US3399800A - Tank for liquefied gas - Google Patents

Tank for liquefied gas Download PDF

Info

Publication number
US3399800A
US3399800A US527254A US52725466A US3399800A US 3399800 A US3399800 A US 3399800A US 527254 A US527254 A US 527254A US 52725466 A US52725466 A US 52725466A US 3399800 A US3399800 A US 3399800A
Authority
US
United States
Prior art keywords
casing
tight
fluid
tank
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US527254A
Inventor
Gilles Auguste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A RESPONSABILITE DITE GAZ-TRANSPORT Ltee Ste
SARL GAZ TRANSP
Original Assignee
SARL GAZ TRANSP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SARL GAZ TRANSP filed Critical SARL GAZ TRANSP
Application granted granted Critical
Publication of US3399800A publication Critical patent/US3399800A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • E04C3/07Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web at least partly of bent or otherwise deformed strip- or sheet-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B12/00Jointing of furniture or the like, e.g. hidden from exterior
    • F16B12/40Joints for furniture tubing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic

Definitions

  • An integral tank structure for ships carrying liquefied gas comprising in succession an inner hull, an outer insulating casing, an outer fluid tight casing, an inner insulating casing and an inner fluid tight casing, the two fluid tight casings being made of thin metal having a low coefficient of expansion, reinforced by transverse frames, and supported at their corners by rigid metallic supports projecting through the insulating casings.
  • This invention relates to the transportation of liquefied gas, and particularly liquefied natural gas having a high methane content, by sea, and to its storage on land.
  • the tanks be made integral with the ship itself by covering the walls of the compartments of the ship with fluid and heat tight sheathing, generally consisting of two layers, but not in itself rigid, so that the hydrostatic pressures are in fact supported solely by the framework of the ship itself.
  • the principal difiiculty to be overcome in the construction and use of such integral tanks stems from the substantial contractions which result when the temperature of the walls of the tank decreases from the ambient temperature to that of the liquefied gas (-160 C. in the case of methane). To reduce this contraction it is conventional to utilize corrugations running at right angles to each other, which requires an excess of metal.
  • the metals used are ordinarily stainless steel or aluminum alloys, which are not fragile at low temperatures. In view of their complex shapes it is difficult to provide means for supporting them at all ranges of temperature.
  • the principal object of the present invention consists in using a thin smooth wall of an alloy containing 26% nickel, 0.25% carbon and 0.60% manganese, balance substantially all iron, sold under the trademark Invar which is supported at all points by insulatin means which is as rigid as possible.
  • Invar which is supported at all points by insulatin means which is as rigid as possible.
  • the invention seeks to avoid these difiiculties by so constructing the dihedral and trihedral corners of the transverse walls of the ship that the inevitable contractions will not cause any distortion thereof.
  • the object of the present invention is accordingly to provide a new fluid-tight isothermal tank integrated into the framework of a ship between two transverse bulkheads therein and comprising two successive fluid-tight primary and secondary casings, commonly referred to by the US. Coast Guard and Marine Insurers as primary and secondary barriers. These cases are alternated with "Ice two primary and secondary isothermal insulatin casings, said tank being characterized by the fact that the primary and secondary fluid-tight casings terminate near the transverse bulkheads of the ship in a rigid polygonal ring made of strips of the same metal substantially thicker and stronger than the sheets forming the fluidtight casings.
  • planks which may comprise several sections free to contract, is connected to a corner of the framework of the ship by supporting hangers suitably spaced and attached directly to this structure in the case of the dihedral angles of the secondary casing, and to supporting chairs interconnected by rods extending through fluid-tight seals in the secondary casing in the case of the dihedral angles of the primary casing.
  • each corner of the rigid ring are two trihedral corner members made of a special steel, one of which is fastened to, the secondary casin and connected directly to the inner hull or double bulkhead by three connecting members, preferably consisting of three stainless steel tubes, and the other of which is fastened to the primary casing and connected to the first corner member by three metallic connecting tubes or rods.
  • the strips forming the dihedral angles of the ring are rigidly welded to the trihedral corner members for the two casings, and the corresponding planks are fastened within each of the corner members by screws spaced from these welds. The screws are covered over after insertion and the rigid ring formed by the dihedral and trihedral corner members are built while strain free at normal temperatures so as to be under elastic strain at the temperature at which the tank holds liquid gas.
  • FIG. 1 is a partial horizontal cross-section showing one of the dihedral corners
  • FIG. 2 is a partial vertical section taken near a transverse bulkhead to show in detail a trihedral corner
  • FIG. 3 is a horizontal section taken along the line IIIIII of FIG. 2.
  • the starting point is naturally a ship comprisingan outer hull and its essential supporting framework, and an inner hull, the framework of the boat being positioned between the inner and outer hulls.
  • the inner hull may have the same general contour as the outer hull, but be more polygonal in character, usually octagonal, that is to say, like a rectangle with four beveled corners.
  • the ship also comp-rises, from how to stern, a series of compartments for transporting liquid gas and separated each from the other by double bulkheads comprising two parallel walls spaced by the necessary supporting framework.
  • an integral tank comprising two fluid-tight casings alternating with two heat insulating casings.
  • the primary fluid-tight casing consisting of the thin plates 37 which are made of a metal which has a low coefiicient of expansion and connected together by means of their flanges 40; the heat insulating casing consisting of the insulating boxes 14, the secondary fluid-tight casing consisting of .plates 8 connected at their flanges 9, the secondary heat insulating casing consisting of the insulating boxes 1, the inner hull 3, the framework of the ship, and finally the outer hull (not shown).
  • transverse walls of the ship that is to say, those positioned against the double bulkheads 4, are made in the same way as the lateral walls and are each encircled by a rigid ring.
  • Two of the walls comprising the secondary fluid-tight casing 8 are connected at a dihedral angle in the following manner:
  • Two thick planks 43 and 44 positioned as shown in FIG. 1 are each supported as required by chairs made of two iron plates 45 and 46 welded at right angles to each other and resting on a thick metal bracket 47 which lies in a plane parallel to that of FIG. 1.
  • This bracket 47 is welded to both the plates 45 and 46 and the walls 3 and 4 of the double bulkhead.
  • the planks 43 and 44 are connected to the plates 45 and 46 by means of screws (not shown) which extend perpendicularly into the plank, but are not so tight as to eliminate all play longitudinally of the planks.
  • plank 43 in alignment with the casing 8 parallel to the wall 4 of the double bulkhead is first attached, and then covered by a strip 48 of metal having a high nickel content, preferably identical to that from which the plates forming the casing 8 are made, but substantially thicker, for example, 1.5 mm.
  • This strip has an edge 49 bent out at a right angle and attached to the plank 43 by screws 50 while its other edge is attached thereto by means of screws 51.
  • plank 44 is put in place, followed by another strip 52 and analogous to the strip 48, but having two flanges, one, 53, attached by means of screws 54, While the other, 55, abuts the strip 48 to which it is welded in situ after inserting between the strip 48 and the plank a strip of asbestos, not shown.
  • the strip 48 is then connected to the edge of the secondary casing 8 by means of a cover-joint 56, Welded at both edges.
  • the strip 52 is connected to the secondary casing by means of a cover-joint 57.
  • Two rods 58 welded to the chairs formed by the members 45, 46 and 47, extend through fluid-tight seals in the cover-joints 56 and 57, using sealing rings, not shown, and support a second chair comprising two rectangular steel plates 59 and 60 welded together at right angles to each other.
  • This second chair supports two planks '61 and 62 which serve the same purpose with respect to the primary casing that the planks 43 and 44 serve with respect to the secondary casing.
  • Metallic strips 63 and 64 like the strips 48 and 52, are fastened in like manner to each other and to the planks 61 and 62.
  • the cover-joints 65 and 66 connect the strips 63 and 64 to the primary casing in the same way as the said coverjoints 56 and 57.
  • each of the rigid rings hereinbefore mentioned it is necessary to connect the ends of each of the angle members formed by the assembly of the strips 48 and 52 or 63 and 64 together to form the corners of the ring, which is polygonal, and generally octagonal.
  • Each trihedral angle is positioned at the intersection of three planes, two of which are parallel to the longitudinal axis of the ship, while the other is perpendicular thereto.
  • connections are made by means of trihedral metallic corner members, made of a special steel, for example a steel containing 9% nickel, thicker than the previously mentioned strips, about 8 thick, for example.
  • the corner member 67 formed from three fiat plates welded to each other, is connected to the hull of the ship (either the inner hull or the double bulkhead) by connecting members 68 which must be strong enough to resist compression, tension, and buckling, yet have a small section for the transmission of heat. For this reason, recourse is preferably had to sections of stainless steel tubing having a large diameter and thin walls.
  • planks 43 and 44 are attached to this corner member 67 by means of screws 69 passing through suitable holes in said corner member, and the strips 48 and 52 have their ends 70 welded to this corner member so as to cover the heads of the screws 69 and insure overall impermeability.
  • the cover-joints 56 and 57 are also welded to the three plates forming the corner member so as to ensure the impermeability of the secondary casing, as well as the transfer of those forces which act directly in the direction of the plane of the transverse wall of the tank, and in the direction of the dihedral anglemembers parallel thereto.
  • This embodiment thus resists any tendency toward free play resulting from contractions by mechanically tensioning the entire ring formed by the dihedral corner members. It will also be seen that the effects of tension longitudinally of the dihedral corners is absorbed by the rigidity of the planks 43 and 44 and referred thereby to the supporting chairs.
  • the other trihedral corner member 71 serves in a manner analagous to that served by the trihedral corner member 67, but on a smaller scale, being supported by three rods 72 fixed to the corner member 67.
  • the planks '61 and 62 are fastened in like manner to this trihedral corner member by means of screws 73, the heads of which are covered by the ends of the strips 63 and 64. These strips, aswell as the cover-joints 65 and 66 are welded in a fluid-tight manner directly to the trihedral corner member 71.
  • the method of construction and the manner of functioning under tension is naturally the same.
  • each of the primary and secondary fluid-tight casings of the tank comprises at each end an inflexible transverse wall stretched on a rigid ring which cannot itself be deformed and which is supported at its eight corners as Well as by a certain number of intermediate chairs, so that this transverse wall does not undergo any deformation, but only a variation in elastic strain.
  • the improved fluid-tight tank for holding liquefied gases which comprises thin inner and outer fluid-tight casings positioned within said inner hull and made of a metal having a low coefficient of expansion, inner and outer insulating casings comprising a material which is a poor conductor of heat, said inner insulating casing being positioned between said fluidtight casings and said outer insulating casing being positioned between the outer fluid-tight casing and the inner hull and bulkhead, said casings having polygonal sides extending transversely of said ship and longitudinal sides connected to said transverse sides to form trihedral corners at the connections between each polygonal side and two adjacent longitudinal sides, a rigid frame peripherally supporting each polygonal side of each fluid-tight casing, rigid metallic support means extending from points near each trihedral corner of the outer fluid-tight casing through the outer insulating casing to said inner hull and to a transverse bulkhead, and additional
  • said rigid metallic support means are thin walled tubes of stainless steel having a cross-section which is large in proportion to the thickness of the tube walls.
  • peripheral supporting frames comprise wooden planks.
  • each of said peripheral supporting frames comprises L-section metallic members on which said planks are seated, and comprising supporting rods extending between the L-section members associated with the inner fluid-tight casing and those associated with the outer fluid-tight casing whereby the former L-section members are supported by the latter.

Description

Sept. 3, 1968 A. GILLES 3,399,800
' TANK FOR LIQUEFIED GAS Filed Feb. 14, 1966 3 Sheets-Sheet 1 37 -e -5 66 E 5 62 s J57 s5 s5 4' 37 40 i Z 61 i A- h 54 58 Q 50 I I 1 44 2 59 E Q 46 55 4s 5s 1 f I 1 47 4s 45 g l l g 1 j/ Invencor A. G \LLES ABwmAQc S A. GILLES TANK FOR LIQUEFIE ID GAS Sept. 3, 1968 3 Sheets-Shae; 2
Filed Feb. 14, 1966 all! IhVen-br A. Glues EZIuJJMLLMJSQLJ;
Sept. 3, 1968 A. GILLES 3,399,800
TANK FOR LIQUEFIED GAS Filed Feb. 14, 1966 Y s Sheets-Sheet s FIG.3
Q l/ E lnveh-l'or A. G ILLE$ Aihrmv United States Patent ABSTRACT OF THE DISCLOSURE An integral tank structure for ships carrying liquefied gas comprising in succession an inner hull, an outer insulating casing, an outer fluid tight casing, an inner insulating casing and an inner fluid tight casing, the two fluid tight casings being made of thin metal having a low coefficient of expansion, reinforced by transverse frames, and supported at their corners by rigid metallic supports projecting through the insulating casings.
This invention relates to the transportation of liquefied gas, and particularly liquefied natural gas having a high methane content, by sea, and to its storage on land. In order to increase the capacity of ships designed for such transport and reduce the cost of construction of isothermal tanks, it has already been suggested that the tanks be made integral with the ship itself by covering the walls of the compartments of the ship with fluid and heat tight sheathing, generally consisting of two layers, but not in itself rigid, so that the hydrostatic pressures are in fact supported solely by the framework of the ship itself.
The principal difiiculty to be overcome in the construction and use of such integral tanks stems from the substantial contractions which result when the temperature of the walls of the tank decreases from the ambient temperature to that of the liquefied gas (-160 C. in the case of methane). To reduce this contraction it is conventional to utilize corrugations running at right angles to each other, which requires an excess of metal. The metals used are ordinarily stainless steel or aluminum alloys, which are not fragile at low temperatures. In view of their complex shapes it is difficult to provide means for supporting them at all ranges of temperature. On the contrary, the principal object of the present invention consists in using a thin smooth wall of an alloy containing 26% nickel, 0.25% carbon and 0.60% manganese, balance substantially all iron, sold under the trademark Invar which is supported at all points by insulatin means which is as rigid as possible. However, it is impossible to avoid any contraction whatsoever, even with this special steel, because the tanks are so large, or to avoid the flexing movements of the framework of the ship caused by the surges of the sea, which flexing movements necessarily affect the walls of the tank.
The effect of all these deformations is concentrated at the dihedral corners, since the tank is usually polygonal for convenience in construction, and especially at trihedral corners which are subjected to alternating strains which tend to destroy the fluid-tight sheathing.
The invention seeks to avoid these difiiculties by so constructing the dihedral and trihedral corners of the transverse walls of the ship that the inevitable contractions will not cause any distortion thereof.
The object of the present invention is accordingly to provide a new fluid-tight isothermal tank integrated into the framework of a ship between two transverse bulkheads therein and comprising two successive fluid-tight primary and secondary casings, commonly referred to by the US. Coast Guard and Marine Insurers as primary and secondary barriers. These cases are alternated with "Ice two primary and secondary isothermal insulatin casings, said tank being characterized by the fact that the primary and secondary fluid-tight casings terminate near the transverse bulkheads of the ship in a rigid polygonal ring made of strips of the same metal substantially thicker and stronger than the sheets forming the fluidtight casings. One of these strips is positioned in alignment with the transverse bulkhead and screwed along its two edges onto planks, while the other st-rip completing the dihedral angle is welded along one of its edges perpendicular to the said one strip, between the two points of attach-ment thereof, and along its other edge to another plank. The assembly formed by these planks which may comprise several sections free to contract, is connected to a corner of the framework of the ship by supporting hangers suitably spaced and attached directly to this structure in the case of the dihedral angles of the secondary casing, and to supporting chairs interconnected by rods extending through fluid-tight seals in the secondary casing in the case of the dihedral angles of the primary casing. At each corner of the rigid ring are two trihedral corner members made of a special steel, one of which is fastened to, the secondary casin and connected directly to the inner hull or double bulkhead by three connecting members, preferably consisting of three stainless steel tubes, and the other of which is fastened to the primary casing and connected to the first corner member by three metallic connecting tubes or rods. The strips forming the dihedral angles of the ring are rigidly welded to the trihedral corner members for the two casings, and the corresponding planks are fastened within each of the corner members by screws spaced from these welds. The screws are covered over after insertion and the rigid ring formed by the dihedral and trihedral corner members are built while strain free at normal temperatures so as to be under elastic strain at the temperature at which the tank holds liquid gas.
In order that the invention may be clearly understood, one representative embodiment thereof will now be described, purely by way of illustration, in connection with the annexed drawings, in which:
FIG. 1 is a partial horizontal cross-section showing one of the dihedral corners;
FIG. 2 is a partial vertical section taken near a transverse bulkhead to show in detail a trihedral corner; and
FIG. 3 is a horizontal section taken along the line IIIIII of FIG. 2.
In order to build a tank according to the invention, the starting point is naturally a ship comprisingan outer hull and its essential supporting framework, and an inner hull, the framework of the boat being positioned between the inner and outer hulls. For convenience in construction the inner hull may have the same general contour as the outer hull, but be more polygonal in character, usually octagonal, that is to say, like a rectangle with four beveled corners. The ship also comp-rises, from how to stern, a series of compartments for transporting liquid gas and separated each from the other by double bulkheads comprising two parallel walls spaced by the necessary supporting framework.
Inside each of these compartments is an integral tank comprising two fluid-tight casings alternating with two heat insulating casings. As shown on FIG. 1, there are successively from the inside out the primary fluid-tight casing consisting of the thin plates 37 which are made of a metal which has a low coefiicient of expansion and connected together by means of their flanges 40; the heat insulating casing consisting of the insulating boxes 14, the secondary fluid-tight casing consisting of .plates 8 connected at their flanges 9, the secondary heat insulating casing consisting of the insulating boxes 1, the inner hull 3, the framework of the ship, and finally the outer hull (not shown).
The transverse walls of the ship, that is to say, those positioned against the double bulkheads 4, are made in the same way as the lateral walls and are each encircled by a rigid ring.
Two of the walls comprising the secondary fluid-tight casing 8 are connected at a dihedral angle in the following manner: Two thick planks 43 and 44, positioned as shown in FIG. 1 are each supported as required by chairs made of two iron plates 45 and 46 welded at right angles to each other and resting on a thick metal bracket 47 which lies in a plane parallel to that of FIG. 1. This bracket 47 is welded to both the plates 45 and 46 and the walls 3 and 4 of the double bulkhead. The planks 43 and 44 are connected to the plates 45 and 46 by means of screws (not shown) which extend perpendicularly into the plank, but are not so tight as to eliminate all play longitudinally of the planks.
The plank 43 in alignment with the casing 8 parallel to the wall 4 of the double bulkhead is first attached, and then covered by a strip 48 of metal having a high nickel content, preferably identical to that from which the plates forming the casing 8 are made, but substantially thicker, for example, 1.5 mm. This strip has an edge 49 bent out at a right angle and attached to the plank 43 by screws 50 while its other edge is attached thereto by means of screws 51. Then the plank 44 is put in place, followed by another strip 52 and analogous to the strip 48, but having two flanges, one, 53, attached by means of screws 54, While the other, 55, abuts the strip 48 to which it is welded in situ after inserting between the strip 48 and the plank a strip of asbestos, not shown.
The strip 48 is then connected to the edge of the secondary casing 8 by means of a cover-joint 56, Welded at both edges. In like manner the strip 52 is connected to the secondary casing by means of a cover-joint 57.
Two rods 58, welded to the chairs formed by the members 45, 46 and 47, extend through fluid-tight seals in the cover- joints 56 and 57, using sealing rings, not shown, and support a second chair comprising two rectangular steel plates 59 and 60 welded together at right angles to each other. This second chair supports two planks '61 and 62 which serve the same purpose with respect to the primary casing that the planks 43 and 44 serve with respect to the secondary casing. Metallic strips 63 and 64, like the strips 48 and 52, are fastened in like manner to each other and to the planks 61 and 62. Finally, the cover- joints 65 and 66 connect the strips 63 and 64 to the primary casing in the same way as the said coverjoints 56 and 57.
In order to form each of the rigid rings hereinbefore mentioned it is necessary to connect the ends of each of the angle members formed by the assembly of the strips 48 and 52 or 63 and 64 together to form the corners of the ring, which is polygonal, and generally octagonal. Each trihedral angle is positioned at the intersection of three planes, two of which are parallel to the longitudinal axis of the ship, while the other is perpendicular thereto.
These connections are made by means of trihedral metallic corner members, made of a special steel, for example a steel containing 9% nickel, thicker than the previously mentioned strips, about 8 thick, for example. The corner member 67, formed from three fiat plates welded to each other, is connected to the hull of the ship (either the inner hull or the double bulkhead) by connecting members 68 which must be strong enough to resist compression, tension, and buckling, yet have a small section for the transmission of heat. For this reason, recourse is preferably had to sections of stainless steel tubing having a large diameter and thin walls.
The planks 43 and 44 are attached to this corner member 67 by means of screws 69 passing through suitable holes in said corner member, and the strips 48 and 52 have their ends 70 welded to this corner member so as to cover the heads of the screws 69 and insure overall impermeability. The cover- joints 56 and 57 are also welded to the three plates forming the corner member so as to ensure the impermeability of the secondary casing, as well as the transfer of those forces which act directly in the direction of the plane of the transverse wall of the tank, and in the direction of the dihedral anglemembers parallel thereto.
It is easy to understand that, since the assembly is welded together at room temperature, when the temperature falls the transverse wall of the tank contracts and exerts traction on the dihedral corners in the direction of the strips 48. These corners concentrate the forces and transmit them to the trihedral corner members. However, since as will be hereinafter seen, the trihedral corner members are rigidly connected to the basic structure of the ship, these forces cannot cause deformation, but only an elastic strain by tensioning the corresponding members. In effect, in view of the high mechanical strength of the materials employed and their very low coefficient of expansion, even at temperatures of the order of l60, the mechanical strains thus developed as a consequence of temperature changes do not exceed 5 kg./mm. which is far below the elastic limit of these high nickel content steels.
This embodiment thus resists any tendency toward free play resulting from contractions by mechanically tensioning the entire ring formed by the dihedral corner members. It will also be seen that the effects of tension longitudinally of the dihedral corners is absorbed by the rigidity of the planks 43 and 44 and referred thereby to the supporting chairs.
Turning now to the primary casing, all that has just been said about the secondary casing applies thereto. The other trihedral corner member 71 serves in a manner analagous to that served by the trihedral corner member 67, but on a smaller scale, being supported by three rods 72 fixed to the corner member 67. The planks '61 and 62 are fastened in like manner to this trihedral corner member by means of screws 73, the heads of which are covered by the ends of the strips 63 and 64. These strips, aswell as the cover- joints 65 and 66 are welded in a fluid-tight manner directly to the trihedral corner member 71. The method of construction and the manner of functioning under tension is naturally the same.
To sum "up, it will be seen that each of the primary and secondary fluid-tight casings of the tank comprises at each end an inflexible transverse wall stretched on a rigid ring which cannot itself be deformed and which is supported at its eight corners as Well as by a certain number of intermediate chairs, so that this transverse wall does not undergo any deformation, but only a variation in elastic strain.
In like manner the lateral walls of the tank, which are attached at their ends to the rigid ring, undergo, in response to the decrease in temperature and deformations of the hull of the ship, only an elastic tension.
-It will be appreciated that the foregoing embodiment has been described purely by way of example, and may be modified as to detail without thereby departing from the basic principles of the invention as defined by the following claims.
What is claimed is:
1. In combination with a ship having an inner hull and transverse bulkheads, the improved fluid-tight tank for holding liquefied gases which comprises thin inner and outer fluid-tight casings positioned within said inner hull and made of a metal having a low coefficient of expansion, inner and outer insulating casings comprising a material which is a poor conductor of heat, said inner insulating casing being positioned between said fluidtight casings and said outer insulating casing being positioned between the outer fluid-tight casing and the inner hull and bulkhead, said casings having polygonal sides extending transversely of said ship and longitudinal sides connected to said transverse sides to form trihedral corners at the connections between each polygonal side and two adjacent longitudinal sides, a rigid frame peripherally supporting each polygonal side of each fluid-tight casing, rigid metallic support means extending from points near each trihedral corner of the outer fluid-tight casing through the outer insulating casing to said inner hull and to a transverse bulkhead, and additional rigid metallic supporting means extending from points near each trihed-ral corner of said inner fluid-tight casing to the peripheral supporting frame of said outer fluid-tight casing.
2. The combination claimed in claim 1, according to which said rigid metallic support means are thin walled tubes of stainless steel having a cross-section which is large in proportion to the thickness of the tube walls.
3. The combination claimed in claim 1, according to which said rigid frames are strain free at normal temperatures so as to be stressed by contractions at the temperature of liquefied gas.
4. The combination claimed in claim 1 in which said casings are made of an alloy containing 26% nickel, 0.25% carbon, 0.6% manganese, balance substantially all iron.
5. The combination according to claim 1 in which said peripheral supporting frames comprise wooden planks.
6. The combination according to claim 5 comprising metallic chairs intermediate said trihedral corners, each resting on said inner hull and one of said bulkheads and supporting the wooden planks comprised by the rigid frame of said outer fluid-tight casing.
7. The combination claimed in claim 6 accordin to which each of said peripheral supporting frames comprises L-section metallic members on which said planks are seated, and comprising supporting rods extending between the L-section members associated with the inner fluid-tight casing and those associated with the outer fluid-tight casing whereby the former L-section members are supported by the latter.
8. The combination claimed in claim 7 according to which said last mentioned supporting rods pass through openings in the outer fluid-tight casing and said openings are sealed fluid tight.
9. The combination claimed in claim 7 according to which said L-section metallic members are made of the same material as said fluid-tight casings but are thicker.
References Cited UNITED STATES PATENTS 1,269,197 6/1918 Mendenhall 220-15 2,053,251 9/1936 Cook et a1. 2209 2,220,501 11/ 1940 Wallach 220-9 2,239,128 4/1941 Sykes 220-15 3,007,596 11/ 1961 Matsch 2209 3,071,094 1/1963 Leroux 11474 3,093,260 6/1963 Macorrnack et al 22015 3,112,043 11/1963 Tucker 220-10 THERON E. CONDON, Primary Examiner.
JAMES R. GARRETT, Assistant Examiner.
US527254A 1965-03-05 1966-02-14 Tank for liquefied gas Expired - Lifetime US3399800A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8149A FR1438330A (en) 1965-03-05 1965-03-05 Integrated tank improved for the transport of liquefied gases

Publications (1)

Publication Number Publication Date
US3399800A true US3399800A (en) 1968-09-03

Family

ID=8573005

Family Applications (2)

Application Number Title Priority Date Filing Date
US527263A Expired - Lifetime US3403651A (en) 1965-03-05 1966-02-14 Integral tank for transporting liquefied gas
US527254A Expired - Lifetime US3399800A (en) 1965-03-05 1966-02-14 Tank for liquefied gas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US527263A Expired - Lifetime US3403651A (en) 1965-03-05 1966-02-14 Integral tank for transporting liquefied gas

Country Status (10)

Country Link
US (2) US3403651A (en)
BE (1) BE676015A (en)
DE (2) DE1506252A1 (en)
DK (2) DK128153B (en)
ES (1) ES322862A1 (en)
FI (2) FI49752C (en)
FR (1) FR1438330A (en)
GB (2) GB1136164A (en)
NL (2) NL6602773A (en)
SE (2) SE328497B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595424A (en) * 1969-02-24 1971-07-27 Conch Int Methane Ltd Containers for liquefied gases
US3896961A (en) * 1972-04-05 1975-07-29 Gaz Transport Insulated storage tank for liquid or liquefied products
US4065019A (en) * 1975-08-22 1977-12-27 Gaz-Transport Fluid-tight isothermal tank for liquefied gas
US4116150A (en) * 1976-03-09 1978-09-26 Mcdonnell Douglas Corporation Cryogenic insulation system
US4170952A (en) * 1976-03-09 1979-10-16 Mcdonnell Douglas Corporation Cryogenic insulation system
US4452162A (en) * 1978-05-26 1984-06-05 Mcdonnell Douglas Corporation Corner structure for cryogenic insulation system
US5450806A (en) * 1993-09-09 1995-09-19 Gaz Transport Watertight and thermally insulating tank built into the bearing structure of a ship having a simplified corner structure
US5586513A (en) * 1994-09-20 1996-12-24 Gaztransport & Technigaz Watertight and thermally insulating tank built into a bearing structure
US20060118019A1 (en) * 2004-12-08 2006-06-08 Yang Young M Ship with liquid tank
US7204195B2 (en) 2004-12-08 2007-04-17 Korea Gas Corporation Ship with liquid tank
US20070246473A1 (en) * 2006-04-20 2007-10-25 Korea Gas Corporation Lng tank and vehicle with the same
US20100018225A1 (en) * 2006-09-01 2010-01-28 Korea Gas Corporation Structure for liquefied natural gas storage tank
US20170320549A1 (en) * 2014-09-22 2017-11-09 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Heat-insulation system for liquefied natural gas cargo hold
CN113874651A (en) * 2019-04-16 2021-12-31 韩国Gas公社 Liquefied gas tank capable of lifting inner shell and lifting method of inner shell of liquefied gas tank

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE29463E (en) * 1969-10-10 1977-11-01 Kvaerner Brug A/S Tanker for liquified and/or compressed gas
BE757662A (en) * 1969-10-18 1971-04-01 Kvaerner Brug As DEVICE FOR MOUNTING SEPARATE TANKS ON BOARD A SHIP
BE757663A (en) * 1969-10-18 1971-04-01 Kvaerner Brug As IMPROVEMENTS IN TANKS MOUNTED SEPARATELY ON BOARD A SHIP
US3785320A (en) * 1970-09-17 1974-01-15 Gaz Transport Integral tank for transporting liquefied gas
USRE29424E (en) * 1970-10-15 1977-10-04 Kvaerner Brug As Tank construction for liquified and/or compressed gas
US3782581A (en) * 1971-12-27 1974-01-01 Phillips Petroleum Co Fluid containment system
DE2247220A1 (en) * 1972-09-27 1974-03-28 Linde Ag DEVICE FOR TRANSPORTING LOW-BOILING LIQUID GASES
US3929247A (en) * 1973-07-11 1975-12-30 Kaiser Aluminium Chem Corp Cryogenic tank
FR2264712B1 (en) * 1974-03-21 1976-12-17 Gaz Transport
BE847581A (en) * 1975-11-03 1977-02-14 INSULATED TANK FOR CRYOGENIC LIQUIDS,
US4066184A (en) * 1976-07-13 1978-01-03 Conch L.N.G. Thermal insulation systems
CA1088438A (en) * 1978-05-26 1980-10-28 Donal E. Harbaugh Corner structure for cryogenic insulation system
FR2462336A1 (en) * 1979-07-27 1981-02-13 Gaz Transport Tank for transporting liquefied gases by sea - incorporates fluid tightness and insulating barriers simply realised, necessitating only small sweeping nitrogen flow
FR2527544B1 (en) * 1982-06-01 1987-01-09 Gaz Transport WATERPROOF AND THERMALLY INSULATING TANK INTEGRATED INTO THE CARRIER STRUCTURE OF A VESSEL AND VESSEL COMPRISING SAME
JPS58214093A (en) * 1982-06-05 1983-12-13 Kawasaki Heavy Ind Ltd Double shell type low temperature tank
KR100499710B1 (en) * 2004-12-08 2005-07-05 한국가스공사 Lng storage tank installed inside the ship and manufacturing method the tank
KR101122292B1 (en) * 2008-06-19 2012-03-21 삼성중공업 주식회사 Insulation strusture of lng carrier cargo tank and method for constructing the same
FR2944335B1 (en) * 2009-04-14 2011-05-06 Gaztransp Et Technigaz STOPPING THE SECONDARY MEMBRANE FROM AN LNG TANK

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1269197A (en) * 1917-04-03 1918-06-11 John J Mendenhall Heat-insulating container.
US2053251A (en) * 1930-11-03 1936-09-08 Gen Motors Corp Refrigerating apparatus
US2220501A (en) * 1935-12-05 1940-11-05 American Flange And Mfg Compan Refrigerator structure and corner construction therefor
US2239128A (en) * 1935-06-20 1941-04-22 American Flange & Mfg Portable insulated container
US3007596A (en) * 1956-07-16 1961-11-07 Union Carbide Corp Thermal insulation
US3071094A (en) * 1959-06-02 1963-01-01 Anciens Chantiers Dubigeon Sa Vessel for transporting liquefied hydrocarbons
US3093260A (en) * 1960-04-08 1963-06-11 Alumiseal Corp Insulated refrigeration tank structures
US3112043A (en) * 1962-03-12 1963-11-26 Conch Int Methane Ltd Container for storing a liquid at a low temperature

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR599750A (en) * 1925-02-21 1926-01-19 Hatch cover enhancements
BE563988A (en) * 1957-01-16
BE594159A (en) * 1959-09-10
NL295593A (en) * 1962-07-24
NL128973C (en) * 1963-04-24
US3339783A (en) * 1965-02-24 1967-09-05 Exxon Research Engineering Co Cryogenic container

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1269197A (en) * 1917-04-03 1918-06-11 John J Mendenhall Heat-insulating container.
US2053251A (en) * 1930-11-03 1936-09-08 Gen Motors Corp Refrigerating apparatus
US2239128A (en) * 1935-06-20 1941-04-22 American Flange & Mfg Portable insulated container
US2220501A (en) * 1935-12-05 1940-11-05 American Flange And Mfg Compan Refrigerator structure and corner construction therefor
US3007596A (en) * 1956-07-16 1961-11-07 Union Carbide Corp Thermal insulation
US3071094A (en) * 1959-06-02 1963-01-01 Anciens Chantiers Dubigeon Sa Vessel for transporting liquefied hydrocarbons
US3093260A (en) * 1960-04-08 1963-06-11 Alumiseal Corp Insulated refrigeration tank structures
US3112043A (en) * 1962-03-12 1963-11-26 Conch Int Methane Ltd Container for storing a liquid at a low temperature

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595424A (en) * 1969-02-24 1971-07-27 Conch Int Methane Ltd Containers for liquefied gases
US3896961A (en) * 1972-04-05 1975-07-29 Gaz Transport Insulated storage tank for liquid or liquefied products
US4065019A (en) * 1975-08-22 1977-12-27 Gaz-Transport Fluid-tight isothermal tank for liquefied gas
US4116150A (en) * 1976-03-09 1978-09-26 Mcdonnell Douglas Corporation Cryogenic insulation system
US4170952A (en) * 1976-03-09 1979-10-16 Mcdonnell Douglas Corporation Cryogenic insulation system
US4452162A (en) * 1978-05-26 1984-06-05 Mcdonnell Douglas Corporation Corner structure for cryogenic insulation system
US5450806A (en) * 1993-09-09 1995-09-19 Gaz Transport Watertight and thermally insulating tank built into the bearing structure of a ship having a simplified corner structure
US5586513A (en) * 1994-09-20 1996-12-24 Gaztransport & Technigaz Watertight and thermally insulating tank built into a bearing structure
US7171916B2 (en) * 2004-12-08 2007-02-06 Korea Gas Corporation Ship with liquid tank
US20060117566A1 (en) * 2004-12-08 2006-06-08 Yang Young M Method for manufacturing liquid tank and ship with liquid tank
US20060131304A1 (en) * 2004-12-08 2006-06-22 Yang Young M Liquid tank system
US20060118019A1 (en) * 2004-12-08 2006-06-08 Yang Young M Ship with liquid tank
US7204195B2 (en) 2004-12-08 2007-04-17 Korea Gas Corporation Ship with liquid tank
US7325288B2 (en) 2004-12-08 2008-02-05 Korea Gas Corporation Method for manufacturing liquid tank and ship with liquid tank
US7597212B2 (en) 2004-12-08 2009-10-06 Korea Gas Corporation Modular walls for use in building liquid tank
US20060118018A1 (en) * 2004-12-08 2006-06-08 Yang Young M Modular walls for use in building liquid tank
US7717288B2 (en) 2004-12-08 2010-05-18 Korea Gas Corporation Liquid tank system
US7819273B2 (en) 2006-04-20 2010-10-26 Korea Gas Corporation Liquid natural gas tank with wrinkled portion and spaced layers and vehicle with the same
US20070246473A1 (en) * 2006-04-20 2007-10-25 Korea Gas Corporation Lng tank and vehicle with the same
US20100018225A1 (en) * 2006-09-01 2010-01-28 Korea Gas Corporation Structure for liquefied natural gas storage tank
US7938287B2 (en) * 2006-09-01 2011-05-10 Korea Gas Corporation Structure for liquefied natural gas storage tank
US20170320549A1 (en) * 2014-09-22 2017-11-09 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Heat-insulation system for liquefied natural gas cargo hold
US10023270B2 (en) * 2014-09-22 2018-07-17 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Heat-insulation system for liquefied natural gas cargo hold
CN113874651A (en) * 2019-04-16 2021-12-31 韩国Gas公社 Liquefied gas tank capable of lifting inner shell and lifting method of inner shell of liquefied gas tank
CN113874651B (en) * 2019-04-16 2023-06-27 韩国Gas公社 Liquefied gas tank capable of lifting inner shell and lifting method of liquefied gas tank inner shell

Also Published As

Publication number Publication date
DE1294842B (en) 1969-05-08
FI49648C (en) 1975-08-11
FI49752C (en) 1975-09-10
GB1131811A (en) 1968-10-30
DK137351B (en) 1978-02-20
NL140956B (en) 1974-01-15
NL6602773A (en) 1966-09-06
US3403651A (en) 1968-10-01
SE328497B (en) 1970-09-14
FR1438330A (en) 1966-05-13
DK137351C (en) 1978-07-17
GB1136164A (en) 1968-12-11
NL6602772A (en) 1966-09-06
FI49752B (en) 1975-06-02
BE676015A (en) 1966-06-16
DE1506252A1 (en) 1970-04-23
FI49648B (en) 1975-04-30
DK128153B (en) 1974-03-11
SE328498B (en) 1970-09-14
ES322862A1 (en) 1966-11-16

Similar Documents

Publication Publication Date Title
US3399800A (en) Tank for liquefied gas
US9365266B2 (en) Independent corrugated LNG tank
US6732881B1 (en) Liquefied gas storage tank
US3547302A (en) Container for liquefied gases
US7111750B2 (en) Liquefied natural gas storage tank
US5727492A (en) Liquefied natural gas tank and containment system
US3339778A (en) Insulated tank for liquids at low temperatures
US4101045A (en) Cryogenic container
KR20170116584A (en) Sealed tank with corrugated sealing membranes
KR20170063733A (en) Sealed and insulating vessel comprising a bridging element between the panels of the secondary insulation barrier
US3246789A (en) Storage container for liquefied gases
KR102614343B1 (en) Closed and insulated tank with multiple zones
KR102498803B1 (en) sealed and insulated tank
US3298345A (en) Double hulled ship
JP2023508622A (en) Hermetically sealed insulated tank
US3337079A (en) Stressed membrane liquified gas container
US3457890A (en) Concrete liquefied gas vessel
US3490639A (en) Containers for liquefied gases
US3477606A (en) Membrane tank structures
KR20200013222A (en) Leaktight wall with reinforced corrugated membrane
US3428013A (en) Apparatus for transporting liquefied gases
KR20170113770A (en) Installation device for corner panel of liquefied gas tank
US3224624A (en) Storage of a liquefied gas
KR20240029398A (en) Liquid dome chair and vessel comprising the same
KR20240045861A (en) Liquefied gas storage tank and vessel comprising the same