US6909596B2 - Solid electrolytic capacitor and method of manufacturing the same - Google Patents

Solid electrolytic capacitor and method of manufacturing the same Download PDF

Info

Publication number
US6909596B2
US6909596B2 US10/877,423 US87742304A US6909596B2 US 6909596 B2 US6909596 B2 US 6909596B2 US 87742304 A US87742304 A US 87742304A US 6909596 B2 US6909596 B2 US 6909596B2
Authority
US
United States
Prior art keywords
layer
nickel
solid electrolytic
electrolytic capacitor
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US10/877,423
Other languages
English (en)
Other versions
US20040264111A1 (en
Inventor
Koji Shimoyama
Yuji Mido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIDO, YUJI, SHIMOYAMA, KOJI
Publication of US20040264111A1 publication Critical patent/US20040264111A1/en
Application granted granted Critical
Publication of US6909596B2 publication Critical patent/US6909596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor for use in an electronic apparatus and a method of manufacturing the capacitor.
  • a conventional solid electrolytic capacitor having a small size and a large capacitance is disclosed in Japanese Patent Laid-Open Publication No. 2000-49048.
  • the capacitor includes a capacitor element having a prismatic shape and including an anode stick having an end thereof embedded in the element.
  • the capacitor element may be manufactured by the following processes.
  • An anode oxide layer is provided on a sintered pellet made, a core member, of valve metal powder material (tantalum powder), and then, a solid electrolyte layer of, e.g., manganese dioxide is provided on the anode oxide layer.
  • a collector layer composed of stratified carbon and silver is provided on the solid electrolyte layer.
  • the capacitor element is then joined with a positive electrode and a negative electrode and then enclosed together in a case. Portions of the case are removed to expose the positive electrode and the negative electrode.
  • the case has both ends solder-plated to form terminals electrically connected with the positive electrode and the negative electrode, respectively.
  • FIG. 2000-68158 Another conventional solid electrolytic capacitor is disclosed in Japanese Patent Laid-Open Publication No. 2000-68158.
  • This capacitor includes a capacitor element having a sheet shape.
  • a valve metal base having a dielectric oxide layer provided thereon has an end to provide an anode portion.
  • the dielectric oxide layer is then coated with a solid electrolyte layer excluding the anode portion of the dielectric oxide layer.
  • a collector layer functioning as a cathode portion is provided on the solid electrolyte layer, thus providing the capacitor element.
  • the anode portion and the cathode portion have respective ends soldered or bonded with electrically conductive adhesives to lead frames.
  • the lead frames and the capacitor elements are then coated with an outer coating, so that the lead frames are partially exposed at both ends of the outer coating.
  • the both ends are solder plated to provide terminals electrically connected to a the anode portion and the cathode portion, respectively.
  • the solid electrolytic capacitor having a multi-layer structure disclosed in Publication No. 2000-68158 may be manufactured by the following processes. Plural capacitor elements having sheet shapes are stacked and fixed so that their anode portions aligned in one direction and joined to the lead frame for the positive terminal. Similarly, the cathode portions of the capacitor elements are bonded to the lead frame for the negative terminal with an electrically conductive adhesive layer, while the cathode portions flare in a direction to the anode portions, thus providing a capacitor body a multi-layer structure. The capacitor body is then enclosed in a resin coating to provide the multi-layer solid electrolytic capacitor.
  • conventional solid electrolytic capacitors include their positive electrodes and their negative electrodes made of material different from valve metal, as provided for anode. These structures reduce volumetric sizes for providing their capacitances and increase the distances between the anode portions of valve metal to the positive electrodes. Accordingly, the capacitors have their impedances reduced for operating at high frequencies.
  • a solid electrolytic capacitor may have a large capacitance and a small impedance at high frequencies upon including an anode base of valve metal having an end exposed from a case to function the end as an anode portion serving as a terminal.
  • valve metal such as aluminum foil
  • a thin oxide layer known as a passive layer.
  • the solid electrolytic capacitor having the aluminum foil may hard has a small impedance since the passive layer functions as a resistor.
  • the aluminum foil may be hardly bonded with plated regions, and thus, may have the bonding strength between the anode base and the plated regions smaller than the conventional capacitors.
  • the passive layer of the aluminum foil may be washed out with acid or alkali solution.
  • the passive layer is easily developed under the atmosphere or any oxygen environment. Therefore, the passive layer can be hardly removed in either the atmosphere or solution including oxygen dissolved therein.
  • the aluminum foil can be hardly soldered with solder (including solder without lead).
  • a capacitor element includes a valve metal foil including a core layer and a porous layer on the core layer, a dielectric layer on a portion of the valve metal foil excluding an end portion of the valve metal foil, a solid electrolyte layer on the dielectric layer, a collector layer on the solid electrolyte layer, and a zinc layer on the end portion of the valve metal foil.
  • a solid electrolytic capacitor includes the capacitor element, an insulating case for sealing the capacitor element as to expose the zinc layer, a nickel layer on the zinc layer, and an electrode provided on the case and electrically connected to the collector layer.
  • the solid electrolytic capacitor has a small impedance even at high frequencies, and has a small overall size and a large capacitance.
  • FIG. 1 is a cross sectional view of a solid electrolytic capacitor according to Exemplary Embodiment 1 of the present invention.
  • FIG. 2 illustrates characteristics of the solid electrolytic capacitor according to Embodiment 1.
  • FIG. 3 is a cross sectional view of a solid electrolytic capacitor according to Exemplary Embodiment 2 of the invention.
  • FIG. 4 illustrates characteristics of the solid electrolytic capacitor according to Embodiment 2.
  • FIGS. 5A and 5B illustrate a nickel layer in the solid electrolytic capacitor according to Embodiment 2.
  • FIG. 6 is a cross sectional view of a solid electrolytic capacitor according to Exemplary Embodiment 3 of the invention.
  • FIG. 7 illustrates characteristics of the solid electrolytic capacitor according to Embodiment 3.
  • FIG. 1 is a cross sectional view of a solid electrolytic capacitor according to Exemplary Embodiment 1 of the present invention.
  • a porous layer 2 is provided by, e.g., chemical etching on an aluminum layer 1 , a core layer, thus providing aluminum foil 101 , a porous valve metal foil.
  • a dielectric layer 102 is provided on the porous layer 2 and then covered with a solid electrolyte layer 3 made of electrically-conductive polymer, such as polypyrrole or polythiophene, by chemical or electrolytic polymerization.
  • An end 1 A of the aluminum layer 1 is used as an anode, hence not being covered with the solid electrolyte layer 3 .
  • a copper foil 5 as a cathode is joined by an electrically conductive adhesive layer 9 to the solid electrolyte layer 4 , thus providing a capacitor element.
  • the capacitor element is enclosed in a case 6 made by resin molding of insulating resin material, such as epoxy resin, phenol resin, or epoxy silicone resin.
  • An end portion 1 A of the aluminum layer 1 , the porous layer 2 , and the dielectric layer 102 is used as an anode, while an end surface 1 B is exposed from the case 6 .
  • the dielectric layer 102 is exposed at the end portion 1 A.
  • the copper foil 5 has an end portion 5 A exposed from the case 6 for providing a cathode.
  • the capacitor may not include the copper foil 5 and instead, may include the cathode implemented by the collector layer 4 exposed.
  • the case 6 is trimmed physically or chemically for exposing both the end surface 1 B (of the aluminum foil 101 and the dielectric layer 102 ) and the end portion 5 A of the copper foil 5 to provide electrodes. More specifically, the end surface 1 B of the dielectric layer 102 and the aluminum foil 101 is exposed at an end of the case 6 for an anode, while the end portion 5 A of the copper foil 5 is exposed at an end for a cathode.
  • An anode/cathode separation 4 A may be provided by coating of insulating resin for electrically insulating the cathode of the solid electrolyte layer 3 and the collector layer 4 from the anode of the aluminum foil 101 .
  • the end portion 1 A exposed from the case 6 is washed with pure water and then etched with acid for removing impurities and stain from its surface.
  • the end portion 1 A is then immersed in solution of sodium hydroxide containing zinc, so that portions of the dielectric layer 102 at the anode of the aluminum layer 1 and the porous layer 2 are substituted by zinc, hence depositing a zinc layer 7 .
  • the zinc layer 7 is not only deposited on the surface of the aluminum layer 1 but also dispersed to penetrate the aluminum layer 1 , hence being rigidly bonded.
  • Zinc substitutes aluminum oxide having partial crystalline faults in a portion of the dielectric layer 102 on the porous layer 2 to deposit the zinc layer 7 . Accordingly, the zinc layer 7 bonded rigidly to the whole end surface 1 B of the aluminum layer 1 and the porous layer 2 , i.e., the anode.
  • the capacitor element is immersed into solution containing nickel salt and boron hydride compound, so that a nickel layer 8 is deposited on the zinc layer 7 .
  • the nickel layer 8 and the zinc layer 7 deposited through the substitution enables the whole end surface 1 B of the aluminum foil 101 to have the zinc layer 7 rigidly bonded thereto even if the aluminum foil 101 has a thickness not greater than 200 ⁇ m.
  • This structure provides a small resistance between the zinc layer 7 and the end surface, hence allowing the solid electrolytic capacitor to have a small impedance even at high frequencies and an improved operation reliability.
  • a conventional capacitor including a nickel layer on an end surface of an aluminum foil allows the nickel layer to be deposited on an exposed portion of the aluminum foil.
  • the nickel layer has a bonding strength to the aluminum foil reduced if the foil includes a thick porous layer.
  • the porous layer 2 of the aluminum foil 101 upon being thick, provides the solid electrolytic capacitor with a large capacitance.
  • the capacitor according to Embodiment 1 includes the aluminum layer 2 having a thickness not larger than 1 ⁇ 2 the thickness of the porous layer 2 of the aluminum foil 101 , while the bonding strength between the zinc layer 7 and the aluminum foil 101 is not reduced.
  • the zinc layer 7 may be provided with hydrofluoric acid or ammonium fluoride solution containing zinc instead of the zinc containing solution of sodium hydroxide.
  • the nickel layer 8 may be deposited with solution composed of nickel salt and diethyl amino volan instead of the nickel salt and boron hydride compound solution.
  • the zinc layer 7 is stopped being deposited.
  • the zinc layer 7 may has a thickness preferably not larger than 2 ⁇ m.
  • the capacitor element is immersed into palladium solution and subjected to electroless plating for absorbing palladium having a catalytic effect.
  • nickel layers 10 is deposited on both end surfaces of the case 6 .
  • a tin layer 13 is provided on the nickel layer 10 , thus providing the solid electrolytic capacitor having a chip form.
  • the nickel layers 10 has a thiness ranging preferably from 1 ⁇ m to 3 ⁇ m.
  • One of the nickel layers 10 is electrically connected to the collector layer 4 with the copper layer 5 and the conductive adhesive layer 9 .
  • the nickel layers 10 and the tin layers 13 function as electrodes for connecting the capacitor element to an external circuit.
  • the tin layers 13 increases an affinity to solder and may be replaced by a solder layer.
  • the capacitor may include the tin players 13 preferably in view of environmental protection.
  • the solid electrolytic capacitor according to Embodiment 1 has electrodes having lengths from the capacitor element smaller than those of the conventional solid electrolytic capacitor. Therefore, the capacitor according to the embodiment has a small impedance even at high frequencies, hence having a small equivalent series resistance (ESR) and a small equivalent series inductance (ESL). Even if the porous layer 2 of the aluminum foil 101 is thick, the solid electrolytic capacitor of Embodiment 1 has a smaller overall size and a larger capacitance than the conventional capacitors.
  • FIG. 2 illustrates measurements of capacitance and equivalent series resistances (ESRs) of Examples 1 to 7 of solid electrolytic capacitors including aluminum foils having various thicknesses for evaluation of the solid electrolytic capacitor of Embodiment 1.
  • ESRs were measured under a heat cycle test having 100 cycles in each of which an ambient temperature was changed from ⁇ 40° C. to 105° C.
  • Examples 1 to 7 of the solid electrolytic capacitors of Embodiment 1 after the heat cycle test have ESRs smaller than those of Comparative Examples 1 to 5.
  • the ESR of Example 7 including the aluminum layer having a cross section area S 1 being 1 ⁇ 2 or smaller than a cross section area S 2 of the porous layer is changed after the heat cycle test less than the Comparative Examples.
  • Even the solid electrolytic capacitor of each Example including the aluminum foil having a thickness not greater than 200 ⁇ m exhibits a large bonding strength between the electrodes and the aluminum foil.
  • FIG. 3 is a cross sectional view of a solid electrolytic capacitor according to exemplary Embodiment 2 of the present invention.
  • the solid electrolytic capacitor of the present embodiment includes plural capacitor elements of Embodiment 1 shown in FIG. 1 which are joined at respective cathode portions of the elements with an electrically conductive adhesive 9 .
  • the capacitor elements are then enclosed in a case 6 by resin molding or the like.
  • An anode portion of each capacitor element has a zinc layer 7 provided on a end surface 1 B of a valve metal (aluminum) porous foil 101 .
  • a nickel layer 8 is provided on the zinc layer 7 .
  • the zinc layer 7 and the nickel layer 8 may be provided on all or some of the aluminum foils 101 of the capacitor elements.
  • a copper foil 5 may be inserted in electrically-conductive adhesive layer 9 .
  • the copper foil 5 has an end portion 5 A extending outwardly as a negative electrode from the case 6 .
  • Plural copper foils 5 may be inserted in the electrically-conductive adhesive layers 9 between capacitor elements. This arrangement provides the solid electrolytic capacitor of the present embodiment with a small equivalent series resistance (ESR).
  • the capacitor elements are immersed in palladium solution for electroless plating to absorb palladium having a catalytic effect.
  • the capacitor elements are then immersed in nickel plating solution containing phosphor, hence providing a nickel layer 10 having a 5 ⁇ m thickness and 6 wt. % of phosphor deposited on each end surface of the case 6 .
  • a tin layer 13 is provided on the nickel layer 10 , thus providing the solid electrolytic capacitor having a chip form.
  • the nickel layers 10 and the tin layers 13 function as electrodes for connecting the solid electrolytic capacitor with an external circuit.
  • the solid electrolytic capacitor of Embodiment 2 includes shorter electrodes and smaller impedance than conventional solid electrolytic capacitors, hence having a small ESR and a small ESL. Since the porous portions 2 of the capacitor elements may be thick in the aluminum foils 101 , the solid electrolytic capacitor of Embodiment 2 has a small overall size, a large capacitance, and an improved operational reliability.
  • Examples 8 to 10 of the chip solid electrolytic capacitor of Embodiment 2 includes the capacitor elements were fabricated and measured in their capacitances and ESRs. They were subjected to a heat cycle having 100 cycles in each of which an ambient temperature was changed from ⁇ 40° C. to 105° C., and then the capacitances and the ESRs was measured. Comparative Example 6 of a solid electrolytic capacitor not including a zinc layer but nickel layers and tin layers was prepared and tested by the same manner as of Examples 8 to 10 for obtaining measurements of the characteristics. The measurements are shown in FIG. 4 .
  • the chip solid electrolytic capacitor including of the capacitor elements has a large capacitance, a small ESR, and n improved operational reliability.
  • the nickel layers 10 are deposited by immersing the capacitor elements in the nickel plating solution containing phosphor.
  • the nickel layers 10 deposited on the case are shown in FIGS. 5A and 5B .
  • the nickel layer 10 shown in FIG. 5A receives a compression stress, that is, stress F 2 for urging the edges 10 P of the layer 10 towards the case 6 .
  • the nickel layer 10 shown in FIG. 5B receives a tensile stress for deflecting in a direction opposite to that shown in FIG. 5A , that is, receives stress F 1 for forcing edges 10 P of the layer 10 to remove from the case 6 .
  • the (tensile or compression) stress received in the nickel layer 10 can be determined by the concentration of phosphor in the nickel plating solution.
  • the nickel plating solution including various concentration of phosphor with additives were prepared, and the capacitor elements were immersed in the different types of solution for depositing nickel layers 10 . Then, the nickel layers 10 were subjected to a tension test. According to experiment, it was confirmed that the plating solution contains a high concentration of phosphor provides the layer with the tensile stress, and the plating solution contains a small concentration of phosphor provides the layer 10 with the compression stress.
  • the nickel layer 10 shown in FIG. 5A receiving the compression stress produces as a high bonding strength to the case 6 of 2 kg/mm 2 .
  • the nickel layer 10 shown in FIG. 5B receiving the tensile stress produces a bonding strength of 1 kg/mm 2 .
  • the bonding strength of the nickel layer 10 increases if the nickel plating solution contains the small concentration of phosphor.
  • the nickel layer 10 receiving an optimum compression stress if the nickel plating solution contains a concentration of phosphor ranging from 6% to 8%.
  • FIG. 6 is a cross sectional view of a solid electrolytic capacitor according to Exemplary Embodiment 3 of the present invention.
  • a solid electrolytic capacitor of Embodiment 2 shown in FIG. 3 is immersed in electrolytic copper plating solution to deposit a copper layer 11 having a thickness not smaller than 5 ⁇ m on a nickel layer 10 .
  • the capacitor is immersed in electrolytic nickel plating solution for depositing a nickel layer 12 on the copper layer 11 .
  • the solid electrolytic capacitor is immersed in electrolytic tin plating solution to deposit a tin layer 13 having a thickness not smaller than 3 ⁇ m on the nickel layer 12 .
  • the nickel layer 10 , the copper layer 11 , the extra nickel layer 12 , and the tin layer 13 function as electrodes for connecting capacitor elements to an external circuit.
  • the copper layer 11 has the thickness not smaller than 5 ⁇ m, hence having few defects, a small resistance, and a large physical strength.
  • Examples 11 to 13 of the solid electrolytic capacitor of Embodiment 3 were fabricated and measured in capacitances and ESRs. They were subjected to a heat cycle test having 100 cycle in each of which an ambient temperature was changed from ⁇ 40° C. to 105° C., and then subjected to an humidity test in which they were exposed in an environment at a temperature of 85° C. and in a humidity of 85% RH for 72 hours before measurement of the ESRs.
  • Comparative example 7 of a solid electrolytic capacitor not including the copper layer but the nickel layer and the tin layer was prepared and tested in the same manner as Examples 11 to 13 for obtaining measurements of the characteristics. The measurements are illustrated in FIG. 6 .
  • Examples 11 to 13 of the solid electrolytic capacitor of Embodiment 3 have small ESRs even after the heat cycle test.
US10/877,423 2003-06-30 2004-06-25 Solid electrolytic capacitor and method of manufacturing the same Active US6909596B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-186813 2003-06-30
JP2003186813A JP4439848B2 (ja) 2003-06-30 2003-06-30 固体電解コンデンサおよびその製造方法

Publications (2)

Publication Number Publication Date
US20040264111A1 US20040264111A1 (en) 2004-12-30
US6909596B2 true US6909596B2 (en) 2005-06-21

Family

ID=33535455

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/877,423 Active US6909596B2 (en) 2003-06-30 2004-06-25 Solid electrolytic capacitor and method of manufacturing the same

Country Status (3)

Country Link
US (1) US6909596B2 (zh)
JP (1) JP4439848B2 (zh)
CN (1) CN100466124C (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060262486A1 (en) * 2005-05-17 2006-11-23 Kazuo Tadanobu Solid electrolytic capacitor
US20070206344A1 (en) * 2004-03-09 2007-09-06 Showa Denko K.K. Solid Electrolytic Capacitor And The Use Thereof
US20070297121A1 (en) * 2006-06-22 2007-12-27 Nec Tokin Corporation Solid electrolytic capacitor manufacturing method capable of easily and properly connecting anode electrode portion
US20080037201A1 (en) * 2004-11-30 2008-02-14 Rohm Co., Ltd. Solid Electrolytic Capacitor And Method For Manufacturing Same
US20080304210A1 (en) * 2007-06-05 2008-12-11 Nec Tokin Corporation Solid-state electrolytic capacitor
US20090290292A1 (en) * 2005-12-15 2009-11-26 Showa Denko K. K. Capacitor chip and method for manufacturing same
US20100165547A1 (en) * 2007-08-29 2010-07-01 Panasonic Corporation Solid electrolytic capacitor
US20100284128A1 (en) * 2005-07-26 2010-11-11 Showa Denko K.K. Solid electrolytic capacitor element and solid electrolytic capacitor using same
US9978531B2 (en) 2013-05-19 2018-05-22 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US10176929B2 (en) 2015-11-18 2019-01-08 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
CN111327313A (zh) * 2018-12-14 2020-06-23 硅实验室公司 用于数控振荡器的装置及相关方法
US10879011B2 (en) 2017-10-20 2020-12-29 Murata Manufacturing Co., Ltd. Method for producing solid electrolytic capacitor, and solid electrolytic capacitor
US10903017B2 (en) 2016-06-15 2021-01-26 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
US11244790B2 (en) * 2019-03-28 2022-02-08 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414962B2 (en) 2005-10-28 2013-04-09 The Penn State Research Foundation Microcontact printed thin film capacitors
US20070128508A1 (en) * 2005-11-23 2007-06-07 Fang J C Battery structure
US10340092B2 (en) 2006-06-15 2019-07-02 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
JP6686975B2 (ja) * 2016-06-15 2020-04-22 株式会社村田製作所 固体電解コンデンサ
JP2009049373A (ja) * 2007-07-25 2009-03-05 Panasonic Corp 固体電解コンデンサ
JP5131079B2 (ja) * 2007-08-29 2013-01-30 パナソニック株式会社 固体電解コンデンサの製造方法
KR100975919B1 (ko) * 2008-05-06 2010-08-13 삼성전기주식회사 탄탈 콘덴서의 외부전극 형성 방법
KR101719663B1 (ko) 2009-12-22 2017-03-24 케메트 일렉트로닉스 코포레이션 고체 전해 캐패시터 및 제조 방법
JP2011238738A (ja) * 2010-05-10 2011-11-24 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法
JP2018198297A (ja) * 2016-06-15 2018-12-13 株式会社村田製作所 固体電解コンデンサ
JP7300616B2 (ja) * 2017-09-28 2023-06-30 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP7203323B2 (ja) * 2018-12-12 2023-01-13 パナソニックIpマネジメント株式会社 固体電解コンデンサおよびその製造方法
JP7067512B2 (ja) 2019-03-22 2022-05-16 株式会社村田製作所 固体電解コンデンサ
CN111834123A (zh) * 2019-04-15 2020-10-27 钰冠科技股份有限公司 堆叠型电容器组件结构
JP7320742B2 (ja) * 2019-04-22 2023-08-04 パナソニックIpマネジメント株式会社 固体電解コンデンサ
CN114600208A (zh) * 2019-10-31 2022-06-07 松下知识产权经营株式会社 电解电容器
TWI695395B (zh) * 2019-12-04 2020-06-01 鈺邦科技股份有限公司 電容器組件結構及其製作方法
WO2021125045A1 (ja) * 2019-12-18 2021-06-24 株式会社村田製作所 固体電解コンデンサ
JP7020504B2 (ja) * 2020-03-24 2022-02-16 株式会社村田製作所 固体電解コンデンサ
TWI702620B (zh) * 2020-04-15 2020-08-21 鈺邦科技股份有限公司 電容器組件封裝結構及其製作方法
JP7435433B2 (ja) 2020-12-16 2024-02-21 株式会社村田製作所 固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法
WO2023190050A1 (ja) * 2022-03-29 2023-10-05 株式会社村田製作所 固体電解コンデンサ
WO2024029458A1 (ja) * 2022-08-02 2024-02-08 株式会社村田製作所 固体電解コンデンサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621608A (en) * 1994-11-25 1997-04-15 Nec Corporation Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
JP2000049048A (ja) 1998-07-31 2000-02-18 Elna Co Ltd チップ型固体電解コンデンサおよびその製造方法
JP2000068158A (ja) 1998-06-11 2000-03-03 Showa Denko Kk 単板コンデンサ素子及び積層型固体電解コンデンサ
US6392869B2 (en) * 2000-05-26 2002-05-21 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US6563693B2 (en) * 2001-07-02 2003-05-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100596166B1 (ko) * 1998-06-11 2006-07-03 쇼와 덴코 가부시키가이샤 단판 콘덴서 소자 및 적층형 고체 전해 콘덴서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621608A (en) * 1994-11-25 1997-04-15 Nec Corporation Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same
JP2000068158A (ja) 1998-06-11 2000-03-03 Showa Denko Kk 単板コンデンサ素子及び積層型固体電解コンデンサ
JP2000049048A (ja) 1998-07-31 2000-02-18 Elna Co Ltd チップ型固体電解コンデンサおよびその製造方法
US6392869B2 (en) * 2000-05-26 2002-05-21 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US6563693B2 (en) * 2001-07-02 2003-05-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7522404B2 (en) * 2004-03-09 2009-04-21 Showa Denko K.K. Solid electrolytic capacitor and the use thereof
US20070206344A1 (en) * 2004-03-09 2007-09-06 Showa Denko K.K. Solid Electrolytic Capacitor And The Use Thereof
US20080037201A1 (en) * 2004-11-30 2008-02-14 Rohm Co., Ltd. Solid Electrolytic Capacitor And Method For Manufacturing Same
US7706131B2 (en) * 2004-11-30 2010-04-27 Rohm Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US7342772B2 (en) * 2005-05-17 2008-03-11 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
US20060262486A1 (en) * 2005-05-17 2006-11-23 Kazuo Tadanobu Solid electrolytic capacitor
US8004824B2 (en) * 2005-07-26 2011-08-23 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor element and solid electrolytic capacitor using same
US20100284128A1 (en) * 2005-07-26 2010-11-11 Showa Denko K.K. Solid electrolytic capacitor element and solid electrolytic capacitor using same
US20090290292A1 (en) * 2005-12-15 2009-11-26 Showa Denko K. K. Capacitor chip and method for manufacturing same
US7957120B2 (en) * 2005-12-15 2011-06-07 Murata Manufacturing Co., Ltd. Capacitor chip and method for manufacturing same
US20070297121A1 (en) * 2006-06-22 2007-12-27 Nec Tokin Corporation Solid electrolytic capacitor manufacturing method capable of easily and properly connecting anode electrode portion
US7550360B2 (en) * 2006-06-22 2009-06-23 Nec Tokin Corporation Solid electrolytic capacitor manufacturing method capable of easily and properly connecting anode electrode portion
US20080304210A1 (en) * 2007-06-05 2008-12-11 Nec Tokin Corporation Solid-state electrolytic capacitor
US7898795B2 (en) * 2007-06-05 2011-03-01 Nec Tokin Corporation Solid-state electrolytic capacitor
US20100165547A1 (en) * 2007-08-29 2010-07-01 Panasonic Corporation Solid electrolytic capacitor
US8064192B2 (en) * 2007-08-29 2011-11-22 Panasonic Corporation Solid electrolytic capacitor
US9978531B2 (en) 2013-05-19 2018-05-22 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US10176929B2 (en) 2015-11-18 2019-01-08 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
US10903017B2 (en) 2016-06-15 2021-01-26 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
US10879011B2 (en) 2017-10-20 2020-12-29 Murata Manufacturing Co., Ltd. Method for producing solid electrolytic capacitor, and solid electrolytic capacitor
US11437198B2 (en) 2017-10-20 2022-09-06 Murata Manufacturing Co., Ltd. Method for producing solid electrolytic capacitor, and solid electrolytic capacitor
CN111327313A (zh) * 2018-12-14 2020-06-23 硅实验室公司 用于数控振荡器的装置及相关方法
US11244790B2 (en) * 2019-03-28 2022-02-08 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method

Also Published As

Publication number Publication date
JP4439848B2 (ja) 2010-03-24
CN1577662A (zh) 2005-02-09
JP2005026257A (ja) 2005-01-27
CN100466124C (zh) 2009-03-04
US20040264111A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
US6909596B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US10176929B2 (en) Solid electrolytic capacitor
KR100917027B1 (ko) 고체 전해 콘덴서 및 그 제조방법
US8289678B2 (en) Solid electrolytic capacitor and method for preparing the same
KR100939765B1 (ko) 고체 전해 콘덴서 및 그 제조방법
US6791822B2 (en) Solid electrolytic capacitor
JP4911611B2 (ja) 固体電解コンデンサ
US11270846B2 (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
CN114551098A (zh) 多层电子组件
JP2004063543A (ja) 固体電解コンデンサ及びその製造方法
JP6925577B2 (ja) 固体電解コンデンサ
CN113597654A (zh) 电解电容器
JPH09260217A (ja) 金属箔積層型コンデンサ
JP3168584B2 (ja) 固体電解コンデンサ
JPH0590099A (ja) チツプ状固体電解コンデンサおよびその製造方法
WO2021205894A1 (ja) 電解コンデンサ及び電解コンデンサの製造方法
WO2022191029A1 (ja) 固体電解コンデンサ
JP3433490B2 (ja) チップ状固体電解コンデンサ
JP2001044077A (ja) チップ形固体電解コンデンサ
JPH0590089A (ja) チツプ状固体電解コンデンサおよびその製造方法
JPH0722089B2 (ja) 固体電解コンデンサ
JPH05291087A (ja) チップ状固体電解コンデンサ
JPH04354318A (ja) チップ状固体電解コンデンサの製造方法
JPH06224081A (ja) チップ状固体電解コンデンサ
JPH10149952A (ja) チップ状固体電解コンデンサ

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHIMOYAMA, KOJI;MIDO, YUJI;REEL/FRAME:015532/0385

Effective date: 20040621

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12