US3908430A - Apparatus for cold-forming metal workpieces - Google Patents

Apparatus for cold-forming metal workpieces Download PDF

Info

Publication number
US3908430A
US3908430A US458227A US45822774A US3908430A US 3908430 A US3908430 A US 3908430A US 458227 A US458227 A US 458227A US 45822774 A US45822774 A US 45822774A US 3908430 A US3908430 A US 3908430A
Authority
US
United States
Prior art keywords
die
piston
rams
press
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US458227A
Other languages
English (en)
Inventor
Michel Orain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaenzer Spicer SA
Original Assignee
Glaenzer Spicer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaenzer Spicer SA filed Critical Glaenzer Spicer SA
Priority to US05/612,628 priority Critical patent/US3999417A/en
Application granted granted Critical
Publication of US3908430A publication Critical patent/US3908430A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • B21J13/025Dies with parts moving along auxiliary lateral directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/762Coupling members for conveying mechanical motion, e.g. universal joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/40Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by wedge means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B7/00Presses characterised by a particular arrangement of the pressing members
    • B30B7/04Presses characterised by a particular arrangement of the pressing members wherein pressing is effected in different directions simultaneously or in turn
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints

Definitions

  • ABSTRACT A setup for use in a press for cold-forming metal parts. such as tripods of universal joints having a central body and radially projecting portions, from a cylindrical billet.
  • a first setup is provided for forming an intermediate workpiece which may then be finished in a second setup.
  • the die sectors which make up the die are mounted on rams which are slidably mounted on slotted members between a spaced apart position when the press piston is in its raised position and a clamped together position by means of a toggle mechanism.
  • Punches are provided on the table and the piston which compress the starting billet thereby extruding the metal into channels in each of the die sectors.
  • upper and lower die halves are carried respectively by the piston and the table of the press.
  • the die halves have channels adapted to receive the various portions of an intermediate workpiece.
  • Vertical and horizontal punches are provided for finishing various recesses and surfaces of the intermediate workpiece.
  • the die halves are clamped together without working force of the press which may reach 100-200 metric tons.
  • the present invention relates to cold-forming metal workpieces, particularly steel workpieces, for the manufacture of parts without removing material.
  • the present invention proposes the cold-forming of cylindrical or substantially cylindrical billets, a family of workpieces which up till now have been roughed out by hot die then machined over their entire surface by removing metal chips with turning mills, drills, broaches, milling cutters, etc.
  • This family of workpieces comprises those having a main axis and substantial radially projecting portions more or less equally spaced around the main axis.
  • a more particular aspect of the invention consists in apparatus which enables this result to be achieved by producing a piece such as an intermediate rough shape workpiece from a parting billet or a desired final piece from the same starting billet or from said rough shape workpiece.
  • the apparatus essentially comprises, on the one hand, a first assembly including a multipart die adapted to form, when bringing the dieparts together, a cavity which corresponds to the shape of the piece to be formed, this cavity having a central chamber and radially projecting channels adapted to receive corresponding portions of the piece to be formed and, on the other hand, a second assembly including punches adapted 'to extend inside said die through openings specially egad in said die parts for effecting deformations of the contents thereof, the component parts of these assemblies being respectively carried by the press piston and table and the component parts of the other assembly being carried by rams or blocks sliding in a parallel direction with the axis of the press in oblique guide-slots arranged about the axis of the piston between the upper and lower plate members urged toward each other, said blocks being arranged to be driven by the piston along at least part of its work stroke after meeting in their resultant movement in their guide-slots to approach one another, this movement toward one another following the closing movement of the
  • the die preferably comprising as many sectors as there are radial projections to be formed on the central body of the piece, a transverse boring in the direction of plane extending radially with respect to the axis of displacement of the press piston being provided in each die sector and opening in a narrowed portion forming an extrusion throat on a part-cylindrical cavity, the combination of the part-cylindrical cavities of each of the die sectors forms a cavity coaxial with the press piston, the cavity being open at its ends, adapted to receive the starting billet, and having a section along the axis immediately adjacent to the openings which is at least in part the section of the central body of the piece to be obtained, each die sector being carried by an obliquely sliding block, while two punches respectively borne by the press piston and the press table along the axis of the piston are adapted to penetrate into said cavity, so compressing the starting billet.
  • each die-sector-carrying block is preferably connected to the press piston by a toggle joint comprising two levers pivoted to each other, one of the levers also being pivoted on the block and the other lever also being pivoted on a socket slidably mounted on the press piston with a compression spring interposed therebetween for urging the socket towards the blocks, the sliding socket being arranged to bear against the blocks and displace them along their guide-rods during the downward movement of the piston, means being provided for preventing the common pivot point of the levers of the toggle joint to move substantially away from the position in which the distance between the sliding socket and the blocks is at its maximum, and then enabling this common pivot point to move away from the position in order to come in contact under the retaining abutment when the die sectors are moved into contact with one another for clamping the die sectors.
  • the die is preferably composed with two die halves borne respectively by the press piston and the press table and adapted to receive the die workpiece in an array of radially extending channels disposed in the faces of the half-dies adapted to come into contact with each other, punches adapted to penetrate into the channels being borne by blocks being adapted to slide parallel to the axis of the piston along two oblique guide-slots, the half-dies being supported by members movable along the axis of the press piston and connected, for the upper half-die to the piston to an interposed compression spring urging the upper half-die towards the lower .half-die, and for the lower half-die, to means enabling the sliding movement of the shaft in the table in response to the piston until the position in which the shaft is secured against movement, by means of horizontal cross bars and vertical tie rods, to a member adapted to abut against an element integral with the press piston during the forming of the piston.
  • the device according to the invention enables, as it will be shown hereinafter, a manufacture of pieces by cold deformation without removing material under conditions which, compared to conventional methods, have a great number of advantages which can be resumed as follows:
  • the raw material is employed directly as round bars sheared off to the desired length in order to obtain the starting billets;
  • the portions along the main axis and the radial axes are obtained si multaneously.
  • the production rate of such presses is in the range of 500 1000 pieces per hour for the proposed application i.e., about to IO times greater than the production rates with chip re moval machine tools;
  • FIG. 1 is an elevational side view with cutaway portions of a so-called tripod or three-arm member of a constant velocity universal joint produced according to conventional machining methods;
  • FIG. 2 is a cross-sectional view taken on the line II-II in FIG. 1;
  • FIG. 3 is a detail on a larger scale of FIG. 2;
  • FIG. 4 is a view corresponding to FIG. 1 of an intermediate rough workpiece from which the piece shown in FIG. 1 is produced;
  • FIG. 5 is a cross-sectional view taken on the line VV in FIG. 4;
  • FIG. 6 is a view similar to that of FIG. 1 of the same part when it is obtained according to the invention.
  • FIG. 7 is a cross-sectional view taken on the line VII- -VII in FIG. 6;
  • FIG. 8 is a detail on a larger scale of a piece of FIG.
  • FIG. 9 shows the steel billet which is the raw material piece for producing the piece shown in FIGS. 6 and 7;
  • FIG. 10 is a side elevational view with cutaway portions along the axis of one of the arms of the tripod of an intermediary workpiece, obtained according to the invention, before the finishing pass at the end of which the piece shown in FIGS. 6 and 7 is obtained;
  • FIG. 11 is a vertical cross-sectional view of a press with a tool setup according to the invention for producing the rough workpiece shown in FIG. 10, at the left in FIG. 11 the press is shown at the end of its roughing out stroke;
  • FIG. 12 is a cross-sectional view taken on the line XIIXII in FIG. 11;
  • FIG. 13 is a plan view of a guide-rod which is part of the tool setup for the press shown in FIGS. 11 and 12;
  • FIG. 14 is a cross-sectional view taken on the line XIV-XIV of FIG. 13;
  • FIG. '15 is a view partly in elevation and partly in vertical section of a press with a setup for finishing the piece of FIGS. 6 and 7, the press being shown in its raised position before introducing an intermediate workpiece to be finished;
  • FIG. 6 is a cross-sectional view taken on the line XVIXVI in FIG. 15;
  • FIG. 17 is a detail showing the linkage supporting the lower part of the die in the press tooled up according to FIG. 15 in the extended position of the linkage;
  • FIG. 18 is a view, on a larger scale, of the tooled-up press shown in FIG. 15;
  • FIG. 19 is a plan view of the lower part of the die of the tooledup press of FIG. 15;
  • FIG. 20 is a cross-sectional view taken on the line XXXX in FIG. 19;
  • FIG. 21 is a plan view of a block which is part of the tooled-up press in FIG. 15;
  • FIG. 22 is a cross sectional view taken on line XXII- XXII in FIG. 21;
  • FIG. 23 is a vertical sectional view of setup for forming in grooves of part-circular section with sperical ends, in a generally cylindrical piece;
  • FIG. 24 is a schematic plan view of a detail of FIG. 23;
  • FIG. 25 is a front elevation view of another kind of part which could be formed according to the invention.
  • FIG. 26 is side elevation view with a portion in crosssection taken on the line XXVIXXVI in FIG. 25;
  • FIGS. 27 and 28 are views similar to those of FIGS. 24 and 25 for an alternative type of tripod which can be made according to the invention.
  • FIG. 29 is a longitudinal cross-sectional view of the starting billet used to obtain the tripod of FIGS. 28 and 29;
  • FIG. 30 is an elevation view with cutaway portions of a four-arm cross-piece ofa universal joint which can be made according to the invention.
  • tripod which is a component part of a constant velocity universal joint for driving the wheels of a frontwheel drive automobile.
  • This piece comprises a central body 1 carrying three arms 2, the axes of the arms being located in a single plane and angularly spaced from one another. Rollers (not shown) are adapted to be mounted for rotation on the arms and sliding along the axes of the arms.
  • a cylindrical cavity 3 (see FIG. 3) is provided in the end of each arm for securing the tripod in a bore coaxial to the stub axle of a wheel of the vehicle with a stud provided in the stub axle for that purpose.
  • a blind bore 4 is provided in the central body 1, a face 5 being provided around the open end of a blind bore 4 and a spherical dome 6 at the end of the blind bore 4 opposite the face 5, the axes of the arms intersect at a point in line with the center of the spherical dome 6.
  • the blind bore 4 and the spherical dome 6 are provided to maintain the tripod axially while giving it freedom to oscillate about the above-mentioned point of intersection.
  • the same tripod piece may be turned out as shown in FIGS. 6-8 by a tool setup according to the invention in only two steps starting with a cylindrical billet as shown in FIG. 9 obtained by shearing off a bar of annealed steel straight fromthe steelworks.
  • FIGS. 6-8 pieces similar to the pieces in FIGS. 1-3 are designated by the same reference numerals plus ten.
  • the pieces formed by the tool setup according to the invention are improved from the point of view of mechanical strength owing to the fact that the bores of the holes 13 at the ends of the arms and the central bore 14 in the central body 11 of the piece are connected to their substantially flat bottoms 21 and 22, respectively, by fillets 23 and 24; similarly, the faces 25 at the free ends of the arms are connected to the outer surface of their respective arms and lateral surface of the bores 13 by the rounds or curved connecting zones 18 and which replace the chamfers 8 and 10; and finally, the contours of the centers or recesses 19 are also rounded.
  • fillets and rounds of the above types avoid stress concentrations which are caused by presence of more or less sharp angles. Further, the rounds 18 at the open ends of the bores 13 at the free ends of the arms improve the quality of the force fit of the ends of the arms in corresponding stud pins in the bore of the stub axle to be driven. Such rounds and fillets would be very difiicult to mass produce by conventional methods.
  • the accuracy and quality of the surfaces of the bores 13 in the ends of the arms as well as that of the central bore 14 are very much better than those mass produced by chip removal and do not require finishing steps.
  • the spherical dome 16 is also obtained in a single pass and does not need subsequent fine grinding. Only the grinding of the arms after quenching the piece may be necessary, which is the reason for the provision of the centers 19.
  • the grain structure of the steel resulting from forming with the setup according to the invention is optimal and also makes the piece more reliable and improves its performance.
  • the piece in question is obtained by means of a tool setup according to the invention in only two passes, viz., a pass for forming a rough workpiece such as shown in FIG. 10 having a central body 11, three arms 12 and the central bore 14 in the body 11, and a second pass for forming the bores 13 in the ends of the arms, the centers 19 and the spherical dome 16.
  • the first pass is carried out with the tool setup shown in FIGS. 11-14.
  • This tool setup is mounted in a press, only the piston 26 and the table 27 of the press being shown.
  • the metal forming or working parts of the setup comprise a die formed in three identical sectors or quadrants (see FIG. 12 in particular) and two punches 29 and 30.
  • Each of the sectors 28 making up the die is fixed by a bolt 31 to a block 32 having a T-head 33 which is engaged in an inclined guide-slot 34 formed in a slotted member 35 having a concave face 36 on which the block 33 is carried, the concave face 36 being inclined parallel to the guide-slot 34 at an angle a of about 12 from the vertical.
  • the slotted members 35 are held at their lower ends in a circular recess in a plate member 37 and at their upper ends in a corresponding recess in a movable plate member 38.
  • the recess in the movable plate member also has a shoulder 39 against which the heads of the slotted members 35 bear.
  • the movable plate members 37 and 38 are urged toward each other by the tie bolt 40 clamping the slotted member 35 therebetween.
  • the slotted members 35 are arranged so that their median planes make 120 angles relative to one another, the spacing between the slot members being maintained by spacers 41.
  • Each block 32 carries a yoke 42 on which a pin 43 is pivotally mounted and retained thereon by a washer 44 which is retained longitudinally by a cotter pin 45.
  • the block also has a pawl 46 comprising at its upper end a part-cylindrical surface 46a, A centered, having a radius R and a lug 47, on which a telescopic link is pivotally mounted, formed of a yoke 48 pivotally mounted on a lug 47 about a pin 49 which is extended by a teat screw 50 and a similar member comprising a teat screw 51 extending a yoke 52 which pivots about a pin 53 in a notch 54 at a pcriphery of a wing 55 which is slidably mounted on the piston column 56 which is in threaded engagement with the extension 57 of the piston of the press 26.
  • the two teat screws 50 and 51 of the telescopic link 48-52 are connected together by a threaded sleeve 58 for adjusting the length of the telescopic link.
  • the upper cylindrical surface 46a of the pawl 46 is adapted to be engaged, as indicated hereinafter, under a bearing surface 59 along the underside of an abutment member 60 which is held in the recess in the plate member 38 above the guide-slots 35.
  • a sliding sleeve 55 is in threaded engagement with a threaded adjustment ring 6 which comes into abutment, through an interposed ring 62 acting as a liner, with a shoulder 63 on the wing 55, the adjustment ring 61 being adapted to come into abutment with the upper face of the yokes 42 on the blocks 52 at the end of the stroke of the press, as will be indicated hereinafter.
  • annular flanged collar 64 engages the lower end of the piston column 56 and is held under the piston column by bolts 65, the outer surface of the collar 64 is shaped to be received, as will be described hereinafter, inside an annular centering member 66 carried by the yokes 42 on the blocks 32.
  • a spacer washer 68 used as a liner is maintained under the annular flanged member 64 by screws 67 and is adapted to abut against the upper surface of the die sectors 28 at the end of the press stroke, as will be described hereinafter.
  • the annular flanged collar 64 also maintains the punch 29 under the lower end of the piston column 56.
  • a compression spring 69 is disposed between a shoulder 70 which is formed on the extension 57 of the piston and a shoulder 71 formed in the sliding sleeve 55 above notches 54 receiving the end of the telescopic link 4852. (To simplify FIG. 11 the telescopic link is shown very schematically on the left-hand side of FIG. 11).
  • the annular plate member 37 carries the slotted members 35.
  • a tapped hole 72 is formed in center of the plate member 37 and a threaded socket or sleeve 73 threadedly engages the tapped hole 72 and has an axial bore 74 in which a column 75, fastened to the press table 27 by a bolt 76, is received.
  • Three compression springs 77 are disposed between the plate member 37 and the press table 27 and spaced 120 from one another and bear against the underside of the plate mem ber 37 through the adjustment spacer 78.
  • the spring force or flexibility of the combination of three compression springs 77 is equal to that of the spring 69 interposed between the piston extension 57 and the sliding sleeve 55 which slides along the plunger column 56.
  • the end of the up-stroke of the plate member 37 is determined by the position of the tie bolts 79 threadably engaging the table 27 of the press.
  • a central recess 80 is provided in the upper end of the column 75 in which the butt end of the lower punch 30 is received, the lower punch 30 being maintained by a ring 81 fastened to the upper end of the column 75 by bolts 82.
  • Another ring 83 overlies the ring 81 and is held by screws 84, this ring 83 functioning as a liner on which the sectors 28 of the die are supported at the end of the piston stroke, as will be described below.
  • Each die sector 28 is of generally pentagonal shape with a flat base adapted to come into engagement with its associated block 32 and opposite the flat base two faces 89 making 30 angles with the base, whereby the faces 89 of adjacent die sectors come into contact against one another along planes spaced by 120 when brought together.
  • a cylindrical chamber, or cavity 90 is formed by the portions connecting the inclined faces 89 of each of the die sectors, the diameter of the cylindrical chamber of cavity 90 corresponding to that of the central body 1 of the piece to be formed (FIGS. 6, 7 and 9).
  • the cylindrical chamber 90 communicating with a cylindrical boring 91 the axis of which perpendicular to the common vertical axis of the three die sectors 28 in their closed position, is located along the median plane of the rectangular base of each die sector.
  • This boring 91 comprises at its end, communicating with the chamber 90, a narrowed portion formed a die throat and at their opposite ends a tapped portion 93 in which the bolt 31 is threadably engaged, the end 310 of the bolt 31 acting as a stop as will be described hereinafter.
  • the upper punch 29 and the lower punch 30, the other elements of the tool setup in combination with the die sectors 28, have diameters corresponding to the cylindrical chamber 90 between three die sectors 28 when they are brought together.
  • the end face 94 of the upper punch 29 has an axial projection 95, the outer diameter of which is equal to the inner diameter of the central bore 14 in the piece body 11 (FIGS. 6, 7 and and the length of which is equal to the depth of the bore.
  • the axial extension 95 is connected to the end face 94 of the punch 29 by a fillet and its end ridge is rounded to correspond to the rounds which must be provided at the open end of the bore 14 and the connecting zone between the lateral walls and the bottom of the bore.
  • the lower punch it has a flat face 96 at its upper end.
  • the die blocks 32 are also in their raised position.
  • the die blocks are brought to their raised position by the linkage comprising the telescopic links 4852 and the pawls 46, the pawls 46 then being substantially vertical and in abutment against a ring fastened by screws 86 to an annular flange 87 which in turn is fastened by screws 88 to the upper face of the upper plate member 38 for maintaining the slotted members 35.
  • the die sectors 28 are then farthest from one another left-hand side of FIG. 11
  • the cylindrical starting billet having a diameter equal to that of the axial chamber (FIG. 9) is then placed on the upper face 96 of the lower punch 30 (which may be slightly magnetized to ensure the billet being held in a vertical position).
  • the billet may also be introduced a little later, just before the closing of the die sectors 28, as will be described hereinafter.
  • the press piston 26 then starts its downward movement which drives the telescopic links 4852 downwardly with the pawls 46 and the blocks 32 and their die sectors 28.
  • the die sectors 28 move progressively toward one another until their inclined faces 89 come in contact with one another.
  • the upper cylindrical surfaces 46a of the pawls which are thrust outwardly by the toggle effect due to the telescopic links 4852 engage under the circular bearing surface 59 of the abutment member 60; the upper cylindrical surfaces 46a are thus forcibly held in this position by the telescopic links.
  • the curvature center A of the circular bearing surface 59 and center of rotation B of the pawl 46 are offset in such a manner that the wedging effect caused by the telescopic links 4852 strenuously prestressed the die sectors 28.
  • the prestressed force is limited by the abutment of the sliding sleeve 55 against the yokes 42 on the blocks 32 by means of the threaded adjustment ring 61 the uppermost position of which is determined by the liner 62.
  • the spring 69 starts being compressed.
  • the adjustment offered by the threaded adjustment ring 61 and the shim 62 is such that, taking into account the thickness of the spacers 78 with which the springs 77 on the movable lower plate member 37 come into contact, the compression of the spring 69 and the springs 77 begins at the same time.
  • the spring force or flexibility of the group of springs is equal to that of the spring 69; when the upper punch 23 moves cbwnwards at the speed of the piston 26, the assembly comprising the three die sectors 28, the blocks 32, the slotted members 35 and the late members 37 and 38 for holding the slotted members, moves downwards at one-half of said speed and the lower punch 30 carried by the column 75 remains stationary with respect to the press table 27. Accordingly, each punch 29 and 30 undergoes a displacement relative to the die equal to one half the working stroke of compression of the billet. Under the action of this compression, the lower extension 95 of the upper punch 29 penetrates into the billet. At the same time, the metal of the billet tends to fill entirely the chamber 90 at the center of the three die sectors 28 and to flow through the throat portions 92 formed at the entrance to the borings 91 formed in the die sectors.
  • the overall stroke of the punches and the die sectors is limited by the spacer washer 68, acting as an abutment and carried by the flange 64 topping the end of the piston column 56 on the three die sectors 28 which in turn rest on the ring 83, fixed to the ring 81 fixed to the top of the column 75 on the press-table 27; in other words the various parts of the setup are in the position shown at the right-hand side in FIG. 1 1. In this position, the extrusion lengths of the three arms of the intermediate tripod workpiece are adjusted by contact with the end of the screw 44.
  • end of the screw 44 so as to prepare, at the ends of the arms of the tripod, for subsequent forming or machining, or even, in the case of other kinds of parts, extruded extensions which could be obtained by providing borings, at the end of a member such as the bolt 31, with an extrusion span comparable to the span or throat 92 provided at the entrance to the borings 91, or even such a throat in an extension of said boring 91; all other end forming operations could be carried out in an analogous manner.
  • the press is returned to its initial position.
  • the press-piston moves the sliding sleeve 55 upwards into abutment against the upper face of the flange 64 (see the left-hand side of FIG. 11).
  • the sliding sleeve 55 drives the telescopic links 48-52 causing the unlocking of the pawls 46 which return to their vertical position moving the blocks 32 upwards.
  • the blocks 32 move upwards along the guide-slots 34 in the members 35, causing the die sectors 28 to move away from one another.
  • the cylindrical surfaces of the arms of the tripod receive, at the same time they withdrawn from the borings 91, a finishing sizing or calibration during the return pass through the throats 90; this finishing step may allow grinding after heat treatment to be dispensed with.
  • the adjusting ring 58 for adjusting the length of each of the telescopic links 48-52 enables, in adjusting the lengths of said links, to provide the simultaneity of the raising of the three die sectors during the return or up stroke of the press.
  • the accuracy of the relative position of the three die sectors 28 during this return stroke, in which the surface finishing of the arms of the tripods is effected, is of primary importance.
  • the angular guiding and wedging of the blocks 32 about the vertical central axis of the setup as well as the operative pushing surface are displaced toward the periphery of the device along the slotted members 35, which are held radially by the two plate members 37 and 38, by bearing on the cylindrical surfaces of the internal recesses of the plate members.
  • the three die sectors 28 are strenuously squeezed against one another by a radial centripetal force F of the order of -200 metric tons. Consequently, the die sectors act as a one-piece die during the extrusion operation per se. Indeed, the inclined bearing faces 89 create, owing to the angles they make with the radial forces F, radial centripetal components which put the entire active central zone of the extrusion die under compression and thereby replace hooping commonly used for extrusion.
  • the strictness and the accuracy of the verticality and radiality of the extrusion sectors 21 are obtained easily owing to the descending position controlled by the central members: the ring 61 and the spacer 68.
  • the principle of moving along guide-slots toward the exterior of the assembly frees the central area of the setup, thereby leaving the necessary and sufficient space for adequately dimensioning the working parts and ensuring their having suitable fatigue strength.
  • the sliding surfaces between the blocks 32 and the slotted members 35 thus may be very amply dimensioned as required.
  • This arrangement and the construction principle used to ensure the perfectly synchronous advance of the application of radial forces and strictly determined positions also permits numerous variations in use, for example, by modifying the number of guide-slots or slotted members and blocks, which could be standardized to be easily exchanged, between the plate members 37 and 38.
  • the device is robust and simple in view of the forces it may develop and the accuracy of the displacements during operation, The assembly of the device, its adjustments and the replacement of its parts are all easy.
  • the second or finishing pass is effected by means of a tool set-up shown in FIGS. 15-22.
  • the reason for the finishing pass is the machining of the intermediate workpiece shown in FIG. 10 in order to obtain the finished tripod shown in FIGS. 6 and 7 by simultaneously effecting:
  • the tool set-up for carrying out the finishing pass is, as in the case of the tool set-up for obtaining the intermediary workpiece, mounted on a press, the fram of which comprising the uprights 100, an upper cross member 101 carrying the piston-and-cylinder unit or jack 102 for operating the piston 103 and a table 104, are shown.
  • the tool setup per se (FIG. 18) comprises two half-dies 105 and 106, a vertical punch 107, a first group of three horizontal punches 108 and a second group of three horizontal punches 109.
  • the upper halfdie 105 is carried by the piston 103
  • the lower halfdie 106 is carried by the slidable vertical shaft 110.
  • the lower half-die 106 is shown in further detail in FIGS.
  • the lower halfdie 106 comprises a frusto-conical portion 1 11 joined at its narrowed end to a cylindrical portion 112.
  • the generally flat upper surface 113 has a first array of semi-cylindrical channels designated by the reference numeral 114 and angularly spaced 120 from one another which form with identical channels 114a in the lower surface 113a in the upper half-die 105 cavities having a diameter equal to that of the three arms 12 of the trippod to be formed and adapted to receive the punches 107.
  • the upper half-die 105 has, in elevation, a shape similar to the lower half-die 106 and comprises a frusto-conical portion 114 joined at its narrow end to a cylindrical portion 116.
  • Three other channels 117 are disposed in the upper surface of the lower half-die 106; these other channels are identical to other channels 117a in the surface of the lower die half facing the upper die half 105. These other channels are the continuation of the first array of channels 114 and are adapted to receive the punches 108.
  • the other channels 117 and 117a have portions 1 18 oflesser diameter at their inner ends,
  • the channels 113 and 116 open at their inner ends into a central cavity 119 of spherical dome-shape corresponding to the spherical dome 16 of the body 11 of the tripod to be formed.
  • the upper half-die 105 comprises an axial boring or well 120 which has a smaller diameter portion 121 opening on to the surface 113a and a truncated conical portion 122 at its opposite end.
  • the vertical punch 107 which is housed in the well 120-122 of the upper half-die 105 has a shape corresponding to said well: a smaller diameter forming end 123 which sizes the central bore 14 in the tripod and is axially slidable in the straight portion 121 of the well and expands beyond the upper half-die 105, as will be described hereinafter, and the opposite end 124 of truncated conical shape connected to the cylindrical foot 125.
  • the horizontal punches 108 have at their metal forming ends an axial projection 126 corresponding to the forming and the sizing of the bores 13 at the ends of the arms of the tripods. At the other ends of each of the punches 108 there are tapered conical sections 127 connected to a cylindrical foot 128.
  • the horizontal punches 109 have at their forming ends a projection 129, of a diameter equal to that of the portions 118 of lesser diameter in the channels 117, with a pointed tip 130 for forming the centers 12 in the body of the tripods.
  • At the opposite end of the punches 109 there is a tapered conical section 131 connected to a cylindrical base 132.
  • the vertical punch 107 is secured axially at the free end of the press piston 103 by means of the threaded ring 133.
  • a sleeve 134 is screwed on the upper end of said piston 103 and comprises a lower flange 135 on which the ring 136 rests which also has a flange 137.
  • a sliding sleeve 138 is slidably mounted on the flange 137 and has at its upper end an inwardly extending flange 139 which freely rests, owing to the force of gravity on the flange 137, on the ring 1.36.
  • the sliding sleeve 138 is screwed on a circular plate member 140 having a central opening 141 which, too, is circular and receives the rear cylindrical portion 116 of the upper half-die 105.
  • the end of the cylindrical portion 116 is threaded and threadedly engages the lock ring 142.
  • a Belleville washer 143 is interposed between the lock ring 142 and the bottom of the recess in the top surface of the plate member 140 against which it bears.
  • the Belleville washer 143 in cooperation with the lock ring 142 urges the upper half-die 105 against an annular member 144 which bears against the bottom of a central recess formed in the undersurface of the plate member 140.
  • the annular member 144 has a frusto-conical inner surface 145 corresponding exactly to the conical surface 115 of the upper half-die 105.
  • An annular seating spacer 146 rests on the upper surface of the plate member 140 and is slidably mounted relative to the press piston 103.
  • a compression spring 147 is received about the piston 103 in a space defined between the piston 103 and the sleeve 134 and interposed between the bottom of the sleeve and the annular seating spacer 146.
  • Vertical guiding spacers 148 spaced about the periphery of the base of the sleeve 134 are received in notches in the sides of the plate member 140 for ensuring the centering of the plate member 140 with respect to the press piston and the tool setup.
  • the lower half-die 106 is carried by a vertical sliding shaft 110 which has at its upper end a larger diameter portion 110a against which the lower half-die 106 is clamped by means of a threaded rod 150, which passes axially along the entire length of the shaft 110, in cooperation with an annular member 151 identical to annular member 144 against which the upper half-die 105 bears.
  • the shaft 110 is slidably mounted in the sleeve 152 which in turn is slidable in a ring 153 threadedly engaging a tapped hole in plate member 154.
  • a smooth ring 155 also rests on the sleeve 152 and acts as a spacer member, as will be discussed below.
  • the plate membcr 154 is secured to the table 104 of the press; a flat ring 156 carrying a downward extending skirt 157 is secured on the press-table 104.
  • the lower end of the shaft 110 rests on a cylindrical spindle which is extended downwardly by a sleeve 166 which tops the upper end of a vertical shaft 167 which is fixed to the sleeve 166 by a pin 168.
  • the sleeve 166 forms, relative to the spindle 165, a shoulder 169 on which rests the inwardly extending flange 170 of a sleeve 171 having a flange 172 at its lower end.
  • a compression spring 173 bears against the outwardly extending flange 172.
  • the upper end of 'the compression spring is urged against the underside of the annular member 174 which is guided in the skirt 157 and is in abutment against the underside of the ring 153.
  • the sleeve 152 which slides on the shaft 110 also rests on the annular member 174.
  • the sleeve 166 is slidably mounted on a cylindrical bush 175 mounted in a plate 176 which is welded on the upper ends ofa pair of brackets 177, one at each side of the section line in FIG. 17, which are maintained parallel by transverse tie rods 178 passing through uprights 100 of the press and fixed by nuts 179.
  • Tubular bracing members 180, 181 are received on the tie rods for maintaining the brackets 177 in their desired positions.
  • a plate 182, similar to the plate 176, is welded to the underside of the brackets 177; a cylindrical bush 183 in which the shaft 167 slides, is mounted in the plate 182.
  • a mounting collar or rocking lever 184 is fixed to the shaft 167 underneath the sleeve 166 and has a yoke to each side of the shaft 167, including one yoke in which a first link 187 pivots on a pin-186.
  • a second link 189 is pivotally mounted on a spindle 190 extending between two lateral plates 191 which are each fixed along one of their vertical sides to a sleeve 192 on a tie rod 193 and retained thereon by a nut 202.
  • Each pair of links 187 and 189 forms a yoke for mounting a roller 194 for rotation about their common pivot pin 188 and rolling displacement along a part-circular cam member 195 which is held between the corresponding pair of brackets 177 by a threaded rod 196 with shims 197 and 198 between the brackets 177 and the cam member 195.
  • the radius of curvature of the cam surface and the mounting of the cam member are such that the center of curvature is substantially along the axis of the pivot pin 186 when the press is in its raised or open position shown in FIG. 15.
  • the four tie rods 193 each having a tubular bracing member 199 received thereon connect the lower bridge formed by the lateral plates 191 with transverse spindles 190 to the upper bridge comprising two similar lateral plates 200 which are each fixed along one of their vertical sides to a sleeve 201 received and clamped on the tie rods against the tubular bracing members 199 by nuts 202, the lateral plates 200 being connected to each other by sections 203.
  • the upper bridge thus made up is carried by an annular member 204 retained toward the top of the sleeve 135 on the press piston 103, with the cooperation of rings and circlips 205 on a ring member 206 having a lower toroidal surface which cooperates with the upper surface of corresponding shape on a ring member 207 for forming a ball-and-socket joint, the ring member 207 carried on an annular member 208 being freely slidably mounted on the sleeve 135 and supported on the ring 136.
  • the horizontal punches 108 and 109 are mounted in the same way, each being secured by means of a screw 209 on a vertical ram 210, formed as a rectangular plate (see FIGS. 18 and 21) mounted in a guide-slot 211 in an oblique ram or block 212, which is of the same type as the blocks 32 in FIG. 11, to the extent that each oblique ram 212 is T-shaped in cross-section providing two lateral ribs 213 (FIGS. 21 and 22) making an angle a 12 with the slot 211.
  • the body of each ram 212 and its ribs 213 are received in the T-shaped slot of a member 214, which is identical to the slotted members 35 in the tool set-up of FIG.
  • the six slotted members 211 correspond to the six rams (three for the punches 108 and three for the punches 109), are hooped by a cylindrical member 215 and held, as is the cylindrical member 215, between the lower plate member 154, as previously mentioned, and an upper plate member 216, the two plate members being urged toward each other by the tie rods 217 and associated bracing-members or cross-members similar to those in FIGS. 11 and 12 being provided, if necessary, for maintaining the desired angular spacing between the slotted member 214 each of which may, however, have a 60 opening relative to a point located on the vertical axis of the press in case the spacers are not required.
  • each oblique ram 212 is open along its forward face for forming a corridor 217 for the passage of the base or foot 128 or 132 of the punch mounted on the vertical ram 210 with which it cooperates.
  • Each ram or block 212 also has at its base two projecting portions 220 adapted to come to rest at the end of the press stroke on the smooth ring 155 mounted on the vertical shaft 110.
  • an intermediate tripod workpiece obtained as described hereinabove and shown in FIG. 10 is placed in the lower half-die 106.
  • the rams 212 are at their uppermost position and the horizontal punches 108 and 109 are simply in engagement with the closed ends of their respective channels 114 and 117 in the lower half-die 106, leaving a space free for introducing the workpiece.
  • the press piston 103 is then lowered which in turn brings the bottom of the upper half-die in contact with the lower half-die 106.
  • the combination forming the so-called upper bridge 200-203 which is suspended from the sleeve fixed to the piston 103, the tie rods 193 and the so-called lower bridge 191-192 also moves downwards with the piston 103 which causes the transverse spindles 190 and the links 189 to be pulled downwards.
  • the linkage formed by the links 189 and 187 progressively opens; however, as long as the rollers 194 rests against the part-circular cam surface of the members 195, the pivot pins 186 and therefore the mounting collar 184 and the vertical shaft 167 with which it moves and the spindle fixed by the sleeve 166 on theshaft 167, remain stationary. This phase of the operation continues until the rollers 194 reach the vertical portion on the cam surfaces which corresponds to the moment when the two half-dies 105 and 106 come into contact with each other.
  • a closed rigid loop comprising the two half-dies 105 and 106, the sliding shaft 110, the spindle 165, the shaft 167, the links 187 and 189, the lower bridge 191, the tie rods 193, the upper bridge 200-203, the annular and ring members 204, 206, 207 208, the ring 136, the sleeve 133 and the press piston 103.
  • This closed rigid loop ensures, independently of the operation of the press, the squeezing of the two half-dies against each other without the force initially exerted by the piston which may reach 100200 metric tons. The half-dies are thus held closed without subsequently reducing the actual capacity of the press which therefore can be used in its totality for forming.
  • the piston 103 continues its downward movement; the circular plate member 140 abuts against the upper face of the oblique rams 212 which begins their downward movement along the slotted members 214 moving toward the vertical axis of the press and bringing with them the punches 108 and 109.
  • the vertical rams 210 carrying their punches have reached the end of their travel with respect to the oblique rams, and since the two half-dies between which the punches are held move downwards with the piston 103 owing to the presence of the closed rigid loop described above, there is no further relative movement betweeen the rams 210 and 212.
  • the rams 212 resting against the ring 155 also drive downwardly therewith the sleeve 152 and the annular member 174 which compresses the spring 173.
  • the spring 147 is also gradually compressed, and the punch 107 moves downwards toward the upper half-die 105. Under the force exerted by the piston 103, the punch 107 enters the central bore 14 of the tripod workpiece which is between the two dies for finishing of the bore 14 and extruding or driving back the metal for forming, in the spherical cavity 119 of the lower half-die 106, the spherical dome 16 of the tripod body 11.
  • the piston 103 then ensures by itself the rest of the downward movement of the rams 212 through the elements 140 and 134, and therefore the penetration of the horizontal punches 108 and 109 into their associated openings in the half-dies.
  • the punches 108 size the arms 12 of the tripod to their exact desired length and form the bores 13 in the ends of the arms of the tripod arms, and the punches 109 formed the centers 19. The position of the tool setup at the end of the stroke is clearly shown in FIG. 18.
  • the press piston is then raised and the other members, parts and elements of the device return to their positions as shown in FIG. 15, the spring 173 effecting the return movement of the rams 212 and therefore their moving apart from one another and the moving apart of the punches 108, 109.
  • the finished tripod can then be removed.
  • the value of the force for closing the half-dies is easily adjusted by the nuts 202 and the length of the bracing members 199.
  • cam surfaces shown in the drawings could conceivably be varied in their radial or vertical dimensions as a function of the part to be formed.
  • the force looping system may also be effected in such a way that the force exerted along the axis of the press on the tripod to be finished, by means of the laterally operating punches, is at every moment proportional to the force of penetration of the punches into the workpiece.
  • FIGS. 23 and 24 which, for the sake of simplification, only show the basic elements of the tool setup.
  • the machining which is to be carried out in the illus trated embodiment is the cutting of the longitudinal grooves 225 in the surface of a sliding hub 226.
  • the longitudinal grooves 225 are part-cylindrical (FIG. 24) in cross-section and have part-spherical end portions (FIG. 25).
  • the longitudinal grooves 225 are intended to receive ball bearings for reducing friction during rotation as well as axial displacement of the hub 226 in a journal.
  • the hub comprises two shoulders 227 and 228 one to each side of the central portion in which the twelve longitudinal grooves 225, which are grouped in six pairs of aligned grooves, are to be formed.
  • the tool setup essentially comprises six punches 229 each having a pair of teeth 230 corresponding to a pair of aligned grooves 225.
  • the punches 229 are held in oblique rams 231, similar to the rams 212 in FIG. 15, and slidable in slotted members 232, similar to the slotted members 214 in FIG. 15, which are clamped together by an annular hooping member (not shown).
  • a drive member 233 is mounted on the press piston (not shown) and comes into contact against the shoulder 227 of the hub to be formed.
  • the hub in turn transmits the force through its lower shoulder 228 to a lower drive member 234 which bears against an annular member to which it is fastened by screws 236.
  • the annular member 235 is connected by tie bolts 237 to an upper plate member 238 which in turn bears against the top of the rams 231 (at the left-hand side of FIG. 23 a punch 229 is shown very schematically).
  • the inevitable variations in the hardness of the starting metal does not modify the quality of the grooves formed.
  • a second advantage of the rigid closed looping system is to produce an axial force in the range of 100 metric tons or more in a simple manner by avoiding spring systems which take up a great amount of space and are prohibitive in cost, without increasing the force necessary for the operation of the press.
  • a 120 MT press is employed for example, it is possible to exert a clamping force of 150 MT while preserving the total capacity of the press, i.e. 120 MT for the radial forming of the workpiece.
  • FIGS. 24 and 25 show another variety of parts of the tripod family which may be obtained with the device according to the invention.
  • the portions extending radially of and perpendicular to the main axis are received in a shaft of variable length, the machining of the part is carried out by means of a device similar to that of FIGS. 11 and 12.
  • the starting piece is also a cylindrical billet, but longer than the one employed for the tripod of FIGS. 6 and 7. This type of part may be necessary when the tripod is to be connected to a tube for example, by a groove system.
  • the radial projection may also be located at the end of the bar.
  • FIGS. 27 and 28 show another variety of tripod in which a cylindrical central bore goes straight through the part.
  • the starting billet is tubular in this case and is shown in FIG. 29.
  • a filler-block or antifriction lining is inserted inside the tubular billet preventing local internal buckling. This lining is removed while the punches are fed into the cylindrical recesses provided therefor.
  • This antifriction lining may advantageously be replaced by a ring of incompressible elastromeric material which fills all or part of the cavity in the billet and accompanies the deformation of the extruded billet while aiding this deformation, owing to the high hydrostatic pressure exerted on this ring during the deformation of the billet. This is intended to prevent local internal buckling of the billet and favor extrustion in the ONS radial directions.
  • the central bore in the tripod which is shown as passing straight through the tripod may also be a blind bore with the provision of an incompressible lining appears to be indispensible for a proper extrustion resulting in a sound part.
  • the lining could be formed of various deformable incompressible materials or even a suitable liquid.
  • FIG. 30 shows a cross-piece for a universal joint which may be obtained according to the invention, comprising four radially projecting portions extending perpendicular to the main axis which is known as a cross-piece when used in universal joints.
  • the starting billet in this case is similar to that shown in FIG. 9.
  • This type of cross-piece is always obtained on the setup shown in FIGS. 11 and 12 for the intermediary workpiece.
  • the finishing of the cross piece may be carried out on a setup such as shown in FIGS. 15-20 using the identical principles.
  • a setup for a press including a piston and a table for cold-forming metal parts of the type having a central body and generally radially projecting portions extending outwardly from the central body starting with substantially cylindrical metal billets, said setup comprising a first assembly including a multi-part die together defining a cavity of of a shape corresponding to the shape of the part to be formed, said cavity including a central chamber cavity and radially projecting cavities adapted to receive corresponding portions of the part being formed, said die having openings therein for receiving punches, and a second assembly including punches adapted to penetrate into said die through the openings, the parts of the die of said first assembly and the punches of the second assembly defining metal forming parts of the setup, the metal forming parts of one of the assemblies being carried by the piston and table of the press, the metal forming parts of the other assembly being carried by rams for axial and radial movement therewith, said rams being slidably mounted for displacement parallel to the axis of the piston along oblique
  • each ram carrying a die part has connected thereto linkage means including a pair of levers having a common pivoted connected, one of the levers also being pivotally connected to said ram and the other lever being pivotally connected to a sliding sleeve slidably mounted on the piston, compression spring means urging the sliding sleeve toward the rams, the sliding sleeve bearing against the rams for displacing the rams along their slotted member during the forming stroke of the press.
  • a setup according to claim 6, further comprising means for preventing the common pivoted connection of the levers of each linkage means for moving from a position in which the sliding sleeve is most remote from the rams but allowing the common pivoted connection to move from said last-mentioned position once the die parts have been brought into contact with one another, and a retaining abutment cooperating with the linkage when the die parts are in contact with one another for clamping the die parts.
  • a setup according to claim 9 further comprising movable means for mounting the upper die half on the piston and compression spring means for urging the upper die half toward the lower half die.
  • each die part bearing ram is connected to the press piston through a toggle provided with two levers articulated one relative to the other, the first of said levers further articulated on the ram and the second lever on a sleeve slidingly mounted on the press piston with interposition of a compression spring which urges said sleeve towards the rams, said sleeve being so disposed to apply a pressure onto said rams and to displace said rams when the press piston is moved downwardly, and means for preventing the articulation common to said two levers to appreciably move aside from its position wherein the distance between sliding sleeve and rams is at its maximum, and to subsequently adapt said articulation to move apart and to thus engage under a holding stop when the die parts have been brought into contact to each other to lock said die parts in said contacting positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Press Drives And Press Lines (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
US458227A 1973-04-17 1974-04-05 Apparatus for cold-forming metal workpieces Expired - Lifetime US3908430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/612,628 US3999417A (en) 1973-04-17 1975-09-12 Apparatus for cold-forming metal workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7313830A FR2226228B1 (de) 1973-04-17 1973-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/612,628 Continuation-In-Part US3999417A (en) 1973-04-17 1975-09-12 Apparatus for cold-forming metal workpieces

Publications (1)

Publication Number Publication Date
US3908430A true US3908430A (en) 1975-09-30

Family

ID=9118059

Family Applications (1)

Application Number Title Priority Date Filing Date
US458227A Expired - Lifetime US3908430A (en) 1973-04-17 1974-04-05 Apparatus for cold-forming metal workpieces

Country Status (17)

Country Link
US (1) US3908430A (de)
JP (1) JPS5418668B2 (de)
BE (1) BE811893A (de)
BR (1) BR7403037D0 (de)
CA (1) CA1004509A (de)
CH (1) CH582029A5 (de)
CS (1) CS216903B2 (de)
DD (1) DD112919A5 (de)
DE (2) DE2462641C3 (de)
ES (1) ES424763A1 (de)
FR (1) FR2226228B1 (de)
GB (1) GB1462665A (de)
IT (1) IT1004424B (de)
NL (1) NL161999C (de)
SE (1) SE412172B (de)
TR (1) TR18485A (de)
ZA (1) ZA742245B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646401A1 (de) * 1976-10-14 1978-04-20 Grigorenko Anatoli S Hammerpresse
US4420962A (en) * 1981-09-02 1983-12-20 Walker Forge, Inc. Method of cold coining a toothed segment for an endless track wheel and two-piece die therefor and article formed thereby
US5709121A (en) * 1996-06-21 1998-01-20 Headed Reinforcement Corporation Method and apparatus for hydraulically upsetting a steel reinforcement bar
CN104493062A (zh) * 2014-11-28 2015-04-08 芜湖银星汽车零部件有限公司 一种红打加工用取料冲压装置
US20170037741A1 (en) * 2015-08-03 2017-02-09 MTU Aero Engines AG Guide vane ring element for a turbomachine
CN113547014A (zh) * 2021-07-22 2021-10-26 蒙飞燕 一种电子冲压件生产用自动冲压设备
CN117505570A (zh) * 2023-12-18 2024-02-06 重庆禾芮卓机械有限公司 一种减震器活塞加工用冷挤压装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2299927A2 (fr) * 1975-02-07 1976-09-03 Glaenzer Spicer Sa Matrice pour le formage a froid de pieces metalliques
FR2226228B1 (de) * 1973-04-17 1978-03-03 Glaenzer Spicer Sa
CH617368A5 (en) * 1977-05-06 1980-05-30 Supervis Ets Method for the production of a workpiece by extrusion, application of the method and an apparatus for carrying out the method
WO1982003578A1 (en) * 1981-04-20 1982-10-28 Bendelev Aleksandr Ivanovich Device for moulding articles made of powdered materials
FR2529113B1 (fr) * 1982-06-24 1985-08-23 Mo Otdely Sp Dispositif pour le refoulement bilateral de tiges
DE3225326A1 (de) * 1982-07-07 1984-01-12 Moskovskie otdely special'nogo konstruktorsko-technologičeskogo bjuro po izoljatoram i armature, Moskva Einrichtung zum zweiseitigen stauchen von stabrohlingen
FR2540758B1 (fr) * 1983-02-15 1986-03-07 Meca Ind Speciales Atel Outillage de formage a froid de pieces metalliques comportant des elements axiaux opposes
FR2628998B1 (fr) * 1988-03-23 1990-12-28 Glaenzer Spicer Sa Procede pour fabriquer un organe a tourillons rainures, et procede et outil de formage pour rainurer ceux-ci
JPH039243U (de) * 1989-06-13 1991-01-29
JPH04112645U (ja) * 1991-03-19 1992-09-30 中日産業株式会社 連結式棚板ユニツト
JP5451059B2 (ja) * 2008-12-25 2014-03-26 株式会社ニチダイ 金型機構及び製造方法並びに多方軸部品
US11203053B2 (en) 2019-10-03 2021-12-21 Shyam Newar Peripheral combination hydraulic press to forge and method of manufacturing thereof
CN111804885A (zh) * 2020-07-09 2020-10-23 科曼车辆部件系统(苏州)有限公司 一种铝合金汽车轮毂液态模锻成型工艺
CN114803988B (zh) * 2022-06-29 2022-09-13 江苏雪之吻生物科技有限公司 一种饮料生产线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513710A (en) * 1945-01-20 1950-07-04 Charles A Brauchler Press-forging apparatus
US2978932A (en) * 1957-11-04 1961-04-11 Jr Harry D Frueauff Forming press
US3355930A (en) * 1965-03-08 1967-12-05 Zd Gomselmash Method of, and device for, manufacturing profile articles, preferably gears and starwheels

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE67669C (de) * J. LlNDSAY j und J. N. LlNDSAY in Blacknefs Foundry, Dundee, Grafschaft Torfar, Schottland Prefsvorrichtung für die Herstellung von gekröpften Kurbelwellen
NL268324A (de) * 1960-08-29 1900-01-01
DE1202098B (de) * 1960-12-30 1965-09-30 Niels Frederik Lindbaek Madsen Vorrichtung an Pressen
DE1257539B (de) * 1964-06-02 1967-12-28 Otto Georg Dr Ing Vorrichtung zum Pressen von Hohlteilen
DE1627678B1 (de) * 1967-06-20 1971-10-28 Hatebur Ag F B Vorrichtung zum überwiegenden Kaltpressen aussen hinterschnittener, vorgepresster Zwischenoresslinge
US3583198A (en) * 1969-06-05 1971-06-08 Ford Motor Co Lateral extrusion process
FR2226228B1 (de) * 1973-04-17 1978-03-03 Glaenzer Spicer Sa

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513710A (en) * 1945-01-20 1950-07-04 Charles A Brauchler Press-forging apparatus
US2978932A (en) * 1957-11-04 1961-04-11 Jr Harry D Frueauff Forming press
US3355930A (en) * 1965-03-08 1967-12-05 Zd Gomselmash Method of, and device for, manufacturing profile articles, preferably gears and starwheels

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646401A1 (de) * 1976-10-14 1978-04-20 Grigorenko Anatoli S Hammerpresse
US4420962A (en) * 1981-09-02 1983-12-20 Walker Forge, Inc. Method of cold coining a toothed segment for an endless track wheel and two-piece die therefor and article formed thereby
US5709121A (en) * 1996-06-21 1998-01-20 Headed Reinforcement Corporation Method and apparatus for hydraulically upsetting a steel reinforcement bar
CN104493062A (zh) * 2014-11-28 2015-04-08 芜湖银星汽车零部件有限公司 一种红打加工用取料冲压装置
US20170037741A1 (en) * 2015-08-03 2017-02-09 MTU Aero Engines AG Guide vane ring element for a turbomachine
US11066949B2 (en) * 2015-08-03 2021-07-20 MTU Aero Engines AG Guide vane ring element for a turbomachine
CN113547014A (zh) * 2021-07-22 2021-10-26 蒙飞燕 一种电子冲压件生产用自动冲压设备
CN113547014B (zh) * 2021-07-22 2023-04-28 蒙飞燕 一种电子冲压件生产用自动冲压设备
CN117505570A (zh) * 2023-12-18 2024-02-06 重庆禾芮卓机械有限公司 一种减震器活塞加工用冷挤压装置

Also Published As

Publication number Publication date
DE2462641B2 (de) 1981-03-19
DE2415549C3 (de) 1982-01-07
NL161999C (nl) 1980-04-15
DE2462641C3 (de) 1981-11-12
FR2226228B1 (de) 1978-03-03
AU6792274A (en) 1975-10-16
NL7404632A (de) 1974-10-21
CA1004509A (en) 1977-02-01
DD112919A5 (de) 1975-05-12
JPS5418668B2 (de) 1979-07-09
CH582029A5 (de) 1976-11-30
DE2415549B2 (de) 1981-04-09
DE2415549A1 (de) 1974-11-07
BR7403037D0 (pt) 1974-12-24
GB1462665A (en) 1977-01-26
ES424763A1 (es) 1976-06-01
IT1004424B (it) 1976-07-10
ZA742245B (en) 1975-03-26
JPS50157251A (de) 1975-12-19
SE412172B (sv) 1980-02-25
BE811893A (fr) 1974-09-05
CS216903B2 (en) 1982-12-31
TR18485A (tr) 1977-02-24
FR2226228A1 (de) 1974-11-15

Similar Documents

Publication Publication Date Title
US3908430A (en) Apparatus for cold-forming metal workpieces
US5365765A (en) Method and apparatus for simultaneously upsetting the ends of a cylindricl blank
US3999417A (en) Apparatus for cold-forming metal workpieces
US3885411A (en) Machine press for forging bolts and the like
US20070251363A1 (en) Cutting Method and Apparatus Therefor
CN115229101B (zh) 一种压裂泵凡尔体的整体锻造工艺及其设备
US3613432A (en) Forging machine
US5603882A (en) Piercing method and apparatus
JPS6051928B2 (ja) 冷間成形装置
CN1218816C (zh) 发动机连杆机械加工方法及装置
US4385538A (en) Shearing device for cutting bar-shaped stock such as rolled steel billets
DE3909432A1 (de) Verfahren zur herstellung eines organs mit genuteten zapfen sowie verfahren und formwerkzeug zur herstellung der nuten
US3555865A (en) Forging apparatus and method
US3124019A (en) Cold forming machine
CN111015136B (zh) 一种汽车转向系统中间轴的公轴加工方法及其模具
Slater et al. The rotary forging concept and initial work with an experimental machine
US2446892A (en) Method of shaping bimetallic articles
CN211588409U (zh) 一种锻造模座
WO1981000687A1 (en) Method and apparatus for shearing bars,billets and other elongated stock
JPH03207509A (ja) 容易に交換可能なロールダイスを有するロールスタンド
CN214263744U (zh) 一种法兰终锻下模具的安装结构
CN218310627U (zh) 一种镁合金挤锻成型装置
RU2648916C1 (ru) Способ и штамп для изготовления крупногабаритных пробок шаровых кранов
CN114799030A (zh) 用于vl型球笼筒形壳的背压式多向模锻成形模具及成形方法
JPH08318424A (ja) 拘束せん断機用可動側切断刃