US3007596A - Thermal insulation - Google Patents
Thermal insulation Download PDFInfo
- Publication number
- US3007596A US3007596A US597947A US59794756A US3007596A US 3007596 A US3007596 A US 3007596A US 597947 A US597947 A US 597947A US 59794756 A US59794756 A US 59794756A US 3007596 A US3007596 A US 3007596A
- Authority
- US
- United States
- Prior art keywords
- insulation
- heat
- insulating
- space
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009413 insulation Methods 0.000 title abstract description 108
- 239000000463 material Substances 0.000 abstract description 40
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000002184 metal Substances 0.000 abstract description 13
- 239000000843 powder Substances 0.000 abstract description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 3
- 239000011152 fibreglass Substances 0.000 abstract description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 239000010931 gold Substances 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 239000004332 silver Substances 0.000 abstract description 2
- 229910052718 tin Inorganic materials 0.000 abstract description 2
- 239000011135 tin Substances 0.000 abstract description 2
- 239000005030 aluminium foil Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 230000005855 radiation Effects 0.000 description 45
- 230000004888 barrier function Effects 0.000 description 35
- 239000011888 foil Substances 0.000 description 31
- 239000010410 layer Substances 0.000 description 28
- 239000002131 composite material Substances 0.000 description 20
- 239000011810 insulating material Substances 0.000 description 20
- 238000012546 transfer Methods 0.000 description 20
- 239000000835 fiber Substances 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 239000004020 conductor Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 12
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 10
- 229910052753 mercury Inorganic materials 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 8
- 239000002657 fibrous material Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 4
- 239000012774 insulation material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000153 supplemental effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003467 diminishing effect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 240000005369 Alstonia scholaris Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J41/00—Thermally-insulated vessels, e.g. flasks, jugs, jars
- A47J41/02—Vacuum-jacket vessels, e.g. vacuum bottles
- A47J41/022—Constructional details of the elements forming vacuum space
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
- E04B1/80—Heat insulating elements slab-shaped
- E04B1/803—Heat insulating elements slab-shaped with vacuum spaces included in the slab
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/08—Means for preventing radiation, e.g. with metal foil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/001—Thermal insulation specially adapted for cryogenic vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0119—Shape cylindrical with flat end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/03—Orientation
- F17C2201/032—Orientation with substantially vertical main axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0308—Radiation shield
- F17C2203/032—Multi-sheet layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0337—Granular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0304—Thermal insulations by solid means
- F17C2203/0345—Fibres
- F17C2203/035—Glass wool
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/03—Thermal insulations
- F17C2203/0391—Thermal insulations by vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0626—Multiple walls
- F17C2203/0629—Two walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/011—Oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/033—Small pressure, e.g. for liquefied gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/242—Slab shaped vacuum insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B80/00—Architectural or constructional elements improving the thermal performance of buildings
- Y02B80/10—Insulation, e.g. vacuum or aerogel insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S220/00—Receptacles
- Y10S220/901—Liquified gas content, cryogenic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/01—Radiant cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/13—Insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49863—Assembling or joining with prestressing of part
- Y10T29/49874—Prestressing rod, filament or strand
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49879—Spaced wall tube or receptacle
Definitions
- This invention relates to an improved insulation having a high resistance to all modes of heat transfer, and particularly concerns la low temperature, heat insulating material adapted to improve a vacuum insulating system.
- the basic systems for insulating the conventional double walled container for the conveyance and storage of low boiling liquefied gases are for small containers, the Dewar type high vacuum-polished metal surface system and for large containers, the powder-in-vacuurn insulation System, which uses an insulating powder in the vacuum space between the walls.
- This system is described in detail in U.S. Patent 2,396,459.
- powder-invacuuxn heat insulation is effective in reducing thermal heat loss, it is not as effective as straight vacuum-polished metal surface for containers up to two feet in diameter.
- Patent 2,396,459 the vacuum being on the 'order of 0.1 micron of mercury absolute, a thermal conductivity of 9.2X104 Btu/hr., sq. ft., F./iit. may be achieved. ln order to more fully appreciate the significance of such a thermal'conductivity, :the insulating effects of the following insulation thicknesses are set forth.
- An insulation thickness of 1.6.6 inches of a powder-in-vacuurn insulation will permit an evaporation loss. of 7.1% per day.
- Such an insulation thickness results in an insulation cross sectional area equal to the useful cross sectional area of the inner storage container. In other words, beyond the thickness of 1.66 inches, the bulk of the insulation which must be stored land/ or transported becomes greater than the bulk of the contained stored material.
- a lower quality reflective surface may be tolerated by interposing several concentric reflective shields within the insulation space as described in U.S. Patent 2,643,022.
- one of the difficulties involved in such an arrangement is in assembling and supporting many reflective shields within a reasonable insulation thickness so that each shield is properly spaced from adjacent shields at all points. Proper spacing is an absolute necessity, for if two adjacent shields are permitted t0contact in even a minute area, the insulating effect of one shield will be essentially cancelled out.
- the number of shields required depends on their surfacerellectivity. If
- Another object of the present invention is to provide a novel insulating material in an insulation system where radiation would otherwise be an important mode of heat transfer.
- Another object of the invention is to provide in a low heat conductive material wherein radiation is the predominant remaining mode of heat transfer, one or more parallel radiant heat barriers interposed in said low conductive material for substantially reducing the passage of radiant heat therethrough.
- Yet another object of the invention is to provide in a low heat conductive insulation, a series of spaced, heat reflecting barriers so constructed and arranged as to impede the passage of radiant heat through said insulation without affecting the thermal conductivity thereof.
- Another object of the present invention is to provide in a restricted gas-evacuated insulating space, a plurality of radiation barriers, said barriers being disposed in spaced relation to each other, and maintained in such spaced position by a low heat conductive spacing material.
- Still another object of the present invention is to provide in a vacuum-solid insulating space for small portable containers, a multiplicity of radiation barriers comprising spaced and parallel foils of heat reflective material for reducing the transfer of heat by radiation, and a spacing material between said radiation barriers, cornprising a low-conductive, heat insulating material for reducing the transfer of heat by conduction between said barriers.
- a further object of the present invention is to provide an improved method of fabricating and applying a heat insulation for cylindrical containers wherein the heat insulation comprises a low-conductive, heat insulating material for reducing the transfer of heat by conduction, and incorporates therein a multiplicity of radiation sheet barriers for reducing the transfer of heat by radiation.
- a further object of the present invention is to provide in an enclosed volume defining a gas evacuated insulating space, a novel insulating structure adapted to fill the insulating space and effect contact with the wall surfaces defining the insulating space, said insulating space being characterized by the absence of gross voids, and having a low rate of heat transfer by conduction and radiation.
- FIG. l is a front elevational view, partly in section, of a double walled liquid gas container embodying the principles of the invention
- FIG. 2 is an isometric view of the composite insulating material of the invention shown in a flattened position with parts broken away to expose underlying layers;
- FIG. 3 is a greatly enlarged detail sectional view showing the irregular path of heat transfer through the composite insulating material of the invention
- FIG. 4 is a sectional view taken along line 4 4 of FIG. l, illustrating the spiral wrapping of insulating material of the invention
- FIG. 5 is a sectional view similar to FIG. 4, but showing a concentric layered modification thereof.
- FIG. 6 is a fragmentary elevational view, in section, of a modified double walled liquid gas container embodying the principles of the invention.
- the insulating qualities of an evacuated insulating space may be substantially enhanced to a degree never before attained with a novel insulating structure, which may occupy part of or the entire insulating space.
- the insulating structure does not require numerous brace bars or other supports, does not provide gross voids in the insulating space, and can also be employed as a novel means for elastically supporting the insulated inner container.
- vacuum as used hereinafter is intended to apply to sub-atmospheric absolute pressure conditions not substantially greater than 5000 microns of mercury, and preferably below 1000 microns of mercury.
- the pressure should preferably be below 25 microns of mercury.
- a vacuum insulated space is provided with a low heat conductive material having incorporated therein one or more radiation barriers disposed substantially transversely to the direction of heat flow in spaced relation to each other.
- the radiation barriers or shields of the invention may comprise one or more sheets of heat absorbing material, or preferably thin sheets or layers of a material possessing high reflecting characteristics when exposed to infra-red radiation, such as aluminum or tin foil.
- the low conductive material also acts as a supporting and spacing material for retaining the radiation barrier sheets in uniformly spaced relation to each other independently of the thickness and stiffness of the barriers. In this manner it is possible for a large number of thin foils to be supportably mounted and maintained in position in an insulation space of limited thickness. A clearance of a few thousandths of an inch between foils is enough to effectively interrupt and reflect the radiant heat. In this way it is possible to provide a large number of shields in a very limited space, ranging up to several hundred shields per inch of composite insulation thickness.
- FIG. l Shown in FIG. l is a double walled heat insulating vessel having parallel inner and outer container walls 10a and 10b and an evacuated insulating space 11 therebetween.
- a composite insulation material 12 embodying the principles of the invention, and comprising essentially a low heat conductive material 13 having incorporated therein multiple reflective shields or radiation barriers 14 in contiguous relation for diminishing the transfer of heat by radiation across the insulating space 11.
- the insulation occupies the entire insulating space 11, and appears as a series of spaced reflectors 14 disposed substantially transversely to direction of heat flow and supportably carried by the solid, low conductive insulating material.
- the insulating material is shown in FIG. l.
- each radiation shield uniformly contacts and supports the entire surface of each radiation shield in superposed relation and, in addition to its primary purpose of serving as an insulating material, constitutes a carrier and spacing material for maintaining a separation space between adjacent shields. No other supports are required to maintain the insulation in operative assembled relation.
- the radiation shield material 14 to be used in the insulation material 12 of the invention may comprise either a metal, metal oxide, or metal coated material, such as aluminum coated plastic lm, or other-radiation refiective or radiation absorptive material or a suitable combination thereof.
- Radiation reflective materials comprising thin metallic foils are admirably suited in the practice of the present invention, while reective sheets of aluminum foil having a thickness between 0.2 mm. and @.002 mm. are preferred.
- Other radiation reiiective materials which are susceptible of use in the practice of the invention are tin, silver, gold, copper, cadmium or other metals.
- the base material lf3 of the invention may be a suitably low conductive material such as fiber insulation, which may be produced in sheet form. It should preferably be thin enough to -be liexibly bent.
- the spacing materials which give excellent results are the porous unbonded fiber-type insulating materials which do not give ofi gas, for example, a filamentary glass material such as glass wool and ber glass, the latter being preferred because of its low conductivity and foraminous structure, and the ease with which the air spaces within the brous structure may be evacuated.
- the base material may also comprise a combination of the fibers with low conductive powder insulation, vas specified hereinafter, or any other combination of suitably low conductive materials.
- the low conductive sheet of ber glass separating material i3 to be used in the present vacuum-solid insulating system should be fabricated in such manner that its fibers are, for all intents and purposes, randomly disposed within the plane of the separating sheet, and oriented in a direction substantially perpendicular to the flow of heat.
- the fibers will not be individually confined to a single plane, but rather, in a finite thickness of fibrous material, the fibers will be generally disposed in thin parallel strata with, of course, some indiscriminate cross weaving of iibers across the various strata.
- the path of solid conduction from the first sheet of aluminum foil to the second is greatly lengthened, and encompasses an indeinitely large number of point contact resistances between contacting iibers.
- a multi-layer insulation having a series of heat reflecting sheets and a fiber oriented sheet of low conductive insulating material .therebetween may be particularly ehicient in preventing or diminishing heat losses by radiation, as well as by conduction.
- the radiation shield spacing may vary from one-half to two hundred la yers per inch. Where the quality of the insulation is of prime importance, the preferred number of shields may vary between 4 and l0() shields per inch.
- the insulation may be also related tothe size of the container to which it is applied. Thus, for small containers having a diameter less than two feet, an insulation thickness up to three inches is desirable, using at least l5 layers of shields per inch in a glass fiber insulation having a fiber diameter less than one micron.
- the insulation thickness may vary up to 24 inches, and the shield spacing may be as great as 1/2 shield per inch or one shield for every two inches of insulation thickness.
- the insulation thickness should contain at least one radiation shield, and the shield spacing should not exceed 5% of the container diameter.
- the usual space should preferably contain a minimum number of at least three shields. It is to be understood, however, that the invention is not necessarily limited to the above ranges, and that a larger or smaller number of shields may be satisfactorily employed in the practice of the invention, depending upon the particular conditions involved in the application of the invention.
- the flexibility of the layers of aluminum foil and fiber glass allows the insulation thickness as a whole -to be pliably bent so as to conform to irregularities and changes in the surface conditions of the container to be insulated.
- the cornposite material of the invention is adapted to be applied to contoured surfaces, and is particularly well suited for insulating either iiat or cylindrical surfaces.
- the multiple foil insulation of the invention may be mounted in the insulation space in any one of a variety oi' ways.
- the insulation 12 may be mounted concentricaily with respect to the inner container lita, or it may be, as in FlG. 4,' spirally wrapped around the inner container with one end of the insulation wrapping in contact with the inner container dita, and ⁇ the other end nearest the outer container 10b or in actual contact therewith, the latter form ⁇ of Vmounting being preferred and illustrated herein.
- the composite insulation of the present invention does not support the walls of the vacuum space against external loads and, hence, is external load-free.
- the metal foil may be loosely spirally wrapped around ythe inner container "a, the tightness and number of turns being varied to ⁇ suit the particular conditions, or the requirements desired. Tightening of the insulation wrapping causes the low conductive and resilient fibrous material to be compressed into a smaller space. This action decreases the percentage voids in the fibrous material, and increases the cross sectional area of the effective path of solid conduction. However, the voids are reduced in size, which results in the insulation being less sensitive to changes in casing pressure.
- the composite insulation material 12 of the invention may be employed in the cylindrical portion 11a of the insulation space 11, and the end portions 11b of the insulation space, including the fiat bottom portion and the upper spherical portion, provided with a supplemental low heat conductive material 16.
- the supplemental low heat conductive materials which may be used in the terminal sections 11b may comprise a finely divided powder of the type disclosed in U.S. Patent No. 2,396,459, or any other suitably low conductive material.
- the supplemental insulation 16 maintains the extremities of the individual foil barriers 14 in spaced apart relation, and provides the means for producing low thermal heat transfers in containers of a wide variety of shapes.
- the cooperative relationship between the supplemental insulation 16 and the composite insulation 12 meets the requirements of the most critical present day insulation standards, and has extended the usefulness and capabilities of the present invention.
- a very significant advantage of the present invention arises from the elastic properties of the insulation, particularly when a fibrous insulation is employed in the annular insulating space of a double Walled container.
- the ability of the insulation to give and resist movement of the inner container, and to restore or expand itself when the forces exerted upon it are relaxed, enables it to operate along the lines of a shock mount.
- Obvious advantages to using the insulation as an elastic support are that the inner container is maintained in substantially centered position, and the need for braces or other supports is obviated, thus further reducing the heat leak into the container.
- pressure in the insulation space is less than 0.1 micron of mercury, while in Table II the pressure is varied as indicated therein.
- ber diameter of the low conductive spacing material is the ber diameter of the low conductive spacing material.
- ber diameters up to about 50 microns may be satisfactorily employed in the practice of the invention.
- a small ber diameter of less than 10 microns is desirable, while a fiber diameter less than 1 micron is preferred for superior quality insulations.
- the gas pressure in the insulating space is affected by changes in pressure, the thermal conductivity increasing with increasing air pressure.
- the adverse effect of increased pressure may be minimized by filling the voids between the fibers for example with a very fine, low conductive powder.
- the present invention provides in a solid-in-vacuum type insulation, a low heat conductive material having incorporated therein multiple radiation shields for impeding radiative heat transmission through the insulation, while minimizing the ow of heat by conduction therethrough.
- the low conductive material uniformly supports and maintains the radiation shields in spaced relation.
- a low conductive material which is admirably suited for use in the practice of the invention is one having a iibrous structure oriented in a direction perpendicular to the direction Vof heat iiow. Possessed or" a high percentage of voids, the low conductive insulating material provides a very small, solid conduction heat path between radiation foils, and is remarkably efficient in minimizing the transmission of heat leak by conduction.
- insulating systems of the invention using a ne diameter, low conductive, fiber-type insulating material, have been found to be superior to any known insulating systern.
- the present insulation achieves low thermal conductivities, which are comparable or superior to those obtained with either high quality straight vacuums or the best powderin-vacuum systems known, yet is considerably less eX- pensive than either of these forms of insulation, and does not require as low absolute pressures as straight vacuumpolished metal insulating systems.
- a low heat conductive fibrous material In a Vacuum insulating space, a low heat conductive fibrous material, a multiplicity of radiation-impervious sheets supportably carried by said fibrous material, said radiation-impervious sheets being disposed in parallel spaced relation to each other, and said fibrous material having a iber orientation substantially parallel to said sheets and substantially perpendicular to the direction of heat ow across said space, and a line low-conductive powder in the voids between the bers of said iibrous material, whereby said sheets and iibrous material are effective in reducing the transmission of radiant heat across said space without perceptibly increasing the heat transmission by conduction thereacross, and whereby said powder reduces the variation in thermal conductivity of said fibrous material and sheets due to changes in pressure conditions in said space.
- An apparatus provided with a gas evacuated insulating space surrounding a storage container and being enclosed by rigid, self-supporting walls, a heat insulative and radiation-impervious composite flexible material comprising a multiplicity of thin-flexible, radiant heat barrier layers of thickness between 0.002 mm. and 0.2 mm.
- said radiant heat barrier lowconductive yfibrous sheet composite insulating material being spirally wound suliiciently tightly to provide at least 4 radiant heat barriers per inch of composite insulation and disposed generally perpendicular to the direction of heat inleak across said space.
- An apparatus provided with a vacuum insulating space according to claim 2, the fibrous sheet layers consisting of filamentary glass material.
- a container for the holding of materials'at low temperatures comprising an inner vessel having rigid, self-supporting walls for holding such material, a larger outer gas-tight shell also having rigid, self-supporting Walls extending about said inner vessel, providing therewith an intervening evacuable external load-tree insulation space at an absolute pressure not substantially greater than 25 microns of mercury, said insulation space containing a series of spaced layers of porous, fibrous, low heat conductive, oriented material wherein the liber diam'- eters are less than about l0 microns, and a series of spaced radiation barriers of thickness between 0.002 mm. 0.2 mm.
- the radiant heat barrier-low conductive fibrous sheet composite insulating material being spirally around said inner vessel sufficiently tightly to provide at least 4 radiant heat barriers per inch of composite insulation and disposed generally perpendicular to the direction of heat in eak across said space.
- an external load-free solid-in-vacuum thermal insulation disposed within such space comprising the combination with a multi-convoluted wrapping on such inner wall consisting of a continuous thin sheet of reective metal foil of thickness between 0.002 mm.
- a composite multi-layered, external load-free insulation in said space comprising low conductive l'ibrous sheet material layers composed of ibers for reducing heat transfer by gaseous conduction and thin, ilexible sheet radiation barrier layers, said radiation barrier layers being supportably carried in superposed relation by said brous sheet layers to provide a large number of radiation barrier layers in a limited space for reducing the transmission of radiant heat across said space Without perceptively increasing the heat transmission by solid conduction thereacross, each radiation barrier layer being disposed in contiguous relation on opposite sides with a layer of the fibrous sheet material, the bers of said brous sheet material being oriented substantially parallel to the radiation barrier layers and substantially perpendicular to the direction of heat inleak across the insulating space, said brous sheet material being composed of bers having diameters less than about 10 microns, said radiation barrier sheet having a thickness less than about 0.2 mm., and said multi-layered composite insulation being disposed in the insulation space to provide more
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Architecture (AREA)
- Mechanical Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Food Science & Technology (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Thermal Insulation (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE559232D BE559232A (da) | 1956-07-16 | ||
US597947A US3007596A (en) | 1956-07-16 | 1956-07-16 | Thermal insulation |
GB20748/57A GB853585A (en) | 1956-07-16 | 1957-07-01 | Thermal insulation |
FR1178908D FR1178908A (fr) | 1956-07-16 | 1957-07-15 | Isolant thermique |
DEU4645A DE1214711B (de) | 1956-07-16 | 1957-07-16 | Waermeisolierter Behaelter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US597947A US3007596A (en) | 1956-07-16 | 1956-07-16 | Thermal insulation |
Publications (1)
Publication Number | Publication Date |
---|---|
US3007596A true US3007596A (en) | 1961-11-07 |
Family
ID=24393598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US597947A Expired - Lifetime US3007596A (en) | 1956-07-16 | 1956-07-16 | Thermal insulation |
Country Status (5)
Country | Link |
---|---|
US (1) | US3007596A (da) |
BE (1) | BE559232A (da) |
DE (1) | DE1214711B (da) |
FR (1) | FR1178908A (da) |
GB (1) | GB853585A (da) |
Cited By (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3108706A (en) * | 1959-08-31 | 1963-10-29 | Union Carbide Corp | Apparatus for improving vacuum insulation |
US3118194A (en) * | 1961-02-01 | 1964-01-21 | Service Nat Dit Gaz De France | Method of insulating tanks for storing or transporting low-temperature liquids |
US3130561A (en) * | 1961-06-30 | 1964-04-28 | Nat Res Corp | Insulation device |
US3133422A (en) * | 1962-05-31 | 1964-05-19 | Union Carbide Corp | Insulation construction |
US3137143A (en) * | 1962-04-23 | 1964-06-16 | Robert B Jacobs | Condensing vacuum insulation |
US3147878A (en) * | 1958-09-22 | 1964-09-08 | Chicago Bridge & Iron Co | Cryogenic storage tank |
US3199715A (en) * | 1962-07-20 | 1965-08-10 | Union Carbide Corp | Insulation construction |
US3212320A (en) * | 1962-02-02 | 1965-10-19 | Ametek Inc | Tensile testing cryostat |
US3217504A (en) * | 1963-09-16 | 1965-11-16 | Cryogenic Eng Co | Gas refrigerated storage container and insulation system for such containers |
US3224277A (en) * | 1962-02-16 | 1965-12-21 | Chicago Bridge & Iron Co | Environmental apparatus |
US3231451A (en) * | 1961-11-01 | 1966-01-25 | Yale Robert S | Radiation barrier panels |
US3238002A (en) * | 1963-06-26 | 1966-03-01 | Union Carbide Corp | Insulated shipping container for biological materials |
US3241702A (en) * | 1959-04-13 | 1966-03-22 | Union Carbide Corp | Insulation construction for cryogenic containers |
US3265236A (en) * | 1962-05-10 | 1966-08-09 | Union Carbide Corp | Thermal insulation |
US3271924A (en) * | 1963-09-03 | 1966-09-13 | Great Lakes Carbon Corp | Method of insulating cryogenic substances |
US3273740A (en) * | 1963-05-07 | 1966-09-20 | Tank for liquefied natural gas and other products stored at low temperatures | |
US3295709A (en) * | 1965-10-19 | 1967-01-03 | Coleman Co | Manufactured product having vacuum retaining plastic walls |
US3327778A (en) * | 1963-04-17 | 1967-06-27 | Jr Walter Frederick Lawrence | Low thermal emissivity shield |
US3357586A (en) * | 1963-09-03 | 1967-12-12 | Union Carbide Corp | Apparatus for conserving and dispensing valuable materials |
US3358867A (en) * | 1965-04-07 | 1967-12-19 | Union Carbide Corp | Double-walled thermally insulated container |
US3365897A (en) * | 1966-06-17 | 1968-01-30 | Nasa Usa | Cryogenic thermal insulation |
US3367530A (en) * | 1963-08-29 | 1968-02-06 | Union Carbide Corp | Thermal insulating structure |
US3380614A (en) * | 1962-11-30 | 1968-04-30 | L Air Liquide Sa Pour D Etude | Thermal insulation under vacuum |
US3390703A (en) * | 1966-09-30 | 1968-07-02 | Ryan Ind Inc | Multilayer insulating means |
US3397720A (en) * | 1964-10-23 | 1968-08-20 | Hitco | Multiple layer insulation for a cryogenic structure |
US3399800A (en) * | 1965-03-05 | 1968-09-03 | Sarl Gaz Transp | Tank for liquefied gas |
US3400849A (en) * | 1965-04-02 | 1968-09-10 | Service Nat Dit Gaz De France | Tanks for the storage and transport of cryogenic fluids |
US3415408A (en) * | 1965-09-14 | 1968-12-10 | North American Rockwell | Insulated tank |
US3481504A (en) * | 1968-07-05 | 1969-12-02 | Pittsburgh Des Moines Steel | Liquid storage container |
US3504820A (en) * | 1966-04-01 | 1970-04-07 | Union Carbide Corp | Spaced wall receptacle having wound composite insulation between the walls |
US3625896A (en) * | 1968-06-07 | 1971-12-07 | Air Reduction | Thermal insulating powder for low-temperature systems and methods of making same |
US3695050A (en) * | 1970-05-14 | 1972-10-03 | Bendix Corp | Liquid propellant storage tank |
US3930375A (en) * | 1972-11-27 | 1976-01-06 | Linde Aktiengesellschaft | Storage vessel for liquefied gas |
US3948295A (en) * | 1972-07-17 | 1976-04-06 | Summa Corporation | Insulation system |
US3967465A (en) * | 1973-07-04 | 1976-07-06 | U.S. Philips Corporation | Container for storing and transporting a liquefied gas |
US4037751A (en) * | 1973-04-18 | 1977-07-26 | Summa Corporation | Insulation system |
US4139024A (en) * | 1971-07-29 | 1979-02-13 | General Electric Company | Thermal insulation structure |
US4149388A (en) * | 1977-04-25 | 1979-04-17 | Schneider Richard N | Portable cryogenic power system for pneumatically operated tools |
US4168014A (en) * | 1976-11-12 | 1979-09-18 | Process Engineering, Inc. | Thermal insulation system for mobile cryogenic tanks |
US4287720A (en) * | 1979-11-21 | 1981-09-08 | Union Carbide Corporation | Cryogenic liquid container |
US4340405A (en) * | 1980-10-29 | 1982-07-20 | The United States Of America As Represented By The United States Department Of Energy | Apparatus and method for maintaining low temperatures about an object at a remote location |
EP0178338A1 (en) * | 1983-06-22 | 1986-04-23 | Union Carbide Corporation | Cryogenic storage container |
EP0178337A1 (en) * | 1983-06-22 | 1986-04-23 | Union Carbide Corporation | Shipping container for storing materials at cryogenic temperatures |
US4692363A (en) * | 1982-09-27 | 1987-09-08 | Brown, Boveri & Cie Ag | Thermal insulation |
US4777086A (en) * | 1987-10-26 | 1988-10-11 | Owens-Corning Fiberglas Corporation | Low density insulation product |
US4838034A (en) * | 1988-07-22 | 1989-06-13 | International Cryogenics, Inc. | Compressed-gas power source for portable gas-driven tools |
US5038693A (en) * | 1989-09-21 | 1991-08-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite flexible blanket insulation |
DE4016407C1 (da) * | 1990-05-22 | 1991-10-24 | Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De | |
US5142842A (en) * | 1989-12-13 | 1992-09-01 | W. R. Grace & Co.-Conn. | Method for making a film/foil panel |
US5277959A (en) * | 1989-09-21 | 1994-01-11 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Composite flexible blanket insulation |
US5496069A (en) * | 1991-09-20 | 1996-03-05 | Milligan; Frank | Heat management shielding device |
US5617900A (en) * | 1993-07-20 | 1997-04-08 | Davlyn Manufacturing Co., Inc. | Multilayer flexibility resilient thermal shielding sleeves |
US5811168A (en) * | 1996-01-19 | 1998-09-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Durable advanced flexible reusable surface insulation |
US6131396A (en) * | 1996-09-27 | 2000-10-17 | Siemens Aktiengesellschaft | Heat radiation shield, and dewar employing same |
WO2000074749A1 (en) | 1999-06-08 | 2000-12-14 | The Trustees Of Columbia University In The City Of New York | Intravascular systems for corporeal cooling |
EP1125078A1 (en) * | 1998-10-28 | 2001-08-22 | Mve, Inc. | Vacuum insulated pipe |
US6467642B2 (en) | 2000-12-29 | 2002-10-22 | Patrick L. Mullens | Cryogenic shipping container |
US20020168496A1 (en) * | 1999-12-28 | 2002-11-14 | Kiyotake Morimoto | Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body |
US6539726B2 (en) | 2001-05-08 | 2003-04-01 | R. Kevin Giesy | Vapor plug for cryogenic storage vessels |
US20050132745A1 (en) * | 2003-04-09 | 2005-06-23 | Haberbusch Mark S. | No-vent liquid hydrogen storage and delivery system |
EP1596121A1 (de) * | 2004-05-10 | 2005-11-16 | Linde Aktiengesellschaft | Thermischer Schild |
US6967051B1 (en) | 1999-04-29 | 2005-11-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal insulation systems |
EP1628078A1 (en) * | 2004-08-19 | 2006-02-22 | Samsung Electronics Co., Ltd. | Overheat steam cooker |
US20070095543A1 (en) * | 2005-11-01 | 2007-05-03 | Baker Hughes, Incorporated | Vacuum insulated dewar flask |
WO2007078463A1 (en) | 2005-12-22 | 2007-07-12 | The Trustees Of Columbia University In The City Of New York | Systems and methods for intravascular cooling |
EP1818595A1 (en) * | 2006-02-09 | 2007-08-15 | Nanopore, Inc. | Method for the manufacture of vacuum insulation products |
US20090004454A1 (en) * | 2007-06-29 | 2009-01-01 | Christopher Aumaugher | Thermal insulation barriers |
US20090218353A1 (en) * | 2005-10-07 | 2009-09-03 | Magna Steyr Fahrzeugtechnik Ag & Co Kg | Outer Tank For A Cryogenic Fuel |
US20090225517A1 (en) * | 2008-03-04 | 2009-09-10 | Nelson Karl M | Wireless transmission of process data from within pressure vessels |
US8252224B2 (en) | 2009-05-13 | 2012-08-28 | Camelbak Products, Llc | Methods of assembling multi-layered drink-containers |
USD732392S1 (en) | 2014-01-17 | 2015-06-23 | Camelbak Products, Llc | Sports bottle |
US20150300571A1 (en) * | 2014-04-16 | 2015-10-22 | Bayerische Motoren Werke Aktiengesellschaft | Method for Producing a Tank, In Particular a Motor Vehicle Tank |
WO2016087233A1 (de) * | 2014-12-03 | 2016-06-09 | Bayerische Motoren Werke Aktiengesellschaft | Kryogener druckbehälter |
EP2944858A4 (en) * | 2013-01-11 | 2017-02-15 | Kaneka Corporation | Heat insulating sheet, heat insulating material, heat insulating sheet manufacturing method, and heat insulating material manufacturing method |
EP2784367B1 (en) * | 2011-11-24 | 2017-04-19 | LG Hausys, Ltd. | Core member for vacuum insulation materials |
EP2534434A4 (en) * | 2010-02-08 | 2017-09-20 | Tokitae LLC | Temperature-stabilized storage systems |
EP2646739A4 (en) * | 2010-11-29 | 2018-01-10 | Tokitae LLC | Temperature-stabilized storage systems |
US10358270B1 (en) | 2018-05-31 | 2019-07-23 | Camelbak Products, Llc | Closure assemblies and drink containers including the same |
USD864658S1 (en) | 2018-05-31 | 2019-10-29 | Camelbak Products, Llc | Beverage container closure |
US10532862B2 (en) | 2018-06-19 | 2020-01-14 | Camelbak Products, Llc | Closure assemblies with distinct dispensing modes and drink containers including the same |
USD881639S1 (en) | 2018-06-19 | 2020-04-21 | Camelbak Products, Llc | Beverage container closure |
CN111409961A (zh) * | 2020-04-29 | 2020-07-14 | 上海国际超导科技有限公司 | 真空容器 |
US20230027875A1 (en) * | 2021-07-23 | 2023-01-26 | Whirlpool Corporation | Scrim layer on insulation |
US11959272B1 (en) | 2020-11-25 | 2024-04-16 | Herbert L. deNourie | Building construction |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1162854B (de) * | 1960-10-10 | 1964-02-13 | L Air Liquide Sa Pour L Expl D | Waermeisolierung fuer die Boeden zylindrischer Fluessiggasbehaelter |
GB942371A (en) * | 1961-06-21 | 1963-11-20 | Union Carbide Corp | Improvements in and relating to heat insulation |
NL291793A (da) * | 1962-04-24 | |||
GB1023842A (en) * | 1962-07-16 | 1966-03-30 | Loire Atel Forges | Device for limiting the transference of heat between two surfaces at different temperatures |
GB1013598A (en) * | 1964-01-02 | 1965-12-15 | Johns Manville | Expansion joints for conduits |
DE1268461B (de) * | 1965-05-18 | 1968-05-16 | Linde Ag | Waermeisoliermaterial und Verfahren zu seiner Herstellung |
DE1266078B (de) * | 1965-05-18 | 1968-04-11 | Linde Ag | Waermeisoliermaterial und Verfahren zu seiner Herstellung |
FR2419884A1 (fr) * | 1978-03-17 | 1979-10-12 | Lincrusta | Emballage de protection thermique |
US4700521A (en) * | 1986-04-28 | 1987-10-20 | Cover Craig H | Multilayered insulation batt for building structures |
DE3705440A1 (de) * | 1987-02-20 | 1988-09-01 | Man Technologie Gmbh | Waermeisolierung fuer hohe temperaturen |
US5108817A (en) * | 1990-04-30 | 1992-04-28 | Lydall, Inc. | Multi-component heat shield |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US218340A (en) * | 1879-08-05 | Improvement in coverings for steam-boilers | ||
US673073A (en) * | 1900-11-08 | 1901-04-30 | Gabriel A Bobrick | Receptacle for containing liquid air or other gases. |
GB143219A (en) * | 1916-11-08 | 1920-12-09 | Petits Fils Francois Wendel | Improvements in transport and storage vessels for liquid air or liquid gas |
US1424604A (en) * | 1919-09-27 | 1922-08-01 | Petits Fils Francois Wendel | Receptacle for liquid air |
US1626655A (en) * | 1923-08-30 | 1927-05-03 | Westinghouse Electric & Mfg Co | Heat-insulating wall |
FR712042A (fr) * | 1931-02-24 | 1931-09-23 | Soie De Verre | Corps isolant |
US1969621A (en) * | 1931-03-03 | 1934-08-07 | Munters Carl Georg | Heat insulation |
US1973880A (en) * | 1931-07-15 | 1934-09-18 | Reynolds Res Corp | Insulating unit |
US2104548A (en) * | 1931-07-03 | 1938-01-04 | Gen Motors Corp | Refrigerating apparatus |
US2159053A (en) * | 1935-11-29 | 1939-05-23 | Owens Corning Flberglas Corp | Insulating bat |
US2345204A (en) * | 1942-04-02 | 1944-03-28 | Mobile Refrigeration Inc | Interior chamber insulation |
US2396459A (en) * | 1939-12-07 | 1946-03-12 | Linde Air Prod Co | Insulated container for liquefied gases and the like |
US2485647A (en) * | 1945-10-26 | 1949-10-25 | Glenn H Norquist | Insulated container structure |
US2513749A (en) * | 1945-05-22 | 1950-07-04 | Air Prod Inc | Insulated container and method of insulating the same |
DE840786C (de) * | 1950-08-30 | 1952-06-05 | Ver Korkindustrie Ag | Kaelte-Isolierung aus mehrschichtigen Kunstharzschaum-Isolierplatten |
US2619804A (en) * | 1946-12-19 | 1952-12-02 | Electrolux Ab | Refrigerator having provisions for reducing heat transfer therein |
GB683855A (en) * | 1949-12-30 | 1952-12-03 | British Thomson Houston Co Ltd | Improvements in and relating to insulating structures |
US2643021A (en) * | 1950-05-24 | 1953-06-23 | Ezekiel Jacob J | Heat insulating container |
GB715174A (en) * | 1951-07-14 | 1954-09-08 | Gen Electric | Improvements in and relating to thermal insulation |
US2702458A (en) * | 1951-08-11 | 1955-02-22 | Douglas Aircraft Co Inc | Isothermal shipping container |
US2759522A (en) * | 1948-09-23 | 1956-08-21 | Far Ex Corp | Method of producing a light and heat radiation reflecting, fireproof material |
US2776776A (en) * | 1952-07-11 | 1957-01-08 | Gen Electric | Liquefied gas container |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE382355C (de) * | 1917-11-24 | 1923-10-02 | Wilhelm Weber | Transport- und Aufbewahrungsgefaess fuer fluessige Luft oder fluessige Gase |
DE371266C (de) * | 1919-10-05 | 1923-03-13 | Otto Berg Dipl Ing Dr | Hohler, zur Erzielung von Waermeisolation evakuierter Koerper |
DE548030C (de) * | 1926-07-04 | 1932-04-08 | E H Eduard Dyckerhoff Dr Ing | Mittel zur Waerme- und Kaelteisolierung |
DE479985C (de) * | 1926-12-27 | 1929-07-25 | Industriegasverwertung M B H G | Druckgefaess fuer schwer verfluessigbare Gase |
DE641395C (de) * | 1931-08-21 | 1937-01-29 | Termisk Isolation Ab | Waermeisolierstoff |
DE665319C (de) * | 1934-11-10 | 1938-09-22 | Termisk Isolation Ab | Verfahren zur Herstellung von Waermeisolationen mit einer doppelwandigen, hermetischgeschlossenen, von Metallplatten begrenzten Huelle |
DE885800C (de) * | 1948-10-02 | 1953-08-06 | Ver Korkindustrie Ag | Verfahren zur Herstellung von Isolierkoerpern aus Folien |
DE833052C (de) * | 1950-01-17 | 1952-03-03 | Linde Eismasch Ag | Verfahren zur Isolierung von Speicherbehältern mitDoppelmantel. |
FR1070447A (fr) * | 1951-07-14 | 1954-07-26 | Thomson Houston Comp Francaise | Perfectionnements aux isolants thermiques fonctionnant sous vide |
-
0
- BE BE559232D patent/BE559232A/xx unknown
-
1956
- 1956-07-16 US US597947A patent/US3007596A/en not_active Expired - Lifetime
-
1957
- 1957-07-01 GB GB20748/57A patent/GB853585A/en not_active Expired
- 1957-07-15 FR FR1178908D patent/FR1178908A/fr not_active Expired
- 1957-07-16 DE DEU4645A patent/DE1214711B/de active Pending
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US218340A (en) * | 1879-08-05 | Improvement in coverings for steam-boilers | ||
US673073A (en) * | 1900-11-08 | 1901-04-30 | Gabriel A Bobrick | Receptacle for containing liquid air or other gases. |
GB143219A (en) * | 1916-11-08 | 1920-12-09 | Petits Fils Francois Wendel | Improvements in transport and storage vessels for liquid air or liquid gas |
US1424604A (en) * | 1919-09-27 | 1922-08-01 | Petits Fils Francois Wendel | Receptacle for liquid air |
US1626655A (en) * | 1923-08-30 | 1927-05-03 | Westinghouse Electric & Mfg Co | Heat-insulating wall |
FR712042A (fr) * | 1931-02-24 | 1931-09-23 | Soie De Verre | Corps isolant |
US1969621A (en) * | 1931-03-03 | 1934-08-07 | Munters Carl Georg | Heat insulation |
US2104548A (en) * | 1931-07-03 | 1938-01-04 | Gen Motors Corp | Refrigerating apparatus |
US1973880A (en) * | 1931-07-15 | 1934-09-18 | Reynolds Res Corp | Insulating unit |
US2159053A (en) * | 1935-11-29 | 1939-05-23 | Owens Corning Flberglas Corp | Insulating bat |
US2396459A (en) * | 1939-12-07 | 1946-03-12 | Linde Air Prod Co | Insulated container for liquefied gases and the like |
US2345204A (en) * | 1942-04-02 | 1944-03-28 | Mobile Refrigeration Inc | Interior chamber insulation |
US2513749A (en) * | 1945-05-22 | 1950-07-04 | Air Prod Inc | Insulated container and method of insulating the same |
US2485647A (en) * | 1945-10-26 | 1949-10-25 | Glenn H Norquist | Insulated container structure |
US2619804A (en) * | 1946-12-19 | 1952-12-02 | Electrolux Ab | Refrigerator having provisions for reducing heat transfer therein |
US2759522A (en) * | 1948-09-23 | 1956-08-21 | Far Ex Corp | Method of producing a light and heat radiation reflecting, fireproof material |
GB683855A (en) * | 1949-12-30 | 1952-12-03 | British Thomson Houston Co Ltd | Improvements in and relating to insulating structures |
US2643021A (en) * | 1950-05-24 | 1953-06-23 | Ezekiel Jacob J | Heat insulating container |
DE840786C (de) * | 1950-08-30 | 1952-06-05 | Ver Korkindustrie Ag | Kaelte-Isolierung aus mehrschichtigen Kunstharzschaum-Isolierplatten |
GB715174A (en) * | 1951-07-14 | 1954-09-08 | Gen Electric | Improvements in and relating to thermal insulation |
US2702458A (en) * | 1951-08-11 | 1955-02-22 | Douglas Aircraft Co Inc | Isothermal shipping container |
US2776776A (en) * | 1952-07-11 | 1957-01-08 | Gen Electric | Liquefied gas container |
Cited By (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3147878A (en) * | 1958-09-22 | 1964-09-08 | Chicago Bridge & Iron Co | Cryogenic storage tank |
US3241702A (en) * | 1959-04-13 | 1966-03-22 | Union Carbide Corp | Insulation construction for cryogenic containers |
US3108706A (en) * | 1959-08-31 | 1963-10-29 | Union Carbide Corp | Apparatus for improving vacuum insulation |
US3118194A (en) * | 1961-02-01 | 1964-01-21 | Service Nat Dit Gaz De France | Method of insulating tanks for storing or transporting low-temperature liquids |
US3130561A (en) * | 1961-06-30 | 1964-04-28 | Nat Res Corp | Insulation device |
US3231451A (en) * | 1961-11-01 | 1966-01-25 | Yale Robert S | Radiation barrier panels |
US3212320A (en) * | 1962-02-02 | 1965-10-19 | Ametek Inc | Tensile testing cryostat |
US3224277A (en) * | 1962-02-16 | 1965-12-21 | Chicago Bridge & Iron Co | Environmental apparatus |
US3137143A (en) * | 1962-04-23 | 1964-06-16 | Robert B Jacobs | Condensing vacuum insulation |
US3265236A (en) * | 1962-05-10 | 1966-08-09 | Union Carbide Corp | Thermal insulation |
US3133422A (en) * | 1962-05-31 | 1964-05-19 | Union Carbide Corp | Insulation construction |
US3199715A (en) * | 1962-07-20 | 1965-08-10 | Union Carbide Corp | Insulation construction |
US3380614A (en) * | 1962-11-30 | 1968-04-30 | L Air Liquide Sa Pour D Etude | Thermal insulation under vacuum |
US3327778A (en) * | 1963-04-17 | 1967-06-27 | Jr Walter Frederick Lawrence | Low thermal emissivity shield |
US3273740A (en) * | 1963-05-07 | 1966-09-20 | Tank for liquefied natural gas and other products stored at low temperatures | |
US3238002A (en) * | 1963-06-26 | 1966-03-01 | Union Carbide Corp | Insulated shipping container for biological materials |
US3367530A (en) * | 1963-08-29 | 1968-02-06 | Union Carbide Corp | Thermal insulating structure |
US3271924A (en) * | 1963-09-03 | 1966-09-13 | Great Lakes Carbon Corp | Method of insulating cryogenic substances |
US3357586A (en) * | 1963-09-03 | 1967-12-12 | Union Carbide Corp | Apparatus for conserving and dispensing valuable materials |
US3217504A (en) * | 1963-09-16 | 1965-11-16 | Cryogenic Eng Co | Gas refrigerated storage container and insulation system for such containers |
US3397720A (en) * | 1964-10-23 | 1968-08-20 | Hitco | Multiple layer insulation for a cryogenic structure |
US3399800A (en) * | 1965-03-05 | 1968-09-03 | Sarl Gaz Transp | Tank for liquefied gas |
US3400849A (en) * | 1965-04-02 | 1968-09-10 | Service Nat Dit Gaz De France | Tanks for the storage and transport of cryogenic fluids |
US3358867A (en) * | 1965-04-07 | 1967-12-19 | Union Carbide Corp | Double-walled thermally insulated container |
US3415408A (en) * | 1965-09-14 | 1968-12-10 | North American Rockwell | Insulated tank |
US3295709A (en) * | 1965-10-19 | 1967-01-03 | Coleman Co | Manufactured product having vacuum retaining plastic walls |
US3504820A (en) * | 1966-04-01 | 1970-04-07 | Union Carbide Corp | Spaced wall receptacle having wound composite insulation between the walls |
US3365897A (en) * | 1966-06-17 | 1968-01-30 | Nasa Usa | Cryogenic thermal insulation |
US3390703A (en) * | 1966-09-30 | 1968-07-02 | Ryan Ind Inc | Multilayer insulating means |
US3625896A (en) * | 1968-06-07 | 1971-12-07 | Air Reduction | Thermal insulating powder for low-temperature systems and methods of making same |
US3481504A (en) * | 1968-07-05 | 1969-12-02 | Pittsburgh Des Moines Steel | Liquid storage container |
US3695050A (en) * | 1970-05-14 | 1972-10-03 | Bendix Corp | Liquid propellant storage tank |
US4139024A (en) * | 1971-07-29 | 1979-02-13 | General Electric Company | Thermal insulation structure |
US3948295A (en) * | 1972-07-17 | 1976-04-06 | Summa Corporation | Insulation system |
US3930375A (en) * | 1972-11-27 | 1976-01-06 | Linde Aktiengesellschaft | Storage vessel for liquefied gas |
US4037751A (en) * | 1973-04-18 | 1977-07-26 | Summa Corporation | Insulation system |
US3967465A (en) * | 1973-07-04 | 1976-07-06 | U.S. Philips Corporation | Container for storing and transporting a liquefied gas |
US4168014A (en) * | 1976-11-12 | 1979-09-18 | Process Engineering, Inc. | Thermal insulation system for mobile cryogenic tanks |
US4149388A (en) * | 1977-04-25 | 1979-04-17 | Schneider Richard N | Portable cryogenic power system for pneumatically operated tools |
US4287720A (en) * | 1979-11-21 | 1981-09-08 | Union Carbide Corporation | Cryogenic liquid container |
US4340405A (en) * | 1980-10-29 | 1982-07-20 | The United States Of America As Represented By The United States Department Of Energy | Apparatus and method for maintaining low temperatures about an object at a remote location |
US4692363A (en) * | 1982-09-27 | 1987-09-08 | Brown, Boveri & Cie Ag | Thermal insulation |
EP0178337A1 (en) * | 1983-06-22 | 1986-04-23 | Union Carbide Corporation | Shipping container for storing materials at cryogenic temperatures |
EP0178338A1 (en) * | 1983-06-22 | 1986-04-23 | Union Carbide Corporation | Cryogenic storage container |
US4777086A (en) * | 1987-10-26 | 1988-10-11 | Owens-Corning Fiberglas Corporation | Low density insulation product |
US4838034A (en) * | 1988-07-22 | 1989-06-13 | International Cryogenics, Inc. | Compressed-gas power source for portable gas-driven tools |
US5038693A (en) * | 1989-09-21 | 1991-08-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite flexible blanket insulation |
US5277959A (en) * | 1989-09-21 | 1994-01-11 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Composite flexible blanket insulation |
US5142842A (en) * | 1989-12-13 | 1992-09-01 | W. R. Grace & Co.-Conn. | Method for making a film/foil panel |
US5246759A (en) * | 1990-05-22 | 1993-09-21 | Messerschmitt-Bolkow-Blohm Gmbh | Heat insulating system |
DE4016407C1 (da) * | 1990-05-22 | 1991-10-24 | Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De | |
US5496069A (en) * | 1991-09-20 | 1996-03-05 | Milligan; Frank | Heat management shielding device |
US5617900A (en) * | 1993-07-20 | 1997-04-08 | Davlyn Manufacturing Co., Inc. | Multilayer flexibility resilient thermal shielding sleeves |
US5811168A (en) * | 1996-01-19 | 1998-09-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Durable advanced flexible reusable surface insulation |
US6131396A (en) * | 1996-09-27 | 2000-10-17 | Siemens Aktiengesellschaft | Heat radiation shield, and dewar employing same |
EP1125078A1 (en) * | 1998-10-28 | 2001-08-22 | Mve, Inc. | Vacuum insulated pipe |
EP1125078A4 (en) * | 1998-10-28 | 2003-08-13 | Chart Inc | VACUUM-INSULATED PIPELINE |
US6967051B1 (en) | 1999-04-29 | 2005-11-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thermal insulation systems |
WO2000074749A1 (en) | 1999-06-08 | 2000-12-14 | The Trustees Of Columbia University In The City Of New York | Intravascular systems for corporeal cooling |
US20020168496A1 (en) * | 1999-12-28 | 2002-11-14 | Kiyotake Morimoto | Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body |
US6651444B2 (en) * | 1999-12-28 | 2003-11-25 | Nisshinbo Industries, Inc. | Method of deforming vacuum heat insulation material, method of fixing vacuum heat insulation material, refrigeration, cold storage vessel, and heat insulation box body |
US6467642B2 (en) | 2000-12-29 | 2002-10-22 | Patrick L. Mullens | Cryogenic shipping container |
US6539726B2 (en) | 2001-05-08 | 2003-04-01 | R. Kevin Giesy | Vapor plug for cryogenic storage vessels |
US20050132745A1 (en) * | 2003-04-09 | 2005-06-23 | Haberbusch Mark S. | No-vent liquid hydrogen storage and delivery system |
US7434407B2 (en) * | 2003-04-09 | 2008-10-14 | Sierra Lobo, Inc. | No-vent liquid hydrogen storage and delivery system |
US20080314050A1 (en) * | 2003-04-09 | 2008-12-25 | Sierra Lobo, Inc. | No-vent liquid hydrogen storage and delivery system |
EP1596121A1 (de) * | 2004-05-10 | 2005-11-16 | Linde Aktiengesellschaft | Thermischer Schild |
US20060084332A1 (en) * | 2004-05-10 | 2006-04-20 | Linde Aktiengesellschaft | Heat shield |
EP1628078A1 (en) * | 2004-08-19 | 2006-02-22 | Samsung Electronics Co., Ltd. | Overheat steam cooker |
US20060037598A1 (en) * | 2004-08-19 | 2006-02-23 | Samsung Electronics Co., Ltd. | Overheat steam cooker |
US8794476B2 (en) * | 2005-10-07 | 2014-08-05 | Magna Steyr Fahrzeugtechnik Ag & Co. Kg | Outer tank for cryogenic fuel |
US20090218353A1 (en) * | 2005-10-07 | 2009-09-03 | Magna Steyr Fahrzeugtechnik Ag & Co Kg | Outer Tank For A Cryogenic Fuel |
US20070095543A1 (en) * | 2005-11-01 | 2007-05-03 | Baker Hughes, Incorporated | Vacuum insulated dewar flask |
US7921913B2 (en) * | 2005-11-01 | 2011-04-12 | Baker Hughes Incorporated | Vacuum insulated dewar flask |
US20090018504A1 (en) * | 2005-12-22 | 2009-01-15 | John Pile-Spellman | Systems and methods for intravascular cooling |
US8343097B2 (en) | 2005-12-22 | 2013-01-01 | Hybernia Medical Llc | Systems and methods for intravascular cooling |
WO2007078463A1 (en) | 2005-12-22 | 2007-07-12 | The Trustees Of Columbia University In The City Of New York | Systems and methods for intravascular cooling |
US20080014435A1 (en) * | 2006-02-09 | 2008-01-17 | Nanopore, Inc. | Method for the manufacture of vacuum insulation products |
EP1818595A1 (en) * | 2006-02-09 | 2007-08-15 | Nanopore, Inc. | Method for the manufacture of vacuum insulation products |
US20090004454A1 (en) * | 2007-06-29 | 2009-01-01 | Christopher Aumaugher | Thermal insulation barriers |
US7794805B2 (en) | 2007-06-29 | 2010-09-14 | Schlumberger Technology Corporation | Thermal insulation barriers |
US8808646B2 (en) * | 2008-03-04 | 2014-08-19 | The Boeing Company | Wireless transmission of process data from within pressure vessels |
US20090225517A1 (en) * | 2008-03-04 | 2009-09-10 | Nelson Karl M | Wireless transmission of process data from within pressure vessels |
US8252224B2 (en) | 2009-05-13 | 2012-08-28 | Camelbak Products, Llc | Methods of assembling multi-layered drink-containers |
EP2534434A4 (en) * | 2010-02-08 | 2017-09-20 | Tokitae LLC | Temperature-stabilized storage systems |
EP2646739A4 (en) * | 2010-11-29 | 2018-01-10 | Tokitae LLC | Temperature-stabilized storage systems |
EP2784367B1 (en) * | 2011-11-24 | 2017-04-19 | LG Hausys, Ltd. | Core member for vacuum insulation materials |
EP2944858A4 (en) * | 2013-01-11 | 2017-02-15 | Kaneka Corporation | Heat insulating sheet, heat insulating material, heat insulating sheet manufacturing method, and heat insulating material manufacturing method |
USD732392S1 (en) | 2014-01-17 | 2015-06-23 | Camelbak Products, Llc | Sports bottle |
US20150300571A1 (en) * | 2014-04-16 | 2015-10-22 | Bayerische Motoren Werke Aktiengesellschaft | Method for Producing a Tank, In Particular a Motor Vehicle Tank |
US9879826B2 (en) * | 2014-04-16 | 2018-01-30 | Bayerische Motoren Werke Aktiengesellschaft | Method for producing a tank, in particular a motor vehicle tank |
CN106852167A (zh) * | 2014-12-03 | 2017-06-13 | 宝马股份公司 | 低温压力容器 |
WO2016087233A1 (de) * | 2014-12-03 | 2016-06-09 | Bayerische Motoren Werke Aktiengesellschaft | Kryogener druckbehälter |
CN106852167B (zh) * | 2014-12-03 | 2020-12-01 | 宝马股份公司 | 低温压力容器 |
US10900612B2 (en) | 2014-12-03 | 2021-01-26 | Bayerische Motoren Werke Aktiengesellschaft | Cryogenic pressure container |
US10358270B1 (en) | 2018-05-31 | 2019-07-23 | Camelbak Products, Llc | Closure assemblies and drink containers including the same |
USD864658S1 (en) | 2018-05-31 | 2019-10-29 | Camelbak Products, Llc | Beverage container closure |
USD876895S1 (en) | 2018-05-31 | 2020-03-03 | Camelbak Products, Llc | Beverage container |
US10532862B2 (en) | 2018-06-19 | 2020-01-14 | Camelbak Products, Llc | Closure assemblies with distinct dispensing modes and drink containers including the same |
USD881639S1 (en) | 2018-06-19 | 2020-04-21 | Camelbak Products, Llc | Beverage container closure |
CN111409961A (zh) * | 2020-04-29 | 2020-07-14 | 上海国际超导科技有限公司 | 真空容器 |
US11959272B1 (en) | 2020-11-25 | 2024-04-16 | Herbert L. deNourie | Building construction |
US20230027875A1 (en) * | 2021-07-23 | 2023-01-26 | Whirlpool Corporation | Scrim layer on insulation |
Also Published As
Publication number | Publication date |
---|---|
BE559232A (da) | |
DE1214711B (de) | 1966-04-21 |
GB853585A (en) | 1960-11-09 |
FR1178908A (fr) | 1959-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3007596A (en) | Thermal insulation | |
US3009601A (en) | Thermal insulation | |
US3009600A (en) | Thermal insulation | |
US3265236A (en) | Thermal insulation | |
US3240234A (en) | Hose for low-temperature liquids | |
US3133422A (en) | Insulation construction | |
US3179549A (en) | Thermal insulating panel and method of making the same | |
US3139206A (en) | Thermal insulation | |
US4055268A (en) | Cryogenic storage container | |
US3397720A (en) | Multiple layer insulation for a cryogenic structure | |
US4394929A (en) | Cryogenic liquid storage container having an improved access conduit | |
US3149742A (en) | Vacuum device | |
US4154363A (en) | Cryogenic storage container and manufacture | |
US3289423A (en) | Load support means for thermally insulated containers | |
US3152033A (en) | Insulating assembly | |
US3066222A (en) | Infra-red detection apparatus | |
US2776776A (en) | Liquefied gas container | |
US3018016A (en) | Vacuum device | |
US3207354A (en) | Double-walled container | |
US3514006A (en) | Vacuum insulated vessels | |
US3698588A (en) | Thermally insulated device | |
US3147877A (en) | Liquefied gas container | |
US5368184A (en) | Insulation for vessels carrying cryogenic liquids | |
US3101862A (en) | Container construction using load carrying insulation | |
US3134237A (en) | Container for low-boiling liquefied gases |