US3715226A - Mark-forming record materials - Google Patents
Mark-forming record materials Download PDFInfo
- Publication number
- US3715226A US3715226A US00119830A US3715226DA US3715226A US 3715226 A US3715226 A US 3715226A US 00119830 A US00119830 A US 00119830A US 3715226D A US3715226D A US 3715226DA US 3715226 A US3715226 A US 3715226A
- Authority
- US
- United States
- Prior art keywords
- mark
- record unit
- sheet
- chromogenic
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 149
- 239000002841 Lewis acid Substances 0.000 claims abstract description 18
- 150000007517 lewis acids Chemical class 0.000 claims abstract description 18
- 239000002904 solvent Substances 0.000 claims description 47
- 239000002775 capsule Substances 0.000 claims description 31
- 239000007788 liquid Substances 0.000 claims description 28
- 238000000576 coating method Methods 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 17
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 17
- 229920000620 organic polymer Polymers 0.000 claims description 13
- 239000003094 microcapsule Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 8
- 230000001464 adherent effect Effects 0.000 claims description 7
- 229940125782 compound 2 Drugs 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims description 7
- 239000004927 clay Substances 0.000 claims description 6
- 238000002955 isolation Methods 0.000 claims description 4
- 239000008384 inner phase Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 14
- 239000001257 hydrogen Substances 0.000 abstract description 14
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 26
- 230000002378 acidificating effect Effects 0.000 description 19
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 18
- 239000000126 substance Substances 0.000 description 16
- 239000003593 chromogenic compound Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 239000007795 chemical reaction product Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 239000006193 liquid solution Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229920001568 phenolic resin Polymers 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000005995 Aluminium silicate Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 150000002431 hydrogen Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- RGHHSNMVTDWUBI-UHFFFAOYSA-N 4-hydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C=C1 RGHHSNMVTDWUBI-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 229920000084 Gum arabic Polymers 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- 241000978776 Senegalia senegal Species 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- 239000000205 acacia gum Substances 0.000 description 2
- 235000010489 acacia gum Nutrition 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- -1 chemically reactive Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000000586 desensitisation Methods 0.000 description 2
- 125000004663 dialkyl amino group Chemical class 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- UDGHTNPEJPFNIP-UHFFFAOYSA-N (4-hydroxy-3-methylphenyl)-phenylmethanone Chemical compound C1=C(O)C(C)=CC(C(=O)C=2C=CC=CC=2)=C1 UDGHTNPEJPFNIP-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- YIOQCYXPSWJYHB-UHFFFAOYSA-N acetylene;phenol Chemical group C#C.OC1=CC=CC=C1 YIOQCYXPSWJYHB-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/10—Amino derivatives of triarylmethanes
- C09B11/24—Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/124—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
- B41M5/132—Chemical colour-forming components; Additives or binders therefor
- B41M5/136—Organic colour formers, e.g. leuco dyes
- B41M5/145—Organic colour formers, e.g. leuco dyes with a lactone or lactam ring
- B41M5/1455—Organic colour formers, e.g. leuco dyes with a lactone or lactam ring characterised by fluoran compounds
Definitions
- ABSTRACT A chromogenic material of normally colorless form is disclosed, having a structural formula:
- R represents -CO-R, and wherein R represents hydrogen, -OCH and R represents hydrogen and alkyl radicals; and R represents hydrogen and alkyl radicals having less than five carbon atoms; said materials assuming a colored from upon reactive contact with a Lewis acid molecule.
- examples include 6-diethylamino- 2-for-mylfluoran: 2-carbomethyoxy-6-diethylaminofluoran; and 2-benzoyl-6-diethylamino-4- methylfluoran.
- This invention pertains to chromogenic compounds for use in pressure sensitive record material and to an improved mark-forming manifold system incorporating these chromogenic compounds. More specifically, this invention pertains to acyl-, ether-, and ester-substituted dialkylamino fluorans which have the form of substantially colorless, i.e., white, or slightly colored solids, or approach being colorless when in liquid solution, but which may be converted to dark-colored forms upon reactive contact with appropriate acidic material.
- marking in desired areas on support webs or sheets may be accomplished by effecting localized reactive contact between the chromogenic material and the acidic material on or in such a web or sheet, such material being brought thereto by transfer, or originally there, in situ, the desired reactive contact forming dark-colored materials in the intended image areas.
- Pressure-sensitive, mark-forming systems of the prior art include that disclosed in Application for Letters U.S. Pat. No. 392,404 (now abandoned) filed Aug. 27, 1964, in the names of Robert E. Miller and Paul S. Phillips, Jr.
- the above-mentioned patent application provides a marking system of disposing on and/or within sheet support material, mutually reactant but unreacted mark-forming components (at least one component of which is a polymeric material) and a liquid solvent in which each of the mark-forming components is soluble, said liquid solvent being present in such form that it is maintained isolated by a pressure-rupturable barrier from at least one of the markforming components until an application of pressure causes a breach or rupture of the barrier in the area delineated by the pressure pattern.
- the mark-forming components thereby are brought into reactive contact, producing a distinctive mark.
- chromogenic substances yielding Lewis acid-reacted color products which exhibit improved color stability on exposure to light and improved reproduction capabilities when copied by xerographic ordiazo processes.
- lt is a further object of this invention to provide new and improved, normally substantially colorless, chromogenic substances yielding colored reaction products when placed in reactive contact with certain selected Lewis acid materials.
- It is a further object of this invention to provide a new and improved mark-forming system which comprises disposing, within a web or upon the surface of a web or sheet-support-material, unreacted chromogenic material in a location suitable for subsequent reactive contact with an acidic material to produce darkcolored reaction products, thus providing means for making marks of desirable color intensity and hue.
- R represents hydrogen and alkyl radicals having less than five carbon atoms; and R represents hydrogen radicals and alkyl radicals having less then five carbon atoms.
- R represents hydrogen and alkyl radicals having less than five carbon atoms; and R represents hydrogen radicals and alkyl radicals having less then five carbon atoms.
- a new composition of matter which comprises a dark-colored product of chemical reaction having a resonant chemical structure and produced by contact of a color-activating material with one of the above-mentioned chromogenic compounds.
- the colordeveloping or activating material is an acidic substance useful for converting the chromogenic compounds to colored forms.
- the method of marking of this invention i.e., the method of developing a dark-colored material from substantially colorless or slightly colored chromogenic compounds, comprises providing a chromogenic compound selected from among the above-mentioned compounds and bringing such chromogenic compound into reactive contact with an acidic color-activating substance, in areas where marking is desired, to produce a dark-colored form of the chromogenic compound by the action thereon of said acidic substance.
- Acidic materials employed in this invention can be any compound within the definition of a Lewis acid, i.e., any electron acceptor.
- acidic organic polymers such as phenolic polymers are employed as the acidic material.
- the novel chromogenic materials exhibit the advantage of improved color stability when they are reacted with such phenolic polymers.
- Solution formation of solid particles of the polymeric material in a solvent system with the substantially colorless chromogenic compounds permits penetration of the dark-colored reaction product into a porous support sheet, e.g., paper, so that the colored form of the chromogenic material is absorbed into the body of the sheet and is not merely on the surface of the sheet.
- the absorption feature provides protection against erasure of recorded data by attrition of the surface of a record sheet made in accordance with the present invention.
- FIG. 1 is a diagrammatic representation of a twosheet unit manifold, in perspective.
- the bottom surface of the overlying sheet is supplied on the surface or near the surface with a multiplicity of minute pressure-rupturable microcapsules containing a solution of the novel, substantially colorless, chromogenic component.
- An acidic component such as an acid clay or a phenolic polymeric material lies within the lower web or undersheet or upon the upper surface of the lower web or undersheet.
- a colored mark is made by the use of a stylus, a type character, or other pressure-exerting means applied to the two-sheet unit manifold.
- the encapsulated solution is released on the event of rupture of the capsules in writing operations, as is shown in FIG. 2.
- FIG. 2 is a sectioned view of the two-sheet unit manifold of FIG. 1.
- the elements are not to scale and are so-shown in order to more effectively depict their interrelation.
- the released solution is transferred from the overlying or base-sheet to the receiving surface of the underlying sheet in conformance with the pressure pattern of the writing operation.
- the drawing shows that the top of the underlying sheet is coated or impregnated with a material reactant with the chromogenic material, e.g., an acid clay or an acidic phenolic polymer material; and that capsules are present on the overlying or base-sheet which capsules contain a liquid solution of chromogenic material.
- a material reactant with the chromogenic material e.g., an acid clay or an acidic phenolic polymer material
- the capsules can contain the polymeric phenolic material in liquid solution and the receiving surface of the underlying sheet can be supplied with the chromogenic material.
- the improvement in the system resides in the chromogenic material, which chromogenic material is the substance of the instant invention.
- the chromogenic material located within or upon the sheet; it is possible to incorporate the chromogenic material in a solid, crystalline state in a binder material so that the chromogenic material may be transferred from the overlyingsheet, upon the application of pressure, to deposit some of the chromogenic material on the receiving surface of the undersheet, which receiving surface carries a color-activating polymeric material.
- the chromogenic substance is dissolved in an appropriate solvent and minute droplets of the solution of the chromogenic material are encapsulated in minute, rupturable, capsules.
- the polymeric mark-forming components should have a common solubility with the novel chromogenic material in at least one liquid solvent when the acid-reacting material is a phenolic or other acidic organic polymer. It is also noted that in a single system several chromogenic materials may be used with the same or different polymeric materials. Several polymeric materials can be reactively contacted with a single chromogenic compound or with a mixture of chromogenic compounds.
- the solvent can be maintained in physical isolation in minute droplets until such time as it is released by application of pressure. This may be accomplished by several known techniques, but, preferably, isolationis maintained by encapsulation of individual droplets of the solvent in a microcapsule according to the procedures described, for example, in U.S. Pat. No. 2,712,507, issued July 5, 1955 on the application of Barrett K. Green; U.S. Pat. No. 2,730,457 issued Jan. 10, 1956 on the application of Barrett K.
- the microscopic capsules when disposed within or upon a supporting web as a multiplicity in contiguous juxtaposition, are rupturable by pressure, such as normal marking pressure found, for example, in writing or typing operations.
- the material or materials chosen as the wall material for the droplet-containing microcapsules in addition to being pressure rupturable, must be inert or unreactive with respect to the intended contents of the capsules and the other mark-forming components so that the capsule wall material will remain intact under normal storage conditions until such time as it is released by an application of marking pressure
- Preferred examples of eligible capsule wall materials include gelatin, gum arabic and many others thoroughly described in the aforementioned patents.
- the capsule size should not exceed about 50 microns in diameter.
- the capsules should be smaller than about l5 microns in diameter.
- the acidic organic polymeric material useful for developing the color of novel chromogenic compounds in this invention include phenolic polymers, phenol acetylene polymers, maleic acid-rosin resins, partially or wholly hydrolyzed styrene-maleic anhydride copolymers and ethylene-maleic anhydride copolymers, carboxy polymethylene and wholly or partially hydrolyzed vinylmethylether-maleic anhydride copolymer and mixtures thereof.
- phenolic polymers found useful include alkyl-phenol acetylene resins, which are soluble in common organic solvents and possess permanent fusibility in the absence of being treated by cross-linking materials.
- Another specific group of useful phenolic polymers are members of the type commonly referred to as novalaks, (a type of phenolformaldehyde polymeric material) which are characterized by solubility in common organic solvents and which are, in the absence of cross-linking agents, permanently fusible.
- Resol resins if they are still soluble, may be used, though they are subject to change in properties upon aging.
- phenolic polymer material found useful in practicing this invention is characterized by the presence of hydroxyl groups and by the absence of groups'such as methylol, which tend to promote infusibility or cross-linking of the polymer, and further, by being soluble in organic solvents and relatively insoluble in aqueous media. Again, it should be remembered that mixtures of these organic polymers and other acidic materials can be employed.
- a laboratory method useful in the selection of suitable phenolic resins is the determination of the infrared absorption pattern. It has been found that phenolic resins which undergo absorption in the 3,2003,500 cm" region (which is indicative of hydroxyl groups) on the resin molecules and which do not absorb in the l,600-l,700 cm region are eligible. This latter absorption region is indicative of desensitization of hydroxyl groups which desensitization renders such groups unavailable for reaction with the chromogenic materials.
- the liquid solvent chosen must be capable of dissolving it.
- the solvent may be volatile or nonvolatile, and a singleor multiple-component solvent may be used which is wholly or partially volatile.
- volatile solvents useful in practicing the present invention include toluene, petroleum distillate, perchloroethylene, and xylene.
- nonvolatile solvents include high-boiling-point petroleum fractions and chlorinated biphenyls.
- the solvent chosen should be capable of dissolving at least about 0.3 percent, by weight, of the chromogenic material, and at least about 3 to 5 percent, by weight, of the acidic polymeric material to yield an effective reaction.
- the solvent should be capable of dissolving an excess of the polymeric material, so as to provide every opportunity for utilization of the chromogenic material and, thus, to assure maximum coloration at the reaction site.
- a further criterion for selection of the solvent is that the solvent must not interfere with the mark-forming reaction.
- the presence of the solvent may be found to interfere with the mark-forming reaction or diminish the intensity of the mark, in which instances the solvent chosen should be sufficiently volatile to assure its removal from the reaction site soon after having brought the mark-forming components into reactive contact so that the mark-forming reaction can proceed.
- mark-forming reaction requires that an intimate mixture of the components be brought about through solution of said components, one or more of the mark-forming components can be dissolved in solvent droplets isolated by encapsulation, the only requirement being that at least one of the components essential to the mark-forming reaction be maintained isolated until the mark-forming reaction is desired.
- the mark-forming components are so chosen as to produce a mark upon application of pressure to a coated system of sheets at room temperature (20 to 25 C.).
- the present invention also includes a system wherein the solvent component is not liquid at temperatures near room temperature but is liquid and in condition for forming solutions only at elevated temperatures.
- the support sheet member on which components of the system are disposed may comprise a single or a dual sheet assembly.
- the record material in the case where all components are disposed on a single sheet, the record material is referred to as a self-contained or autogenous system. Where there must be a migration of solvent, with or without the mark-forming component, from one sheet to another, the record material is referred to as a transfer system. (Such a system may also be referred to as a two-fold" system, in that at least two sheets are required and each sheet includes a component, or components, essential to the mark-forming reaction). Where an adequate amount of the colored reaction product is produced in liquid or dissolved form on a surface of one sheet, a colored mark can be recorded on a second sheet by transfer of the colored reaction product.
- microcapsules are employed, they can be present in the sheet support material either disposed therethroughout or as a coating thereon, or both.
- the capsules can be applied to the sheet material as a dispersion in the liquid vehicle in which they were manufactured, or, if desired, they can be separated from the vehicle and thereafter dispersed in a solution of the acid-reacting polymeric component (for instance, 30 grams of water and 53 grams of a l per cent, by weight, aqueous solution of polyvinylmethylether-maleic anhydride) to form a sheet-coating composition in which, because of the inertness of the solution and the capsules, both components retain their identity and physical integrity.
- a solution of the acid-reacting polymeric component for instance, 30 grams of water and 53 grams of a l per cent, by weight, aqueous solution of polyvinylmethylether-maleic anhydride
- a further alternative is to disperse one or more mark-forming components, and the chromogenic-material-containing microcapsules in a liquid medium not a solvent for either the mark-forming component or the microcapsules, with the result that all components of the mark-forming system may be disposed on or within the support sheet in the one operation.
- the several components may be applied individually.
- the capsules can also be coated onto a sheet as a dispersion in a solution of polymeric material which is not necessarily reactive with the capsule-contained solution of chromogenic materials.
- Suitable lower amounts include, in the case of the chromogenic material, about 0.005 to 0.075 pound per ream (a ream in this application meaning five hundred (500) sheets of 25 X 38 inch paper, totalling 3,300 square feet); in the case of the solvent, about 1 to 3 pounds per ream; and in the case of the polymer, about 0.5 pounds per ream.
- the upper limit is primarily a matter of economic consideration.
- the slurry of capsules can be applied to a wet" web of paper, for example, as it exists on the screen of a Fourdrinier paper machine, so as to penetrate the paper web a distance depending on the freeness of the pulp and the water content of the web at the point of application.
- the capsules can be placed directly in or on a paper or support sheet. Not only capsule structures, but continuous films which contain a multitude of microscopic, unencapsulated, droplets for local release in an area subjected to pressure can be utilized. (See, for example, U. S. Pat. No. 2,299,694 which issued Oct. 20, 1942, on the application of Barrett K. Green.)
- a solution thereof in an evaporable solvent can be introduced into an amount of water and the resulting mixture can be agitated while the evaporable solvent is blown off by an air blast.
- This operation leaves an aqueous colloidal dispersion slurry of the polymeric material, which may be applied to finished paper so as to leave a surface residue or the slurry may be applied to a wet" web of paper of at the size-press station of a paper making machine.
- the water-insoluble polymer can be ground to a desired or required particle size in a ball mill with water, preferably with a dispersing agent, such as a small quantity of sodium silicate.
- binder material of hydrophilic properties is ground with the polymeric material, the binder itself may act as a dispersant.
- an amount of binder material of up to 40 per cent, by weight, of the amount of polymeric material can be added to the ball-milled slurry of materials; -such binder materials being of the paper coating binder class, including, for example, gum arabic, casein, hydroxyethyl-cellulose, and latexes (such as styrene-butadiene copolymer).
- oil absorbents in the form of fullers earths may be combined with the polymeric material particles to assist in retaining, in situ, the liquid droplets of chromogenic material solution to be transferred to it in datarepresenting configuration, for the purpose of preventing bleeding of the print.
- Another method for applying the chromogenic or polymeric material individually to a single sheet of paper is by immersing a sheet of paper in l-10 per cent, by weight, solution of the material in an evaporable solvent.
- this operation must be conducted individually for each reactant, because if the other reactant material were present, contact of the reactants would result in a premature coloration over the sheet area.
- a dried sheet with one component can then be coated with a solution of another component, the solvent of which is a non-solvent to the already-supplied component.
- the polymeric material can also be dissolved in ink composition vehicles to form a printing ink of colorless character and, thus, may be used to spot-print a proposed record-sheet-unit sensitized for recording, in a reaction-produced color in those spot-printed areas, by application of a solution of the chromogenic material.
- a printing ink may be made of up to per cent, by weight, of the phenolic polymeric material in a petroleum-based solvent; --the ink being built to a viscosity suitable for printing purposes.
- the relative amounts of reactive, mark-forming, components to be used in practice of this invention are those most convenient and economical amounts consistent with adequate, desired or required visibility of the recorded data.
- the resolution of the recorded data is dependent on, among other things, particle or capsule size, distribution and amount of particles or capsules, liquid solvent migration, chemical reaction efficiency, and other factors, all of which can be optimized empirically by one skilled in the art. Such factors do not determine the principle of the present invention, which invention, in part, relates to means for enabling the bringing into solution contact, by marking pressure, two normally solid, chemically reactive, components dissolved in a common liquid solvent component held isolated as liquid droplets.
- the isolated liquid droplets are preferably in marking-pressure-rupturable capsules having polymericnfilm walls, or are isolated, as a discontinuous phase, in a continuous marking-pressure-rupturable film.
- the acidic markforming material reacts with the chromogenic material to effect distinctive color formation or color change.
- the chromogenic material may be desirable to include other materials to supplement the polymer reactants.
- kaolin can be added to improve the transfer of the liquid and/or the dissolved materials between the sheets.
- other materials such as bentonite, attapulgite, talc, feldspar, halloysite, magnesium trisilicate, silica gel, pyrophyllite, zinc sulfate, calcium sulfate, calcium citrate, calcium phosphate, calcium fluoride, barium sulfate and tannic acid can be included.
- compositions useful for coating mark-forming materials into supporting sheets can be employed in compositions useful for coating mark-forming materials into supporting sheets.
- An example of the compositions which can be coated onto the receiving surface of an underlying sheet of a multi-sheet to react with a cap sule coating on the underside of an overlying sheet is as follows:
- a pressure sensitive record unit comprising:
- mark-forming components and a releasable liquid solvent for said mark-forming components arranged in contiguous juxtaposition and supported by said sheet material
- mark-forming components comprising at least one chromogenic material of the structure:
- R represents -CO-R., wherein R represents a chemical radical selected from the group consisting of hydrogen, OCl-1 and R represents chemical radicals selected from the group consisting of hydrogen and alkyl radicals having less than five carbon atoms; and
- R represents a chemical radical selected from the group consisting of hydrogen and alkyl radicals having less than five carbon atoms;
- the recordunit of claim 1 wherein the chromogenic material includes the compound 6- diethylamino-2-formylfluoran.
- the record unit of claim 1 wherein the chromogenic material includes the compound 2'-carbomethoxy-6'-diethylaminofluoran.
- the record unit of claim 1 wherein the chromogenic material includes the compound 2'- benzoyl-6'-diethylamino-4-methyl-fluoran.
- a mark-forming unit comprising: a first web or sheet having on one surface a transfer coating which contains as a finely dispersed phase a plurality of minute, pressure-rupturable capsules containing as an inner phase a solvent vehicle; a second web or sheet having an adherent coating upon its surface or dispersed within said web or sheet, said first and second webs or sheets being maintained disposed together in fact-to-face relationship with said respective transfer and adherent coatings in contiguity with each other; a first coating constituent in the form of a substantially colorless or slightly colored chromogenic material which includes as a major functional arrangement the molecular structure wherein:
- R represents CO-R., wherein R represents a chemical radical selected from the group consisting of hydrogen, OCH and R represents chemical radicals selected from the group consisting of hydrogen and alkyl radicals having less then five carbon atoms; and
- R represents a chemical radical selected from the group consisting of hydrogen and alkyl radicals having less than five carbon atoms;
- the mark-forming unit of claim 13 in which the electron-accepting material of the Lewis acid type comprises an organic polymer.
- the record unit of claim 13 wherein the chromogenic material includes the compound 6- diethylamino-2-formylfluoran.
- chromogenic material includes the compound 2'- benzoyl-6'-diethylamino-4'-methyl-fluoran.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Color Printing (AREA)
Abstract
A chromogenic material of normally colorless form is disclosed, having a structural formula:
R2 represents hydrogen and alkyl radicals; and R3 represents hydrogen and alkyl radicals having less than five carbon atoms; said materials assuming a colored from upon reactive contact with a Lewis acid molecule. Examples include 6''-diethylamino-2''formylfluoran; 2''-carbomethyoxy-6''-diethylaminofluoran; and 2''benzoyl-6''-diethylamino-4''-methylfluoran.
R2 represents hydrogen and alkyl radicals; and R3 represents hydrogen and alkyl radicals having less than five carbon atoms; said materials assuming a colored from upon reactive contact with a Lewis acid molecule. Examples include 6''-diethylamino-2''formylfluoran; 2''-carbomethyoxy-6''-diethylaminofluoran; and 2''benzoyl-6''-diethylamino-4''-methylfluoran.
Description
United States Patent [191 Lin [ Feb. 6, 1973 I 1 MARK-FORMING RECORD MATERIALS [75] Inventor: Chao-Han Lin, Dayton, Ohio [73] Assignee: The National Cash Register Com pany, Dayton, Ohio [22] Filed: March 1, 1971 [21] Appl. No.: 119,830
Related US. Application Data [62] Division of Ser. No. 792,325, Jan. 21, 1969, Pat. No.
[52] US. Cl. ..1l7/36.2,1l7/36.8,117/155 L [51] Int. Cl. ..B4lm 5/22 [58] Field of Search ..1 17/362 [56] References Cited UNITED STATES PATENTS 3,514,310 5/1970 Kimura et a1 ..117/36.2 3,455,721 7/1969 Phillps ct a1. ..1 17/362 3,539,375 1 1/1970 Baum 117/368 Primary Examiner-Murray Katz Att0rneyE. Frank McKinney et a1.
[57] ABSTRACT A chromogenic material of normally colorless form is disclosed, having a structural formula:
wherein R represents -CO-R,, and wherein R represents hydrogen, -OCH and R represents hydrogen and alkyl radicals; and R represents hydrogen and alkyl radicals having less than five carbon atoms; said materials assuming a colored from upon reactive contact with a Lewis acid molecule. Examples include 6-diethylamino- 2-for-mylfluoran: 2-carbomethyoxy-6-diethylaminofluoran; and 2-benzoyl-6-diethylamino-4- methylfluoran.
19 Claims, 2 Drawing Figures COATED ON THE REAR WITH MINUTE PRESSURE- RUPTURABLE CAPSULES CONTAINING LIQUID SOLUTION OF CHROMOGENIC MATERIAL DEVELOPABLE ON CONTACT WITH AN ELECTRON- ACCEPTING MATERIAL OF THE LEWIS- ACID TYPE TO COLORED FORM RECEIVING SURFACE OF UNDERSHEET COATED WITH AN ELECTRON-ACCEPTING MATERIAL OF THE LEWIS- ACID TYPE PATENIEDFEB 6 I975 3.715.226
BASE- SHEET OF RECORD MATERIAL COATEDON THE REAR WITH MINUTE PRESSURE-RUPTURABLE CAPSULES CONTAINING LIQUID SOLUTION OF CHROMOGENIC MATERIAL DEVELOPABLE ON CONTACT WITH AN ELECTRON-' ACCEPTING MATERIAL OF THE LEWIS- ACID TYPE TO COLORED FORM RECEIVING SURFACE OF UNDERSHEET COATED WITH AN ELECTRON-ACCEPTING MATERIAL OF THE LEWIS- ACID TYPE QW/XZJ/AZ/X MARK-FORMING RECORD MATERIALS This is a division of application Ser. No. 792,325, filed Jan. 21, 1969 now U.S. Pat. No. 3,697,757.
BACKGROUND OF THE INVENTION This invention pertains to chromogenic compounds for use in pressure sensitive record material and to an improved mark-forming manifold system incorporating these chromogenic compounds. More specifically, this invention pertains to acyl-, ether-, and ester-substituted dialkylamino fluorans which have the form of substantially colorless, i.e., white, or slightly colored solids, or approach being colorless when in liquid solution, but which may be converted to dark-colored forms upon reactive contact with appropriate acidic material. As used in mark-forming systems, marking in desired areas on support webs or sheets may be accomplished by effecting localized reactive contact between the chromogenic material and the acidic material on or in such a web or sheet, such material being brought thereto by transfer, or originally there, in situ, the desired reactive contact forming dark-colored materials in the intended image areas.
Pressure-sensitive, mark-forming systems of the prior art include that disclosed in Application for Letters U.S. Pat. No. 392,404 (now abandoned) filed Aug. 27, 1964, in the names of Robert E. Miller and Paul S. Phillips, Jr. The above-mentioned patent application provides a marking system of disposing on and/or within sheet support material, mutually reactant but unreacted mark-forming components (at least one component of which is a polymeric material) and a liquid solvent in which each of the mark-forming components is soluble, said liquid solvent being present in such form that it is maintained isolated by a pressure-rupturable barrier from at least one of the markforming components until an application of pressure causes a breach or rupture of the barrier in the area delineated by the pressure pattern. The mark-forming components thereby are brought into reactive contact, producing a distinctive mark.
It is an object of this invention to provide new and improved substances having chromogenic properties which may be incorporated in a web or coated onto the surface of a web to provide a manifolding unit, and which are, moreover, useful in carrying out improved methods of marking involving reactive contact with a color-activating material to yield darkcolored reaction products in areas where marking is desired.
It is another object of this invention to provide compounds, based upon the acyl-, ether-, and ester-substituted dialkylamino fluorans disclosed herein which are substantially colorless, or slightly colored offering a new and improved variety of chromogenic characteristics, and yielding novel dark-colored substances upon contact with color-activating materials.
It is a further object of this invention to provide new and improved, normally substantially colorless,
chromogenic substances yielding Lewis acid-reacted color products which exhibit improved color stability on exposure to light and improved reproduction capabilities when copied by xerographic ordiazo processes.
lt is a further object of this invention to provide new and improved, normally substantially colorless, chromogenic substances yielding colored reaction products when placed in reactive contact with certain selected Lewis acid materials.
It is a further object of this invention to provide a new and improved mark-forming system which comprises disposing, within a web or upon the surface of a web or sheet-support-material, unreacted chromogenic material in a location suitable for subsequent reactive contact with an acidic material to produce darkcolored reaction products, thus providing means for making marks of desirable color intensity and hue.
In accordance with one feature of this invention, there is provided a, substantially colorless or slightly colored, chromogenic compound having the structural formula:
ll: It g 1 wherein R represents -CO-R and wherein R represents hydrogen -O-CH and,
R represents hydrogen and alkyl radicals having less than five carbon atoms; and R represents hydrogen radicals and alkyl radicals having less then five carbon atoms. Examples of these novel compound include 6'- diethylamino-2-formylfluoran having the structural formula: (MILK /N -o\ C2115 l 0 I CH=O 2'-carbomethoxy-6-diethylaminofluoran having the structural formula:
Cam I O :-0-cH= I 020 0 2'-benzoyl-6'-diethylamino-4-methylfluoran having the structural formula:
H (:m our, \N -U 12115 In accordance with another feature of this invention, a new composition of matter is disclosed which comprises a dark-colored product of chemical reaction having a resonant chemical structure and produced by contact of a color-activating material with one of the above-mentioned chromogenic compounds. The colordeveloping or activating material is an acidic substance useful for converting the chromogenic compounds to colored forms.
The method of marking of this invention, i.e., the method of developing a dark-colored material from substantially colorless or slightly colored chromogenic compounds, comprises providing a chromogenic compound selected from among the above-mentioned compounds and bringing such chromogenic compound into reactive contact with an acidic color-activating substance, in areas where marking is desired, to produce a dark-colored form of the chromogenic compound by the action thereon of said acidic substance.
Acidic materials employed in this invention can be any compound within the definition of a Lewis acid, i.e., any electron acceptor. Preferably, acidic organic polymers such as phenolic polymers are employed as the acidic material. The novel chromogenic materials exhibit the advantage of improved color stability when they are reacted with such phenolic polymers. Solution formation of solid particles of the polymeric material in a solvent system with the substantially colorless chromogenic compounds permits penetration of the dark-colored reaction product into a porous support sheet, e.g., paper, so that the colored form of the chromogenic material is absorbed into the body of the sheet and is not merely on the surface of the sheet. The absorption feature provides protection against erasure of recorded data by attrition of the surface of a record sheet made in accordance with the present invention.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a diagrammatic representation of a twosheet unit manifold, in perspective. The bottom surface of the overlying sheet is supplied on the surface or near the surface with a multiplicity of minute pressure-rupturable microcapsules containing a solution of the novel, substantially colorless, chromogenic component. An acidic component, such as an acid clay or a phenolic polymeric material lies within the lower web or undersheet or upon the upper surface of the lower web or undersheet. A colored mark is made by the use of a stylus, a type character, or other pressure-exerting means applied to the two-sheet unit manifold.
The encapsulated solution is released on the event of rupture of the capsules in writing operations, as is shown in FIG. 2.
FIG. 2 is a sectioned view of the two-sheet unit manifold of FIG. 1. The elements are not to scale and are so-shown in order to more effectively depict their interrelation. The released solution is transferred from the overlying or base-sheet to the receiving surface of the underlying sheet in conformance with the pressure pattern of the writing operation. The drawing shows that the top of the underlying sheet is coated or impregnated with a material reactant with the chromogenic material, e.g., an acid clay or an acidic phenolic polymer material; and that capsules are present on the overlying or base-sheet which capsules contain a liquid solution of chromogenic material. In another embodiment of the record material, however, the capsules can contain the polymeric phenolic material in liquid solution and the receiving surface of the underlying sheet can be supplied with the chromogenic material. The improvement in the system resides in the chromogenic material, which chromogenic material is the substance of the instant invention.
Referring again to FIG. 1, comprising an overlying or base-sheet having the chromogenic material located within or upon the sheet; it is possible to incorporate the chromogenic material in a solid, crystalline state in a binder material so that the chromogenic material may be transferred from the overlyingsheet, upon the application of pressure, to deposit some of the chromogenic material on the receiving surface of the undersheet, which receiving surface carries a color-activating polymeric material. Preferably, the chromogenic substance is dissolved in an appropriate solvent and minute droplets of the solution of the chromogenic material are encapsulated in minute, rupturable, capsules. It is apparent that many other arrangements are possible, including different configurations and relationships of the solvent and all of the mark-forming materials with respect to their encapsulation and location on the supporting underlying or overlying sheets or webs can be envisioned. Such arrangements are thoroughly described in the aforementioned application Ser. No. 392,404, (now abandoned) in the names of Miller et al. and need not be repeated herein.
SUMMARY OF THE INVENTION It is noted that the polymeric mark-forming components should have a common solubility with the novel chromogenic material in at least one liquid solvent when the acid-reacting material is a phenolic or other acidic organic polymer. It is also noted that in a single system several chromogenic materials may be used with the same or different polymeric materials. Several polymeric materials can be reactively contacted with a single chromogenic compound or with a mixture of chromogenic compounds.
As mentioned above, the solvent can be maintained in physical isolation in minute droplets until such time as it is released by application of pressure. This may be accomplished by several known techniques, but, preferably, isolationis maintained by encapsulation of individual droplets of the solvent in a microcapsule according to the procedures described, for example, in U.S. Pat. No. 2,712,507, issued July 5, 1955 on the application of Barrett K. Green; U.S. Pat. No. 2,730,457 issued Jan. 10, 1956 on the application of Barrett K.
Green and Lowell Schleicher; U.S. Pat. No. 2,800,457,
issued July 23, 1957 on the application of Barrett K. Green and Lowell Schleicher; U.S. Pat. No. 2,800,458, issued July 23, 1957 on the application of Barrett K. Green, reissued as U.S. Pat. No. RE. 24,899 on Nov. 29, 1960; and U.S. Pat. No. 3,041,289 issued June 26, 1962 on the application of Bernard Katchen and Robert E. Miller. The microscopic capsules, when disposed within or upon a supporting web as a multiplicity in contiguous juxtaposition, are rupturable by pressure, such as normal marking pressure found, for example, in writing or typing operations.
The material or materials chosen as the wall material for the droplet-containing microcapsules, in addition to being pressure rupturable, must be inert or unreactive with respect to the intended contents of the capsules and the other mark-forming components so that the capsule wall material will remain intact under normal storage conditions until such time as it is released by an application of marking pressure Preferred examples of eligible capsule wall materials include gelatin, gum arabic and many others thoroughly described in the aforementioned patents.
For most uses in record material, the capsule size should not exceed about 50 microns in diameter. Preferably, the capsules should be smaller than about l5 microns in diameter.
The acidic organic polymeric material useful for developing the color of novel chromogenic compounds in this invention include phenolic polymers, phenol acetylene polymers, maleic acid-rosin resins, partially or wholly hydrolyzed styrene-maleic anhydride copolymers and ethylene-maleic anhydride copolymers, carboxy polymethylene and wholly or partially hydrolyzed vinylmethylether-maleic anhydride copolymer and mixtures thereof.
More specifically, phenolic polymers found useful include alkyl-phenol acetylene resins, which are soluble in common organic solvents and possess permanent fusibility in the absence of being treated by cross-linking materials. Another specific group of useful phenolic polymers are members of the type commonly referred to as novalaks, (a type of phenolformaldehyde polymeric material) which are characterized by solubility in common organic solvents and which are, in the absence of cross-linking agents, permanently fusible. Resol resins, if they are still soluble, may be used, though they are subject to change in properties upon aging. Generally, phenolic polymer material found useful in practicing this invention is characterized by the presence of hydroxyl groups and by the absence of groups'such as methylol, which tend to promote infusibility or cross-linking of the polymer, and further, by being soluble in organic solvents and relatively insoluble in aqueous media. Again, it should be remembered that mixtures of these organic polymers and other acidic materials can be employed.
A laboratory method useful in the selection of suitable phenolic resins is the determination of the infrared absorption pattern. It has been found that phenolic resins which undergo absorption in the 3,2003,500 cm" region (which is indicative of hydroxyl groups) on the resin molecules and which do not absorb in the l,600-l,700 cm region are eligible. This latter absorption region is indicative of desensitization of hydroxyl groups which desensitization renders such groups unavailable for reaction with the chromogenic materials.
The preparation of some organic polymeric materials useful for practicing this invention has been described in industrial and Engineering Chemistry, Volume 43, Pages 134 to 141, Jan. i951, and a particular polymer thereof is described in Example I of US. Pat. No. 2,052,093, issued to Herbert Honel on August 25, 1936. The preparation of the phenol-acetylene polymers has been described in Industrial and Engineering Chemistry," Volume 41, Pages 73 to 77, January, 1949. The preparation of maleic anhydride copolymers is described in the literature, such as, for example, one of the maleic anhydride vinyl copolymers, as disclosed in Vinyl and Related Polymer," by Calvin E. Schildknecht, Second printing,
published April, 1959, by John Wiley & Sons, lncorporated: See pages 65 to 68 (styrene-maleic anhydride copolymer), 530 to 531 (ethylene-maleic anhydride copolymer), and 628 to 630 (vinylmethylether-maleic anhydride copolymer).
When the acidic material used as a mark-forming component in the present invention is one of the aforementioned organic polymers, the liquid solvent chosen must be capable of dissolving it. The solvent may be volatile or nonvolatile, and a singleor multiple-component solvent may be used which is wholly or partially volatile. Examples of volatile solvents useful in practicing the present invention include toluene, petroleum distillate, perchloroethylene, and xylene. Examples of nonvolatile solvents include high-boiling-point petroleum fractions and chlorinated biphenyls. Generally, the solvent chosen should be capable of dissolving at least about 0.3 percent, by weight, of the chromogenic material, and at least about 3 to 5 percent, by weight, of the acidic polymeric material to yield an effective reaction. However, in the preferred system, the solvent should be capable of dissolving an excess of the polymeric material, so as to provide every opportunity for utilization of the chromogenic material and, thus, to assure maximum coloration at the reaction site.
A further criterion for selection of the solvent is that the solvent must not interfere with the mark-forming reaction. In some instances, the presence of the solvent may be found to interfere with the mark-forming reaction or diminish the intensity of the mark, in which instances the solvent chosen should be sufficiently volatile to assure its removal from the reaction site soon after having brought the mark-forming components into reactive contact so that the mark-forming reaction can proceed.
Since the mark-forming reaction requires that an intimate mixture of the components be brought about through solution of said components, one or more of the mark-forming components can be dissolved in solvent droplets isolated by encapsulation, the only requirement being that at least one of the components essential to the mark-forming reaction be maintained isolated until the mark-forming reaction is desired.
in the usual case, the mark-forming components are so chosen as to produce a mark upon application of pressure to a coated system of sheets at room temperature (20 to 25 C.). However, the present invention also includes a system wherein the solvent component is not liquid at temperatures near room temperature but is liquid and in condition for forming solutions only at elevated temperatures.
The support sheet member on which components of the system are disposed may comprise a single or a dual sheet assembly. in the case where all components are disposed on a single sheet, the record material is referred to as a self-contained or autogenous system. Where there must be a migration of solvent, with or without the mark-forming component, from one sheet to another, the record material is referred to as a transfer system. (Such a system may also be referred to as a two-fold" system, in that at least two sheets are required and each sheet includes a component, or components, essential to the mark-forming reaction). Where an adequate amount of the colored reaction product is produced in liquid or dissolved form on a surface of one sheet, a colored mark can be recorded on a second sheet by transfer of the colored reaction product.
In a preferred case, where microcapsules are employed, they can be present in the sheet support material either disposed therethroughout or as a coating thereon, or both. The capsules can be applied to the sheet material as a dispersion in the liquid vehicle in which they were manufactured, or, if desired, they can be separated from the vehicle and thereafter dispersed in a solution of the acid-reacting polymeric component (for instance, 30 grams of water and 53 grams of a l per cent, by weight, aqueous solution of polyvinylmethylether-maleic anhydride) to form a sheet-coating composition in which, because of the inertness of the solution and the capsules, both components retain their identity and physical integrity. When this composition is disposed as a film on the support material and dried, the capsules are held therein subject to release of the contained liquid by rupture of the capsule walls. The latter technique, relying on the inertness of the microcapsule and the dispersing medium of the filmforming mark-forming polymeric component, provides a method for preparing a sensitive record material coating having the capsules interspersed directly in a dry film of the polymeric material as the film is laid down from solution. A further alternative is to disperse one or more mark-forming components, and the chromogenic-material-containing microcapsules in a liquid medium not a solvent for either the mark-forming component or the microcapsules, with the result that all components of the mark-forming system may be disposed on or within the support sheet in the one operation. Of course, the several components may be applied individually. The capsules can also be coated onto a sheet as a dispersion in a solution of polymeric material which is not necessarily reactive with the capsule-contained solution of chromogenic materials.
The respective amounts of the several components can be varied according to the nature of the materials and the architecture of the record material unit desired or required. Suitable lower amounts include, in the case of the chromogenic material, about 0.005 to 0.075 pound per ream (a ream in this application meaning five hundred (500) sheets of 25 X 38 inch paper, totalling 3,300 square feet); in the case of the solvent, about 1 to 3 pounds per ream; and in the case of the polymer, about 0.5 pounds per ream. In all instances, the upper limit is primarily a matter of economic consideration.
The slurry of capsules can be applied to a wet" web of paper, for example, as it exists on the screen of a Fourdrinier paper machine, so as to penetrate the paper web a distance depending on the freeness of the pulp and the water content of the web at the point of application. The capsules can be placed directly in or on a paper or support sheet. Not only capsule structures, but continuous films which contain a multitude of microscopic, unencapsulated, droplets for local release in an area subjected to pressure can be utilized. (See, for example, U. S. Pat. No. 2,299,694 which issued Oct. 20, 1942, on the application of Barrett K. Green.)
With respect to the acidic organic polymeric component, a solution thereof in an evaporable solvent can be introduced into an amount of water and the resulting mixture can be agitated while the evaporable solvent is blown off by an air blast. This operation leaves an aqueous colloidal dispersion slurry of the polymeric material, which may be applied to finished paper so as to leave a surface residue or the slurry may be applied to a wet" web of paper of at the size-press station of a paper making machine. In another method for making a polymer-sensitized sheet, the water-insoluble polymer can be ground to a desired or required particle size in a ball mill with water, preferably with a dispersing agent, such as a small quantity of sodium silicate. If a binder material of hydrophilic properties is ground with the polymeric material, the binder itself may act as a dispersant. If desired, an amount of binder material of up to 40 per cent, by weight, of the amount of polymeric material can be added to the ball-milled slurry of materials; -such binder materials being of the paper coating binder class, including, for example, gum arabic, casein, hydroxyethyl-cellulose, and latexes (such as styrene-butadiene copolymer). If desired, oil absorbents in the form of fullers earths may be combined with the polymeric material particles to assist in retaining, in situ, the liquid droplets of chromogenic material solution to be transferred to it in datarepresenting configuration, for the purpose of preventing bleeding of the print.
Another method for applying the chromogenic or polymeric material individually to a single sheet of paper is by immersing a sheet of paper in l-10 per cent, by weight, solution of the material in an evaporable solvent. Of course, this operation must be conducted individually for each reactant, because if the other reactant material were present, contact of the reactants would result in a premature coloration over the sheet area. A dried sheet with one component can then be coated with a solution of another component, the solvent of which is a non-solvent to the already-supplied component.
The polymeric material can also be dissolved in ink composition vehicles to form a printing ink of colorless character and, thus, may be used to spot-print a proposed record-sheet-unit sensitized for recording, in a reaction-produced color in those spot-printed areas, by application of a solution of the chromogenic material. In the case of phenolic polymer, a printing ink may be made of up to per cent, by weight, of the phenolic polymeric material in a petroleum-based solvent; --the ink being built to a viscosity suitable for printing purposes. The relative amounts of reactive, mark-forming, components to be used in practice of this invention, are those most convenient and economical amounts consistent with adequate, desired or required visibility of the recorded data. The resolution of the recorded data is dependent on, among other things, particle or capsule size, distribution and amount of particles or capsules, liquid solvent migration, chemical reaction efficiency, and other factors, all of which can be optimized empirically by one skilled in the art. Such factors do not determine the principle of the present invention, which invention, in part, relates to means for enabling the bringing into solution contact, by marking pressure, two normally solid, chemically reactive, components dissolved in a common liquid solvent component held isolated as liquid droplets. The isolated liquid droplets are preferably in marking-pressure-rupturable capsules having polymericnfilm walls, or are isolated, as a discontinuous phase, in a continuous marking-pressure-rupturable film.
In the color system of this invention the acidic markforming material reacts with the chromogenic material to effect distinctive color formation or color change. In a multi-sheet system in which an acidic organic polymer is employed, it may be desirable to include other materials to supplement the polymer reactants. For example, kaolin can be added to improve the transfer of the liquid and/or the dissolved materials between the sheets. In addition, other materials such as bentonite, attapulgite, talc, feldspar, halloysite, magnesium trisilicate, silica gel, pyrophyllite, zinc sulfate, calcium sulfate, calcium citrate, calcium phosphate, calcium fluoride, barium sulfate and tannic acid can be included.
Various methods known to the prior art and others disclosed in the aforementioned application Ser. No. 392,404, (now abandoned,) in the names of Miller, et al. and in U.S. Pat. No. 3,455,721, issued July 15, 1969 in the names of Phillips, et al. and issued as U.S. Pat. No. 3,455,721 on July 15, 1964 can be employed in compositions useful for coating mark-forming materials into supporting sheets. An example of the compositions which can be coated onto the receiving surface of an underlying sheet of a multi-sheet to react with a cap sule coating on the underside of an overlying sheet is as follows:
materials of this invention and preferred methods for utilizing the chromogenic materials, in combination with other materials, as reactive components in markforming record material; examples will now be disclosed wherein preparation of several of the chromogenic materials is described.
EXAMPLE 1 Preparation of 2-formyl-6'-diethylaminofluoran A reaction mixture of 3.1 grams of 2-carboxy-4- diethyl-amino-2'-hydroxybenzophenone, 1.2 grams of p-hydroxybenzaldehyde, and 20 milliliters of 90 percent, by weight, aqueous sulfuric acid solution was heated for about 1 hour at l40-145 C. The reaction mixture was then poured into about 250 milliliters of water and made alkaline to a pH of above about 8 by addition of dilute, aqueous, ammonium hydroxide solution. The reaction mixture was extracted by 250 milliliters of benzene and the benzene extract was washed with sodium hydroxide solution and then with water. The reaction product was chromatographically purified over alumina. A benzene solution of the purified reaction product imparted an orange color to paper coated with a mixture of kaolin and phenolic resin.
EXAMPLEZ Preparation of 2-carbomethoxy-6- diethylaminofluoran A reaction mixture of 1.6 grams of 2-carboxy-4- diethylamino-Z'-hydroxybenzophenone, 0.76 grams of methyl-p-hydroxybenzoate and 20 milliliters of percent, by weight, aqueous sulfuric acid solution was heated for about 5 hours at 98-102 C. The reaction mixture was then poured into water and made alkaline to a pH of above about 8 by addition of dilute, aqueous, ammonium hydroxide. The reaction mixture was extracted by benzene, washed and concentrated by evaporation. The crude product was chromatographically purified over alumina. A benzene solution of the purified product imparted an orange color to paper coated with a mixture ofkaolin and phenolic polymer.
EXAMPLE 3 Preparation of 2'-benzoyl-6'-diethylamino-4'- methylfluoran A reaction mixture of 0.3 grams of 2-carboxy-4'- diethylamino-2-hydroxybenzophenone, 0.2 grams of 4'-hydroxy-3'methylbenzophenone, and 10 milliliters of 80 percent, by weight, aqueous sulfuric acid solution was heated fro about 1 hour at -l40 C. Reaction product isolation and purification was conducted as described in the previous examples, above. A benzene solution of the purified reaction product imparted an orange color to paper coated with a mixture of kaolin and phenolic resin.
What is claimed is:
1. A pressure sensitive record unit comprising:
a. support web or sheet material,
b. mark-forming components and a releasable liquid solvent for said mark-forming components arranged in contiguous juxtaposition and supported by said sheet material,
c. said mark-forming components comprising at least one chromogenic material of the structure:
R, represents -CO-R.,, wherein R represents a chemical radical selected from the group consisting of hydrogen, OCl-1 and R represents chemical radicals selected from the group consisting of hydrogen and alkyl radicals having less than five carbon atoms; and
R represents a chemical radical selected from the group consisting of hydrogen and alkyl radicals having less than five carbon atoms;
2. The record unit of claim 1 wherein at least one of the mark-forming components is maintained in isolation from the other mark-forming components prior to the release of the solvent.
3. The record unit of claim 1 wherein the liquid solvent is present as the nucleus of a microcapsule.
4. The record unit of claim 1 wherein the chromogenic material is dissolved in the liquid solvent prior to pressure release.
5. The record unit of claim 1 wherein the mark-formin g components and the liquid solvent are present in a single support sheet.
6. The record unit of claim 1 wherein at least one member selected from the group consisting of the mark-forming components and the liquid solvent is present in a support sheet other than the support sheet having the remaining members of the group.
7. The record unit of claim 1 where the electron-accepting material of the Lewis acid type comprises a clay.
8. The record unit of claim 1 where the electron accepting material of the Lewis acid type comprises at least one organic polymer.
9. The record unit of claim 8 where the organic polymer is a phenolic polymer.
10. The recordunit of claim 1 wherein the chromogenic material includes the compound 6- diethylamino-2-formylfluoran.
11. The record unit of claim 1 wherein the chromogenic material includes the compound 2'-carbomethoxy-6'-diethylaminofluoran.
12. The record unit of claim 1 wherein the chromogenic material includes the compound 2'- benzoyl-6'-diethylamino-4-methyl-fluoran.
13. A mark-forming unit, comprising: a first web or sheet having on one surface a transfer coating which contains as a finely dispersed phase a plurality of minute, pressure-rupturable capsules containing as an inner phase a solvent vehicle; a second web or sheet having an adherent coating upon its surface or dispersed within said web or sheet, said first and second webs or sheets being maintained disposed together in fact-to-face relationship with said respective transfer and adherent coatings in contiguity with each other; a first coating constituent in the form of a substantially colorless or slightly colored chromogenic material which includes as a major functional arrangement the molecular structure wherein:
R, represents CO-R.,, wherein R represents a chemical radical selected from the group consisting of hydrogen, OCH and R represents chemical radicals selected from the group consisting of hydrogen and alkyl radicals having less then five carbon atoms; and
R represents a chemical radical selected from the group consisting of hydrogen and alkyl radicals having less than five carbon atoms;
and a second constituent in the form of an electronaccepting material of the Lewis acid type; one of said constituents being dissolved in said solvent liquid vehicle present as the inner phase of the plurality of minute pressure-rupturable capsules in the transfer coating on or within said first web or sheet, and the other of said coating constituents being bonded to said second web in said adherent coating thereon but being accessible to other materials coming into contact with portions of the adherent coating, whereby, upon local impact and rupture of said capsules, releasing said liquid vehicle containing one coating constituent from at least some of the capsules onto said contiguous adherent coating, reactive contact is effected between said two constituents to produce a darkcolored material by the action of said electron-accepting material of the Lewis acid type upon said chromogenic material to effect color change in said chromogenic compound to said dark-colored material.
14. The mark-forming unit of claim 13 in which the electron-accepting material of the Lewis acid type comprises a clay.
15. The mark-forming unit of claim 13 in which the electron-accepting material of the Lewis acid type comprises an organic polymer.
16. The mark-forming unit of claim 15 in which the organic polymer is a phenolic polymer.
17. The record unit of claim 13 wherein the chromogenic material includes the compound 6- diethylamino-2-formylfluoran.
18. The record unit of claim 13 wherein the chromogenic material includes the compound 2'-carbomethoxy-6-diethylaminofluoran.
19. The record unit of claim 13 wherein the chromogenic material includes the compound 2'- benzoyl-6'-diethylamino-4'-methyl-fluoran.
Claims (18)
1. A pressure sensitive record unit comprising: a. support web or sheet material, b. mark-forming components and a releasable liquid solvent for said mark-forming components arranged in contiguous juxtaposition and supported by said sheet material, c. said mark-forming components comprising at least one chromogenic material of the structure:
2. The record unit of claim 1 wherein at least one of the mark-forming components is maintained in isolation from the other mark-forming components prior to the release of the solvent.
3. The record unit of claim 1 wherein the liquid solvent is present as the nucleus of a microcapsule.
4. The record unit of claim 1 wherein the chromogenic material is dissolved in the liquid solvent prior to pressure release.
5. The record unit of claim 1 wherein the mark-forming components and the liquid solvent are present in a single support sheet.
6. The record unit of claim 1 wherein at least one member selected from the group consisting of the mark-forming components and the liquid solvent is present in a support sheet other than the support sheet having the remaining members of the group.
7. The record unit of claim 1 where the electron-accepting material of the Lewis acid type comprises a clay.
8. The record unit of claim 1 where the electron accepting material of the Lewis acid type comprises at least one organic polymer.
9. The record unit of claim 8 where the organic polymer is a phenolic polymer.
10. The record unit of claim 1 wherein the chromogenic material includes the compound 6''-diethylamino-2''-formylfluoran.
11. The record unit of claim 1 wherein the chromogenic material includes the compound 2''-carbomethoxy-6''-diethylaminofluoran.
12. The record unit of claim 1 wherein the chromogenic material includes the compound 2''-benzoyl-6''-diethylamino-4''-methyl-fluoran.
13. A mark-forming unit, comprising: a first web or sheet having on one surface a transfer coating which contains as a finely dispersed phase a plurality of minute, pressure-rupturable capsules containing as an inner phase a solvent vehicle; a second web or sheet having an adherent coating upon its surface or dispersed within said web or sheet, said first and second webs or sheets being maintained disposed together in fact-to-face relationship with said respective transfer and adherent coatings in contiguity with each other; a first coating constituent in the form of a substantially colorless or slightly colored chromogenic material which includes as a major functional arrangement the molecular structure
14. The mark-forming unit of claim 13 in which the electron-accepting material of the Lewis acid type comprises a clay.
15. The mark-forming unit of claim 13 in which the electron-accepting material of the Lewis acid type comprises an organic polymer.
16. The mark-forming unit of claim 15 in which the organic polymer is a phenolic polymer.
17. The record unit of claim 13 wherein the chromogenic material includes the compound 6''-diethylamino-2''-formylfluoran.
18. The record unit of claim 13 wherein the chromogenic material includes the compound 2''-carbomethoxy-6''-diethylaminofluoran.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11983071A | 1971-03-01 | 1971-03-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3715226A true US3715226A (en) | 1973-02-06 |
Family
ID=22386643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00119830A Expired - Lifetime US3715226A (en) | 1971-03-01 | 1971-03-01 | Mark-forming record materials |
Country Status (1)
Country | Link |
---|---|
US (1) | US3715226A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4104437A (en) * | 1974-09-24 | 1978-08-01 | Champion International Corporation | Pressure-sensitive copy system including ureido fluoran chromogenic compounds |
US4187193A (en) * | 1974-09-24 | 1980-02-05 | Champion International Corporation | Micro-capsules containing ureido fluoran chromogenic compounds |
EP0561738A1 (en) * | 1992-03-17 | 1993-09-22 | Ciba-Geigy Ag | Fluoran colour-former |
EP0643062A1 (en) * | 1993-09-09 | 1995-03-15 | Ciba-Geigy Ag | Bislactones |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3455721A (en) * | 1964-12-21 | 1969-07-15 | Ncr Co | Color sensitized record material comprising phenolic resin and acid type mineral |
US3514310A (en) * | 1966-11-18 | 1970-05-26 | Fuji Photo Film Co Ltd | Pressure sensitive fluoran derivative copying paper |
US3539375A (en) * | 1966-06-01 | 1970-11-10 | Ncr Co | Thermo-responsive record sheet |
-
1971
- 1971-03-01 US US00119830A patent/US3715226A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3455721A (en) * | 1964-12-21 | 1969-07-15 | Ncr Co | Color sensitized record material comprising phenolic resin and acid type mineral |
US3539375A (en) * | 1966-06-01 | 1970-11-10 | Ncr Co | Thermo-responsive record sheet |
US3514310A (en) * | 1966-11-18 | 1970-05-26 | Fuji Photo Film Co Ltd | Pressure sensitive fluoran derivative copying paper |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4104437A (en) * | 1974-09-24 | 1978-08-01 | Champion International Corporation | Pressure-sensitive copy system including ureido fluoran chromogenic compounds |
US4187193A (en) * | 1974-09-24 | 1980-02-05 | Champion International Corporation | Micro-capsules containing ureido fluoran chromogenic compounds |
EP0561738A1 (en) * | 1992-03-17 | 1993-09-22 | Ciba-Geigy Ag | Fluoran colour-former |
US5395948A (en) * | 1992-03-17 | 1995-03-07 | Ciba-Geigy Corporation | Fluoran color formers |
EP0643062A1 (en) * | 1993-09-09 | 1995-03-15 | Ciba-Geigy Ag | Bislactones |
US5468855A (en) * | 1993-09-09 | 1995-11-21 | Ciba-Geigy Corporation | Bislactones |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3637757A (en) | Diethylamino fluorans | |
US3540911A (en) | Pressure sensitive record sheets employing 3 - (phenyl) - 3-(indol - 3 - yl)-phthalides | |
US3540909A (en) | Pressure sensitive recording sheets employing 3,3-bis(phenylindol - 3-yl) phthalide | |
US3681390A (en) | Dialkylamino fluoran chromogenic compounds | |
US3672935A (en) | Pressure-sensitive record material | |
US3775424A (en) | Furo(3,4-b)pyridine-7(5h)-ones | |
US3455721A (en) | Color sensitized record material comprising phenolic resin and acid type mineral | |
US3736337A (en) | Tetrahalogenated chromogenic compounds and their use | |
US3642828A (en) | Alkyl or halo substituted tetrahalofluorans | |
US3540914A (en) | Pressure sensitive record sheets employing indole substituted pyromellitides | |
US3769057A (en) | Pressure-sensitive record sheets employing amido- and sulfonamido-substituted fluorans | |
US3703397A (en) | Mark-forming record materials and process for their use | |
US3746562A (en) | Mark forming record materials | |
US3849164A (en) | Pressure-sensitive record unit comprising a mixture of two chromogenic compounds | |
US3715226A (en) | Mark-forming record materials | |
US3654314A (en) | Tetrachlorinated chromogenic compounds | |
US3940275A (en) | Record material and marking liquid | |
US3721576A (en) | Mark forming record materials and process for their use | |
US3764369A (en) | Pressure sensitive recording unit | |
US3730755A (en) | Pressure-sensitive record materials | |
US3787325A (en) | Alkylamino spiro {8 12-h{8 1{9 benzopyran {8 3,2f{9 {14 quinoline-12,1{40 phthalide | |
US3857675A (en) | Mixtures of two chromogenic compounds | |
US3730754A (en) | Pressure sensitive recording sheet | |
US3694461A (en) | Chromogenic compounds | |
US3746563A (en) | Pressure sensitive record sheet employing alkyl or halo substituted tetrahalofluorans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLETON PAPERS INC. Free format text: MERGER;ASSIGNORS:TUVACHE, INC.;GERMAINE MONTEIL COSMETIQUES CORPORATION (CHANGED TO APPLETON PAPERS);REEL/FRAME:004108/0262 Effective date: 19811215 |