013-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9233562B2 (en) | Printer with rotary cutter including tape guide on rotary blade | |
CN108688349B (zh) | 打印设备 | |
US9010224B2 (en) | Rotary cutter device | |
WO2006009016A1 (ja) | テープ/チューブプリンタ | |
US20130118330A1 (en) | Rotary cutter mechanism | |
JP5979409B2 (ja) | ロータリーカッタ装置及び印刷装置 | |
EP2818324B1 (en) | Printer | |
US9039312B2 (en) | Printer with pair of tape roll guide members having a recessed part for housing a pressing roller | |
US9789712B2 (en) | Tape cartridge and printer | |
WO2015064254A1 (ja) | テープカートリッジ及び印刷装置 | |
JP5553240B2 (ja) | 印刷装置 | |
JP5817278B2 (ja) | ロータリーカッタ装置及び印刷装置 | |
JP6229509B2 (ja) | 切断装置及び印字装置 | |
JP6010854B2 (ja) | ロータリーカッタ装置 | |
JP5999577B2 (ja) | 印刷物作成装置 | |
JP4613540B2 (ja) | テープ/チューブプリンタ | |
JP4803293B2 (ja) | テープ/チューブプリンタ | |
JP4604587B2 (ja) | テープ/チューブプリンタ | |
JP2006027241A (ja) | モータ取付構造およびテープ/チューブプリンタ | |
JP2013176930A (ja) | 印刷物作成装置 | |
JP2018008396A (ja) | 搬送機構、および画像形成装置 | |
JP5605763B2 (ja) | ロータリーカッタ装置 | |
JP2023176113A (ja) | 切断装置 | |
JP2020142351A (ja) | 画像形成装置 | |
KR200273437Y1 (ko) | 코일결속기 내 패드공급장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BROTHER KOGYO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAGO, AKIRA;KATO, NOBUO;REEL/FRAME:031957/0413 Effective date: 20131209 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |