US5965492A - Triketone derivatives - Google Patents
Triketone derivatives Download PDFInfo
- Publication number
- US5965492A US5965492A US08/981,407 US98140797A US5965492A US 5965492 A US5965492 A US 5965492A US 98140797 A US98140797 A US 98140797A US 5965492 A US5965492 A US 5965492A
- Authority
- US
- United States
- Prior art keywords
- methyl
- compound
- triketone
- triketone compound
- atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D335/00—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
- C07D335/04—Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
- C07D335/06—Benzothiopyrans; Hydrogenated benzothiopyrans
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/02—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
- A01N43/04—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
- A01N43/14—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
- A01N43/18—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with sulfur as the ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/06—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
Definitions
- the present invention relates to a triketone derivative and a herbicide containing the same.
- Herbicides are very important chemicals for labor-saving of weed control and improving the productivity of agricultural and horticultural crops. Herbicides have been therefore actively studied and developed for many years, and a variety of herbicides are practically used. However, it is still desired today to develop novel chemicals having further prominent herbicidal properties, particularly chemicals which can selectively control target weeds alone without causing phytotoxicity on cultivated crops and which can also control them at a low dosage.
- triazine-based herbicides such as atrazine and acid anilide-based herbicides such as alachlor and metolachlor have been conventionally used.
- atrazine shows low efficacy to gramineous weeds
- alachlor and metolachlor show low efficacy to broad-leaved weeds. It is therefore difficult at present to control gramineous weeds and broad-leaved weeds together simultaneously with a single herbicide. Further, the above herbicides are undesirable in view of an environmental problem due to their high dosage requirement.
- the above compound is not fully satisfactory in soil treatment activity although it is free of phytotoxicity on corn and has high foliar treatment activity.
- the present invention is directed to
- Y 1 is a C 1 ⁇ C 4 alkyl group, a halogen atom or a C 1 ⁇ C 4 haloalkyl group,
- each of Y 2 and Y 3 is independently a C 1 ⁇ C 4 alkyl group
- Y 4 is a hydrogen atom, a C 1 ⁇ C 4 alkyl group or a halogen atom
- n is an integer of 0, 1 or 2
- p 0 or 1
- each of R 1 , R 2 , R 3 and R 4 is independently a hydrogen atom, a C 1 ⁇ 4 alkyl group or a phenyl group, or when p is 1, either R 1 or R 2 and either R 3 or R 4 may bond to each other to form an intramolecular double bond, and
- X is an atom of oxygen family or a group of ##STR4## (in which each of R 5 and R 6 is independently a hydrogen atom, a C 1 ⁇ C 4 alkyl group or a phenyl group), and
- the triketone derivative of the present invention has the general formula (I). ##STR5##
- Y 1 is a C 1 ⁇ C 4 alkyl group, a halogen atom or a C 1 ⁇ C 4 haloalkyl group.
- the C 1 ⁇ C 4 alkyl group includes methyl, ethyl, propyl groups such as n-propyl and i-propyl, and butyl groups such as n-butyl and i-butyl. Methyl is preferred.
- the halogen atom includes fluorine, chlorine, bromine and iodine atoms.
- the C 1 ⁇ C 4 haloalkyl group includes --CH 2 Cl, --CHCl 2 , --CCl 3 , --CCl 2 CH 3 , --CH 2 F, --CHF 2 , --CF 3 , --CF 2 CH 3 , --CH 2 CH 2 F, --CF 2 CF 3 , --CH 2 CH 2 CHF 2 , --CH 2 CH 2 CH 2 CH 2 F, CH 2 CH 2 CHCl 2 , --CH 2 CH 2 CH 2 CH 2 Cl, --CH(CH 3 ) CH 2 F, --CH(C 2 H 5 )CH 2 F, and --CH (CH 3 )CH 2 Cl.
- Y 1 is preferably methyl, a chlorine atom or --CF 3 , particularly preferably methyl.
- Each of Y 2 and Y 3 is independently a C 1 ⁇ C 4 alkyl group. Specific examples of the C 1 ⁇ C 4 alkyl group are those described in the explanation of Y 1 , and methyl is preferred.
- Y 4 is a hydrogen atom, a C 1 ⁇ C 4 alkyl group or a halogen atom. Specific examples of the C 1 ⁇ C 4 alkyl group and the halogen atom are those described in the explanation of Y 1 .
- Y 4 is preferably a hydrogen atom, methyl or a fluorine atom, particularly preferably, methyl.
- Y 4 can bond to the 7- or 8-position on the thiochroman ring, while, preferably, Y 4 bonds to the 8-position.
- n represents the number of oxygen atom(s) bonding to a sulfur atom, and n is an integer of 0, 1 or 2.
- n a sulfide is represented.
- Each of R 1 , R 2 , R 3 and R 4 is independently a hydrogen atom, a C 1 ⁇ C 4 alkyl group or a phenyl group. Specific examples of the C 1 C ⁇ 4 alkyl group are those described in the explanation of Y 1 . Further, when p is 1, either R 1 or R 2 and either R 3 or R 4 may bond to form a double bond in the molecule. Preferably, each of R 1 , R 2 , R 3 and R 4 is independently a hydrogen atom, methyl, 1-propyl or a phenyl group, or p is 1 and either R 1 or R 2 and either R 3 or R 4 bond to form a double bond in the molecule.
- X is an atom of the oxygen family or a group of ##STR6##
- the atom of the oxygen family includes oxygen and sulfur atoms.
- each of R 5 and R 6 is independently a hydrogen atom, a C 1 ⁇ C 4 alkyl group or a phenyl group.
- Specific examples of the C 1 ⁇ C 4 alkyl group are those described in the explanation of Y 1 .
- X is preferably an oxygen atom or a group of ##STR7## in which each of R 5 and R 6 is independently a hydrogen atom or methyl.
- the triketone derivative of the general formula (I) may have the following four structures due to tautomerism, and the triketone derivative of the present invention includes all of these four structures. ##STR8## (wherein Y 1 , Y 2 , Y 3 , Y 4 , n, p, R 1 , R 2 1 R 3 , R 4 and X are as defined above).
- the triketone derivative of the general formula (I) is an acidic substance, and can be easily converted to a salt by treating it with a base.
- This salt is also included in the triketone derivative of the present invention.
- the base can be selected from known bases without any limitation.
- the base includes organic bases such as amines and anilines and inorganic bases such as a sodium compound and a potassium compound.
- the amines include a monoalkylamine, a dialkylamine and a trialkylamine.
- the alkyl group of each of the alkylamines is generally a C 1 ⁇ C 4 alkyl group.
- the anilines include aniline, a monoalkylaniline and a dialkylaniline.
- the alkyl group of each of the alkylanilines is generally a C 1 ⁇ C 4 alkyl group.
- the sodium compound includes sodium hydroxide and sodium carbonate.
- the potassium compound includes potassium hydroxide and potassium carbonate.
- the triketone derivative of the general formula (I) is produced by the following method. ##STR9## (wherein Y 1 , Y 2 , Y 3 , Y 4 , n, p, R 1 , R 2 , R 3 , R 4 and X are as defined above).
- a compound of the general formula (II) is reacted with a compound of the general formula (III) in the presence of a dicyclohexylcarbodiimide (to be referred to as "DCC” hereinafter), and then the reaction product is rearranged to obtain the triketone derivative of the general formula (I) as an end product.
- DCC dicyclohexylcarbodiimide
- an ester compound of the general formula (IV) is formed as an intermediate.
- the intermediate may be isolated, while it is preferred to use the intermediate in the rearrangement reaction without isolating it.
- the solvent used for a condensing reaction between the compound (II) and the compound (III) is not specially limited so long as it is inert to the reaction, while it is preferred to use acetonitrile or tertiary amyl alcohol.
- the reaction temperature is not specially limited so long as it is in the range of from 0° C. to the boiling point of the solvent.
- the reaction temperature is preferably room temperature.
- the dehydrating agent includes 1,1-carbonyl diimidazole (CDI) and a 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) in addition to the above DCC.
- the amount of the dehydrating agent based on the compound (II) is 1.0 to 3.0 equivalent weights, preferably 1.0 to 1.5 equivalent weights.
- the compound (II):compound (III) amount ratio by mole is in the range of 1:1 ⁇ 1:3, preferably 1:1 ⁇ 1:1.5.
- the condensing reaction between the compound (II) and the compound (III) is 1 to 48 hours, while it is generally completed approximately in 8 hours.
- the rearrangement reaction is accomplished by reacting a cyanide ion with the compound (IV) in the presence of a base.
- the base is selected from sodium carbonate, potassium carbonate, triethylamine and pyridine. It is preferred to use a base in an amount of 1 to 2 equivalent weights based on the compound (IV).
- the cyanide which produces a free cyanide ion an alkali metal cyanide and cyanohydrin compounds such as acetone cyanohydrin.
- the cyanide is used in an amount of 0.05 to 0.5 mole equivalent based on the compound (IV).
- the rearrangement reaction can be smoothly proceeded with by adding a phase transfer catalyst such as a crown ether compound.
- the reaction temperature is not specially limited so long as it is in the range of 0° C. to the boiling point of the solvent.
- the reaction temperature is generally preferably room temperature.
- the rearrangement is accomplished in 1 to 72 hours, while it is generally completed approximately in 8 hours.
- the compound of the general formula (II) as a starting material can be obtained by the method disclosed in International Laid-open Publication No. WO95/04054. Most of compounds of the general formula (III) are known or can be produced by a known method.
- the herbicide of the present invention contains, as an active ingredient, the novel triketone derivative of the general formula (I) and/or its salt, provided by the present invention.
- a liquid carrier such as a solvent or a solid carrier such as a mineral fine powder and the mixtures are prepared into preparations in the form of a wettable powder, an emulsifiable concentrate, a dust or granules.
- These compounds can be imparted with emulsifiability, dispersibility or spreadability by adding a surfactant when the above preparations are formed.
- the herbicide of the present invention When the herbicide of the present invention is used in the form of a wettable powder, generally, 10 to 55% by weight of the triketone derivative and/or the salt thereof, provided by the present invention, 40 to 88% by weight of a solid carrier and 2 to 5% by weight of a surfactant are mixed to prepare a composition, and the composition can be used.
- the herbicide of the present invention is used in the form of an emulsifiable concentrate, generally, the emulsifiable concentrate can be prepared by mixing 20 to 50% by weight of the triketone derivative and/or the salt thereof, provided by the present invention, 35 to 75% by weight of a solvent and 5 to 15% by weight of a surfactant.
- the dust can be prepared by mixing 1 to 15% by weight of the triketone derivative and/or the salt thereof, provided by the present invention, 80 to 97% by weight of a solid carrier and 2 to 5% by weight of a surfactant.
- the granules can be prepared by mixing 1 to 15% by weight of the triketone derivative or the salt thereof, provided by the present invention, 80 to 97% by weight of a sold carrier and 2 to 5% by weight of a surfactant.
- the above solid carrier is selected from mineral powders.
- the mineral powders include oxides such as diatomaceous earth and slaked lime, phosphates such as apatite, sulfates such as gypsum and silicates such as talc, pyrophyllite, clay, kaolin, bentonite, acidic terra alba, white carbon, powdered quartz and powdered silica.
- the solvent is selected from organic solvents.
- the solvent include aromatic hydrocarbons such as benzene, toluene and xylene, chlorinated hydrocarbons such as o-chlorotoluene, trichloroethane and trichloroethylene, alcohols such as cyclohexanol, amyl alcohol and ethylene glycol, ketones such as isophorone, cyclohexanone and cyclohexenyl-cyclohexanone, ethers such as butyl cellosolve, diethyl ether and methyl ethyl ether, esters such as isopropyl acetate, benzyl acetate and methyl phthalate, amides such as dimethylformamide, and mixtures of these.
- the surfactant is selected from anionic surfactants, nonionic surfactants, cationic surfactants and amphoteric surfactants (such as amino acid and betaine).
- the herbicide of the present invention may contain other herbicidally active ingredient as required.
- the other herbicidally active ingredient can be properly selected from known herbicides such as phenoxy-based, diphenyl ether-based, triazine-based, urea-based, carbamate-based, thiol carbamate-based, acid anilide-based, pyrazole-based, phosphoric acid-based, sulfonyl urea-based and oxadiazone-based herbicides.
- the herbicide of the present invention may contain an insecticide, a fungicide, a plant growth regulator and a fertilizer as required.
- Table 1 shows the compounds used as raw materials in Preparation Examples 2 to 8, corresponding to the compound of the general formula (III), and the structural formulae and yields of obtained compounds.
- Table 2 shows the physical property data of the obtained compounds.
- talc (trade name: Zeaklite) as a carrier
- alkylarylsulfonic acid (trade name: Neoplex, supplied by Kao-Atlas K.K.)
- Neoplex supplied by Kao-Atlas K.K.
- a mixture of nonionic and anionic surfactants (trade name: Sorpol 800A, supplied by Toho Chemical Co., Ltd.) were uniformly pulverized and mixed to prepare a carrier for a wettable powder.
- the herbicidal efficacy and the phytotoxicity to the crop are shown as follows.
- the herbicidal efficacy and the phytotoxicity to the crop are shown on the basis of the ratings shown in (2) Foliar Treatment Test.
- Tables 3 and 4 show that the triketone derivative of the present invention can control a broad range of upland weeds at a low dosage without causing phytotoxicity on corn.
- a novel triketone derivative which can control a broad range of upland weeds at a low dosage without causing phytotoxicity on corn, and a herbicide containing the same as an active ingredient.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Plural Heterocyclic Compounds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/228,892 US5990049A (en) | 1997-12-19 | 1999-01-11 | Triketone derivatives |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7175729A JPH0925279A (ja) | 1995-07-12 | 1995-07-12 | トリケトン誘導体 |
JP7-175729 | 1995-07-12 | ||
PCT/JP1996/001873 WO1997003064A1 (fr) | 1995-07-12 | 1996-07-05 | Derives de tricetone |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/228,892 Division US5990049A (en) | 1997-12-19 | 1999-01-11 | Triketone derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
US5965492A true US5965492A (en) | 1999-10-12 |
Family
ID=16001221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/981,407 Expired - Fee Related US5965492A (en) | 1995-07-12 | 1996-07-05 | Triketone derivatives |
Country Status (9)
Country | Link |
---|---|
US (1) | US5965492A (ko) |
EP (1) | EP0841335A4 (ko) |
JP (1) | JPH0925279A (ko) |
KR (1) | KR19990028854A (ko) |
AR (1) | AR002820A1 (ko) |
AU (1) | AU700046B2 (ko) |
BR (1) | BR9609723A (ko) |
CA (1) | CA2226854A1 (ko) |
WO (1) | WO1997003064A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105613503A (zh) * | 2016-01-29 | 2016-06-01 | 东北农业大学 | 一种用于禾本科作物田的除草剂及其用途 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5981439A (en) * | 1996-12-27 | 1999-11-09 | Idemitsu Kosan Co., Ltd. | Cyclohexanedione derivatives and herbicides containing them |
US5801121A (en) * | 1996-12-27 | 1998-09-01 | Idemitsu Kosan Co., Ltd. | Cyclohexanedione derivatives and herbicide containing them |
AU742879B2 (en) * | 1997-12-24 | 2002-01-17 | Idemitsu Kosan Co. Ltd | Triketone derivatives |
JP2001002508A (ja) * | 1999-06-23 | 2001-01-09 | Idemitsu Kosan Co Ltd | 水稲用除草剤 |
WO2001044236A1 (en) * | 1999-12-02 | 2001-06-21 | Basf Corporation | Herbicidal chroman and thiochroman metal chelates |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468878A (en) * | 1992-10-15 | 1995-11-21 | Idemitsu Kosan Co., Ltd. | Cyclohexanedione derivatives |
US5480858A (en) * | 1992-08-18 | 1996-01-02 | Idemitsu Kosan Co., Ltd. | Cyclohexanedione derivatives |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5468722A (en) * | 1992-03-03 | 1995-11-21 | Idemitsu Kosan Co., Ltd. | Pyrazole derivatives |
DK0712853T3 (da) * | 1993-08-02 | 2001-04-17 | Idemitsu Kosan Co | Pyrazolderivat |
CA2175675A1 (en) * | 1993-11-09 | 1995-05-18 | Mitsuru Shibata | Pyrazole derivatives and herbicide containing the same |
-
1995
- 1995-07-12 JP JP7175729A patent/JPH0925279A/ja active Pending
-
1996
- 1996-07-05 BR BR9609723A patent/BR9609723A/pt not_active IP Right Cessation
- 1996-07-05 KR KR1019980700155A patent/KR19990028854A/ko not_active Application Discontinuation
- 1996-07-05 WO PCT/JP1996/001873 patent/WO1997003064A1/ja not_active Application Discontinuation
- 1996-07-05 AU AU63193/96A patent/AU700046B2/en not_active Ceased
- 1996-07-05 US US08/981,407 patent/US5965492A/en not_active Expired - Fee Related
- 1996-07-05 CA CA002226854A patent/CA2226854A1/en not_active Abandoned
- 1996-07-05 EP EP96922244A patent/EP0841335A4/en not_active Withdrawn
- 1996-07-12 AR ARP960103554A patent/AR002820A1/es unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5480858A (en) * | 1992-08-18 | 1996-01-02 | Idemitsu Kosan Co., Ltd. | Cyclohexanedione derivatives |
US5468878A (en) * | 1992-10-15 | 1995-11-21 | Idemitsu Kosan Co., Ltd. | Cyclohexanedione derivatives |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105613503A (zh) * | 2016-01-29 | 2016-06-01 | 东北农业大学 | 一种用于禾本科作物田的除草剂及其用途 |
CN105613503B (zh) * | 2016-01-29 | 2018-01-30 | 东北农业大学 | 一种用于禾本科作物田的除草剂及其用途 |
Also Published As
Publication number | Publication date |
---|---|
CA2226854A1 (en) | 1997-01-30 |
JPH0925279A (ja) | 1997-01-28 |
EP0841335A4 (en) | 1998-12-09 |
KR19990028854A (ko) | 1999-04-15 |
AU700046B2 (en) | 1998-12-17 |
AR002820A1 (es) | 1998-04-29 |
BR9609723A (pt) | 1999-03-16 |
WO1997003064A1 (fr) | 1997-01-30 |
EP0841335A1 (en) | 1998-05-13 |
AU6319396A (en) | 1997-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0629623B1 (en) | Pyrazole derivative | |
JP5102253B2 (ja) | 新規なベンゾイルピラゾール化合物及び除草剤 | |
EP0712853B1 (en) | Pyrazole derivative | |
RU2042667C1 (ru) | Производные 4-бензоилпиразола | |
UA45943C2 (uk) | Похідні 4-бензоїлізокcазолу, спосіб їх одержання (варіанти), гербіцидна композиція та спосіб боротьби з бур'янами | |
US4668277A (en) | Pyrazolesulfonylurea useful for controlling the growth of undesired vegetation | |
US5480858A (en) | Cyclohexanedione derivatives | |
JPH04103574A (ja) | ピリミジン誘導体及び除草剤 | |
US5468878A (en) | Cyclohexanedione derivatives | |
RU2154063C2 (ru) | Производные пиразола и содержащие их гербициды | |
JP3557230B2 (ja) | 新規な除草剤 | |
US5591868A (en) | Aromatic carboxylic acids | |
KR920000050B1 (ko) | 2-치환 페닐-3-클로로테트라히드로-2h-인다졸류의 제조방법 | |
EP0810226B1 (en) | Pyrazole derivatives | |
US5965492A (en) | Triketone derivatives | |
US6004902A (en) | Triazine derivatives | |
US5990049A (en) | Triketone derivatives | |
US4259105A (en) | Diphenylamine derivatives | |
JP3249881B2 (ja) | ピラゾール誘導体およびそれを有効成分とする除草剤 | |
JP3210818B2 (ja) | ピラゾール誘導体およびそれを用いた除草剤 | |
AU742879B2 (en) | Triketone derivatives | |
US5354731A (en) | Pyridinesulfonamide derivatives as herbicides | |
JPH0826914A (ja) | トリケトン誘導体 | |
JP2005112840A (ja) | 新規ピラゾールスルホニルウレア化合物および除草剤 | |
JPH04330058A (ja) | カーバメート誘導体及びそれを有効成分とする有害生物防除剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IDEMITSU KOSAN CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAMURA, KAZUFUMI;SHIBATA, MITSURU;KOIKE, KAZUYOSHI;REEL/FRAME:009083/0187;SIGNING DATES FROM 19971212 TO 19971215 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20071012 |