US3595424A - Containers for liquefied gases - Google Patents

Containers for liquefied gases Download PDF

Info

Publication number
US3595424A
US3595424A US801495A US3595424DA US3595424A US 3595424 A US3595424 A US 3595424A US 801495 A US801495 A US 801495A US 3595424D A US3595424D A US 3595424DA US 3595424 A US3595424 A US 3595424A
Authority
US
United States
Prior art keywords
tank
insulation
load
bearing
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US801495A
Inventor
Robert Glover Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conch International Methane Ltd
Original Assignee
Conch International Methane Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conch International Methane Ltd filed Critical Conch International Methane Ltd
Application granted granted Critical
Publication of US3595424A publication Critical patent/US3595424A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0354Wood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/227Assembling processes by adhesive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic

Definitions

  • Libman ABSTRACT An insulated container such as used in marine tankers for cryogenic liquids comprising an inner metal tank surrounded and supported by thermal insulation characterized in that less lightly stressed parts of the insulation comprise rigid foamed-plastic material sprayed in situ while more highly stressed parts thereof are of load-bearing thermal insulation of higher strength.
  • Containers of the kind concerned, for the bulk storage or I transport of liquids at temperatures greatly differing fromambient temperature each comprises a tank surrounded and supported, at least from below, by thermal insulation within an outer rigid shell.
  • the present invention is concernedwith the thermal insulation of such a container.
  • the containers are of one or two distinct types.
  • the container comprises a self-supporting tank; that is to say one which, while supported from below, has sufficient structural strength to hold the liquid within the tank and withstandthe hydrostatic pressures and inertia forces, without depending upon any other means outside the tank for aid in supporting the walls of the tank, against buckling.
  • the insulation beneath the tank carries the load of the weight of the tank, and loads involved in holding the tank in place against horizontal movement, e.g.
  • the tank is of a material, e.g. metal, which is not subject to cold embrittlement.
  • the tank is thermally, insulated externally by thermal insulation which lines the outer rigid shell, e.g. the cargo hold of a tanker, so as .to define a containing space within which the tank is located.
  • the other type of container is known as an integrated tank container and comprises a housing of solid load-bearing thermal insulation lined with a thin and flexible fluidtight mem-' brance tank of sheet material, e.g. metal, which is not subject to cold embrittlement and which is not self-supporting but is supported against internal loads due to hydrostatic pressures and inertia forces, by the surrounding solid insulation.
  • the insulation lines and is itself supported by, the outer rigid shell so that the insulation directly transmits to the latter all the pressure exerted by the fluid upon the walls of the membrane tank. More important, the tank is rigidly anchored at the corners to hold it against contraction on cooling, and the insulation at the corners takes the local loads arising from such anchorage.
  • the thermal insulation may be of any appropriate material capable of carrying the loads imposed upon it. It is usually required to be fluidtight and impermeable to the cold liquid cargo so as to constitute a secondary barrier which will itself contain a liquid, e.g. to prevent it from contacting the hull of a tanker, in the event of failure of, the tank.
  • a number of thermal insulation materials and constructions are known for use for this purpose.
  • One known material comprises blocks or panels, for example of balsa wood faced with. plywood, mounted upon spaced securing strips, e.g. of wood, secured to the outer rigid shell. The gaps between the panels are sealed by compressed plastics materigreater than 100 kilograms per cubic meter, and preferably in al. Such a construction is described in US. Pat. No.
  • An object of this invention is to provide a container having thermal insulation which is a satisfactory secondary barrier outer rigid shell while more highly stressed sections of the thermal insulation are of nonfoamed load-bearing thermal insulation material of higher strength.
  • the invention is based on the realization that the same thermal insulation material does not need to be used for different sections of the insulation because there are different requirements for such different sections.
  • the bottom section of the insulation supporting the'bottom of the tank requires to be of high compressive strength to support the tank and the liquid cargo, but the other sections of the insulation do not support any loads and do not require to have such a high compressive strength.
  • the corner sections of the insulation require to be of high strength in order to accept the local loads involved in anchoring the tank against contraction due to cooling.
  • the rigid foamed-plastics material may be applied by spraying, using conventional spray equipment and the desired thickness of foamed material may be built up layer by layer.
  • mats of hessian or similar mesh material can be incorporated into the foamed material between successive layers during the spraying operation. A number of such mats can be included in the overall thickness of the foamed material.
  • the foamed-plastics material comprises a multilayer construction with at least one surface layer of higher density than the other layers.
  • the layers of foamedplastics material are preferably rigid polyurethane closed cell foams.
  • polyurethane foam is effective as a barrier to liquefied gases.
  • the layers making up the thickness of the insulation have a density in the range of 50 to kilograms per cubic meter and one or both of the surface layers has a density the range of 1 10 to I30 kilograms per cubic meter.
  • the lines of junction between sections of foamed plastics material and sections of unfoamed load-bearing thermal insulating material should be spaced from the lines of the corner of the shell (and of the tank contained therein) so that the junction is located in a plane portion of the total insulation and not in the angle of a corner.
  • the lower corners of the shell to line the lower portions of the walls of the outer shell, while the sections of the thermal insulation lining the remainder of the sidewalls of the shell and, if desired, the top of the shell also are of rigid foamed-plastics material.
  • the vertical corners may be directly sprayed with foamed-plastics material, or the treatment of these corners may be facilitated by the insertion of preformed fillets of foamed-plastics material glued into and filling the sharp angles of the corners.
  • the foamed-plastics material may be internally lined with another thermal-insulation material, for example glass fiber or rock wool, and this material is preferably used also, instead of foamed plastics, over the top of the tank.
  • the nonfoamed load-bearing sections of the thermal insulation may comprise plywood-faced balsa panels, the gaps between which are sealed.
  • the insulation on the faces adjoining the comers of the shell will be of a material which is load-bearing and of tensile, shear and compressive strength s'ufficient to transmit to the shell the loads im osed upon the corners of the insulation by reason of the anchorage thereto of the corners of the membrane tank.
  • the walls of the shell, other than the corners, are lined by rigid foamed-plastics material as specified above, the lines of junction extending across the walls and being spaced from the corners.
  • the material of high tensile, shear and compressive strength forming the corners of the thermal insulation may be constituted by plywood-faced balsa panels.
  • the polyurethane foam constituting the walls between the load-bearing corners may be faced on its inner surface adjacent the tank by balsa panels.
  • the plane ofjunction extends obliquely to the plane of the wall of the shell so that the thickness of one section of the insulation progressively diminishes and thickness of the adjoining section progressively increases.
  • the edges of the mats of hessian or the like at the junction with a section of nonfoamed Ioad-bearin g thermal insulation material are preferably rigidly anchored to the latter. This may be effected in any number of ways.
  • the relevant edge face of the nonfoamed insulation material may be formed with slots to receive the marginal portions of the mats which are retained therein by wedges or adhesive.
  • the marginal portion of the mat may be attached to said edge face by adhesive.
  • Extra mats of hessian may be incorporated in the polyurethane foam adjacent this junction.
  • FIG. 1 is a vertical cross-sectional view through a marine tanker incorporating a freestanding cargo tank.
  • FIG. 2 is a detail vertical sectional view on a much larger scale through the thermal insulation of the tank of FIG. 1 showing the junction between a section of foamed-plastics material and a section of nonfoamed load-bearing material.
  • FIG. 3 is a detail vertical sectional view on a much larger scale through the thermal insulation of the tank of FIG. 1 showing the arrangement at the top ofa sidewall thereof, the view being broken diagonally so as to show a complete upper corner and a complete lower corner.
  • FIG. 4 is a vertical cross-sectional view through a marine tanker incorporating a membrane cargo tank, broken and shifted diagonally to enable a larger scale.
  • FIG. 1 there is shown a marine tanker having, an outer hull l and an inner hull 2. Disposed within a cargo hold 3 defined within the inner hull and transverse bulkheads is a self-supporting tank indicated generally at 4. This is of metal which is not subject to cold embrittlement and of sufficient thickness and suitably stiffened to contain the liquid. The tank is surrounded by thermal insulation. generally designated 5, which lines the cargo hole 3. FIG. 1 is not drawn to scale, i.e. the insulation is shown on a larger scale than the tanker for clarity. There is a space S of approximately 1 meter width all around the tank between the exterior surface of the tank and the internal surface of the cargo hold 3.
  • the thermal insulation 5 comprises a section A lining thebottom and extending for a short distance up the walls of the cargo hold and sections B forming the rest of the walls of the thermal insulation lining the walls of the cargo hold.
  • Section A comprises timber ground strips 6 attached at regular intervals to the cargo hold.
  • Mounted upon the strips are relatively thick panels 7 of balsa wood faced with plywood, with the gaps therebetween sealed by compressed plastics material 8, all for example, as disclosed in U.S. Pat. No. 3,112,043, constituting a secondary barrier against leakage of liquid cargo.
  • lnterposed between the bottom of the tank and the panels 7 is a layer of balsa wood 9.
  • Each section B comprises a constant thickness of e.g. approximately 10 centimeters (depending on the density) of rigid closed-cell foamed polyurethane 10 lining the main portions of the walls of the cargo hold and itself lined with glass fiber or rock wool 11 ofa thickness, e.g. of IS centimeters.
  • the section A is constructed in known manner.
  • the tank 4 is then mounted in the cargo hold and the sections B of the insulation are formed.
  • the walls of the cargo hold are first shotblasted or wire brushed to provide a clean surface to receive a rigid closedcell polyurethane foam, for example, Shell Caradal SI and Shell Caradate 30 and having a density in the range of 50 to kilograms per cubic meter.
  • This polyurethane foam is sprayed on to the inner surface of the cargo hold layer by layer until a desired thickness ofthe foam has been built up.
  • Either the inner or the outer surface layer may be of polyurethane foam of a higher density, e.g. in the range of l 10 to 130 kilograms per cubic meter than the remainder of the foam.
  • the inner layers incorporate two mats 12 of hessian or similar mesh, e.g. of l centimeter mesh size, one of which is disposed e.g. 18 millimeters from the inner surface and the other which is disposed e.g. 6 millimeters from the inner surface.
  • the line of junction extends at an angle to the plane of the wall of the cargo hole 3 other than a right angle, e.g. 10, so that the thickness of one section progressively diminishes as the thickness of the adjoining section increases.
  • a right angle e.g. 10
  • a bloek 13 is provided at the upper location of each wall secured to the latter.
  • the opposite ends of the hessian mats 12 are secured to the junction panels 7 of section A and to the block 13, e.g. entering slots 7b formed therein.
  • Extra mats 14 of short length are incorporated in the polyurethane foam at the ends thereof and secured to block 13 and grounds 6' (FIG. 2) ofjunction panels 7 of section A.
  • a vertical panel 15 depends for a short distance from block 13 and a large horizontal panel 16 extends to the top of tank 4 and is connected to panel 15 by hinge 17 as known per se. Layers of glass fiber or rock wool are provided above and below the panel 16 and the upper layer extends over the top of tank.
  • FIG. 4 there is again shown a marine tanker having an outer hull l and an inner hull 2.
  • a cargo hold 3 defined within the inner hull and transverse bulkheads a membrane tank, generally indicated at 18.
  • This is of thin metal which is not subject to cold embrittlement.
  • the tank is surrounded and supported against hydrostatic loads and inertia forces by the thermal insulation, generally designated 5, which lines the cargo hold 3.
  • FIG. 4 is not drawn to scale, i.e. the insulation is shown on a much larger scale than the tanker for clarity.
  • the thermal insulation comprises corner sections C and wall sections D.
  • the corner sections C are each identical with section A in FIG. 1 comprising panels secured to ground strips '6 and balsa wood interposed between the panels and tank.
  • the corners of the membrane tank 18 are anchored, so that it is held against overall dimensional change, by means of angle section anchoring members 19 secured to hardboard blocks 20 secured to the panels.
  • the panels are of sufficient tensile, shear and compressive strength to transmit the loads to the cargo hold.
  • the wall sections D are identical with sections B in FIG. 1 comprising polyurethane foam as described with reference to FIG. 1, except that instead of an internal layer of glass fiber or rock wool there is an internal layer 21 of thin balsa panels.
  • the vertical corners, not shown in this drawing are identical with the corner sections C and the sections A in FIG. 1.
  • a container for the bulk storage or transport of liquidsat temperatures greatly different from ambient temperature Comprising b. a tank of liquid-impervious material, c. an external jacket of thermal insulating material surrounding said tank, certain areas of said tank being subjected to much higher load stress under working conditions than other insulated areas,
  • the insulation at the highly stressed areas of the tank being of load-bearing insulating material of relatively high strength, the insulation at the remaining insulated areas of the tank being of rigid foamed-plastic material of very low loadbearing strength, f. said tank being prismatic, the foamed-plastic insulation and the load-bearing insulation being joined at lines of junction to form a complete insulating jacket around said tank, said lines of junction being spaced from the lines of the corners of. said tank formed by the meeting of adjacent sides.
  • a container for the bulk storage or transport of liquids at temperatures greatly different from ambient temperatures comprising 1 b. a tank of liquid-impervious material,
  • the insulation at the remaining insulated areas of the tank being of rigid foamed-plastic material of very low loadbearing strength, i said tank being prismatic, the foamed-plastic insulation and the load-bearing insulation being joined at lines of junction to form a complete insulating jacket around said tank, said lines of junction being spaced from the lines of the corners of said tank formed by the meeting of adjacent sides with the bottom wall of the tank, in which the junctio it between the foamed-plastic insulation and the Y load-bearing insulation lies in a plane extending obliquely to the plane of the wall of the tank.
  • a container according to claim 2 in which at least one mat of open-mesh reinforcing material is incorporated in the foam insulation, with the edges of the mat securely anchored to the adjacent load-bearing insulating material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

An insulated container such as used in marine tankers for cryogenic liquids comprising an inner metal tank surrounded and supported by thermal insulation characterized in that less lightly stressed parts of the insulation comprise rigid foamedplastic material sprayed in situ while more highly stressed parts thereof are of load-bearing thermal insulation of higher strength.

Description

United States Patent [72] Inventor Robert Glover Jackson Hornchurch, Essex, England [21] Appl. No. 801.495 [22] Filed Feb. 24, 1969 [451 Patented July 27,1971 [73] Assignee Conch International Methane Limited Nassau, Bahamas [54] CONTAINERS FOR LIQUEFIEI) GASES 5 Claims, 4 Drawing Figs.
[52] US. Cl. 220/15, 114/74 [51] Int. Cl 865d 25/00 [50] Field of Search 220/9 F, 9 A, l0, l5; 1 14/74 A; 62/45 [56] References Cited UNITED STATES PATENTS 2,386,958 10/1945 Jackson 220/10 X 2,481,664 9/1949 Hemp 220/15 2,952,987 9/1960 Clauson.. 220/10 X 3,079,026 2/1963 Dosker 220/9 (A) Primary Examiner-Joseph R. Leclair Assistant Examiner-James R. Garrett Auame Max L. Libman ABSTRACT: An insulated container such as used in marine tankers for cryogenic liquids comprising an inner metal tank surrounded and supported by thermal insulation characterized in that less lightly stressed parts of the insulation comprise rigid foamed-plastic material sprayed in situ while more highly stressed parts thereof are of load-bearing thermal insulation of higher strength.
PATENT El] JUL27 I97! SHEET 1 0F 4 lnuenlor RobcrTG. Jim/ 50 Attorney PATENTEU 'JUL2 7 Ian SHEET 2 [1F 4 z w w a A 7 7 v Jr M w e W a 7 m Robe/f G Jackson CONTAINERS FOR LIQUEFIED GASES This invention relates to containers for the bulk storage or transport of liquids at temperatures greatly differing from ambient temperature. The invention is primarily intended for containers for very cold liquids, such as liquefied gases, e.g. natural gas, at near atmospheric pressure; but it may also be applicable to containers for housing warm liquids. For convenience, reference will be confined in the following to containers for cold liquids. Such containers are used, for example, in marine tankers, for the transport of liquefied gases.
Containers of the kind concerned, for the bulk storage or I transport of liquids at temperatures greatly differing fromambient temperature, each comprises a tank surrounded and supported, at least from below, by thermal insulation within an outer rigid shell. The present invention is concernedwith the thermal insulation of such a container. The containers are of one or two distinct types. In one type, the container comprises a self-supporting tank; that is to say one which, while supported from below, has sufficient structural strength to hold the liquid within the tank and withstandthe hydrostatic pressures and inertia forces, without depending upon any other means outside the tank for aid in supporting the walls of the tank, against buckling. The insulation beneath the tank carries the load of the weight of the tank, and loads involved in holding the tank in place against horizontal movement, e.g. arising from the motion of a tanker at sea. The tank is of a material, e.g. metal, which is not subject to cold embrittlement. The tank is thermally, insulated externally by thermal insulation which lines the outer rigid shell, e.g. the cargo hold of a tanker, so as .to define a containing space within which the tank is located.
The other type of container is known as an integrated tank container and comprises a housing of solid load-bearing thermal insulation lined with a thin and flexible fluidtight mem-' brance tank of sheet material, e.g. metal, which is not subject to cold embrittlement and which is not self-supporting but is supported against internal loads due to hydrostatic pressures and inertia forces, by the surrounding solid insulation. The insulation lines and is itself supported by, the outer rigid shell so that the insulation directly transmits to the latter all the pressure exerted by the fluid upon the walls of the membrane tank. More important, the tank is rigidly anchored at the corners to hold it against contraction on cooling, and the insulation at the corners takes the local loads arising from such anchorage..
in either type of container, the thermal insulation may be of any appropriate material capable of carrying the loads imposed upon it. It is usually required to be fluidtight and impermeable to the cold liquid cargo so as to constitute a secondary barrier which will itself contain a liquid, e.g. to prevent it from contacting the hull of a tanker, in the event of failure of, the tank. A number of thermal insulation materials and constructions are known for use for this purpose. One known material comprises blocks or panels, for example of balsa wood faced with. plywood, mounted upon spaced securing strips, e.g. of wood, secured to the outer rigid shell. The gaps between the panels are sealed by compressed plastics materigreater than 100 kilograms per cubic meter, and preferably in al. Such a construction is described in US. Pat. No.
A disadvantage of this and other known thermal insulation materials which satisfy said requirement is that they are expensive to construct.
An object of this invention is to provide a container having thermal insulation which is a satisfactory secondary barrier outer rigid shell while more highly stressed sections of the thermal insulation are of nonfoamed load-bearing thermal insulation material of higher strength.
The invention is based on the realization that the same thermal insulation material does not need to be used for different sections of the insulation because there are different requirements for such different sections. For example, in the case of a self-supporting tank the bottom section of the insulation supporting the'bottom of the tank requires to be of high compressive strength to support the tank and the liquid cargo, but the other sections of the insulation do not support any loads and do not require to have such a high compressive strength. Likewise in the case of the integrated tank container the corner sections of the insulation require to be of high strength in order to accept the local loads involved in anchoring the tank against contraction due to cooling.
The rigid foamed-plastics material may be applied by spraying, using conventional spray equipment and the desired thickness of foamed material may be built up layer by layer. For increased strength and resistance to cracking, mats of hessian or similar mesh material can be incorporated into the foamed material between successive layers during the spraying operation. A number of such mats can be included in the overall thickness of the foamed material.
Advantageously, the foamed-plastics material comprises a multilayer construction with at least one surface layer of higher density than the other layers. The layers of foamedplastics material are preferably rigid polyurethane closed cell foams. In addition to being an efficient thermal-insulation material, polyurethane foam is effective as a barrier to liquefied gases.
Preferably the layers making up the thickness of the insulation have a density in the range of 50 to kilograms per cubic meter and one or both of the surface layers has a density the range of 1 10 to I30 kilograms per cubic meter.
in accordance with an important feature of the invention, the lines of junction between sections of foamed plastics material and sections of unfoamed load-bearing thermal insulating material should be spaced from the lines of the corner of the shell (and of the tank contained therein) so that the junction is located in a plane portion of the total insulation and not in the angle of a corner.
the lower corners of the shell to line the lower portions of the walls of the outer shell, while the sections of the thermal insulation lining the remainder of the sidewalls of the shell and, if desired, the top of the shell also are of rigid foamed-plastics material. The vertical corners may be directly sprayed with foamed-plastics material, or the treatment of these corners may be facilitated by the insertion of preformed fillets of foamed-plastics material glued into and filling the sharp angles of the corners. The foamed-plastics material may be internally lined with another thermal-insulation material, for example glass fiber or rock wool, and this material is preferably used also, instead of foamed plastics, over the top of the tank. The nonfoamed load-bearing sections of the thermal insulation may comprise plywood-faced balsa panels, the gaps between which are sealed.
in the case of a membrane tank container in which the corners of the membrane tank are rigidly anchored to the insulation in the corners of the outer rigid shell, such that the membrance tank is held against overall dimensional change notwithstarlding temperature variations, the insulation on the faces adjoining the comers of the shell will be of a material which is load-bearing and of tensile, shear and compressive strength s'ufficient to transmit to the shell the loads im osed upon the corners of the insulation by reason of the anchorage thereto of the corners of the membrane tank. The walls of the shell, other than the corners, are lined by rigid foamed-plastics material as specified above, the lines of junction extending across the walls and being spaced from the corners. The material of high tensile, shear and compressive strength forming the corners of the thermal insulation may be constituted by plywood-faced balsa panels. The polyurethane foam constituting the walls between the load-bearing corners may be faced on its inner surface adjacent the tank by balsa panels.
In accordance with a further important feature of the invention, at the junction between a section of foamed-plastics material and a section of nonfoamed load-bearing thermal insulation material, in a tank of either of the types specified, the plane ofjunction extends obliquely to the plane of the wall of the shell so that the thickness of one section of the insulation progressively diminishes and thickness of the adjoining section progressively increases.
In this even, the edges of the mats of hessian or the like at the junction with a section of nonfoamed Ioad-bearin g thermal insulation material are preferably rigidly anchored to the latter. This may be effected in any number of ways. The relevant edge face of the nonfoamed insulation material may be formed with slots to receive the marginal portions of the mats which are retained therein by wedges or adhesive. Alternatively, the marginal portion of the mat may be attached to said edge face by adhesive. Extra mats of hessian may be incorporated in the polyurethane foam adjacent this junction.
In order that the invention may be more clearly understood two specific constructional examples will-now be described with reference to the accompanying drawings, wherein:
FIG. 1 is a vertical cross-sectional view through a marine tanker incorporating a freestanding cargo tank.
FIG. 2 is a detail vertical sectional view on a much larger scale through the thermal insulation of the tank of FIG. 1 showing the junction between a section of foamed-plastics material and a section of nonfoamed load-bearing material.
FIG. 3 is a detail vertical sectional view on a much larger scale through the thermal insulation of the tank of FIG. 1 showing the arrangement at the top ofa sidewall thereof, the view being broken diagonally so as to show a complete upper corner and a complete lower corner.
FIG. 4 is a vertical cross-sectional view through a marine tanker incorporating a membrane cargo tank, broken and shifted diagonally to enable a larger scale.
Corresponding components in the different figures are designated by the same references throughout these figures. Dimensions are quoted merely by way of example and not in limitation.
In FIG. 1 there is shown a marine tanker having, an outer hull l and an inner hull 2. Disposed within a cargo hold 3 defined within the inner hull and transverse bulkheads is a self-supporting tank indicated generally at 4. This is of metal which is not subject to cold embrittlement and of sufficient thickness and suitably stiffened to contain the liquid. The tank is surrounded by thermal insulation. generally designated 5, which lines the cargo hole 3. FIG. 1 is not drawn to scale, i.e. the insulation is shown on a larger scale than the tanker for clarity. There is a space S of approximately 1 meter width all around the tank between the exterior surface of the tank and the internal surface of the cargo hold 3.
The thermal insulation 5 comprises a section A lining thebottom and extending for a short distance up the walls of the cargo hold and sections B forming the rest of the walls of the thermal insulation lining the walls of the cargo hold. Section A comprises timber ground strips 6 attached at regular intervals to the cargo hold. Mounted upon the strips are relatively thick panels 7 of balsa wood faced with plywood, with the gaps therebetween sealed by compressed plastics material 8, all for example, as disclosed in U.S. Pat. No. 3,112,043, constituting a secondary barrier against leakage of liquid cargo. lnterposed between the bottom of the tank and the panels 7 is a layer of balsa wood 9.
Each section B comprises a constant thickness of e.g. approximately 10 centimeters (depending on the density) of rigid closed-cell foamed polyurethane 10 lining the main portions of the walls of the cargo hold and itself lined with glass fiber or rock wool 11 ofa thickness, e.g. of IS centimeters.
In installing the insulation the section A is constructed in known manner. The tank 4 is then mounted in the cargo hold and the sections B of the insulation are formed.
The walls of the cargo hold are first shotblasted or wire brushed to provide a clean surface to receive a rigid closedcell polyurethane foam, for example, Shell Caradal SI and Shell Caradate 30 and having a density in the range of 50 to kilograms per cubic meter. This polyurethane foam is sprayed on to the inner surface of the cargo hold layer by layer until a desired thickness ofthe foam has been built up.
Either the inner or the outer surface layer may be of polyurethane foam of a higher density, e.g. in the range of l 10 to 130 kilograms per cubic meter than the remainder of the foam. The inner layers incorporate two mats 12 of hessian or similar mesh, e.g. of l centimeter mesh size, one of which is disposed e.g. 18 millimeters from the inner surface and the other which is disposed e.g. 6 millimeters from the inner surface.
As shown in FIG. 2, at the junction between sections A and B of the insulation the line of junction extends at an angle to the plane of the wall of the cargo hole 3 other than a right angle, e.g. 10, so that the thickness of one section progressively diminishes as the thickness of the adjoining section increases. Thus, the edges 7a of the end panels 7 of section A are formed at this angle.
As shown in FIG. 3, a bloek 13 is provided at the upper location of each wall secured to the latter. The opposite ends of the hessian mats 12 are secured to the junction panels 7 of section A and to the block 13, e.g. entering slots 7b formed therein. Extra mats 14 of short length are incorporated in the polyurethane foam at the ends thereof and secured to block 13 and grounds 6' (FIG. 2) ofjunction panels 7 of section A. A vertical panel 15 depends for a short distance from block 13 and a large horizontal panel 16 extends to the top of tank 4 and is connected to panel 15 by hinge 17 as known per se. Layers of glass fiber or rock wool are provided above and below the panel 16 and the upper layer extends over the top of tank.
Referring now to FIG. 4 there is again shown a marine tanker having an outer hull l and an inner hull 2. In this case there is disposed within a cargo hold 3 defined within the inner hull and transverse bulkheads a membrane tank, generally indicated at 18. This is of thin metal which is not subject to cold embrittlement. The tank is surrounded and supported against hydrostatic loads and inertia forces by the thermal insulation, generally designated 5, which lines the cargo hold 3. FIG. 4 is not drawn to scale, i.e. the insulation is shown on a much larger scale than the tanker for clarity.
The thermal insulation comprises corner sections C and wall sections D. The corner sections C are each identical with section A in FIG. 1 comprising panels secured to ground strips '6 and balsa wood interposed between the panels and tank. The corners of the membrane tank 18 are anchored, so that it is held against overall dimensional change, by means of angle section anchoring members 19 secured to hardboard blocks 20 secured to the panels. The panels are of sufficient tensile, shear and compressive strength to transmit the loads to the cargo hold. The wall sections D are identical with sections B in FIG. 1 comprising polyurethane foam as described with reference to FIG. 1, except that instead of an internal layer of glass fiber or rock wool there is an internal layer 21 of thin balsa panels. The vertical corners, not shown in this drawing are identical with the corner sections C and the sections A in FIG. 1.
It will be seen that for both of the above-described type of containers the portions of insulation which are relatively highly stressed under working conditions are of the more expensive load-bearing construction, but the greatest part of the insulated area is of less expensive foam-plastic construction, both parts being effective as insulation and as a liquid-retaining barrier.
lclaim:
' a. A container for the bulk storage or transport of liquidsat temperatures greatly different from ambient temperature Comprising b. a tank of liquid-impervious material, c. an external jacket of thermal insulating material surrounding said tank, certain areas of said tank being subjected to much higher load stress under working conditions than other insulated areas,
the insulation at the highly stressed areas of the tank being of load-bearing insulating material of relatively high strength, the insulation at the remaining insulated areas of the tank being of rigid foamed-plastic material of very low loadbearing strength, f. said tank being prismatic, the foamed-plastic insulation and the load-bearing insulation being joined at lines of junction to form a complete insulating jacket around said tank, said lines of junction being spaced from the lines of the corners of. said tank formed by the meeting of adjacent sides.
A container for the bulk storage or transport of liquids at temperatures greatly different from ambient temperatures comprising 1 b. a tank of liquid-impervious material,
c. an external jacket of thermal insulating material surrounding said tank, certain-areas of said tank being subjected to much higher load stress under working conditions than other insulated areas,
d. the insulation at the highly stressed areas of the tank being of load-bearing insulating material of relatively high strength,
. the insulation at the remaining insulated areas of the tank being of rigid foamed-plastic material of very low loadbearing strength, i said tank being prismatic, the foamed-plastic insulation and the load-bearing insulation being joined at lines of junction to form a complete insulating jacket around said tank, said lines of junction being spaced from the lines of the corners of said tank formed by the meeting of adjacent sides with the bottom wall of the tank, in which the junctio it between the foamed-plastic insulation and the Y load-bearing insulation lies in a plane extending obliquely to the plane of the wall of the tank.
' 3 A container according to claim 2, in which at least one mat of open-mesh reinforcing material is incorporated in the foam insulation, with the edges of the mat securely anchored to the adjacent load-bearing insulating material.
4. A container according to claim 3, wherein the tank is a self-supporting tank and wherein the load-bearing insulation extends beneath the tank and part way up each sidewall thereof, said load-bearing insulation being liquidproof to constitute a secondary barrier against leakage of liquid cargo from the tank.
5. A container according to claim 3 wherein the tank is a membrane tank and the load-bearing thermal insulating material extends around the corner edges thereof, said corner

Claims (4)

  1. 2. A container for the bulk storage or transport of liquids at temperatures greatly different from ambient temperatures comprising b. a tank of liquid-impervious material, c. an external jacket of thermal insulating material surrounding said tank, certain areas of said tank being subjected to much higher load stress under working conditions than other insulated areas, d. the insulation at the highly stressed areas of the tank being of load-bearing insulating material of relatively high strength, e. the insulation at the remaining insulated areas of the tank being of rigid foamed-plastic material of very low load-bearing strength, f. said tank being prismatic, the foamed-plastic insulation and the load-bearing insulation being joined at lines of junction to form a complete insulating jacket around said tank, said lines of junction being spaced from the Lines of the corners of said tank formed by the meeting of adjacent sides with the bottom wall of the tank, in which the junction between the foamed-plastic insulation and the load-bearing insulation lies in a plane extending obliquely to the plane of the wall of the tank.
  2. 3. A container according to claim 2, in which at least one mat of open-mesh reinforcing material is incorporated in the foam insulation, with the edges of the mat securely anchored to the adjacent load-bearing insulating material.
  3. 4. A container according to claim 3, wherein the tank is a self-supporting tank and wherein the load-bearing insulation extends beneath the tank and part way up each sidewall thereof, said load-bearing insulation being liquidproof to constitute a secondary barrier against leakage of liquid cargo from the tank.
  4. 5. A container according to claim 3 wherein the tank is a membrane tank and the load-bearing thermal insulating material extends around the corner edges thereof, said corner edges being anchored in said load-bearing insulating material.
US801495A 1969-02-24 1969-02-24 Containers for liquefied gases Expired - Lifetime US3595424A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80149569A 1969-02-24 1969-02-24

Publications (1)

Publication Number Publication Date
US3595424A true US3595424A (en) 1971-07-27

Family

ID=25181262

Family Applications (1)

Application Number Title Priority Date Filing Date
US801495A Expired - Lifetime US3595424A (en) 1969-02-24 1969-02-24 Containers for liquefied gases

Country Status (1)

Country Link
US (1) US3595424A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724703A (en) * 1970-10-31 1973-04-03 Bridgestone Liquefied Gas Co Low temperature liquefied gas storage tank and tanker
US3830396A (en) * 1970-10-14 1974-08-20 Conch Int Methane Ltd Containers for liquefied gases
US3922987A (en) * 1972-08-02 1975-12-02 Conch Int Methane Ltd Liquefied gas tanker construction using stiffener members
US3927788A (en) * 1974-07-12 1975-12-23 Kaiser Aluminium Chem Corp Cryogenic liquid containment system
US4089285A (en) * 1976-09-22 1978-05-16 Hitachi Shipbuilding & Engineering Co., Ltd. Secondary barrier construction for vessels carrying spherical low temperature liquified gas storage tanks
US4109823A (en) * 1975-11-22 1978-08-29 Conch Lng Insulation system for liquefied gas tanks
DE2936421A1 (en) * 1979-09-08 1981-03-12 Dyckerhoff & Widmann AG, 8000 München DOUBLE-WALLED CONTAINER FOR DEEP-COLD LIQUIDS
US4989750A (en) * 1990-04-16 1991-02-05 Lrs, Inc. Fire resistant tank construction
US5004632A (en) * 1988-03-31 1991-04-02 Lrs, Inc. Fire resistant tank construction
US5005615A (en) * 1990-01-08 1991-04-09 Lrs, Inc. Safety tank apparatus for liquid storage
US5016689A (en) * 1990-01-08 1991-05-21 Lrs, Inc. Safety tank apparatus for liquid storage
US5038456A (en) * 1990-04-26 1991-08-13 Lrs, Inc. Fire resistant tank construction method
US5056017A (en) * 1989-07-31 1991-10-08 Lrs, Inc. System to monitor fuel level in a tank, and fuel dispensed from the tank, to determine fuel leakage and theft losses
US5092024A (en) * 1990-04-26 1992-03-03 Lrs, Inc. Fire resistant tank construction method
US5103996A (en) * 1989-03-31 1992-04-14 Lrs, Inc. Fire resistant tank construction
US5137064A (en) * 1990-01-08 1992-08-11 Lrs, Inc. Safety tank apparatus for liquid storage
US5265656A (en) * 1990-01-08 1993-11-30 Lrs, Inc. Safety tank apparatus for liquid storage having fire resistant construction
US5284191A (en) * 1990-08-06 1994-02-08 Lrs, Inc. Safety tank apparatus for liquid storage
US5285920A (en) * 1989-03-31 1994-02-15 Lrs, Inc. Fire resistant tank assembly and liquid hydrocarbon dispensing
US5319545A (en) * 1989-07-31 1994-06-07 Lrs, Inc. System to monitor multiple fuel dispensers and fuel supply tank
US5533648A (en) * 1994-01-10 1996-07-09 Novus International, Inc. Portable storage and dispensing system
US20060118563A1 (en) * 2004-12-03 2006-06-08 Travis John R Ii Storage tank
US20090026212A1 (en) * 2007-07-25 2009-01-29 Robbins Jess A Underground storage tank for flammable liquids
US20110024432A1 (en) * 2009-07-28 2011-02-03 Jorgensen Roy W Secondary containment system for DEF storage container
US20120012473A1 (en) * 2009-04-14 2012-01-19 Adnan Ezzarhouni Termination of the secondary membrane of an lng tank
KR20170007945A (en) * 2015-07-13 2017-01-23 대우조선해양 주식회사 Liquefied storage tank including heat insulation part and method of arrangement for heat insulation part
US11661235B2 (en) * 2018-10-15 2023-05-30 Sandbox Enterprises, Llc Bulk material shipping container top wall assembly and bulk material shipping container having a top wall assembly

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386958A (en) * 1942-01-08 1945-10-16 Pittsburgh Des Moines Company Spherical type insulated container for liquefied gases
US2481664A (en) * 1945-03-19 1949-09-13 Joseph L Hemp Insulated container
US2952987A (en) * 1956-10-09 1960-09-20 Texaco Inc Apparatus for the maintenance of liquefied petroleum products and method of manufacture thereof
US3079026A (en) * 1958-06-25 1963-02-26 Couch Internat Methane Ltd Insulated space and elements employed therein
US3106307A (en) * 1960-08-03 1963-10-08 Liquefreeze Company Inc Insulated container
US3147878A (en) * 1958-09-22 1964-09-08 Chicago Bridge & Iron Co Cryogenic storage tank
US3150795A (en) * 1961-06-20 1964-09-29 Conch Int Methane Ltd Membrane tanks
FR1383795A (en) * 1963-08-30 1965-01-04 Gaz De France Liquefied gas storage tank and its construction method
US3241703A (en) * 1963-10-18 1966-03-22 Hydrocarbon Research Inc Liquefied gas storage tank
US3362560A (en) * 1965-07-12 1968-01-09 Gen Motors Corp Refrigerating apparatus
US3399800A (en) * 1965-03-05 1968-09-03 Sarl Gaz Transp Tank for liquefied gas
US3502239A (en) * 1966-11-02 1970-03-24 Shell Oil Co Thermally insulated container for transporting low temperature liquids

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386958A (en) * 1942-01-08 1945-10-16 Pittsburgh Des Moines Company Spherical type insulated container for liquefied gases
US2481664A (en) * 1945-03-19 1949-09-13 Joseph L Hemp Insulated container
US2952987A (en) * 1956-10-09 1960-09-20 Texaco Inc Apparatus for the maintenance of liquefied petroleum products and method of manufacture thereof
US3079026A (en) * 1958-06-25 1963-02-26 Couch Internat Methane Ltd Insulated space and elements employed therein
US3147878A (en) * 1958-09-22 1964-09-08 Chicago Bridge & Iron Co Cryogenic storage tank
US3106307A (en) * 1960-08-03 1963-10-08 Liquefreeze Company Inc Insulated container
US3150795A (en) * 1961-06-20 1964-09-29 Conch Int Methane Ltd Membrane tanks
FR1383795A (en) * 1963-08-30 1965-01-04 Gaz De France Liquefied gas storage tank and its construction method
US3241703A (en) * 1963-10-18 1966-03-22 Hydrocarbon Research Inc Liquefied gas storage tank
US3399800A (en) * 1965-03-05 1968-09-03 Sarl Gaz Transp Tank for liquefied gas
US3362560A (en) * 1965-07-12 1968-01-09 Gen Motors Corp Refrigerating apparatus
US3502239A (en) * 1966-11-02 1970-03-24 Shell Oil Co Thermally insulated container for transporting low temperature liquids

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830396A (en) * 1970-10-14 1974-08-20 Conch Int Methane Ltd Containers for liquefied gases
US3724703A (en) * 1970-10-31 1973-04-03 Bridgestone Liquefied Gas Co Low temperature liquefied gas storage tank and tanker
US3922987A (en) * 1972-08-02 1975-12-02 Conch Int Methane Ltd Liquefied gas tanker construction using stiffener members
US3927788A (en) * 1974-07-12 1975-12-23 Kaiser Aluminium Chem Corp Cryogenic liquid containment system
US4109823A (en) * 1975-11-22 1978-08-29 Conch Lng Insulation system for liquefied gas tanks
US4089285A (en) * 1976-09-22 1978-05-16 Hitachi Shipbuilding & Engineering Co., Ltd. Secondary barrier construction for vessels carrying spherical low temperature liquified gas storage tanks
DE2936421A1 (en) * 1979-09-08 1981-03-12 Dyckerhoff & Widmann AG, 8000 München DOUBLE-WALLED CONTAINER FOR DEEP-COLD LIQUIDS
US5004632A (en) * 1988-03-31 1991-04-02 Lrs, Inc. Fire resistant tank construction
US5285920A (en) * 1989-03-31 1994-02-15 Lrs, Inc. Fire resistant tank assembly and liquid hydrocarbon dispensing
US5103996A (en) * 1989-03-31 1992-04-14 Lrs, Inc. Fire resistant tank construction
US5056017A (en) * 1989-07-31 1991-10-08 Lrs, Inc. System to monitor fuel level in a tank, and fuel dispensed from the tank, to determine fuel leakage and theft losses
US5319545A (en) * 1989-07-31 1994-06-07 Lrs, Inc. System to monitor multiple fuel dispensers and fuel supply tank
US5265656A (en) * 1990-01-08 1993-11-30 Lrs, Inc. Safety tank apparatus for liquid storage having fire resistant construction
US5718269A (en) * 1990-01-08 1998-02-17 Hoover Containment, Inc. Safety tank apparatus for liquid storage
US5137064A (en) * 1990-01-08 1992-08-11 Lrs, Inc. Safety tank apparatus for liquid storage
US5016689A (en) * 1990-01-08 1991-05-21 Lrs, Inc. Safety tank apparatus for liquid storage
US5005615A (en) * 1990-01-08 1991-04-09 Lrs, Inc. Safety tank apparatus for liquid storage
US4989750A (en) * 1990-04-16 1991-02-05 Lrs, Inc. Fire resistant tank construction
US5038456A (en) * 1990-04-26 1991-08-13 Lrs, Inc. Fire resistant tank construction method
US5092024A (en) * 1990-04-26 1992-03-03 Lrs, Inc. Fire resistant tank construction method
US5284191A (en) * 1990-08-06 1994-02-08 Lrs, Inc. Safety tank apparatus for liquid storage
US5406993A (en) * 1990-08-06 1995-04-18 Lrs, Inc. Safety tank apparatus for liquid storage
US5533648A (en) * 1994-01-10 1996-07-09 Novus International, Inc. Portable storage and dispensing system
US20060118563A1 (en) * 2004-12-03 2006-06-08 Travis John R Ii Storage tank
US20090026212A1 (en) * 2007-07-25 2009-01-29 Robbins Jess A Underground storage tank for flammable liquids
US20120012473A1 (en) * 2009-04-14 2012-01-19 Adnan Ezzarhouni Termination of the secondary membrane of an lng tank
US9291308B2 (en) * 2009-04-14 2016-03-22 Gaztransport & Technigaz LNG container with a connecting device which connects a secondary impermeable barrier to a load bearing structure
US20110024432A1 (en) * 2009-07-28 2011-02-03 Jorgensen Roy W Secondary containment system for DEF storage container
KR20170007945A (en) * 2015-07-13 2017-01-23 대우조선해양 주식회사 Liquefied storage tank including heat insulation part and method of arrangement for heat insulation part
KR102384711B1 (en) 2015-07-13 2022-04-08 대우조선해양 주식회사 Liquefied storage tank including heat insulation part
US11428369B2 (en) * 2015-07-13 2022-08-30 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas storage tank having insulation parts and method for arranging insulation parts
US11661235B2 (en) * 2018-10-15 2023-05-30 Sandbox Enterprises, Llc Bulk material shipping container top wall assembly and bulk material shipping container having a top wall assembly

Similar Documents

Publication Publication Date Title
US3595424A (en) Containers for liquefied gases
KR101863989B1 (en) Sealed, thermally-insulating vessel
US3814275A (en) Cryogenic storage vessel
US4366917A (en) Cryogenic tank
US3150795A (en) Membrane tanks
US3547302A (en) Container for liquefied gases
US3682346A (en) Liquid cryogen storage tank for shore, ship or barge
US3927788A (en) Cryogenic liquid containment system
US3894372A (en) Cryogenic insulating panel system
US3830396A (en) Containers for liquefied gases
US4066184A (en) Thermal insulation systems
US4032608A (en) Cryogenic liquid containment method
US4426817A (en) Double-walled tank for low-temperature liquids
RU2753857C1 (en) Sealed and heat-insulating tank with several areas
US3525661A (en) Thermal insulation structures
US3547301A (en) Tanker for liquefied gases
US3206057A (en) Supported liquefied gas storage tank
US3922987A (en) Liquefied gas tanker construction using stiffener members
US3490639A (en) Containers for liquefied gases
KR102168127B1 (en) Insulation System of Liquefied Gas Hold
US3339784A (en) Insulated structure for use in transportation of cold liquids
US3669815A (en) Structural light-weight panel for cryogenic and elevated temperature applications
US3095107A (en) Stabilization means for storage tanks
US3224624A (en) Storage of a liquefied gas
KR20180029170A (en) Cargo for liquefied gas