US3491116A - 3-(phenyl)-3-(indol-3-yl)-phthalides - Google Patents
3-(phenyl)-3-(indol-3-yl)-phthalides Download PDFInfo
- Publication number
- US3491116A US3491116A US612459A US3491116DA US3491116A US 3491116 A US3491116 A US 3491116A US 612459 A US612459 A US 612459A US 3491116D A US3491116D A US 3491116DA US 3491116 A US3491116 A US 3491116A
- Authority
- US
- United States
- Prior art keywords
- chromogenic
- sheet
- grams
- mark
- milliliters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/26—Triarylmethane dyes in which at least one of the aromatic nuclei is heterocyclic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/124—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
- B41M5/132—Chemical colour-forming components; Additives or binders therefor
- B41M5/136—Organic colour formers, e.g. leuco dyes
- B41M5/145—Organic colour formers, e.g. leuco dyes with a lactone or lactam ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/06—Hydroxy derivatives of triarylmethanes in which at least one OH group is bound to an aryl nucleus and their ethers or esters
- C09B11/08—Phthaleins; Phenolphthaleins; Fluorescein
Definitions
- R and R comprise alkyl radicals having from one to five carbon atoms, aryl radicals, and hydrogen; and R and R comprise alkyl radicals having from one to five carbon atoms and hydrogen; said material assuming a colored form upon contact with a Lewis acid molecule.
- This invention pertains to novel chromogenic com pounds for use in pressure sensitive record material and to an improved mark-forming manifold system incorporating these novel chromogenic compounds. More specifically, this invention pertains to 3-dialkylaminophenyl-3- indolyl phthalides which have the form of substantially colorless, i.e. white, or slightly colored solids, or approach being colorless when in liquid solution, but which may be converted to dark-colored forms upon reactive contact with acidic material.
- marking in desired areas on support webs or sheets may be accomplished by effecting localized reactive ,contact between the chromogenic material and the acidic material on or in such a web or sheet, such material being brought thereto by transfer, or originally there in situ, the desired reactive contact forming dark-colored materials in the intended image areas.
- Pressure-sensitive, mark-forming systems of the prior art include that disclosed in application for Letters Patent No. 392,404, filed Aug. 27, 1964, by Robert E. Miller and Paul S. Phillips, Jr., and now abandoned.
- the latter application provides a marking system of disposing on and/ or within sheet support material the unreacted markforming components (at least one of which is a polymeric material) and a liquid solvent in which each of the markforming components is soluble, said liquid solvent being present in such form that it is maintained isolated by a pressure-rupturable barrier from at least one of the markforming components until the application of pressure causes a breach or rupture of the barrier in the area delineated by the pressure pattern.
- the mark-forming components thereby are brought into reactive contact, producing a distinctive mark.
- R and R comprise alkyl radicals havingfrom 1 to 5 carbon atoms, aryl radicals, and hydrogen; and R and R comprise alkyl radicals having from 1 to 5 carbon atoms and hydrogen.
- R and R comprise alkyl radicals having from 1 to 5 carbon atoms, aryl radicals, and hydrogen.
- R and R comprise alkyl radicals having from 1 to 5 carbon atoms and hydrogen.
- a new composition of matter comprises the dark-colored substance having a resonant form developed by contact of a color-activating material with one of the above-mentioned chromogenic compounds.
- the color-developing or activating material is an acidic substance for converting the chromogenic compound to the resonant form.
- the acidic materials employed in this invention can be any compound within the definition of a Lewis acid, i.e., an electron acceptor.
- acidic organic polymers such as phenolic polymers are employed as the acidic material.
- the novel chromogenic materials exhibit the advantage of improved color stability when reacted with such phenolic polymers.
- the solution formation of the solid particles of polymeric material in the same solvent with the substantially colorless chromogenic compounds allows penetration of the color into the support sheet, if porous,-e.g., paper, so that the colored form of the chromogenic material sinks into the body of the sheet and is not merely on the surface of the sheet. This feature protects against erasure of recorded data by attrition of the surface of the record sheet.
- FIGURE 1 is a diagrammatic representation of a two-sheet unit manifold, a perspective in which the bottom surface of the overlying is supplied on the surface or near it with a multiplicity of minute pressure-rupturable microcapsules, each containing a droplet.
- Each droplet contains a solution of the basic chromogenic component.
- An acidic component such as an acid clay or a phenolic polymeric material lies Within the lower web or sheet or upon the upper surface of the lower Web or sheet.
- a colored mark is made by the use of a stylus, a type character, or other pressure-writing means applied to the two-sheet unit manifold.
- the encapsulated droplets are released on the rupture of the capsules in writing operations, as shown in FIGURE 10!.
- the liquid of the released droplets is transferred in the pattern of the data configuration to the top of the underlying sheet.
- the top of the underlying sheet is coated or impregnated with a material reactant with the chromogenic material, e.g., a phenolic polymer material having an acid-reacting OH group.
- the drawings show capsules on the over-sheet containing a liquid solution of chromogenic material.
- the capsules can contain the polymeric phenolic material in liquid solution and the top surface of the under-sheet may be supplied with the chromogenic material in particulate form.
- the improvement in the system is the chromogenic compound which is the novel substance of the instant invention.
- FIGURE 1 comprising an upper web or sheet having the chromogenic material dispersed within or upon in a contiguous juxtaposition
- the chromogenic material in a solid, crystallinestate in a binder material so that the chromogenic material may be transferred from the upper Web or sheet upon the application of pressure from a stylus to deposit some of the chromogenic material on a surface carrying a color activating polymeric material.
- the chromogenic substance is dissolved in a solvent and minute droplets of the solution of the chromogenic material are encapsulated in minute, rupturable capsules.
- the polymeric mark-forming components should have a common solubility with the chromogenic material in at least one liquid solvent when the acid-reacting material is a phenolic or other organic acidic polymer. It is also noted that in a single system several chromogenic materials may be used with the same or different polymeric materials. Several polymeric materials can be reactively contacted With a single chromogenic compound or with a mixture of chromogenic compounds.
- the solvent is maintained in physical isolation in minute droplets until such time as it is released by application of pressure.
- This may be accomplished by several known techniques, but preferably isolation is maintained by individual encapsulation of the solvent droplets in a microcapsule according to the procedures described, for example, in U.S. Patent No. 2,712,507, issued to Barrett K. Green on July 5, 1955; 2,730,457 issued to Barrett K. Green and Lowell Schleicher on Jan. 10, 1956; 2,800,457, issued to Barrett K. Green and Lowell Schleicher on July 23, 1957; and 2,800,458, issued to Barrett K. Green on July 23, 1957, reissued as Reissue Patent No. 24,899 on Nov. 29, 1960.
- the microscopic capsules when disposed within or upon a supporting web as a multiplicity in contiguous juxtaposition, are rupturable by pressure, such a normal marking pressures utilized, for example, in writing or typing operations.
- the material or materials chosen as the wall material of the microcapsule in addition to being pressure rupturable, must be inert or unreactive in respect to the contents of the capsule and the other mark-forming components so that the wall material remains intact under normal storage conditions until such time as it is released by the application of marking pressure.
- wall materials are gelatin, gum arabic and many others thoroughly described in the aforementioned patents.
- the capsule size should not exceed 50 microns in diameter.
- the capsules should be smaller than microns in diameter.
- the acidic organic polymeric material useful in this invention include phenolic polymers, phenol acetylene polymers, maleic acid-rosin resins, partially or wholly hydrolyzed styrene-maleic anhydride copolymers and ethylene-maleic anhydride copolymers, carboxy polymethylene and wholly or partially hydrolyzed vinyl methyl ether maleic anhydride copolymer and mixtures thereof.
- Phenolic polymers found useful include alkyl-phenolacetylene resins, which are soluble in common organic solvents and possess permanent fusibility in the absense of being treated by cross-linking materials.
- a specific group of useful phenolic polymers are members of the type commonly referred to as novolacs (as sold by Union Carbide Corp., New York, N.Y.), which are characterized by solubility in common organic solvents and which are, in the absence of cross-linking agents, permanently fusible.
- the phenolic polymer material found useful in practicing this invention is characterized by the presence of free hydroxyl groups and the absence of groups such as methylol, which tend to promote infusibility or cross-linking of the polymer, and by their solubility in organic solvents and relative insolubility in aqueous media. Again, obviously, mixtures of these organic polymers and other acidic materials can be employed.
- Resoles if they are still soluble, may be used, though subject to change in properties upon aging.
- a laboratory method useful in the selection of suitable phenolic resins is the determination of the infra-red absorption pattern. It has been found that phenolic resins showing an absorption in the 3200-3500 cm? region (which is indicative of the free hydroxyl groups) and not having an absorption in the 16004700 cm. region are suitable. The latter absorption region is indicative of the desensitization of the hydroxyl groups and, consequently, makes such groups unavailablefor reaction with the chromogenic materials.
- maleic anhydride copolymers are described in the literature, such as, for example, one of the maleic anhydride vinyl coploymers, as disclosed in the publication, Vinyl and Related Polymers, by Calvin E. Schildknecht, second printing, published April 1959, by John Wiley & Sons, Incorporated. See pages to 68 (styrene-maleic anhydride copolymer), 628 to 630 (vinyl methyl ether-maleic anhydride copolymer), and 530 to 531 (ethylene-maleic anhydride copolymer).
- the liquid solvent chosen must be capable of dissolving the mark-forming components.
- the solvent may be volatile or non-volatile, and a single or multiple component solvent may be used which is wholly or partially volatile.
- volatile solvents useful in the afore-described basic chromogen-acidic polymer are toluene, petroleum distillate, perchloroethylene, and xylene.
- non-volatile solvents are high-boiling point petroleum fractions and chlorinated biphenyls.
- the solvent chosen should be capable of dissolving at least 0.3%, on a weight basis, of the chromogenic material, and about a 3-5 on a weight basis, of the polymeric material to form an eflicient reaction.
- the solvent should be capable of dissolving an excess of the polymeric material, so as to provide every opportunity for utilization of the chromogenic material and, thus, to assure the maximum coloration at a reaction site.
- a further criterion of the solvent is that it must not interfere with the mark-forming reaction.
- the presence of the solvent may interfere with the mark-forming reaction or diminish the intensity of the mark, in which case the solvent chosen should be sulficiently vaporizable to assure its removal from the reaction site after having, through solution, brought the markforming components into intimate admixture, so that the mark-forming contact proceeds.
- mark-forming reaction requires a intimate mixture of the components to be brought about through solution of said components, one or more of the markforming components may be dissolved in the isolated solvent droplets, the only requirement being that at least one of the components essential to the mark-forming reaction be maintained isolated until reactively contacted with the other.
- the mark-forming components are so chosen as to produce a mark upon application of pressure at room temperature (20 to 25 degrees centigrade).
- the present invention includes a system in which the solvent component is not liquid at temperatures around room temperature but is liquid and in condition for forming solutions only at elevated temperatures.
- the support member on which the components of the system are disposed may comprise a single or dual sheet assembly.
- the record material is referred to as a self-contained system.
- the record material is referred to as a transfer system.
- uch a system may also be referred to as a two-fold system, in that at least two sheets are required and each sheet includes a component, or components, essential to the mark-forming reaction.
- a copious amount of the colored reaction product in liquid form is produced on a surface of one sheet, it may produce a mark by transfer to a second sheet as a colored mark.
- microcapsules may be present in the support material either disposed therethroughout or as a coating thereon, or both.
- the capsules may be applied to the sheet material while still dispersed in the liquid vehicle in which they were manufactured, or, if desired, separated and the separated capsules thereafter dispersed in a solution of the polymeric component (for instance, 30 grams of water and 53 grams of a 1% aqueous solution of polyvinyl methyl ether maleic anhydride) to form a coating composition in which, because of the inertness of the solution and the capsules, both retain their identity and physical integrity.
- a solution of the polymeric component for instance, 30 grams of water and 53 grams of a 1% aqueous solution of polyvinyl methyl ether maleic anhydride
- This latter technique relying on the inertness of the microcapsule and the dispersing medium of the film-forming markforming component, allows for a method of preparing a sensitive record coating with the capsules interspersed directly in a dry film of the polymeric material as it is laid down from the solution.
- a further alternative is to disperse in a liquid medium one or more mark-forming components, insoluble therein, and disperse in said medium the insoluble microcapsules, with the result that all components of the mark-forming system may be disposed on or Within the support sheet in the one operation. Obviously, the several components may be applied individually.
- Suitable lower amounts include, in the case of the chromogenic material, about .005 to .075 pound per ream (a ream in this application meaning five hundred (500) sheets of 25" x 38" paper, totalling 3,300 square feet); in the case of the solvent, about 1 to 3 pounds per ream; and in case of the polymer, about /2 pound per ream. In all instances, the upper limit is primarily a matter of economic consideration.
- the slurry of capsules may be applied to a wet web of paper as it exists on the screen of a Fourdrinier paper machine, so as to sink the paper web a distance depending on the freeness of the pulp and the water content of the web at the point of application.
- the capsules may be placed directly in the paper or in a support sheet. Not only capsule structures, but films which hold a multitude of droplets for local release in an area subject to pressure may be utilized. (See US. Patent No. 2,299,694 which issued Oct. 20, 1942, to B. K. Green.)
- the acidic organic polymeric component With respect to the acidic organic polymeric component, a solution thereof in an evaporable solvent is introduced into twice as much water and agitated while the evaporable solvent is blown off by an air blast. This leaves an aqueous colloidal dispersion slurry of the polymeric material, which may be applied to the paper so as to leave a surface residue, or the slurry may be applied to paper at the size-press station of a papermaking machine by roller.
- the water-insoluble polymer is ground to the desired particle size in a ball mill with water, preferably with a dispersing agent, such as a small quantity of sodium silicate.
- a binder material of hydrophilic properties is ground with the phenolic material, the binder itself may act as a dispersant.
- an amount of binder material of up to 40%, by weight, of the employed amount of the polymeric material may be added to the ball-milled slurry of materials, such binder materials being of the paper coating binder class, including gum arabic, casein, hydroxyethylcellulose, and latex (such as styrene-butadiene copolymer).
- oil adsorbents in the form of fullers earths may be added to the polymeric material particles to assist in retaining, in situ, the liquid droplets to be transferred to it in data-representing configuration, for the purpose of preventing bleeding of the print.
- Another way of applying the chromogenic or polymeric material individually to a single sheet of paper is by immersing a sheet of paper in a 1% to solution of the material in an evaporable solvent. Obviously, this must be done alone for each reactant, because if the other reactant material were present, it would result in a premature coloration over the sheet area.
- a dried sheet with one component then may be coated with a solution of the other component, the solvent of which is a non-solvent to the already supplied component.
- the polymeric material may be dissolved in ink composition vehicles to form a printing ink of colorless character and, thus, may be used to spot-print a proposed record sheet unit sensitized for recording in a reactionproduced color in those areas by application of a solution of the chromogenic material.
- a printing ink may be made of up to 75% weight, of the phenolic polymeric material in a petroleum solvent to a viscosity suitable for printing purposes.
- the relative amounts of components to be used are the most convenient and economical amounts consistent with proper visibility of the recorded data.
- the resolution of the recorded data is, among other things, dependent on particle size, distribution and amount of particles, liquid solvent migration, chemical reaction efficiency, and other factors, all of which are things that may be worked out empirically by one familiar with the art, and which do not determine the principle of the invention, which, in part, involves means for enabling the bringing into solution, by marking pressure, of two normally solid components in a common liquid solvent component held isolated as liquid droplets, preferably in marking-pressure-rupturable capsules having film walls, or else held isolated in a continuous marking-pressurerupturable film as a discontinuous phase.
- the acidic mark-forming component'(s) reacts with the basic chromogenic material(s) to effect distinctive color formation or color change.
- the acidic organic polymer it is desirable to include other materials to supplement the reactants. For example, kaolin can be added to improve the transfer of the liquid and/or the dissolved materials between the sheets.
- compositions of the mark-forming materials into their supporting sheets.
- An example of the compositions which can be coated onto the surface of an underlying sheet of a two-sheet system to react with the capsule coating on the underside of an overlying sheet is as follows:
- Coating composition Percent by wt.
- Phenolic polymer mixture 17 Papr coating kaolin (white) 57 Calcium carbonate 12 Styrene butadiene latex 4 Ethylated starch 8 Gum arabic 2.
- the keto-acid prepared in the process set forth above was used in this preparation.
- 5.4 grams of 4'-dimethylaminobenzophenone-2-carboxylic acid and 3.2 grams of 1,2dimethylindole were mixed with twenty milliliters of acetic anhydride. After being heated for fifteen minutes to near the boiling point on a hot plate, the reaction mixture was poured into one hundred milliliters of water and heated for an additional ten minutes. Upon cooling, the mixture was treated with ammonium hydroxide until it was strongly alkaline, then stirred for ten minutes. The solid which exhibited a weight of 7.8 grams, was removed by filtration purified by recrystallization from a benzene solution.
- the purified product exhibited a melting point of 226- 228 C.
- a solution of the product in benzene turned a vivid blue when applied to a paper sheet coated with a phenolic polymer, but imparted a blue-purple color to paper coated with attapulgite clay.
- the semi-solid material was then stirred with 1200 milliliters of water for one hour.
- the semi-solid material disintegrated into a light-green colored precipitate.
- the water was decanted and fresh water added.
- a powdered solid product was percipitated exhibiting a weight of 18.4 grams and a melting point range of 164-168 C.
- 5 grams of the solid intermediate product, 4-di-n-butylaminobenzophenone 2 carboxylic acid was dissolved in 50 milliliters of toluene, treated with charcoal and filtered.
- a yellow filtrate was treated with an equal volume of petroleum ether yielding a yellow precipitate exhibiting a weight of 4.7 grams and a melting point range of 168170 C.
- Example II 2.7 grams of 4' dimethylaminobenzophenone 2 carboxylic acid prepared in the procedure set forth in Example I was mixed With 2.1 grams of 2-phenylindole and forty milliliters of acetic anhydride. A crude product, weighing 4.4 grams, was isolated according to the procedure described in Example I. The product was recrystallized from the benezene solution. The purified product exhibited a melting point of 252-253 C. The benzene solution of the product imparted a green color to paper coated with a phenolic polymer.
- Example III 0.8 gram of 4 dimethylaminobenzophenone 2 carboxylic acid prepared in the procedure set forth in Example I, 0.62 gram of 1-methyl-2-phenylindole and 5 milliliters of acetic anhydride were reacted as set forth in Example III. Following the isolation procedure of Example III, a crude product weighing 1.0 gram was obtained upon recrystallization from 95% ethanol, a pure product exhibiting a melting point range of 146 C. to 148 C. was obtained.
- a solution in benzene of the 3-(pdimethylaminophenyl)-3 (1 methyl-Z-phenylindol-3-yl) phthalide product appeared a blue color when reacted with attapulgite clay coated on paper and appeared green when contacted witha phenolic polymer coated onto paper. when contacted with a phenolic polymer coated onto paper.
- An intermediate keto-acid 4-diethylaminobenz0phenone-Z-carboxylic acid was first prepared by stirring 18.0 grams of diethylaniline, 14.8 grams of phthalic anhydride, and 20 milliliters of benzene in a 100 milliliter flask immersed in a cold water bath. 26.7 grams of aluminum chloride was slowly added to the reaction mixture, the addition requiring 12 minutes. The water bath temperature was raised to 52 C. over a period of thirty minutes and maintained at 52-55 C. for 7 minutes. Twenty milliliters of water were added, followed by the addition of 200 milliliters of 20% sulfuric acid to the reaction mixture. Upon heating a turbid solution was observed.
- the solution was diluted with water to 800 milliliters and neutralized with ammonium hydroxide to a pH of 1.8.
- a semi-solid phase appeared and was separated and stirred into an 800 milliliter quantity of water for 120 minutes.
- a solid precipitate was formed which exhibited a weight of 15.7 grams and a melting point range of 173-177 C.
- the crude material was purified by dissolving said material in 4 normal sulfuric acid, filtering the solution to remove insoluble material, and reprecipitating the product with ammonium hydroxide.
- the melting point of the 4'-diethylaminobenzophenone-2-carboxylic acid intermediate was thereby raised to 180181 C.
- the intermediate keto-acid prepared in the foregoing procedure was used in the preparation of the compound 3-(p diethylaminophenyl)-3-(2-phenylindol-3-yl) phthalide by heating 0.74 grams of 4-diethylaminobenzophenone-2-carboxylic acid, 0.48 grams of 2-phenylindole and 15 milliliters of acetic anhydride in a beaker over a hot plate for 15 minutes. The reaction mixture was poured into 100 milliliters of water, made alkaline with ammonium hydroxide and stirred for 60 minutes. A crude product exhibiting a weight of 1.1 grams was precipitated. The crude product was dissolved in 50 milliliters of benzene, treated with charcoal and filtered.
- a chromogenic compound having the structural formula where R and R consist of alkyl having from one to four carbon atoms, phenyl, and hydrogen; and Where R and R consist of alkyl having from one to four carbon atoms, and hydrogen.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Color Printing (AREA)
- Indole Compounds (AREA)
- Heat Sensitive Colour Forming Recording (AREA)
- Furan Compounds (AREA)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61249667A | 1967-01-30 | 1967-01-30 | |
US61245967A | 1967-01-30 | 1967-01-30 | |
US61236967A | 1967-01-30 | 1967-01-30 | |
US61252467A | 1967-01-30 | 1967-01-30 | |
US61255867A | 1967-01-30 | 1967-01-30 | |
US81759669A | 1969-01-24 | 1969-01-24 | |
US81089469A | 1969-01-24 | 1969-01-24 | |
US82153869A | 1969-01-24 | 1969-01-24 | |
US82153769A | 1969-01-24 | 1969-01-24 | |
US82153969A | 1969-01-24 | 1969-01-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3491116A true US3491116A (en) | 1970-01-20 |
Family
ID=27581296
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US612459A Expired - Lifetime US3491116A (en) | 1967-01-30 | 1967-01-30 | 3-(phenyl)-3-(indol-3-yl)-phthalides |
US612496A Expired - Lifetime US3509173A (en) | 1967-01-30 | 1967-01-30 | 3,3-bis-(indol-3-yl) phthalides |
US612524A Expired - Lifetime US3491112A (en) | 1967-01-30 | 1967-01-30 | 3-(phenyl)-3-(heterocyclic-substituted)-phthalides |
US612369A Expired - Lifetime US3491111A (en) | 1967-01-30 | 1967-01-30 | Indole- and carbazole-substituted phthalides |
US821538*A Expired - Lifetime US3540912A (en) | 1967-01-30 | 1969-01-24 | Pressure sensitive record sheets employing 3 - (phenyl) - 3 - (heterocyclic-substituted)-phthalides |
US817596*A Expired - Lifetime US3540910A (en) | 1967-01-30 | 1969-01-24 | Pressure sensitive record sheets employing indole- and carbazole-subtituted phthalides |
US821537*A Expired - Lifetime US3540911A (en) | 1967-01-30 | 1969-01-24 | Pressure sensitive record sheets employing 3 - (phenyl) - 3-(indol - 3 - yl)-phthalides |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US612496A Expired - Lifetime US3509173A (en) | 1967-01-30 | 1967-01-30 | 3,3-bis-(indol-3-yl) phthalides |
US612524A Expired - Lifetime US3491112A (en) | 1967-01-30 | 1967-01-30 | 3-(phenyl)-3-(heterocyclic-substituted)-phthalides |
US612369A Expired - Lifetime US3491111A (en) | 1967-01-30 | 1967-01-30 | Indole- and carbazole-substituted phthalides |
US821538*A Expired - Lifetime US3540912A (en) | 1967-01-30 | 1969-01-24 | Pressure sensitive record sheets employing 3 - (phenyl) - 3 - (heterocyclic-substituted)-phthalides |
US817596*A Expired - Lifetime US3540910A (en) | 1967-01-30 | 1969-01-24 | Pressure sensitive record sheets employing indole- and carbazole-subtituted phthalides |
US821537*A Expired - Lifetime US3540911A (en) | 1967-01-30 | 1969-01-24 | Pressure sensitive record sheets employing 3 - (phenyl) - 3-(indol - 3 - yl)-phthalides |
Country Status (7)
Country | Link |
---|---|
US (7) | US3491116A (cs) |
BE (3) | BE709998A (cs) |
CH (4) | CH484251A (cs) |
DE (4) | DE1795748A1 (cs) |
FR (4) | FR1554988A (cs) |
GB (4) | GB1161387A (cs) |
NL (4) | NL145243B (cs) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617335A (en) * | 1968-07-15 | 1971-11-02 | Fuji Photo Film Co Ltd | Pressure-sensitive copying paper |
US3619238A (en) * | 1968-07-15 | 1971-11-09 | Fuji Photo Film Co Ltd | Pressure sensitive copying paper |
DE2259409A1 (de) * | 1971-12-06 | 1973-06-20 | Ncr Co | Chromogene verbindung |
US3879196A (en) * | 1971-11-15 | 1975-04-22 | Canon Kk | Electrophotographic method for colored images |
US3880656A (en) * | 1971-10-02 | 1975-04-29 | Canon Kk | Electrophotographic method for colored images |
DE2514934A1 (de) * | 1974-04-09 | 1975-10-23 | Ciba Geigy Ag | Heterocyclisch substituierte laktone, ihre herstellung und verwendung |
US3931228A (en) * | 1971-01-21 | 1976-01-06 | Polaroid Corporation | Process for preparing phthalide and naphthalide indicator dyes |
US3944523A (en) * | 1973-10-23 | 1976-03-16 | Minnesota Mining And Manufacturing Company | Poly(phenol/diene) resin and rubber adhesive compositions tackified therewith |
US4107428A (en) * | 1975-04-10 | 1978-08-15 | Ncr Corporation | Di-vinyl color formers |
US4119776A (en) * | 1975-04-10 | 1978-10-10 | Ncr Corporation | Vinyl phthalide color formers |
US4189171A (en) * | 1977-03-01 | 1980-02-19 | Sterling Drug Inc. | Marking systems containing 3-aryl-3-heterylphthalides and 3,3-bis(heteryl)phthalides |
US4295663A (en) * | 1976-01-16 | 1981-10-20 | Ciba-Geigy Corporation | 3-Indolyl-3-bis-amino-phenyl-phthalide compounds |
US4307018A (en) * | 1979-04-04 | 1981-12-22 | Sterling Drug Inc. | Heteroarylphthalides |
US4322352A (en) * | 1979-04-04 | 1982-03-30 | Sterling Drug Inc. | Indolyl phthalide compounds |
US4349679A (en) * | 1978-05-18 | 1982-09-14 | Giba-Geigy Corporation | Pyrrolidino and piperidino benz ring substituted phthalides |
EP0206114A2 (en) * | 1985-06-17 | 1986-12-30 | Hilton-Davis Chemical Co. | Novel substituted phthalides and furopyridinones, preparation thereof and use thereof as color formers |
GB2194070A (en) * | 1986-07-09 | 1988-02-24 | Fuji Photo Film Co Ltd | Sheet recording material containing dye-forming components |
US4736027A (en) * | 1985-06-17 | 1988-04-05 | Hilton Davis Chemical Co. | Indole-phthalide derivatives |
US4788285A (en) * | 1985-06-17 | 1988-11-29 | Hung William M | Indole-phthalide derivatives |
EP0688759A1 (en) | 1994-06-23 | 1995-12-27 | Fuji Photo Film Co., Ltd. | Alpha-resorcylic acid ester derivatives and recording materials incorporating them |
EP1211094A2 (en) | 2000-12-04 | 2002-06-05 | Fuji Photo Film Co., Ltd. | Thermal recording material |
EP1275519A1 (en) | 2001-06-26 | 2003-01-15 | Fuji Photo Film Co., Ltd. | Recording material |
EP1297967A2 (en) | 2001-09-27 | 2003-04-02 | Fuji Photo Film Co., Ltd. | Thermal recording material and production method thereof |
EP1331104A2 (en) | 2002-01-25 | 2003-07-30 | Fuji Photo Film Co., Ltd. | Heat sensitive recording material and recording method |
US20040169071A1 (en) * | 2003-02-28 | 2004-09-02 | Appleton Papers Inc. | Token array and method employing authentication tokens bearing scent formulation information |
US20040214134A1 (en) * | 2003-04-22 | 2004-10-28 | Appleton Papers Inc. | Dental articulation kit and method |
US20040251309A1 (en) * | 2003-06-10 | 2004-12-16 | Appleton Papers Inc. | Token bearing magnetc image information in registration with visible image information |
US20060063125A1 (en) * | 2003-04-22 | 2006-03-23 | Hamilton Timothy F | Method and device for enhanced dental articulation |
WO2010090213A1 (ja) | 2009-02-04 | 2010-08-12 | 富士フイルム株式会社 | 熱分布表示体及び熱分布確認方法 |
WO2014124052A1 (en) | 2013-02-06 | 2014-08-14 | Fujifilm Hunt Chemicals, Inc. | Chemical coating for a laser-markable material |
US9409219B2 (en) | 2011-02-07 | 2016-08-09 | Valspar Sourcing, Inc. | Compositions for containers and other articles and methods of using same |
US9475328B2 (en) | 2012-08-09 | 2016-10-25 | Valspar Sourcing, Inc. | Developer for thermally responsive record materials |
US9724276B2 (en) | 2012-08-09 | 2017-08-08 | Valspar Sourcing, Inc. | Dental materials and method of manufacture |
US9944749B2 (en) | 2012-08-09 | 2018-04-17 | Swimc, Llc | Polycarbonates |
US10113027B2 (en) | 2014-04-14 | 2018-10-30 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
US10316211B2 (en) | 2012-08-09 | 2019-06-11 | Swimc Llc | Stabilizer and coating compositions thereof |
US10435199B2 (en) | 2012-08-09 | 2019-10-08 | Swimc Llc | Compositions for containers and other articles and methods of using same |
US10526502B2 (en) | 2012-08-09 | 2020-01-07 | Swimc Llc | Container coating system |
US11130835B2 (en) | 2015-11-03 | 2021-09-28 | Swimc Llc | Liquid epoxy resin composition useful for making polymers |
US11130881B2 (en) | 2010-04-16 | 2021-09-28 | Swimc Llc | Coating compositions for packaging articles and methods of coating |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3491116A (en) * | 1967-01-30 | 1970-01-20 | Ncr Co | 3-(phenyl)-3-(indol-3-yl)-phthalides |
GB1274667A (en) * | 1968-06-07 | 1972-05-17 | Wiggins Teape Res Dev | Coated fibrous sheet material |
US3833615A (en) * | 1970-06-05 | 1974-09-03 | Polaroid Corp | Naphthalides and phthalides |
US3849164A (en) * | 1970-11-16 | 1974-11-19 | Ncr | Pressure-sensitive record unit comprising a mixture of two chromogenic compounds |
US3857675A (en) * | 1970-11-16 | 1974-12-31 | H Schwab | Mixtures of two chromogenic compounds |
CA948639A (en) * | 1971-01-21 | 1974-06-04 | Polaroid Corporation | Indole phthalein indicator dyes |
US3736337A (en) * | 1971-04-27 | 1973-05-29 | Ncr Co | Tetrahalogenated chromogenic compounds and their use |
US3894168A (en) * | 1971-04-30 | 1975-07-08 | Ncr Co | Paper coating pigment material |
US3933849A (en) * | 1971-11-26 | 1976-01-20 | Polaroid Corporation | 3,3-Disubstituted phthalides and naphthalides |
BE791898A (fr) * | 1971-11-26 | 1973-05-24 | Ciba Geigy Ag | Procede de preparation de substances chromogenes a partir d'indoles et d'anhydrides d'acides dicarboxyliques vicinaux, aromatiques ou heteroaromatiques, nouveaux chromogenes de cette categorie et leur emploi |
US4001277A (en) * | 1971-11-26 | 1977-01-04 | Polaroid Corporation | 3,3-disubstituted phthalides and naphthalides |
US3932455A (en) * | 1971-11-26 | 1976-01-13 | Polaroid Corporation | Carbazole phthaleins |
BE795746A (fr) * | 1972-02-21 | 1973-08-21 | Wiggins Teape Ltd | Nouveaux formateurs de couleur |
JPS5122413B2 (cs) * | 1972-06-24 | 1976-07-09 | ||
US4096176A (en) * | 1972-12-12 | 1978-06-20 | Sterling Drug Inc. | Benzoylbenzoic acids |
US3996405A (en) * | 1973-01-24 | 1976-12-07 | Ncr Corporation | Pressure-sensitive record material |
CH578432A5 (cs) * | 1973-03-05 | 1976-08-13 | Ciba Geigy Ag | |
US4186134A (en) * | 1973-05-21 | 1980-01-29 | Ciba-Geigy Corporation | 3-Indolyl-3-phenyl-phthalides |
GB1464251A (en) * | 1973-05-21 | 1977-02-09 | Ciba Geigy Ag | Thermo-reactive colour recording material |
GB1460151A (en) * | 1973-05-21 | 1976-12-31 | Ciba Geigy | Nitrophthalides their mahufacture and their use in recording systems- |
GB1460751A (en) * | 1973-05-21 | 1977-01-06 | Ciba Geigy Ag | 3-indolyl-3-phenyl-phthalide compounds their manufacture and their use |
US3981523A (en) * | 1975-03-24 | 1976-09-21 | Moore Business Forms, Inc. | Carbonless manifold business forms |
USRE30116E (en) * | 1975-03-24 | 1979-10-16 | Moore Business Forms, Inc. | Carbonless manifold business forms |
JPS525746A (en) * | 1975-07-03 | 1977-01-17 | Kanzaki Paper Mfg Co Ltd | Novel process for preparation of triarymethane derivatives |
US3978270A (en) * | 1975-11-12 | 1976-08-31 | Ncr Corporation | Thermal sensitive materials |
US4182714A (en) * | 1976-12-29 | 1980-01-08 | Sterling Drug Inc. | Carbazole containing phthalides |
US4251446A (en) * | 1977-03-01 | 1981-02-17 | Sterling Drug Inc. | Phthalide compounds, processes and marking systems |
US4732991A (en) * | 1977-05-04 | 1988-03-22 | Hilton Davis Chemical Co. | Substituted phthalides |
US4595768A (en) * | 1977-05-04 | 1986-06-17 | The Hilton-Davis Chemical Co. | 3-(substituted phenyl)phthalides |
US4188456A (en) * | 1977-12-23 | 1980-02-12 | Ncr Corporation | Pressure-sensitive recording sheet |
GB2022575B (en) * | 1978-05-18 | 1982-10-27 | Ciba Geigy Ag | Mixed aromatic anhydrides their manufacture and use |
US4211872A (en) * | 1978-12-11 | 1980-07-08 | Hung William M | Substituted furopyridinones and furopyrazinones |
US4242513A (en) * | 1979-03-05 | 1980-12-30 | Appleton Papers Inc. | Lactone compounds containing a heterocyclic radical |
US4275206A (en) * | 1979-03-05 | 1981-06-23 | Appleton Papers Inc. | Lactone compounds containing an indolizine radical |
US4334072A (en) * | 1980-01-16 | 1982-06-08 | Appleton Papers Inc. | Lactone compounds containing an indolizine radical |
FI70036C (fi) * | 1980-01-31 | 1986-09-12 | Ciba Geigy Ag | Kromogena kinazolinfoereningar |
JPS57133093A (en) * | 1981-02-12 | 1982-08-17 | Jujo Paper Co Ltd | Developing sheet for pressure sensitive copying paper |
US4478842A (en) * | 1981-11-19 | 1984-10-23 | Ciba-Geigy Corporation | N-Substituted-2-pyridylindoles |
CH652733A5 (de) * | 1983-04-07 | 1985-11-29 | Ciba Geigy Ag | Verfahren zur herstellung von 4-azaphthalidverbindungen. |
US4431840A (en) * | 1982-10-22 | 1984-02-14 | Sterling Drug Inc. | Process for preparing 2-benzoylbenzoic acids |
US5220036A (en) * | 1985-12-16 | 1993-06-15 | Polaroid Corporation | Thiolactone dye precursors |
DE3609344A1 (de) * | 1986-03-20 | 1987-09-24 | Bayer Ag | Chromogene phthalide, ihre herstellung und verwendung |
EP0266310B1 (de) * | 1986-10-28 | 2001-12-05 | Ciba SC Holding AG | Chromogene Phthalide |
US4977131A (en) * | 1988-05-24 | 1990-12-11 | Moore Business Forms, Inc. | OCR scannable carbonless copying system and a method of producing OCR scannable images therewith |
EP0475908A1 (de) * | 1990-09-14 | 1992-03-18 | Ciba-Geigy Ag | Chromogene Lactamverbindungen und ihre Herstellung und Verwendung |
JPH10129021A (ja) * | 1996-10-25 | 1998-05-19 | Fuji Photo Film Co Ltd | 感熱記録システム |
US6294502B1 (en) | 1998-05-22 | 2001-09-25 | Bayer Aktiengesellschaft | Thermally-responsive record material |
JP2003094827A (ja) | 2001-09-27 | 2003-04-03 | Fuji Photo Film Co Ltd | 感熱記録材料 |
JP3822513B2 (ja) | 2002-03-26 | 2006-09-20 | 富士写真フイルム株式会社 | 感熱記録材料 |
WO2004044852A2 (en) | 2002-11-12 | 2004-05-27 | Appleton, Papers, Inc. | Secure point of sale imageable substrate |
JP4442676B2 (ja) * | 2007-10-01 | 2010-03-31 | 富士ゼロックス株式会社 | 光定着用カラートナー及びその製造方法、並びに、静電荷像現像剤、プロセスカートリッジ及び画像形成装置 |
JP2024143724A (ja) * | 2023-03-30 | 2024-10-11 | 富士フイルム株式会社 | 機上現像型平版印刷版原版、平版印刷版の作製方法、平版印刷方法、及び化合物 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2505486A (en) * | 1944-01-31 | 1950-04-25 | Ncr Co | Process of making pressure sensitive record material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3268537A (en) * | 1961-08-31 | 1966-08-23 | Burroughs Corp | Chromogenous aminophenyl derivatives of benzodifurandione |
US3244549A (en) * | 1961-08-31 | 1966-04-05 | Burroughs Corp | Manifold sheets coated with lactone and related chromogenous compounds and reactive phenolics and method of marking |
US3336337A (en) * | 1961-08-31 | 1967-08-15 | Burroughs Corp | Chromogenous tetrakis(aminophenyl) derivatives of benzodifuran |
US3455721A (en) * | 1964-12-21 | 1969-07-15 | Ncr Co | Color sensitized record material comprising phenolic resin and acid type mineral |
US3491116A (en) * | 1967-01-30 | 1970-01-20 | Ncr Co | 3-(phenyl)-3-(indol-3-yl)-phthalides |
-
1967
- 1967-01-30 US US612459A patent/US3491116A/en not_active Expired - Lifetime
- 1967-01-30 US US612496A patent/US3509173A/en not_active Expired - Lifetime
- 1967-01-30 US US612524A patent/US3491112A/en not_active Expired - Lifetime
- 1967-01-30 US US612369A patent/US3491111A/en not_active Expired - Lifetime
-
1968
- 1968-01-10 GB GB1388/68A patent/GB1161387A/en not_active Expired
- 1968-01-10 GB GB0387/68A patent/GB1162771A/en not_active Expired
- 1968-01-10 GB GB1386/68A patent/GB1161386A/en not_active Expired
- 1968-01-10 GB GB1389/68A patent/GB1160940A/en not_active Expired
- 1968-01-29 BE BE709998D patent/BE709998A/xx not_active IP Right Cessation
- 1968-01-29 DE DE19681795748 patent/DE1795748A1/de active Pending
- 1968-01-29 FR FR137728A patent/FR1554988A/fr not_active Expired
- 1968-01-29 BE BE710000D patent/BE710000A/xx unknown
- 1968-01-29 FR FR137727A patent/FR1554987A/fr not_active Expired
- 1968-01-29 DE DE1795737A patent/DE1795737C3/de not_active Expired
- 1968-01-29 DE DE19681795749 patent/DE1795749A1/de active Pending
- 1968-01-29 BE BE709999D patent/BE709999A/xx not_active IP Right Cessation
- 1968-01-29 FR FR137729A patent/FR1572222A/fr not_active Expired
- 1968-01-29 FR FR137726A patent/FR1554986A/fr not_active Expired
- 1968-01-29 DE DE68N32029A patent/DE1695581C3/de not_active Expired
- 1968-01-30 NL NL686801354A patent/NL145243B/xx not_active IP Right Cessation
- 1968-01-30 NL NL686801359A patent/NL144942B/xx not_active IP Right Cessation
- 1968-01-30 CH CH150968A patent/CH484251A/fr not_active IP Right Cessation
- 1968-01-30 CH CH150868A patent/CH484250A/fr not_active IP Right Cessation
- 1968-01-30 NL NL6801358A patent/NL6801358A/xx unknown
- 1968-01-30 CH CH150668A patent/CH484248A/fr not_active IP Right Cessation
- 1968-01-30 CH CH150768A patent/CH484249A/fr not_active IP Right Cessation
- 1968-01-30 NL NL686801355A patent/NL145240B/xx not_active IP Right Cessation
-
1969
- 1969-01-24 US US821538*A patent/US3540912A/en not_active Expired - Lifetime
- 1969-01-24 US US817596*A patent/US3540910A/en not_active Expired - Lifetime
- 1969-01-24 US US821537*A patent/US3540911A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2505486A (en) * | 1944-01-31 | 1950-04-25 | Ncr Co | Process of making pressure sensitive record material |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3619238A (en) * | 1968-07-15 | 1971-11-09 | Fuji Photo Film Co Ltd | Pressure sensitive copying paper |
US3617335A (en) * | 1968-07-15 | 1971-11-02 | Fuji Photo Film Co Ltd | Pressure-sensitive copying paper |
US3931228A (en) * | 1971-01-21 | 1976-01-06 | Polaroid Corporation | Process for preparing phthalide and naphthalide indicator dyes |
US3880656A (en) * | 1971-10-02 | 1975-04-29 | Canon Kk | Electrophotographic method for colored images |
US3879196A (en) * | 1971-11-15 | 1975-04-22 | Canon Kk | Electrophotographic method for colored images |
DE2259409A1 (de) * | 1971-12-06 | 1973-06-20 | Ncr Co | Chromogene verbindung |
US3944523A (en) * | 1973-10-23 | 1976-03-16 | Minnesota Mining And Manufacturing Company | Poly(phenol/diene) resin and rubber adhesive compositions tackified therewith |
DE2514934A1 (de) * | 1974-04-09 | 1975-10-23 | Ciba Geigy Ag | Heterocyclisch substituierte laktone, ihre herstellung und verwendung |
US4107428A (en) * | 1975-04-10 | 1978-08-15 | Ncr Corporation | Di-vinyl color formers |
US4119776A (en) * | 1975-04-10 | 1978-10-10 | Ncr Corporation | Vinyl phthalide color formers |
US4295663A (en) * | 1976-01-16 | 1981-10-20 | Ciba-Geigy Corporation | 3-Indolyl-3-bis-amino-phenyl-phthalide compounds |
US4189171A (en) * | 1977-03-01 | 1980-02-19 | Sterling Drug Inc. | Marking systems containing 3-aryl-3-heterylphthalides and 3,3-bis(heteryl)phthalides |
US4349679A (en) * | 1978-05-18 | 1982-09-14 | Giba-Geigy Corporation | Pyrrolidino and piperidino benz ring substituted phthalides |
US4307018A (en) * | 1979-04-04 | 1981-12-22 | Sterling Drug Inc. | Heteroarylphthalides |
US4322352A (en) * | 1979-04-04 | 1982-03-30 | Sterling Drug Inc. | Indolyl phthalide compounds |
EP0206114A2 (en) * | 1985-06-17 | 1986-12-30 | Hilton-Davis Chemical Co. | Novel substituted phthalides and furopyridinones, preparation thereof and use thereof as color formers |
US4660060A (en) * | 1985-06-17 | 1987-04-21 | The Hilton-Davis Chemical Co. | Imaging systems containing 3-(indol-3-yl)-3-(4-substituted aminophenyl)phthalides |
US4736027A (en) * | 1985-06-17 | 1988-04-05 | Hilton Davis Chemical Co. | Indole-phthalide derivatives |
US4788285A (en) * | 1985-06-17 | 1988-11-29 | Hung William M | Indole-phthalide derivatives |
EP0206114A3 (en) * | 1985-06-17 | 1989-02-22 | Hilton-Davis Chemical Co. | Novel substituted phthalides and furopyridinones, preparation thereof and use thereof as color formers |
GB2194070A (en) * | 1986-07-09 | 1988-02-24 | Fuji Photo Film Co Ltd | Sheet recording material containing dye-forming components |
US4803192A (en) * | 1986-07-09 | 1989-02-07 | Fuji Photo Film Co., Ltd. | Recording material |
GB2194070B (en) * | 1986-07-09 | 1990-01-10 | Fuji Photo Film Co Ltd | Sheet recording material containing dye-forming components |
EP0688759A1 (en) | 1994-06-23 | 1995-12-27 | Fuji Photo Film Co., Ltd. | Alpha-resorcylic acid ester derivatives and recording materials incorporating them |
EP1211094A2 (en) | 2000-12-04 | 2002-06-05 | Fuji Photo Film Co., Ltd. | Thermal recording material |
EP1275519A1 (en) | 2001-06-26 | 2003-01-15 | Fuji Photo Film Co., Ltd. | Recording material |
EP1297967A2 (en) | 2001-09-27 | 2003-04-02 | Fuji Photo Film Co., Ltd. | Thermal recording material and production method thereof |
EP1331104A2 (en) | 2002-01-25 | 2003-07-30 | Fuji Photo Film Co., Ltd. | Heat sensitive recording material and recording method |
US20040169071A1 (en) * | 2003-02-28 | 2004-09-02 | Appleton Papers Inc. | Token array and method employing authentication tokens bearing scent formulation information |
US7108190B2 (en) | 2003-02-28 | 2006-09-19 | Appleton Papers Inc. | Token array and method employing authentication tokens bearing scent formulation information |
US20040214134A1 (en) * | 2003-04-22 | 2004-10-28 | Appleton Papers Inc. | Dental articulation kit and method |
US6932602B2 (en) | 2003-04-22 | 2005-08-23 | Appleton Papers Inc. | Dental articulation kit and method |
US20060063125A1 (en) * | 2003-04-22 | 2006-03-23 | Hamilton Timothy F | Method and device for enhanced dental articulation |
US20040251309A1 (en) * | 2003-06-10 | 2004-12-16 | Appleton Papers Inc. | Token bearing magnetc image information in registration with visible image information |
WO2010090213A1 (ja) | 2009-02-04 | 2010-08-12 | 富士フイルム株式会社 | 熱分布表示体及び熱分布確認方法 |
US11130881B2 (en) | 2010-04-16 | 2021-09-28 | Swimc Llc | Coating compositions for packaging articles and methods of coating |
US10294388B2 (en) | 2011-02-07 | 2019-05-21 | Swimc Llc | Compositions for containers and other articles and methods of using same |
US9409219B2 (en) | 2011-02-07 | 2016-08-09 | Valspar Sourcing, Inc. | Compositions for containers and other articles and methods of using same |
US11053409B2 (en) | 2011-02-07 | 2021-07-06 | Jeffrey Niederst | Compositions for containers and other articles and methods of using same |
US11634607B2 (en) | 2011-02-07 | 2023-04-25 | Swimc Llc | Compositions for containers and other articles and methods of using same |
US10435199B2 (en) | 2012-08-09 | 2019-10-08 | Swimc Llc | Compositions for containers and other articles and methods of using same |
US12043448B2 (en) | 2012-08-09 | 2024-07-23 | Swimc Llc | Compositions for containers and other articles and methods of using same |
US10316211B2 (en) | 2012-08-09 | 2019-06-11 | Swimc Llc | Stabilizer and coating compositions thereof |
US11306218B2 (en) | 2012-08-09 | 2022-04-19 | Swimc Llc | Container coating system |
US10526502B2 (en) | 2012-08-09 | 2020-01-07 | Swimc Llc | Container coating system |
US9944749B2 (en) | 2012-08-09 | 2018-04-17 | Swimc, Llc | Polycarbonates |
US10894632B2 (en) | 2012-08-09 | 2021-01-19 | Swimc Llc | Compositions for containers and other articles and methods of using same |
US9724276B2 (en) | 2012-08-09 | 2017-08-08 | Valspar Sourcing, Inc. | Dental materials and method of manufacture |
US11628974B2 (en) | 2012-08-09 | 2023-04-18 | Swimc Llc | Compositions for containers and other articles and methods of using same |
US9475328B2 (en) | 2012-08-09 | 2016-10-25 | Valspar Sourcing, Inc. | Developer for thermally responsive record materials |
WO2014124052A1 (en) | 2013-02-06 | 2014-08-14 | Fujifilm Hunt Chemicals, Inc. | Chemical coating for a laser-markable material |
US11525018B2 (en) | 2014-04-14 | 2022-12-13 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
US10745514B2 (en) | 2014-04-14 | 2020-08-18 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
US10113027B2 (en) | 2014-04-14 | 2018-10-30 | Swimc Llc | Methods of preparing compositions for containers and other articles and methods of using same |
US11130835B2 (en) | 2015-11-03 | 2021-09-28 | Swimc Llc | Liquid epoxy resin composition useful for making polymers |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3491116A (en) | 3-(phenyl)-3-(indol-3-yl)-phthalides | |
US3540909A (en) | Pressure sensitive recording sheets employing 3,3-bis(phenylindol - 3-yl) phthalide | |
US3624107A (en) | Nitro- and amino-substituted fluorans | |
US3775424A (en) | Furo(3,4-b)pyridine-7(5h)-ones | |
US3681390A (en) | Dialkylamino fluoran chromogenic compounds | |
US3736337A (en) | Tetrahalogenated chromogenic compounds and their use | |
US3455721A (en) | Color sensitized record material comprising phenolic resin and acid type mineral | |
US3491117A (en) | Indole substituted pyromellitides | |
US3642828A (en) | Alkyl or halo substituted tetrahalofluorans | |
US3703397A (en) | Mark-forming record materials and process for their use | |
JPH04179576A (ja) | 記録材料 | |
US3769057A (en) | Pressure-sensitive record sheets employing amido- and sulfonamido-substituted fluorans | |
US3746562A (en) | Mark forming record materials | |
US3804855A (en) | Naphthalide compounds | |
US3654314A (en) | Tetrachlorinated chromogenic compounds | |
US3849164A (en) | Pressure-sensitive record unit comprising a mixture of two chromogenic compounds | |
US3764369A (en) | Pressure sensitive recording unit | |
US3721576A (en) | Mark forming record materials and process for their use | |
US3730755A (en) | Pressure-sensitive record materials | |
US3715226A (en) | Mark-forming record materials | |
US3787325A (en) | Alkylamino spiro {8 12-h{8 1{9 benzopyran {8 3,2f{9 {14 quinoline-12,1{40 phthalide | |
US3694461A (en) | Chromogenic compounds | |
US3857675A (en) | Mixtures of two chromogenic compounds | |
US3730754A (en) | Pressure sensitive recording sheet | |
EP0262810B1 (en) | Sheet recording material containing dye-forming components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLETON PAPERS INC. Free format text: MERGER;ASSIGNORS:TUVACHE, INC.;GERMAINE MONTEIL COSMETIQUES CORPORATION (CHANGED TO APPLETON PAPERS);REEL/FRAME:004108/0262 Effective date: 19811215 |