US4795689A - Electrostatic image developing toner for use in heat-roller fixing - Google Patents
Electrostatic image developing toner for use in heat-roller fixing Download PDFInfo
- Publication number
- US4795689A US4795689A US07/088,053 US8805387A US4795689A US 4795689 A US4795689 A US 4795689A US 8805387 A US8805387 A US 8805387A US 4795689 A US4795689 A US 4795689A
- Authority
- US
- United States
- Prior art keywords
- polymer
- toner
- electrostatic image
- melting
- image developing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 176
- 238000002844 melting Methods 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 36
- 229920001577 copolymer Polymers 0.000 claims abstract description 35
- 230000008018 melting Effects 0.000 claims abstract description 22
- 239000003086 colorant Substances 0.000 claims abstract description 19
- 239000000178 monomer Substances 0.000 claims description 23
- 230000009477 glass transition Effects 0.000 claims description 14
- 229920000728 polyester Polymers 0.000 claims description 13
- 229920002554 vinyl polymer Polymers 0.000 claims description 6
- 229920006125 amorphous polymer Polymers 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229920001519 homopolymer Polymers 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229920001744 Polyaldehyde Polymers 0.000 claims description 2
- 229920001400 block copolymer Polymers 0.000 claims description 2
- 229920000578 graft copolymer Polymers 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 239000000470 constituent Substances 0.000 abstract description 79
- 230000008569 process Effects 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 6
- -1 aromatic carboxylic acids Chemical class 0.000 description 47
- 230000000052 comparative effect Effects 0.000 description 22
- 239000000049 pigment Substances 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 229920005989 resin Polymers 0.000 description 17
- 239000011347 resin Substances 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 14
- 239000002253 acid Substances 0.000 description 12
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 11
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 11
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 10
- 239000006229 carbon black Substances 0.000 description 10
- 150000007513 acids Chemical class 0.000 description 9
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 8
- 239000000975 dye Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- 235000019646 color tone Nutrition 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011236 particulate material Substances 0.000 description 7
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- 239000007822 coupling agent Substances 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 5
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004040 coloring Methods 0.000 description 5
- 125000005442 diisocyanate group Chemical group 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 5
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000001588 bifunctional effect Effects 0.000 description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 3
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 238000012643 polycondensation polymerization Methods 0.000 description 3
- 229920002545 silicone oil Polymers 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 3
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 description 2
- ARXKVVRQIIOZGF-UHFFFAOYSA-N 1,2,4-butanetriol Chemical compound OCCC(O)CO ARXKVVRQIIOZGF-UHFFFAOYSA-N 0.000 description 2
- UAJRSHJHFRVGMG-UHFFFAOYSA-N 1-ethenyl-4-methoxybenzene Chemical compound COC1=CC=C(C=C)C=C1 UAJRSHJHFRVGMG-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004129 EU approved improving agent Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000000987 azo dye Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- JXCHMDATRWUOAP-UHFFFAOYSA-N diisocyanatomethylbenzene Chemical compound O=C=NC(N=C=O)C1=CC=CC=C1 JXCHMDATRWUOAP-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 239000001007 phthalocyanine dye Substances 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920000921 polyethylene adipate Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229940116351 sebacate Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- BJQFWAQRPATHTR-UHFFFAOYSA-N 1,2-dichloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1Cl BJQFWAQRPATHTR-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- OSNILPMOSNGHLC-UHFFFAOYSA-N 1-[4-methoxy-3-(piperidin-1-ylmethyl)phenyl]ethanone Chemical compound COC1=CC=C(C(C)=O)C=C1CN1CCCCC1 OSNILPMOSNGHLC-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- WJNKJKGZKFOLOJ-UHFFFAOYSA-N 1-dodecyl-4-ethenylbenzene Chemical compound CCCCCCCCCCCCC1=CC=C(C=C)C=C1 WJNKJKGZKFOLOJ-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- WHFHDVDXYKOSKI-UHFFFAOYSA-N 1-ethenyl-4-ethylbenzene Chemical compound CCC1=CC=C(C=C)C=C1 WHFHDVDXYKOSKI-UHFFFAOYSA-N 0.000 description 1
- HLRQDIVVLOCZPH-UHFFFAOYSA-N 1-ethenyl-4-octylbenzene Chemical compound CCCCCCCCC1=CC=C(C=C)C=C1 HLRQDIVVLOCZPH-UHFFFAOYSA-N 0.000 description 1
- RCSKFKICHQAKEZ-UHFFFAOYSA-N 1-ethenylindole Chemical compound C1=CC=C2N(C=C)C=CC2=C1 RCSKFKICHQAKEZ-UHFFFAOYSA-N 0.000 description 1
- CTXUTPWZJZHRJC-UHFFFAOYSA-N 1-ethenylpyrrole Chemical compound C=CN1C=CC=C1 CTXUTPWZJZHRJC-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical class C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- WHBAYNMEIXUTJV-UHFFFAOYSA-N 2-chloroethyl prop-2-enoate Chemical compound ClCCOC(=O)C=C WHBAYNMEIXUTJV-UHFFFAOYSA-N 0.000 description 1
- HCUZVMHXDRSBKX-UHFFFAOYSA-N 2-decylpropanedioic acid Chemical compound CCCCCCCCCCC(C(O)=O)C(O)=O HCUZVMHXDRSBKX-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- XYHGSPUTABMVOC-UHFFFAOYSA-N 2-methylbutane-1,2,4-triol Chemical compound OCC(O)(C)CCO XYHGSPUTABMVOC-UHFFFAOYSA-N 0.000 description 1
- XVTXLKJBAYGTJS-UHFFFAOYSA-N 2-methylpenta-1,4-dien-3-one Chemical compound CC(=C)C(=O)C=C XVTXLKJBAYGTJS-UHFFFAOYSA-N 0.000 description 1
- SZJXEIBPJWMWQR-UHFFFAOYSA-N 2-methylpropane-1,1,1-triol Chemical compound CC(C)C(O)(O)O SZJXEIBPJWMWQR-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- QJGNSTCICFBACB-UHFFFAOYSA-N 2-octylpropanedioic acid Chemical compound CCCCCCCCC(C(O)=O)C(O)=O QJGNSTCICFBACB-UHFFFAOYSA-N 0.000 description 1
- WMRCTEPOPAZMMN-UHFFFAOYSA-N 2-undecylpropanedioic acid Chemical compound CCCCCCCCCCCC(C(O)=O)C(O)=O WMRCTEPOPAZMMN-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 description 1
- QLIQIXIBZLTPGQ-UHFFFAOYSA-N 4-(2-hydroxyethoxy)benzoic acid Chemical compound OCCOC1=CC=C(C(O)=O)C=C1 QLIQIXIBZLTPGQ-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- AXDJCCTWPBKUKL-UHFFFAOYSA-N 4-[(4-aminophenyl)-(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]aniline;hydron;chloride Chemical compound Cl.C1=CC(=N)C(C)=CC1=C(C=1C=CC(N)=CC=1)C1=CC=C(N)C=C1 AXDJCCTWPBKUKL-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical class OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-L Malonate Chemical compound [O-]C(=O)CC([O-])=O OFOBLEOULBTSOW-UHFFFAOYSA-L 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical class CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- LMULDSDQRQVZMW-UHFFFAOYSA-N N-(5-chloro-2,4-dimethoxyphenyl)-4-[[5-(diethylsulfamoyl)-2-methoxyphenyl]diazenyl]-3-hydroxynaphthalene-2-carboxamide Chemical compound CCN(CC)S(=O)(=O)C1=CC=C(OC)C(N=NC=2C3=CC=CC=C3C=C(C=2O)C(=O)NC=2C(=CC(OC)=C(Cl)C=2)OC)=C1 LMULDSDQRQVZMW-UHFFFAOYSA-N 0.000 description 1
- QECVIPBZOPUTRD-UHFFFAOYSA-N N=S(=O)=O Chemical class N=S(=O)=O QECVIPBZOPUTRD-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920007962 Styrene Methyl Methacrylate Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 239000004110 Zinc silicate Substances 0.000 description 1
- SQAMZFDWYRVIMG-UHFFFAOYSA-N [3,5-bis(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC(CO)=CC(CO)=C1 SQAMZFDWYRVIMG-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- NWLCFADDJOPOQC-UHFFFAOYSA-N [Mn].[Cu].[Sn] Chemical compound [Mn].[Cu].[Sn] NWLCFADDJOPOQC-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- PWAXUOGZOSVGBO-UHFFFAOYSA-N adipoyl chloride Chemical compound ClC(=O)CCCCC(Cl)=O PWAXUOGZOSVGBO-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000001000 anthraquinone dye Substances 0.000 description 1
- 229940067597 azelate Drugs 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- OZCRKDNRAAKDAN-UHFFFAOYSA-N but-1-ene-1,4-diol Chemical compound O[CH][CH]CCO OZCRKDNRAAKDAN-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- LOGBRYZYTBQBTB-UHFFFAOYSA-N butane-1,2,4-tricarboxylic acid Chemical compound OC(=O)CCC(C(O)=O)CC(O)=O LOGBRYZYTBQBTB-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- IRPXADUBAQAOKL-UHFFFAOYSA-N chembl1408927 Chemical compound C1=CC=C2C(N=NC3=C4C=CC(=CC4=CC(=C3O)S(O)(=O)=O)S(O)(=O)=O)=CC=C(S(O)(=O)=O)C2=C1 IRPXADUBAQAOKL-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 229940090961 chromium dioxide Drugs 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- IAQWMWUKBQPOIY-UHFFFAOYSA-N chromium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Cr+4] IAQWMWUKBQPOIY-UHFFFAOYSA-N 0.000 description 1
- AYTAKQFHWFYBMA-UHFFFAOYSA-N chromium(IV) oxide Inorganic materials O=[Cr]=O AYTAKQFHWFYBMA-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 229920006039 crystalline polyamide Polymers 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- WTNDADANUZETTI-UHFFFAOYSA-N cyclohexane-1,2,4-tricarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)C(C(O)=O)C1 WTNDADANUZETTI-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- XBZSBBLNHFMTEB-UHFFFAOYSA-N cyclohexane-1,3-dicarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)C1 XBZSBBLNHFMTEB-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- WMPOZLHMGVKUEJ-UHFFFAOYSA-N decanedioyl dichloride Chemical compound ClC(=O)CCCCCCCCC(Cl)=O WMPOZLHMGVKUEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- TVIDDXQYHWJXFK-UHFFFAOYSA-L dodecanedioate(2-) Chemical compound [O-]C(=O)CCCCCCCCCCC([O-])=O TVIDDXQYHWJXFK-UHFFFAOYSA-L 0.000 description 1
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- AXKAZKNOUOFMLN-UHFFFAOYSA-M fast red B Chemical compound COC1=CC([N+]([O-])=O)=CC=C1[N+]#N.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1S([O-])(=O)=O AXKAZKNOUOFMLN-UHFFFAOYSA-M 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- RLMXGBGAZRVYIX-UHFFFAOYSA-N hexane-1,2,3,6-tetrol Chemical compound OCCCC(O)C(O)CO RLMXGBGAZRVYIX-UHFFFAOYSA-N 0.000 description 1
- GWCHPNKHMFKKIQ-UHFFFAOYSA-N hexane-1,2,5-tricarboxylic acid Chemical compound OC(=O)C(C)CCC(C(O)=O)CC(O)=O GWCHPNKHMFKKIQ-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019239 indanthrene blue RS Nutrition 0.000 description 1
- 229940097275 indigo Drugs 0.000 description 1
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 235000010187 litholrubine BK Nutrition 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229940002712 malachite green oxalate Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- AWJZTPWDQYFQPQ-UHFFFAOYSA-N methyl 2-chloroprop-2-enoate Chemical compound COC(=O)C(Cl)=C AWJZTPWDQYFQPQ-UHFFFAOYSA-N 0.000 description 1
- ADFPJHOAARPYLP-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;styrene Chemical compound COC(=O)C(C)=C.C=CC1=CC=CC=C1 ADFPJHOAARPYLP-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- WRYWBRATLBWSSG-UHFFFAOYSA-N naphthalene-1,2,4-tricarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC(C(O)=O)=C21 WRYWBRATLBWSSG-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- LATKICLYWYUXCN-UHFFFAOYSA-N naphthalene-1,3,6-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 LATKICLYWYUXCN-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- HILCQVNWWOARMT-UHFFFAOYSA-N non-1-en-3-one Chemical compound CCCCCCC(=O)C=C HILCQVNWWOARMT-UHFFFAOYSA-N 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- WDAISVDZHKFVQP-UHFFFAOYSA-N octane-1,2,7,8-tetracarboxylic acid Chemical compound OC(=O)CC(C(O)=O)CCCCC(C(O)=O)CC(O)=O WDAISVDZHKFVQP-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- HDBWAWNLGGMZRQ-UHFFFAOYSA-N p-Vinylbiphenyl Chemical compound C1=CC(C=C)=CC=C1C1=CC=CC=C1 HDBWAWNLGGMZRQ-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- UCUUFSAXZMGPGH-UHFFFAOYSA-N penta-1,4-dien-3-one Chemical class C=CC(=O)C=C UCUUFSAXZMGPGH-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- WEAYWASEBDOLRG-UHFFFAOYSA-N pentane-1,2,5-triol Chemical compound OCCCC(O)CO WEAYWASEBDOLRG-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical compound C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 229940099800 pigment red 48 Drugs 0.000 description 1
- 229940104573 pigment red 5 Drugs 0.000 description 1
- 229940067265 pigment yellow 138 Drugs 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000913 polyethylene suberate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 235000012752 quinoline yellow Nutrition 0.000 description 1
- 229940051201 quinoline yellow Drugs 0.000 description 1
- 239000004172 quinoline yellow Substances 0.000 description 1
- IZMJMCDDWKSTTK-UHFFFAOYSA-N quinoline yellow Chemical compound C1=CC=CC2=NC(C3C(C4=CC=CC=C4C3=O)=O)=CC=C21 IZMJMCDDWKSTTK-UHFFFAOYSA-N 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- SJMYWORNLPSJQO-UHFFFAOYSA-N tert-butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)(C)C SJMYWORNLPSJQO-UHFFFAOYSA-N 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- FUSUHKVFWTUUBE-UHFFFAOYSA-N vinyl methyl ketone Natural products CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 description 1
- 235000019352 zinc silicate Nutrition 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08786—Graft polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08788—Block polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S524/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S524/904—Powder coating compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S525/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S525/934—Powdered coating composition
Definitions
- the present invention relates to an electrostatic image developing toner for use in developing electrostatic latent images formed in the electrophotographic process, electrostatic printing process, electrostatic recording process, and the like, and more particularly to an electrostatic image developing toner for use in heat-roller fixing.
- an electrostatic image carrier comprised of a photoconductive photoreceptor is charged and imagewise exposed to thereby form an electrostatic latent image thereon, the electrostatic latent image is then developed by either a two-component-type developer comprised of a toner and carrier or a one-component-type developer comprised of a magnetic material-containing toner alone, and the developed toner image is transferred onto a support such as a sheet of copying paper and fixed thermally or under pressure, whereby a visible image is formed.
- the heat roller fixing method is one in which a support, such as a sheet of paper, carrying a toner image is transported being in contact with a heated roller to thereby fix the toner image to the support. This method is advantageous in respect of safety and also in the energy saving because it reduces the loss of heat.
- the toner in the molten condition is to come into contact with the surface of the heat roller, but, in any of conventional toners, its adhesiveness in its molten condition is so high that part of the molten toner is transferred and sticks onto the surface of the heat roller, resulfing in a trouble, the so-called offset phenomenon, that the toner on the heat roller is then retransferred onto and stains the subsequenty copying paper.
- the apparatus needs to be of an energy-saving and compact type by reducing the capacity of the heater of the heat roller thereof, but if the capacity of the heater is reduced, it takes time to heat up the heat roller, so that a lengthy warming-up time is required or the resupply of heat cannot overtake the necessary amount of heat for running copying operations, resulting in the lowering of the heat roller's temperature to tend to cause a fixing trouble.
- a conventional technique of accomplishing fixation at a low temperature by using a binder for a toner a crystalline polymer having a melting point of 50° to 150° C. and an activation energy of not more than 35 kcal/mole for its fluidization is disclosed in, e.g, Japanese Patent Examined Publication No. 36586/1982.
- this toner is used in the heat-roller fixing method to form an image, there occurs a problem that the toner is inadequate in the antioffset property. Therefore, in order to prevent the occurrence of the offset phenomenon, copying apparatus needs a means to supply an oil for providing mold releasability to the surface of its heat roller, but it leads to the problem that the apparatus becomes complex.
- the crystalline polymer is so soft that the toner and the carrier are hardly mixed uniformly, and as a result the triboelectrification property of the toner becomes unstable, leading to the problem that the resulting toner image is not clear.
- the crystalline polymer constituting the toner is liberated to be transferred and sticks onto the carrier grains or to the photoreceptor's surface; i.e., the so-called ⁇ toner filming ⁇ phenomenon occurs, thus leading to the problem that it adversely affects the image formation.
- the use of the crystalline polymer deteriorates the durability of the resulting toner.
- Providing the apparatus with a means to supply an oil for giving mold releasability to the surface of the heat-fixing roller is known as a technique to prevent the occurrence of the offset phenomenon, but this technique is disadvantageous in respect that the oil supply mechanism-provided copying apparatus is complex, and the oil is heated to be evaporated to give out a stench to mar the environmental sanitation. It is therefore desirable that the toner in itself, without the aid of an external means, have a high offset-producing temperature and a low minimum fixation temperature, thus having adequate antioffset property and fixability at a low temperature.
- the low-melting resin tends to be liberated, so that in the toner the softeness characteristic of the low-melting resin appears largely, bringing about toner's agglomeration inside the developing device; the so-called blocking phenomenon, and the toner-carrier triboelectrification tends to become inadequate, and the fluidity of the resulting developer is lowered, thus bringing about the problem that, eventually, the obtained copy is of a fogged, unclear image.
- the toner shall (1) have adequate fixability at a low temperature, (2) have an adequate antioffset property, (3) have an excellent antiblocking property, (4) have an excellent triboelectrification property, (5) enable to obtain an excellent color-tone image, (6) enable to obtain a fogless, clear image, and (7) enable to obtain a number of repeated excellent copies of an image.
- the present invention specifically relates to an electrostatic image developing toner for use in heat-roller fixing which comprises the following Constituents (A), (B), (C) and (D) as the essential Constituents thereof:
- Constituent (B) A low-melting polymer which is incompatible with Constituent (A) and whose melting point is from 50° to 130° C.,
- Constituent (C) A copolymer formed by the chemical combination of a segment polymer which is at least compatible with the above Constituent (A) and a segment polymer which is at least compatible with the above Constituent (B),
- Constituent (D) A coloring agent.
- the toner of this invention comprises also a copolymer as Constituent (C) comprised of two segment polymers that are compatible with Constituent (A) polymer and Constituent (B) polymer, so that in this toner the copolymer as Constituent (C) is coordinated at the boundary between Constituent (A) polymer and Constituent (B) polymer to play, so to speak, a surfactant-like role, and consequently the Constituent (B) polymer comes to be uniformly micorscopically dispersed and mixed into the Constituent (A) polymer.
- the respective polymers being uniformly dispersed and mixed, the dispersiblity of a coloring agent into them also is improved.
- this toner displays both the excellent property based on the nonlinear polymer as Constituent (A) and the excellent property based on the low-melting polymer as Constituent (B); namely, the polymer as Constituent (A) is linear and hard and plays chiefly a role of increasing the triboelectrification property and durability of the toner, and at the same time a role of increasing the antioffset property by having the toner show a high viscoelasticity to have a high mold releasability even when heated to be molten by the heat roller.
- the polymer as Constituent (B) has a melting point of from 50° to 130° C.
- the toner of this invention further comprises a copolymer as Constituent (C) comprised of two segment polymers which are compatible with both the polymer as Constitutent (A) and the polymer as Constituent (B), so that the respective segment polymers are partially dissolved into the polymer as Constituent (A) and the polymer as Constituent (B), respectively, and therefore the copolymer as Constituent (C) is coordinated at the boundary between the Constituent (A) polymer and the Constituent (B) polymer to play, so to speak, a surfactant-like role. Consequently, the Constituent (B) polymer comes to be microscopically uniformly dispersed and mixed into the Constituent (A) polymer.
- a toner having adequate fixability at a low temperature and antioffset property and excellent in the triboelectrification property as well as in the antiblocking property can be obtained, whereby a fogless, clear image can be stable formed. Also, displaying such excellent properties stably, the toner can form stably repeatedly excellent copies of an image. And, being satisfactory in the mixed condition of the respective polymers as well as in the dispersibility of a coloring agent thereinto, the toner can form an excellent color tone-having image.
- the above Constituent (A) is a non linear polymer.
- the linear polymer is desirable to be one that is capable of strongly retaining the low-melting polymer as Constituent (B) in the toner and of providing the toner with a high mold releasability. From this point of view, the linear polymer had better have a glass transition point Tg of preferably from 40° to 80° C., more preferably from 50° to 80° C., and most preferably from 55° to 70° C. If the glass transition point Tg is extremely low, the antiblocking property can be lowered, while if it is extremely high, the fixability at a low temperature can be lowered.
- the glass transition point Tg herein when measurement is carried out at a temperature-increasing speed of 10° C./min by using a differential scanning calorimeter ⁇ Low-Temperature DSC ⁇ (manufactured by Rigaku Denki K.K.), is a temperature at an intersecting point of the extension of the base line below the glass transition point and the tangential line indicating the maximum inclination of the curve formed from the start of the peak up to the top of the peak.
- the nonlinear polymer is desirable to be of a weight average molecular weight Mw of not less than 50,000. If the weight average molecular weight Mw is extremely small, the antioffset property can be lowered.
- the nonlinear polymer content of the toner is preferably from 50 to 99% by weight, and more preferably from 55 to 95% by weight.
- the content is extremely small, the antioffset property can be lowered, while then the content is extremely large, the fixability at a low temperature can be lowered.
- nonlinear polymer and amorphous polymer may be suitable used.
- amorphous polymer include those formed by nonlinearizing vinyl-type polymers, polyesters, epoxy resins, polyamides, polyurethanes, phenol resins, and the like, by using a cross-linking agent.
- the nonlinearized vinyl-type polymers and the nonlinearized polyesters are particularly suitable.
- the nonlinear vinyl polymer can be obtained by the polymerization reaction of a vinyl group-having monomer with a polymerizable bifunctional or polyfunctional vinyl group having monomer for nonlinearization.
- the vinyl group-having monomer include sytrenes such as, e.g., styrene, o-methylstyrene, p-methylstyrene, p-ethylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, p-tert-butylstyrene, p-n-octylstyrene, p-n-dodecylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, etc., and derivatives of these styrenes; vinyl esters such as vinyl acetate,
- examples of the above monomer having a bifunctional or polyfunctional vinyl polymer for nonlinearization include aromatic divinyl compounds such as, e.g., divinylbenzene, divinylhapthalene, and derivatives of these compounds, etc.; double bond-having carboxylic acid esters such as ethylene glycol diacrylate, ethylene glycol dimethacrylate, trimethylolpropane triacylate, etc.; and the like.
- nonlinear amorphous vinyl-type polymer formed by the polymerization of the above monomers examples include styrene-n-butyl acrylate-divinylbenzene copolymer, styrene-n-butyl acrylate-methyl methacrylate-divinylbenzene copolymer, styrene-n-butyl acrylate-ethylene glycol dimethacrylate copolymer, and the like.
- the foregoing nonlinear polyester can be obtained by the condensation polymerization reaction of a dihydric carboxylic acid monomer and a dihydric alcohol monomer with a trihydric or polyhydric carboxylic acid monomer and/or a trihydric or polyhydric alcohol monmer for nonlinearization.
- dihydric carboxylic acid monomer examples include aromatic carboxylic acids such as, e.g., terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, etc.; aromatic oxycarboxylic acids such as p-(2-hydroxyethoxy)-benzoic acid; aliphatic polycarboxylic acids such as succinic acid, fumaric acid, adipic acid, maleic acid, sebacic acid, decamethylenedicarboxylic acid, mesaconic acid, citraconic acid, itaconic acid, glutaconic acid, malonic acid, etc.; alicyclic polycarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, hexahydrophthalic acid, tetrahydrophthalic acid, etc.; acid anhydrides of these acids; dimers of lower alkyl esters with linolenic acid; and other di
- dihydric alcohol monomer examples include diols such as, e.g., ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene-glycol, 1,3-propylene-glycol, 1,4-butanediol, neopentyl glycol, 1,4-butenediol, etc.; 1,4-bis(hydroymethyl)-cyclohexane; etherified bisphenols such as bisphenol A, hydrogenated bisphenol A, polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A, etc.; and other dihydric alcohol monomers.
- diols such as, e.g., ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene-glycol, 1,3-propylene-glycol, 1,4-butanediol, neopentyl glycol, 1,4-butenediol, etc.
- trihydric or polyhydric alcohol monomer for nonlinearization examples include, e.g., sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitane, pentaerythritol, dipentaerythritol, tripentaerythritol, sugar, 1,2,4-butanetriol, 1,2,5-pentanetriol, glycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, 1,3,5-trihydroxymethylbenzene, and the like.
- trihydric or polyhydric carboxylic acid monomer examples include, e.g., 1,2,4-benzenetricarboxylic acid, 1,2,5-benzenetricarboxylic acid, 1,2,4-cyclohexanetricarboxylic acid, 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 1,2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxylpropane, tetra(methylenecarboxy)methane, 1,2,7,8-octanetetracarboxylic acid, empol-trimeric acids, and acid anhydrides or lower alkyl esters of these acids.
- the above trihydric or polyhydric monomer is desirable to be used in a quantity ratio of from 0.1 to 80 mole % to the alcohol or acid constituent as the structural unit of the nonlinear polyester.
- the foreging Constituent (B) is incompatible with the foregoing Constituent (A) and is a low-melting polymer having a melting poing of from 50° to 130° C., and preferably from 50° to 120° C. If the low-melting polymer is compatible with Constituent (A), the toner's glass transition point is lowered, deteriorating the toner's antiblocking property. And if the melting point of the low-melting polymer is extremely low, the toner is deteriorated in the antiblocking property as well as in the antifilming property, while if the melting point is extremely high, the toner is deteriorated in the fixability at a low temperature.
- the melting point Tmp in this invention is defined as a value obtained by measuring in the following manner:
- the melting peak value obtained when 10 mg of a sample is heated at a given temperature-increasing speed (10° C./min.) according to the differential scanning calorimetry (DSC) by using, e.g., a ⁇ DSC-20 ⁇ (Seiko Electronic Industry Co.) is defined as a melting point Tmp.
- Such the low-melting polymer is desirable to have a number average molecular weight Mn of from 1,000 to 20,000 and a weight average molecular weight Mw of from 2,000 to 100,000.
- Mn number average molecular weight
- Mw weight average molecular weight
- the weight average molecular weight Mw and number average molecular weight Mn are measured under the following condition: A solvent (tetrahydrofuran) is flowed at a flow rate of 1.2 ml per minute at 40° C., and 3 mg of a tetrahydrofuran solution of a sample in a concentration of 0.2 g/20 ml, as the weight of the sample, are poured into the column, and a measurement is carried out.
- a solvent tetrahydrofuran
- a measuring condition is selected so that the molecular weight of the sample falls under the range where the logarithm and count number of the molecular weight of a calibration curve prepared from several monodisperse polystyrene reference samples form a straight line.
- the reliability of the measured results can be confirmed by the fact that the NBS 706 polystyrene reference sample, when measured under the above measuring condition, shows a weight average molecular weight Mw of 28.8 ⁇ 10 4 and a number average molecular weight Mn or 13.7 ⁇ 10 4 .
- the column to be used in GPC may be any column as long as it satisfies the foregoing condition.
- TSK-GEL, GMH manufactured by Toyo Soda Mfg. Co.
- GMH manufactured by Toyo Soda Mfg. Co.
- the solvent and measuring temperature are not restricted by the described conditions, and may be changed otherwise properly.
- the low-melting polymer content of the toner is preferably from 1 to 50% by weight, and particularly preferably from 5 to 40% by weight.
- the suitable content range-having low-melting polymer By using such the suitable content range-having low-melting polymer, an even more excellent characteristic can be obtained in the toner.
- the low-melting polymer content of the toner is extremely small, the toner's fixability at a low temperature can be deteriorated, whereas if it is extremely large, the toner's triboelectrification property, antioffset property and durability can be deteriorated.
- crystalline polymers can be used.
- the crystalline polymer is a polymer at least part of which has a crystalline structure, and includes those homopolymers or copolymers whose at least one constituent is crystallilne, i.e., partially crystallized, showing a sharply clear melting point, and which, when in the solid state at a temperature lower than the melting point, show white turbidity in the crystallline portion thereof.
- Example of the crystalline polymer include at-least-partially-crystalline-structure-having crystalline polyesters, crystalline polyethers, crystalline polyamides, crystalline polyurethanes, crystalline polyacrylates, crystalline polymethacrylates, crystalline polyaldehydes, crystalline polyacids, crystalline polylactones, crystalline polyoxazoles, crystalline polyepihalohydrins, crystalline polysulfones, and the like.
- the crystalline polyesters are particularly preferred.
- Examples of the crystalline polyester include, e.g., polyethylene sebacate, polyethylene adipate, polyethylene suberate, polyethylene succinate, polyethylene-p-(carbophenoxy) undecaate, polyethylene-p-(carbophenoxy) butyrate, polyethylene-p-phenylene diacetate, polyhexamethylene carbonate, polyhexamethylene-p-(carbophenoxy) undecaate, polyhexamethylene oxalate, polyhexamethylene sebacate, polyhexamethylene decanedioate, polyoctamethylene dodecanedioate, polynonamethylene azelate, polynonamethylene terephthalate, polydecamethylene adipate, polydecamethylene azerate, plydecamethylene oxalate, polydecamethylene sebacate, polydecamethylene succinate, polydecamethylene dodecanedioate, polydecamethylene octadecanedioate, poly
- the above crystalline polyester can be obtained by the condensation polymerization reaction of an alcohol monomer with a carboxylic acid monomer.
- the alcohol monomer include, e.g., ethylene glycol, diethylene glycol, 1,3-propylene-glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, nonamethylene glycol, decamethylene glycol, 4,4'-isopropylidene-biphenol, p-xylene-glycol, neopentyl glycol, cyclohexanedimethanol, polyoxyethylenated bisphenol A, polyoxypropylenated bisphenol A, and the like.
- carboxylic acid monomer examples include, e.g., malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, glutaconic acid, azelaic acid, sebacic acid, nonanedicarboxylic acid, decanedicarboxylic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, fumaric acid, mesaconic acid, citraconic acid, itaconic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, anhydrides of these acids, lower alkyl esters of these acids, and the like.
- the foregoing Constituent (C) is a copolymer formed by the chemical combination of a segment polymer which is at least compatible with the foregoing Constituent (A) and a segment polymer which is at least compatible with the foregoing Constituent (B).
- ⁇ compatible ⁇ herein implies that, when both polymers are moltenly mixed and then cooled to be in the solid state, the solid appears transparent, or that both polymers, in the moltenly mixed state, show a different glass transition point.
- the proportion of the copolymer as Constituent (C) to the toner is preferably from 1 to 50% by weight, and particularly preferably from 3 to 40% by weight. If this proportion is extremely small, the dispersibility of a coloring agent as Constituent (D) can be deteriorated, while if it is extremely large, the durability of the toner can be deteriorated.
- the segment polymer which is compatible with Constituent (A) is desirable to be an amorphous segment polymer having a glass transition point Tg of from 50° to 80° C.
- the segment polymer which is compatible with Constituent (B) is desirable to be a crystalline segment polymer having a melting point Tmp of from 50° to 130° C.
- the copolymer of these polymers is desirable to be a graft copolymer or a block copolymer. In the copolymer it is desirable that the segment polymer which is compatible with Constituent (A) and the segment polymer which is compatible with Constituent (B) be combined firmly by a covalent bond.
- the segment polymer which is compatible with Constituent (A) is desirable to be one selected from among these nonlinear polymers as Constituent (A), and particularly it is desirable that both be the same.
- the segment polymer which is compatible with Constituent (B) is desirable to be one that is selected from among those low-melting polymers as Constituent (B), and particularly it is desirable that both be the same.
- the copolymer can be obtained by combining both the segment polymers by, e.g., the direct head-tail linkage of their terminal functional groups in the coupling reaction therebetween.
- the respective terminal functional groups of both polymers may be bound by the use of an at least bifunctional coupling agent.
- the copolymer can be obtained by such a linkage as, for example, the urethane linkage formed by the reaction between a polymer whose terminal group is a hydroxyl group and a diisocyanate; the linkage formed by the rection between a polymer whose terminal group is a hydroxyl group and a dicarboxylic acid; the ester linkage formed by the reaction between a polymer whose terminal group is a carboxyl group and a glycol; the linkage formed by the reaction between a polymer whose terminal group is a hydroxyl group and phosgene or dichlorodimethylsilane; or the like.
- Examples of such the coupling agent include isocyanates such as hexamethylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate, tolidine diisocyanate, napthylene diisocyanate, isophorone diisocyanate, xylilene diisocyanate, etc.; amines such as ethylenediamine, hexamethylenediamine, phenylenediamine, etc.; carboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, terephthalic acid, isophthalic acid, etc.; alcohols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, cyclohexanedimethanol, p-xylilene-glycol, etc.; acid chlorides such as terephthalic acid chloride, isophthalic
- the using proportion of these coupling agents is preferably from 1 to 10% by weight, and particularly preferably from 2 to 7% by weight to the total weight of the segment polymer.
- a segment polymer compatible with Constituent (A) is first sythesized in usual manner, and then to this is added a monomer necessary to form a segment polymer compatible with Constituent (B) to thereby combine both of them so as to have the segment polymer compatible with Constituent (B) extend from the terminal of the segment polymer compatible with Constituent (A), whereby a copolymer can be obtained.
- the copolymer may also be obtained in the manner that the segment polymer compatible with Constituent (B) is first synthesized in usual manner, and then to this is added a monomer necessary to form the segment polymer compatible with Constituent (A) to thereby combine both so as to have the segment polymer compatible with Constituent (A) extend from the terminal of the segment polymer compatible with Constituent (B).
- an additional different segment polymer may also be used in addition to the segment polymer compatible with Constituent (A) and the segment polymer compatible with Constituent (B).
- the toner of this invention may also contain different other resins in addition to the above Constituents (A), (B) and (C).
- additional different resin include, e.g., styrene-acryl-type copolymers, polyesters, polyamides, polyurethanes, epoxy resins, and the like.
- Examples of the coloring agent as Constituent (D) include, e.g., carbon black, Nigrosine dye (C.I. No50415B), Aniline Blue (C.I. No.50405), Calco Oil Blue (C.I. No. azoic Blue 3), Chrome Yellow (C.I. No.14090), Ultramarine Blue (C.I. No77103), DuPont Oil Red (C.I. No.26105), Quinoline Yellow (C.I. No.47005), Methylene Blue Chloride (C.I. No.52015), Phthalocyanine Blue (C.I. No.74160), Malachite Green Oxalate (C.I. No.42000), Lumpblack (C.I. No.77266), Rosebengal (C.I. No.45435), mixtures of these dyes or pigments, and others.
- Nigrosine dye C.I. No50415B
- Aniline Blue C.I. No.50405
- Calco Oil Blue C.
- organic coloring pigments vivid, clear in color, having a high resistance to light and a high crypticity, are suitable.
- coloring agents may be used. The following exmplified materials each is indicated by the C.I. name and number described in the Color Index, 3rd ed., 1971 and its supplement 1975, along with an example of corresponding trade names:
- inorganic pigments such as red oxide, titanium oxide, carbon black, etc. may also be used along with the above materials.
- coloring dye for example, azo dyes, anthraquinone dyes, indigo dyes, quinoneimine dyes, phthalocyanine dyes, etc. may be used.
- coloring agents may be used either alone or in combination of two or more of them.
- the proportion of the coloring agent to the toner is desirable to be 1-20 parts by weight to 100 parts by weight of the toner.
- coloring capability-having magnetic materials can be used as the coloring agent.
- the toner of this invention may, if necessary, contain other additives.
- additives include, for example, magnetic materials, antioffset agents, fixability improving agents, fluidity improving agents, abrasives, charge control agents, and the like. These additives may be contained either in the mixedly dispersed state in the polymer or in the state of adhering to or eating into the polymer grains' surface.
- Examples of the foregoing magnetic material include ferrite, magnetite, ferromagnetic metals such as iron, cobalt, nickel, etc.; alloys of these metals; compounds containing these elememts; those alloys which do not contain any ferromagnetic elements but, when subjected to a proper heat treatment, show ferromagneticity; those manganese-and-copper-containing alloys called ⁇ whistler alloy ⁇ such as, for example, manganese-copper-aluminum, manganese-copper-tin, and the like; and chromium dioxide and others.
- ferrite, magnetite, ferromagnetic metals such as iron, cobalt, nickel, etc.
- alloys of these metals such as iron, cobalt, nickel, etc.
- compounds containing these elememts those alloys which do not contain any ferromagnetic elements but, when subjected to a proper heat treatment, show ferromagneticity
- any of these magnetic materials is desirable to be in the fine powdery form having an average grains size of from 0.1 to 1 ⁇ m and to be contained in the uniformly dispersed state in the polymer.
- the proportion of the magnetic material to the toner is preferably from 20-70 parts by weight to 100 parts by weight of the toner, and particularly preferably 25 to 50 parts by weight.
- a wax having a melting point of from 50° to 150° C. may be suitably used.
- the agent include liquid or solid paraffin, polyolefins such as polyethylene, polyrpopylene, etc., fatty acid metallic salts, fatty acid esters, partially saponified fatty acid esters, higher fatty acids, higher alcohols, silicone varnish, amide-type waxes, aliphatic fluorocarbons and their modified compounds, and the like.
- the proportion of the agent to the toner is preferably from 0.1 to 30% by weight, and particularly preferably from 0.2 to 10% by weight.
- the heat roller fixing process usually uses a cleaning roller closely juxtaposed to the heat roller to thereby remove the toner stain from the surface of the heat roller, but where the toner contains the above antioffset or fixability improving agent, the toner material is effectively prevented from being transferred to adhere onto the heat roller, so thaat the use of the agent is advantageous in respect of lengthening the usable life span of both cleaning and heat rollers.
- inorganic fine particulate materials or other equivalents may be used, and their primary particle size is preferably from 5 m ⁇ to 2 m ⁇ , and more preferably from 5 m ⁇ to 500 m ⁇ . And their specific surface area according to the BET method is desirable to be from 20 to 500 m 2 /g.
- the proportion of such the fine particulate material to the toner is preferably from 0.01 to 5% by weight, and particularly preferably from 0.1 to 2.0% weight.
- the fine particulate material include silica, alumina, titanium oxide, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, silica sant, clay, mica, wollastonite, diatom earth, chromium oxide, cerium oxide, red oxide, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, barium carbonate, calcium carbonate, silicon carbide, silicon nitride, and the like. Out of these materials, the silic fine particulate material is particularly useful.
- the silica fine particulate material is one having the following structural formula, which may be one prepared by either the wet process or the dry process. ##STR1##
- the silica may be in the form of any of anhydrous silica dioxide, aluminum silicate, sodium silicate, potassium silicate, magnesium silicate, zinc silicate, or the like, and is particularly preferably one containing more than 85% by weight SiO 2 .
- silica products there are a variety of commercially available silica products, but among them those having a hydrophobic group on the surface thereof are suitable usable.
- Such useful products are, for example, ⁇ Aerosil R-972, ⁇ ⁇ Aerosil R-974, ⁇ ⁇ Aerosil R-805, ⁇ ⁇ Aerosil R-812, ⁇ (produced by Nippon Aerosil), and ⁇ Talanox 500 ⁇ (produced by Talco), and the like.
- silica fine particles surface-treated by a silane-coupling agent, titanium-coupling agent, silicone oil, or a silicone oil having amine on its side chain, or the like may be effectively used.
- Negatively chargeable ones of these materials includes those 2:1-type metal-containing azo dyes as disclosed in, e.g., Japanese Patent Publication Open to Public Inspection (hereinafter referred to as Japanese Patent O.P.I. Publication) Nos. 141452/1982, 7645/83, 111049/1983, 185653/1983, 167033/1982, 6397/1969, etc.; those metallic complex salts of aromatic oxycarboxylic acids and aromatic dicarboxylic acids as disclosed in Japanese Patent O.P.I. Publication Nos.
- Positively chargeable ones of these materials as the charge control agent include those quaternary ammonium compounds as disclosed in Japanese Patent O.P.I. Publication Nos. 51951/1974, 10141/1977, etc.; those alkylpyridinium compounds as disclosed in Japanese Patent O.P.I. Publication Nos. 11461/1981 and 158932/1979, and U.S Pat. No. 4,254,205; nigrosine-type dyes such as Nigrosine SO, Nigrosine EX, etc.; those addition condensates as disclosed in Japanese Patent Examined Publication No. 80320/1974; and the like.
- the proportion of such the charge control agent to the toner is preferably from 0.1 to 10% by weight, and particularly preferably from 0.3 to 5% by weight.
- the softening point Tsp of the toner of this invention is preferably from 90° to 150° C., and particularly preferably from 100° to 140° C. If the softening point Tsp is extremely low, the antioffset property of the toner can be deteriorated, while if it is extremely high, the fixability at a low temperature can be deteriorated.
- ⁇ softening point Tsp ⁇ herein means a temperature at the time of h/2, the h being the height of the S-shaped curve, the plunger's descent amount-temperature curve (softening-fluidity curve), obtained when 1.0 cm 3 quantity of a sample (a weight expressed by absolute specific gravity ⁇ 1 cm 3 ) is measured and recorded by use of a flow tester CFT-500 (manufactured by Shimazu Seisakusho, Ltd.) under the conditions of a load of 20 kg/cm 2 , a nozzle diameter of 1 mm, preheating at 50° C. for 10 minutes, and a temperature increasing rate of 6° C./min.
- the toner of this invention may be produced by, e.g, the following method: To a specific polymer constituent as mentioned previously or to one formed by adding other resins thereto are added a coloring agent and, if necessary, further other additives, and these are then molten and kneaded by, e.g., an extruder. The kneaded product is cooled and then pulverized by means of a jet mill or the like and then classified, whereby a desired grain size-having powdery toner can be obtained. Further, if other odditives are additionally added and mixed into the toner, a toner improved on its characteristics may be obtained.
- any desired grain size-having toner can be obtained.
- the toner of this invention is for use in heat-roller fixing, and the image formation with this toner is carried out in, e.g., the following manner: That is, in the electrophotographic process, and electrostatic latent image formed on a latent image carrer photoreceptor is developed by a developer comprising the toner of this invention, and the obtained toner image is then transferred, e.g., electrostatically, onto a copying sheet made of paper or the like. The transferred toner image is then fixed by the heat-roller fixing process, whereby a visible image is formed.
- the heat-roller fixing device to be used in the heat-roller fixing process is comprised generally of a heat roller, a contact roller which is closely juxtaposed to the heat roller, and a heat source.
- the fixing device with the heat roller being heated by the heat souce so as to be kept in a specified temperature range, allows a support bearing the transferred toner image to pass between the pair of rollers to come into direct contact with the heat roller, whereby the toner image is thermally fixed to the support.
- the toner of this invention displays a remarkably excellent effect compared to conventional toners particularly in the case where a fixing operation is made at such a high speed that the time of contact of the toner image on a support with the heat roller is within 1 second, preferably not more than 0.5 second.
- compositions of the polymers used in the following examples of this invention and comparative examples are as given in Table 1, Table 2 and Table 3 which will be hereinafter set forth. And in the examples and comparative examples, the respective polymers were used in the combinations and proportions given in Table 4.
- each coloring agent 3 parts by weight of polypropylene ⁇ Viscol 660P ⁇ (produced by Sanyo Chemical Ind. Co.), 2 parts by weight of ⁇ Wax-E ⁇ (produced by Hoecht) and 2 parts by weight of a charge control agent ⁇ Bontron E-81 ⁇ (produced by Orient Chemical Co.) were mixed and kneaded by means of a heat roll, then cooled and then pulverized, and further finely pulverized by an ultrasonic jet mill, and subsequently classified by a wind classifier, whereby a colored particulate material was obtained.
- Toners-1 to -6 and Comparative Toners-1 to -5 were mixed with 97 parts by weight of a styrene-methyl methacrylate copolymer resin-coated carrier having an average grain size of 110 ⁇ m, whereby 11 different developers were prepared.
- an unfixed toner image by the sample toner was formed and then transferred onto a 64 g/m 2 copying paper, and the formed toner image was fixed by a heat-roller fixing device comprised of a 50 ⁇ heat roller whose surface layer is formed with a Teflon coat (polytetrafluoroethylene, produced by DuPont) and a pressure roller whose surface layer is formed with a silicone rubber ⁇ KE-1300RTV ⁇ (produced by Shin'etsu Chemical Industry Co.) under the conditions of a heat roller's linear speed of 200 mm/sec., a linear pressure of 0.8 kg/cm, and a nip width of 8.0 mm; this fixing procedure was repeated at each staged temperature increase by 5° C.
- a heat-roller fixing device comprised of a 50 ⁇ heat roller whose surface layer is formed with a Teflon coat (polytetrafluoroethylene, produced by DuPont) and a pressure roller whose surface layer is formed with a silicone rubber ⁇
- the heat-roller fixing device used herein is one having no silicone oil supply mechanism.
- Measurement of the offset occurring temperature is similar to that of the above minimum fixing temperature: After the formation of an unfixed image in the foregoing copying apparatus, the toner image was transferred onto a copying paper and then fixed by the above heat roller fixing device. After that, a plain white paper sheet, under the same condition, was sent through the heat-roller fixing device to observe whether the paper is stained or not by the toner. This precedure was repeated, gradually increasing the temperature of the heat roller of the heat-roller fixing device, and the minimum of temperatures set when the toner stain appeared was regarded as the offset occurring temperature.
- the difference between the offset occurring temperature and the minimum fixing temperature measured in the above manner was regarded as the fixable temperature range.
- Each toner was allowed to stand for two hours under the environmental condition of a temperature of 50° C. with a relative humidity of 43% to judge whether agglomerated lumps are produced or not in the toner, and the toner, where no such lumps were found, is indicated with ⁇ O ⁇ , where such lumps were found to some extent, is indicated with ⁇ , and, where such lumps were found remarkably, is indicated with ⁇ X ⁇ in Table 5.
- a SAKURA Densitometer manufactured by Konishiroku Photo Industry Co. was used to measure and evaluate the relative density of each developed image corresponding to the original's white background density being 0.0, provided the reflection density of the white background was regarded as 0.0.
- the results of the evaluation are given in Table 5 by indicating a mark of ⁇ O ⁇ for one having a relative density of less than 0.01, a mark of ⁇ for one having a relative density of not less than 0.01 and less than 0.03, and a mark of ⁇ X ⁇ for one having a relative density of not less than 0.03.
- the image forming process was repeated 30,000 times in the copying apparatus, and the 30,000th copy image was measured and evaluated with respect to its fog and clearness in similar manner to the above.
- the obtained results are also given in Table 5.
- any of Toners 1 to 6 is excellent in the fixability at a low temperature, antioffset property, antiblocking property, triboelectrification property, durability and color tone, and is capable of stably forming a clear image with no fog.
- Comparative Toner 1 since the melting point of its low-melting polymer as Constituent (B) is extremely low, is so poor in the antiblocking property that the resulting copy image is unclear with much fog, and these shortcomings become more conspicuous after making 30,000 image copies, so that the toner is eventually inferior in the durability.
- Comparative Toner 2 since the melting point of its low-melting polymer is extremely high to the contrary, is so poor in the fixability at a low temperature that it tends to cause an inadequate-fixation trouble.
- Comparative Toner 3 since it contains no copolymer as Constituent (C), shows inadequate dispersion of the coloring agent, so that the obtained copy image is poor in the color tone, and the toner's triboelectrification property is low, resulting in the copy image being unclear with much fog.
- Comparative Toner 4 since it contains neither any linear polymer as Constituent (A) nor any copolymer As Constituent (C), is poor in the antioffset property and triboelectrification property as well as in the coloring agent's dispersibility, thus resulting in the copy image being nuclear image with much fog.
- Comparative Toner 5 since it contains neither any low-melting polymer as Constituent (C) nor any copolymer as Constituent (C), is so poor in the fixability at a low temperature that it tends to cause an inadequate-fixation trouble.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Developing Agents For Electrophotography (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-202730 | 1986-08-30 | ||
JP61202730A JPS6360456A (ja) | 1986-08-30 | 1986-08-30 | 熱ロ−ラ定着用静電像現像用トナ− |
Publications (1)
Publication Number | Publication Date |
---|---|
US4795689A true US4795689A (en) | 1989-01-03 |
Family
ID=16462211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/088,053 Expired - Lifetime US4795689A (en) | 1986-08-30 | 1987-08-21 | Electrostatic image developing toner for use in heat-roller fixing |
Country Status (2)
Country | Link |
---|---|
US (1) | US4795689A (enrdf_load_stackoverflow) |
JP (1) | JPS6360456A (enrdf_load_stackoverflow) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045421A (en) * | 1989-08-22 | 1991-09-03 | Mitsubishi Kasei Corporation | Electrophotographic photoreceptor comprising metal complex charge transport material |
US5047305A (en) * | 1989-02-17 | 1991-09-10 | Konica Corporation | Electrostatic-image developing polyester toner with release agent |
US5126221A (en) * | 1989-05-30 | 1992-06-30 | Ricoh Company, Ltd. | Color developers for use in multi-color electrophotography and image formation method using the same |
US5156937A (en) * | 1991-06-10 | 1992-10-20 | Eastman Kodak Company | Reduced viscosity polyester composition for toner powders |
US5229242A (en) * | 1991-07-01 | 1993-07-20 | Xerox Corporation | Toner and developer compositions with block or graft copolymer compatibilizer |
US5244765A (en) * | 1990-03-15 | 1993-09-14 | Ricoh Company, Ltd. | Toner for developing latent electrostatic images |
EP0593829A1 (en) * | 1991-07-01 | 1994-04-27 | Xerox Corporation | Toner and developer compositions with compatibilizer |
US5344673A (en) * | 1989-11-27 | 1994-09-06 | Toyo Boseki Kabushiki Kaisha | Resin particles method for production and their uses |
US5368970A (en) * | 1993-12-06 | 1994-11-29 | Xerox Corporation | Toner compositions with compatibilizer |
US5428435A (en) * | 1991-10-05 | 1995-06-27 | Kao Corporation | Method of forming fixed images using encapsulated toner |
US5463454A (en) * | 1991-05-30 | 1995-10-31 | Kao Corporation | Method of forming fixed images using encapsulated toner |
US5494768A (en) * | 1992-10-01 | 1996-02-27 | Nashua Corporation | Toner composition containing ethylene bisamide compounds |
US5496888A (en) * | 1993-09-28 | 1996-03-05 | Sanyo Chemical Industries, Ltd. | Resin compositions for electrophotographic toner and process for making the same |
US5750299A (en) * | 1995-06-26 | 1998-05-12 | Ricoh Company, Ltd. | Method of forming colored image by use of inorganic toner, inorganic toner for developing latent electrostatic image, and colored toner image bearing image transfer medium |
US5837406A (en) * | 1996-05-21 | 1998-11-17 | Agfa-Gevaert, N.V. | Toner image resistant to scratching |
US5843612A (en) * | 1997-09-02 | 1998-12-01 | Xerox Corporation | Toner and developer compositions with compatibilizers |
US5876894A (en) * | 1995-11-02 | 1999-03-02 | Nashua Corporation | Toner containing a silicone wax release agent |
US5916722A (en) * | 1998-02-05 | 1999-06-29 | Xerox Corporation | Toner compositions |
US5948583A (en) * | 1998-04-13 | 1999-09-07 | Xerox Corp | Toner composition and processes thereof |
US5955235A (en) * | 1998-02-09 | 1999-09-21 | Xerox Corporation | Toner compositions with compatibilizers |
US5994017A (en) * | 1999-03-01 | 1999-11-30 | Xerox Corporation | Toner and developer compositions with compatibilizers |
US6025104A (en) * | 1992-07-29 | 2000-02-15 | Xerox Corporation | Toner and developer compositions with polyoxazoline resin particles |
US6083654A (en) * | 1998-12-21 | 2000-07-04 | Xerox Corporation | Toner compositions and processes thereof |
US20040137350A1 (en) * | 2002-10-18 | 2004-07-15 | Seiko Epson Corporation | Toner, fixing device, and image forming apparatus |
US20050064311A1 (en) * | 2003-08-28 | 2005-03-24 | Xerox Corporation | Toner compositions |
EP2275873A1 (en) * | 2009-07-14 | 2011-01-19 | Xerox Corporation | Polyester synthesis |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001175021A (ja) * | 1999-12-16 | 2001-06-29 | Mitsubishi Chemicals Corp | 静電荷像現像用トナー |
JP5266978B2 (ja) * | 2008-09-01 | 2013-08-21 | 富士ゼロックス株式会社 | 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像剤、画像形成方法及び画像形成装置 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3965021A (en) * | 1966-01-14 | 1976-06-22 | Xerox Corporation | Electrostatographic toners using block copolymers |
US3967962A (en) * | 1973-11-23 | 1976-07-06 | Xerox Corporation | Developing with toner polymer having crystalline and amorphous segments |
JPS5665146A (en) * | 1979-10-31 | 1981-06-02 | Toyobo Co Ltd | Electrophotographic toner |
JPS5732447A (en) * | 1980-08-01 | 1982-02-22 | Fuji Xerox Co Ltd | Toner composition and its manufacture |
US4385107A (en) * | 1980-05-01 | 1983-05-24 | Fuji Photo Film Co., Ltd. | Dry toners comprising a colorant and graph copolymer comprising a crystalline polymer and an amorphous polymer and processes using the same |
US4457998A (en) * | 1982-02-08 | 1984-07-03 | Xerox Corporation | Composition with uncrosslinked polymer contained in a crosslinked polymer network |
JPS6090344A (ja) * | 1983-10-25 | 1985-05-21 | Canon Inc | 電子写真用トナ− |
US4528257A (en) * | 1982-06-17 | 1985-07-09 | Oce-Nederland B.V. | Toner powder and method of forming fixed images |
JPS6262368A (ja) * | 1985-09-13 | 1987-03-19 | Konishiroku Photo Ind Co Ltd | 静電像現像用トナ− |
JPS6263940A (ja) * | 1985-09-14 | 1987-03-20 | Konishiroku Photo Ind Co Ltd | 静電像現像用トナ− |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116043A (en) * | 1980-02-18 | 1981-09-11 | Konishiroku Photo Ind Co Ltd | Toner for electrostatic image development and its production |
JPS57171345A (en) * | 1981-04-15 | 1982-10-21 | Kao Corp | Electrophotographic dry type developer |
JPS58159546A (ja) * | 1982-03-17 | 1983-09-21 | Sekisui Chem Co Ltd | 静電荷像現像トナ−用樹脂 |
JPS58211166A (ja) * | 1982-06-02 | 1983-12-08 | Canon Inc | トナ−の製造方法 |
-
1986
- 1986-08-30 JP JP61202730A patent/JPS6360456A/ja active Granted
-
1987
- 1987-08-21 US US07/088,053 patent/US4795689A/en not_active Expired - Lifetime
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3965021A (en) * | 1966-01-14 | 1976-06-22 | Xerox Corporation | Electrostatographic toners using block copolymers |
US3967962A (en) * | 1973-11-23 | 1976-07-06 | Xerox Corporation | Developing with toner polymer having crystalline and amorphous segments |
JPS5665146A (en) * | 1979-10-31 | 1981-06-02 | Toyobo Co Ltd | Electrophotographic toner |
US4385107A (en) * | 1980-05-01 | 1983-05-24 | Fuji Photo Film Co., Ltd. | Dry toners comprising a colorant and graph copolymer comprising a crystalline polymer and an amorphous polymer and processes using the same |
JPS5732447A (en) * | 1980-08-01 | 1982-02-22 | Fuji Xerox Co Ltd | Toner composition and its manufacture |
US4457998A (en) * | 1982-02-08 | 1984-07-03 | Xerox Corporation | Composition with uncrosslinked polymer contained in a crosslinked polymer network |
US4528257A (en) * | 1982-06-17 | 1985-07-09 | Oce-Nederland B.V. | Toner powder and method of forming fixed images |
JPS6090344A (ja) * | 1983-10-25 | 1985-05-21 | Canon Inc | 電子写真用トナ− |
JPS6262368A (ja) * | 1985-09-13 | 1987-03-19 | Konishiroku Photo Ind Co Ltd | 静電像現像用トナ− |
JPS6263940A (ja) * | 1985-09-14 | 1987-03-20 | Konishiroku Photo Ind Co Ltd | 静電像現像用トナ− |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047305A (en) * | 1989-02-17 | 1991-09-10 | Konica Corporation | Electrostatic-image developing polyester toner with release agent |
US5126221A (en) * | 1989-05-30 | 1992-06-30 | Ricoh Company, Ltd. | Color developers for use in multi-color electrophotography and image formation method using the same |
US5045421A (en) * | 1989-08-22 | 1991-09-03 | Mitsubishi Kasei Corporation | Electrophotographic photoreceptor comprising metal complex charge transport material |
US5344673A (en) * | 1989-11-27 | 1994-09-06 | Toyo Boseki Kabushiki Kaisha | Resin particles method for production and their uses |
US5244765A (en) * | 1990-03-15 | 1993-09-14 | Ricoh Company, Ltd. | Toner for developing latent electrostatic images |
US5463454A (en) * | 1991-05-30 | 1995-10-31 | Kao Corporation | Method of forming fixed images using encapsulated toner |
US5648841A (en) * | 1991-05-30 | 1997-07-15 | Kao Corporation | Apparatus for forming fixed images having encapsulated toner |
US5156937A (en) * | 1991-06-10 | 1992-10-20 | Eastman Kodak Company | Reduced viscosity polyester composition for toner powders |
US5364724A (en) * | 1991-07-01 | 1994-11-15 | Xerox Corporation | Toner and developer compositions with compatibilizer |
EP0593829A1 (en) * | 1991-07-01 | 1994-04-27 | Xerox Corporation | Toner and developer compositions with compatibilizer |
US5229242A (en) * | 1991-07-01 | 1993-07-20 | Xerox Corporation | Toner and developer compositions with block or graft copolymer compatibilizer |
US5428435A (en) * | 1991-10-05 | 1995-06-27 | Kao Corporation | Method of forming fixed images using encapsulated toner |
US6025104A (en) * | 1992-07-29 | 2000-02-15 | Xerox Corporation | Toner and developer compositions with polyoxazoline resin particles |
US5494768A (en) * | 1992-10-01 | 1996-02-27 | Nashua Corporation | Toner composition containing ethylene bisamide compounds |
US5496888A (en) * | 1993-09-28 | 1996-03-05 | Sanyo Chemical Industries, Ltd. | Resin compositions for electrophotographic toner and process for making the same |
US5368970A (en) * | 1993-12-06 | 1994-11-29 | Xerox Corporation | Toner compositions with compatibilizer |
US5750299A (en) * | 1995-06-26 | 1998-05-12 | Ricoh Company, Ltd. | Method of forming colored image by use of inorganic toner, inorganic toner for developing latent electrostatic image, and colored toner image bearing image transfer medium |
US5876894A (en) * | 1995-11-02 | 1999-03-02 | Nashua Corporation | Toner containing a silicone wax release agent |
US5837406A (en) * | 1996-05-21 | 1998-11-17 | Agfa-Gevaert, N.V. | Toner image resistant to scratching |
US5843612A (en) * | 1997-09-02 | 1998-12-01 | Xerox Corporation | Toner and developer compositions with compatibilizers |
US5916722A (en) * | 1998-02-05 | 1999-06-29 | Xerox Corporation | Toner compositions |
US5955235A (en) * | 1998-02-09 | 1999-09-21 | Xerox Corporation | Toner compositions with compatibilizers |
US5948583A (en) * | 1998-04-13 | 1999-09-07 | Xerox Corp | Toner composition and processes thereof |
US6083654A (en) * | 1998-12-21 | 2000-07-04 | Xerox Corporation | Toner compositions and processes thereof |
US5994017A (en) * | 1999-03-01 | 1999-11-30 | Xerox Corporation | Toner and developer compositions with compatibilizers |
US20040137350A1 (en) * | 2002-10-18 | 2004-07-15 | Seiko Epson Corporation | Toner, fixing device, and image forming apparatus |
US7189485B2 (en) * | 2002-10-18 | 2007-03-13 | Seiko Epson Corporation | Toner |
US20050064311A1 (en) * | 2003-08-28 | 2005-03-24 | Xerox Corporation | Toner compositions |
US7214458B2 (en) | 2003-08-28 | 2007-05-08 | Xerox Corporation | Toner compositions |
EP2275873A1 (en) * | 2009-07-14 | 2011-01-19 | Xerox Corporation | Polyester synthesis |
US20110014564A1 (en) * | 2009-07-14 | 2011-01-20 | Xerox Corporation | Polyester synthesis |
US8227168B2 (en) | 2009-07-14 | 2012-07-24 | Xerox Corporation | Polyester synthesis |
Also Published As
Publication number | Publication date |
---|---|
JPS6360456A (ja) | 1988-03-16 |
JPH0544031B2 (enrdf_load_stackoverflow) | 1993-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4795689A (en) | Electrostatic image developing toner for use in heat-roller fixing | |
JP3767846B2 (ja) | 静電荷像現像用トナー及び画像形成方法 | |
EP0254543B1 (en) | Electrostatic image developing toner | |
US4882258A (en) | Toner for development of electrostatic image and electrostatic latent image developer | |
US6623901B1 (en) | Toner for developing electrostatic image | |
JPS6338955A (ja) | 熱ロ−ラ定着用静電像現像用トナ− | |
JPS63128361A (ja) | 熱ロ−ラ定着用カプセルトナ− | |
JP2942042B2 (ja) | 静電荷像現像用トナー | |
JPS63128362A (ja) | 熱ロ−ラ定着用カプセルトナ− | |
JPS63128360A (ja) | 熱ロ−ラ定着用カプセルトナ− | |
JPS63128357A (ja) | 熱ロ−ラ定着用カプセルトナ− | |
US5204205A (en) | Three layered toner for electrophotography | |
JPH0556502B2 (enrdf_load_stackoverflow) | ||
JP2984563B2 (ja) | 静電荷像現像用トナー | |
JPS6338950A (ja) | 熱ロ−ラ定着用静電像現像用トナ− | |
JPS63128359A (ja) | 熱ロ−ラ定着用カプセルトナ− | |
JPH02308261A (ja) | トナー用バインダー樹脂の製造法および静電像現像用トナー | |
JPS6338699B2 (enrdf_load_stackoverflow) | ||
JPS63128358A (ja) | 熱ロ−ラ定着用カプセルトナ− | |
EP0656129B1 (en) | Electrostatically and/or magnetically attractable toner powder | |
JPS6338951A (ja) | 熱ロ−ラ定着用静電像現像用トナ− | |
JPS6338956A (ja) | 熱ロ−ラ定着用静電像現像用トナ− | |
JPS62195681A (ja) | 電子写真用現像剤組成物 | |
JPS6338952A (ja) | 熱ロ−ラ定着用静電像現像用トナ− | |
JPS6338953A (ja) | 熱ロ−ラ定着用静電像現像用トナ− |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KONISHIROKU PHOTO INDUSTRY CO., LTD., A CORP. OF J Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MATSUBARA, AKITOSHI;IKEUCHI, SATORU;AKIMOTO, KUNIO;AND OTHERS;REEL/FRAME:004789/0091 Effective date: 19870811 Owner name: KONISHIROKU PHOTO INDUSTRY CO., LTD., A CORP. OF,J Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUBARA, AKITOSHI;IKEUCHI, SATORU;AKIMOTO, KUNIO;AND OTHERS;REEL/FRAME:004789/0091 Effective date: 19870811 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: KONICA CORPORATION, JAPAN Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:KONISAIROKU PHOTO INDUSTRY CO., LTD.;REEL/FRAME:005159/0302 Effective date: 19871021 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |