US20200064670A1 - Electronic device and method for manufacturing the same - Google Patents
Electronic device and method for manufacturing the same Download PDFInfo
- Publication number
- US20200064670A1 US20200064670A1 US16/108,329 US201816108329A US2020064670A1 US 20200064670 A1 US20200064670 A1 US 20200064670A1 US 201816108329 A US201816108329 A US 201816108329A US 2020064670 A1 US2020064670 A1 US 2020064670A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- electronic device
- accordance
- processed
- substrates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1306—Details
- G02F1/1309—Repairing; Testing
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133308—Support structures for LCD panels, e.g. frames or bezels
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133302—Rigid substrates, e.g. inorganic substrates
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133357—Planarisation layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/13336—Combining plural substrates to produce large-area displays, e.g. tiled displays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/50—Protective arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/50—Protective arrangements
- G02F2201/503—Arrangements improving the resistance to shock
Definitions
- the present disclosure relates to an electronic device and the method for manufacturing the electronic device, and in particular relates to the processing of the substrate of the electronic device.
- Liquid-crystal molecules are widely used in various electronic devices.
- liquid-crystal molecules apply in display devices or tunable microwave devices, such as liquid-crystal display devices or antenna devices.
- the display device and the antenna device can work by controlling the directions of the liquid-crystal molecules for modulating the phase or amplitude of light, or microwave signal emitting from the display device.
- Liquid-crystal molecules are generally disposed between two substrates of electronic devices.
- the substrates are often different in size, and some portions (e.g., the side portions) of the substrates protrude one another.
- the substrates usually have some defects or cracks on the side portions due to cutting or pre-cutting processes of the substrates. Therefore, the exposure of these weak portions may increase the risk of the substrates breaking.
- the collision or contact between the side portions of the substrates may also result in damage to the substrates.
- an electronic device in accordance with some embodiments of the present disclosure, includes a first substrate and a second substrate disposed on the first substrate.
- the first substrate includes a first side, and the first side includes a first portion and a second portion.
- the second substrate covers the first portion. The first portion is unprocessed and the second portion is processed.
- a method for manufacturing an electronic device includes providing a first substrate and forming a second substrate on the first substrate.
- the first substrate includes a first side, and the first side includes a first portion and a second portion.
- the second substrate covers the first portion.
- the method further includes processing the second portion while leaving the first portion unprocessed.
- FIG. 1A is a diagram of the substrates of an electronic device in accordance with some embodiments of the present disclosure.
- FIG. 1B is a side-view diagram of the substrates of an electronic device in accordance with some embodiments of the present disclosure.
- FIGS. 2A-2C are side-view diagrams of the substrates of the electronic devices in accordance with some embodiments of the present disclosure.
- FIGS. 3A-3D are side-view diagram of the substrates of the electronic devices in accordance with some embodiments of the present disclosure.
- FIGS. 4A-4C are top-view diagrams of the substrates of the electronic devices in accordance with some other embodiments of the present disclosure.
- FIG. 5A is a diagram showing assembly of the substrates of a tiled electronic device in accordance with some embodiments of the present disclosure.
- FIG. 5B is a diagram of the substrates of a tiled electronic device in accordance with some embodiments of the present disclosure.
- FIG. 6 illustrates a cross-sectional view of an electronic device in accordance with some embodiments of the present disclosure.
- FIG. 7 illustrates a cross-sectional view of an electronic device in accordance with some embodiments of the present disclosure.
- first layer disposed on/over a second layer may indicate the direct contact of the first layer and the second layer, or it may indicate a non-contact state with one or more intermediate layers between the first layer and the second layer. In the above situation, the first layer may not be in direct contact with the second layer.
- a layer overlying another layer may indicate that the layer is in direct contact with the other layer, or that the layer is not in direct contact with the other layer, there being one or more intermediate layers disposed between the layer and the other layer.
- first, second, third etc. may be used herein to describe various elements, components, regions, layers, portions and/or sections, these elements, components, regions, layers, portions and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, portion or section from another element, component, region, layer or section. Thus, a first element, component, region, layer, portion or section discussed below could be termed a second element, component, region, layer, portion or section without departing from the teachings of the present disclosure.
- the terms “about” and “substantially” typically mean +/ ⁇ 5% of the stated value, more typically +/ ⁇ 3% of the stated value, more typically +/ ⁇ 2% of the stated value, more typically +/ ⁇ 1% of the stated value and even more typically +/ ⁇ 0.5% of the stated value.
- the stated value of the present disclosure is an approximate value. When there is no specific description, the stated value includes the meaning of “about” or “substantially”.
- attachments, coupling and the like refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
- side is defined as an upright or sloping surface of a structure or object that is not the top principle surface or the bottom principle surface and generally having a thin and long area.
- side can also be referred as a lateral surface of a structure or object, as opposed to the top principle surface and bottom principle surface.
- an electronic device may include, but is not limited to, a display device (including a touch display device), a communication device, or a sensing device.
- the electronic device may be arranged in adjacency to form a tiled electronic device.
- the display device may include, but is not limited to, a liquid-crystal display (LCD), an organic light-emitting diode (OLED) display, an inorganic light-emitting diode display (e.g. micro LED or mini LED) or a laser display.
- the inorganic light-emitting diode (LED) display may include a quantum dots light-emitting diode (QLED) display.
- the communication device may include a liquid-crystal molecule-modulating device such as an antenna device.
- an electronic device includes a substrate comprising at least one side that is partially processed. More specifically, the sides of the substrate that are not covered by the opposite substrate are mostly processed. That is, most of the sides protruding outward the boundary of the opposite substrate are processed.
- the processing may prevent defects or cracks on the sides of the substrate due to the cutting process, pre-cutting process or other manufacturing processes from breaking. Therefore, the structural strength of the substrate and yield may be enhanced.
- the partial processing of the sides of the substrate may also reduce the cost of manufacture. In accordance with some embodiments where the substrates with partially processed sides are tiled together, the risk of breaking due to collision or contact between the substrates may be reduced.
- FIG. 1A is a diagram of the substrates of an electronic device 10 in accordance with some embodiments of the present disclosure.
- FIG. 1B is a side-view diagram of the substrates of the electronic device 10 (i.e. in the X-Z plane) in accordance with some embodiments of the present disclosure. It should be understood that additional features may be added to the electronic device in accordance with some embodiments of the present disclosure. In addition, some of the features illustrated in the figures may be simplified or omitted for clarity.
- the electronic device 10 includes a first substrate 102 and a second substrate 202 disposed opposite to the first substrate 102 and laminated to each other.
- the first substrate 102 includes a first side 1021 protruding outward the boundary (sides) of the second substrate 202 in the perspective of normal direction of the substrate.
- the first side 1021 includes a first portion 1021 a and a second portion 1021 b.
- the second substrate 202 covers the first portion 1021 a but not cover the second portion 1021 b. Part of the first substrate 102 protruding outward the boundary of the second substrate 202 includes the second portion 1021 b.
- some components of the electronic device 10 may be disposed corresponding to the protruding part of the first substrate 102 .
- the integrated circuit (IC) or other functional circuits, or mechanical components may be disposed corresponding to the second portion 1021 b in accordance with some embodiments.
- the protruding part of the first substrate 102 may serve as a connecting area for the assembly to form a tiled electronic device.
- the first substrate 102 and the second substrate 202 are formed of materials having hardness in a range from about 2 H to about 10 H.
- the first substrate 102 and the second substrate 202 may include, but is not limited to, glass, quartz, silicon, sapphire, glass fibers, ceramic, or a combination thereof.
- the first substrate 102 and the second substrate 202 are formed of the same material. In some other embodiments, the first substrate 102 and the second substrate 202 are formed of different materials.
- the first substrate 102 may include defects C such as cracks on the first side 1021 in accordance with some embodiments.
- the defects C may be generated during the pre-cutting process of the first substrate 102 .
- the first side 1021 of the first substrate 102 may include a first area 102 A above and a second area 102 B below, and the first area 102 A may include more defects C than the second area 102 B.
- the different morphologies of the first area 102 A and the second area 102 B may result from the cutting process in combination of pre-cutting and the breaking (separating) by mechanical force.
- the first substrate 102 may have defects C that are distributed substantially uniformly on the first side 1021 (i.e. the first area 102 A and the second area 102 B do not obviously exist).
- the second substrate 202 also includes defects C on the sides (not illustrated).
- the cutting process may be performed by using a cutting knife, laser, or a combination thereof, but it is not limited thereto.
- the first side 1021 of the first substrate 102 may have various types of defects C or morphologies depending on different types of cutting processes. It should be also understood that although only the defects C on the first side 1021 of the first substrate 102 are illustrated in the figures, the defects C may exist on more than one side or all the sides of the first substrate 102 in accordance with some embodiments.
- FIG. 2A is a side-view diagram of the substrates of the electronic device 10 (i.e. in the X-Z plane) in accordance with some other embodiments of the present disclosure.
- the first side 1021 of the first substrate 102 is partially processed. More specifically, the first portion 1021 a of the first side 1021 is unprocessed and the second portion 1021 b of the first side 1021 is processed to reduce or remove the defects C.
- the second portion 1021 b that is not covered by the second substrate 202 has a processed region P while the first portion 1021 a that is covered by the second substrate 202 does not have a processed region P, i.e. the first portion 1021 a may still include the defects C.
- the first portion 1021 a of the first side 1021 still may be processed to reducing the defects C.
- the second portion 1021 b is processed by a grinding process, a lapping process, a polishing process, a milling process, a coating process or a combination thereof.
- the component including abrasive particles may be used in the above grinding, lapping, polishing or milling process to modify the surface of the second portion 1021 b.
- the component including abrasive particles may be moved along the Z direction, the Y direction, any other suitable direction or a combination thereof to process the second portion 1021 b.
- the surface roughness of the first portion 1021 a is different from the surface roughness of the second portion 1021 b. In some embodiments, the surface roughness of the first portion 1021 a is greater than the surface roughness of the processed region P of the second portion 1021 b.
- the second portion 1021 b is coated with a protective material (not illustrated) to form the processed region P.
- the protective material may be coated on the second portion 1021 b by dripping, pasting, spraying, stamping, any other applicable method, or a combination thereof.
- the protective layer may include polyether thiourea, polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), epoxy resins, polyepoxide, polymerized siloxanes, or a combination thereof, but is not limited thereto.
- the protective layer may include a self-assembly monolayer.
- the second substrate 202 may include the side that is at least partially processed. In some embodiments, the second substrate 202 may include unprocessed side.
- the method for manufacturing the electronic device may include the following steps: providing the first substrate 102 ; forming the second substrate 202 on the first substrate 102 ; and processing the second portion 1021 b of the first substrate 102 while leaving the first portion 1021 a of the first substrate 102 unprocessed.
- the method may further include forming a liquid-crystal layer (e.g., as shown in FIGS. 6 and 7 ) between the first substrate 102 and the second substrate 202 in accordance with some embodiments.
- FIG. 2B is a side-view diagram of the substrates of the electronic device 10 (i.e. in the X-Z plane) in accordance with some other embodiments of the present disclosure.
- the difference between the embodiment shown in FIG. 2B and the embodiment shown in FIG. 2A is that the second portion 1021 b of the first side 1021 is partially processed in the electronic device of FIG. 2B while the second portion 1021 b of the first side 1021 is substantially entirely processed in the electronic device of FIG. 2A .
- the first portion 1021 a of the first side 1021 is entirely processed.
- the first side 1021 of the first substrate 102 has a maximum height H 1 (thickness) and the processed region P has a maximum height H 2 .
- the ratio of the maximum height H 2 to the maximum height H 1 (H 2 /H 1 ) is in a range from about 0.1 to about 0.9 or from about 0.1 to about 0.5.
- FIG. 2C is a side-view diagram of the substrates of the electronic device 10 (i.e. in the X-Z plane) in accordance with some other embodiments of the present disclosure.
- the difference between the embodiment shown in FIG. 2C and the embodiment shown in FIG. 2A is that the first side 1021 of the first substrate 102 further includes a third portion 1021 c located between the first portion 1021 a and the second portion 1021 b in the embodiments shown in FIG. 2C .
- the third portion 1201 c is not covered by the second substrate 202 and is unprocessed.
- the third portion 1201 c may serve as a buffer region to prevent the processing of the second portion 1021 b from affecting the second substrate 202 .
- the first portion 1021 a has a first length L 1 along the X direction and the second portion 1021 b has a second length L 2 along the X direction.
- the first length L 1 is greater than the second length L 2 in accordance with some embodiments.
- the third portion 1201 c has a third length L 3 along the X direction.
- the second length L 2 is greater than the third length L 3 .
- the third length L 3 is in a range from about 0.5 mm to about 100 mm, or from about 1 mm to about 5 mm.
- the X direction mentioned above may be an extending direction of the first side 1021 , i.e. the longitudinal direction of the first side 1021 .
- FIGS. 3A-3D are side-view diagrams of the substrates of the electronic device 10 (i.e. in the X-Z plane) in accordance with some other embodiments of the present disclosure.
- the first substrate 102 includes an end 102 e that is processed to have a certain shape. Specifically, the end 102 e that is located at the edge of the second portion 1021 b of the first side 1021 is processed.
- the end 102 e of the first substrate 102 may have an arc shape or a rounded shape in accordance with some embodiments.
- the end 102 e of the first substrate 102 may have a tapered shape or a sharp shape in accordance with some embodiments.
- the end 102 e of the first substrate 102 may have a concave shape or a recessed shape in accordance with some embodiments.
- the end 102 e of the first substrate 102 may have an obtuse shape in accordance with some embodiments.
- the upper region of the second portion 1021 b is recessed or rounded whereas the lower portion of the second portion 1021 b is not recessed.
- the lower portion of the second portion 1021 b is recessed or rounded whereas the upper portion of the second portion 1021 b is not.
- FIGS. 4A-4C are top-view diagrams of the substrates of the electronic devices in accordance with some other embodiments of the present disclosure.
- the first substrate 102 and the second substrate 202 have various aspects.
- the first substrate 102 and the second substrate 202 may have similar shapes in accordance with some embodiments.
- the first substrate 102 and the second substrate 202 may have different shapes in accordance with some embodiments.
- the first substrate 102 and the second substrate 202 are misaligned.
- parts of the sides of the first substrate 102 protrude outward compared with the sides (boundaries) of the second substrate 202 .
- parts of the sides of the second substrate 202 protrude outward compared with the sides of the first substrate 202 .
- parts of the sides of the first substrate 102 align with the sides of the second substrate 202 .
- the first substrate 102 and the second substrate 202 may both have a rectangular shape.
- the first substrate 102 and the second substrate 202 may both have a hexagonal shape.
- the first substrate 102 may have a circular shape and the second substrate 202 may have an extending shape with curved ends.
- the first substrate 102 and the second substrate 202 may have a triangle shape, a pentagonal shape, an oblong shape, a diamond shape, an irregular shape or any other suitable shape according to needs.
- the first side 1021 of the first substrate 102 may be linear, curved, irregular or a combination thereof in accordance with some embodiments.
- FIG. 5A is a diagram showing assembly of the substrates of a tiled electronic device in accordance with some embodiments of the present disclosure.
- the electronic devices may be arranged with each other to form a tiled electronic device.
- the electronic device 10 is assembled with the electronic device 20 .
- the electronic device 10 and the electronic device 20 are the same type of electronic device.
- the electronic device 10 and the electronic device 20 are different types of electronic devices.
- the electronic device 20 has a structure that is similar to that of the electronic device 10 . More specifically, the electronic device 20 includes a third substrate 302 and a fourth substrate 402 disposed on the third substrate 302 .
- the third substrate 302 is disposed adjacent to the first substrate 102 and includes a third side 3021 .
- the fourth substrate 402 is disposed adjacent to the second substrate 202 and includes a fourth side 4021 .
- the fourth substrate 402 overlaps the first substrate 102 in accordance with some embodiments. More specifically, the fourth substrate 402 overlaps the second portion 1021 b of the first substrate 102 in accordance with some embodiments.
- the first substrate 102 further includes a second side 1022 that is not covered by the second substrate 202 in accordance with some embodiments.
- the second side 1022 of the first substrate 102 is processed since the second side 1022 is not protected by the second substrate 202 .
- the second substrate 202 may also include a second side 2021 .
- the second side 2021 of the second substrate 202 includes a first portion 2021 a that overlaps with first substrate 102 and a second portion 2021 b that does not overlap with first substrate 102 in accordance with some embodiments.
- the first portion 2021 a of the second side 2021 is unprocessed and the second portion 2021 b of the second side 2021 is processed.
- the third side 3021 of the third substrate 302 also includes a first portion 3021 a and a second portion 3021 b in accordance with some embodiments.
- the fourth substrate 402 covers the first portion 3021 a but not the second portion 3021 b. A portion of the fourth substrate 402 protrudes outward compared with the third substrate 302 (boundary of the third substrate 302 ).
- the third side 3021 of the third substrate 302 includes defects C (not illustrated).
- the third side 3021 of the third substrate 302 is partially processed. More specifically, the first portion 3021 a of the third side 3021 is unprocessed and the second portion 3021 b of the third side 3021 is processed to reduce or remove the defects C. In other words, the third side 3021 of the third substrate 302 is at least partially unprocessed in accordance with some embodiments.
- the fourth substrate 402 protrudes outward compared with the third substrate 302 , and the fourth substrate 402 covers the second portion 1021 b of the first substrate 102 in accordance with some embodiments.
- the fourth side 4021 of the fourth substrate 402 is processed since it protrudes outward compared with the third substrate 302 .
- the processed second side 1022 of the first substrate 102 is adjacent to the partially unprocessed third side 3021 of the third substrate 302 .
- the partially unprocessed second side 2021 of the second substrate 202 is adjacent to the processed fourth side 4021 of the fourth substrate 402 .
- the processed portion may be in contact with the unprocessed portion at the boundaries of the assembled substrates, and the space between the processed portion and the unprocessed portion may accommodate the particles or shards on the sides of substrates. Therefore, the risk of cracks of the substrates may be reduced.
- FIG. 5B is a top-view diagram of the substrates of a tiled electronic device 30 in accordance with some embodiments.
- the tiled electronic device may include a plurality of units.
- the tiled electronic device 30 includes four units, i.e. an electronic device 10 ′, an electronic device 20 ′, an electronic device 30 ′ and an electronic device 40 ′.
- the electronic device 10 ′, electronic device 20 ′, electronic device 30 ′ and electronic device 40 ′ may be the same type of electronic device with the same function.
- the electronic device 10 ′, electronic device 20 ′, electronic device 30 ′ and electronic device 40 ′ may be different types of electronic devices with various functions.
- the electronic device 10 ′ includes the first substrate 102 ′ and the second substrate 202 ′ disposed on the first substrate 102 ′.
- the electronic device 20 ′ includes the third substrate 302 ′ and the fourth substrate 402 ′ disposed on the third substrate 302 ′.
- the electronic device 30 ′ includes the fifth substrate 502 ′ and the sixth substrate 602 ′ disposed on the fifth substrate 502 ′.
- the electronic device 40 ′ includes the seventh substrate 702 ′ and the eighth substrate 802 ′ disposed on the seventh substrate 702 ′.
- the tiled electronic device 30 may include various arrangements of the assembled substrates. As shown in FIG. 5B , a portion of the side of the first substrate 102 ′ overlaps the side of the second substrate 202 ′ in the electronic device 10 ′. A portion of the side of the third substrate 302 ′ is partially covered by the fourth substrate 402 ′ in the electronic device 20 ′. All sides of the fifth substrate 502 ′ are covered by the sixth substrate 602 ′ in the electronic device 30 ′. A portion of the side of the seventh substrate 702 ′ is not covered by the eighth substrate 802 ′ in the electronic device 40 ′.
- the sides of the first substrate 102 ′ that are not covered by the second substrate 202 ′, some portions of the sides of the third substrate 302 ′ that are not covered by the fourth substrate 402 ′, and some portions of the sides of the seventh substrate 702 ′ that are not covered by the eighth substrate 802 ′ are processed.
- Other portions of the sides that are covered by the second substrate 202 ′, the fourth substrate 402 ′ or the eighth substrate 802 ′ are unprocessed.
- the fifth substrate 502 ′ are entirely covered by the sixth substrate 602 ′ in the electronic device 30 ′, the sides of the fifth substrate 502 ′ may be unprocessed.
- the processed portions may be in contact with the unprocessed portions at the boundaries of the assembled substrates, and the space between the processed portion and the unprocessed portion may accommodate the particles or shards on the sides of substrates. Therefore, the risk of cracks of the substrates may be reduced, and the structural strength of the tiled electronic device 30 may be increased.
- FIG. 6 illustrates a cross-sectional view of an electronic device 40 in accordance with some embodiments of the present disclosure.
- the electronic device 40 is a liquid-crystal molecule-modulating device such as a liquid-crystal display.
- the electronic device 40 includes the first substrate 102 and the second substrate 202 disposed opposite to the first substrate 102 .
- the electronic device 40 further includes a liquid-crystal layer 310 disposed between the first substrate 102 and the second substrate 202 , and enclosed by a sealing member 312 .
- the electronic device 40 may further include a driving layer (not illustrated) disposed on the first substrate 102 , and a backlight unit 104 and a first polarizing structure 106 disposed below the first substrate 102 .
- the driving layer may include thin-film transistors (TFT) or integrated circuits (IC).
- the backlight unit 104 may include the light-emitting elements formed of quantum dot (QD) materials, fluorescence materials, phosphor materials, any other suitable light-emitting materials, or a combination thereof, but it is not limited thereto.
- QD quantum dot
- the first polarizing structure 106 may be a general polarizer or replaced by a metal patterned layer such as a wire grid polarizer (WGP) between the two substrates or outside of the substrates.
- WGP wire grid polarizer
- the electronic device 40 further includes a color conversion layer 204 , a light-shielding element 208 formed of opaque materials such as a black matrix material, and a second polarizing structure 206 .
- the color conversion layer 204 is disposed between the second substrate 202 and the liquid-crystal layer 310 .
- the second polarizing structure 206 is disposed on the second substrate 202 .
- the color conversion layer 204 may be disposed between light-shielding elements 208 to enhance the contrast of luminance in accordance with some embodiments.
- the first side 1021 of the first substrate 102 includes the first portion 1021 a that is covered by the second substrate 202 and the second portion 1021 b that is not covered by the second substrate 202 .
- the second portion 1021 b includes the processed region P (not shown in the perspective of FIG. 6 ).
- FIG. 7 illustrates a cross-sectional view of an electronic device 50 in accordance with some embodiments of the present disclosure.
- the same or similar components or elements in above and below contexts are represented by the same or similar reference numerals.
- the materials, manufacturing methods and functions of these components or elements are the same or similar to those described above, and thus will not be repeated herein.
- the electronic device 50 is a liquid-crystal molecule-modulating device such as an antenna device.
- the electronic device 50 includes the first substrate 102 and the second substrate 202 that is disposed opposite to the first substrate 102 .
- the electronic device 50 further includes the liquid-crystal layer 310 and a plurality of spacers 314 disposed between the first substrate 102 and the second substrate 202 .
- the liquid crystal layer 310 is disposed between the first substrate 102 and the second substrate 202 and enclosed by a sealing member 312 .
- the electronic device 50 includes a first element layer 110 disposed on the first substrate 102 and a second element layer 210 disposed on the second substrate 202 .
- the first element layer 110 may include at least one slot or at least one microstrip line.
- the second electrode layer 210 may include at least one patch or a grounding layer with at least one hole.
- the patch or the hole corresponds to the slot or microstrip line.
- the patch is outside of the second substrate 202 and corresponding to the hole.
- the electronic device 50 further comprises a waveguide layer adjacent to the first substrate 102 .
- the first element layer 110 and the second element layer 210 are electrically connected to driving circuit with thin film transistor or IC.
- the first side 1021 of the first substrate 102 includes the first portion 1021 a that is covered by the second substrate 202 and the second portion 1021 b that is not covered by the second substrate 202 .
- the second portion 1021 b includes the processed region P (not shown in the perspective of FIG. 7 ).
- the present disclosure provides an electronic device including the substrate that is partially processed. Specifically, the sides of the substrate that are not covered by the opposite substrate are processed. The processing may prevent defects or cracks on the sides of the substrate due to the cutting process from breaking. In such a configuration, the structural strength of the substrate may be enhanced. In addition, the partial processing of the sides of the substrate may also reduce the manufacture cost. In embodiments where the substrates are tiled together, the contact of the partially processed sides with the unprocessed sides may also reduce the risk of cracks of the substrates.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/108,329 US20200064670A1 (en) | 2018-08-22 | 2018-08-22 | Electronic device and method for manufacturing the same |
CN201910288345.4A CN110858034B (zh) | 2018-08-22 | 2019-04-11 | 电子装置及其制造方法 |
CN202310237486.XA CN116243514A (zh) | 2018-08-22 | 2019-04-11 | 电子装置 |
US17/243,805 US11269209B2 (en) | 2018-08-22 | 2021-04-29 | Electronic device and method for manufacturing the same |
US17/670,675 US11630337B2 (en) | 2018-08-22 | 2022-02-14 | Electronic device |
US18/186,298 US12078882B2 (en) | 2018-08-22 | 2023-03-20 | Electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/108,329 US20200064670A1 (en) | 2018-08-22 | 2018-08-22 | Electronic device and method for manufacturing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/243,805 Continuation US11269209B2 (en) | 2018-08-22 | 2021-04-29 | Electronic device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200064670A1 true US20200064670A1 (en) | 2020-02-27 |
Family
ID=69584603
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/108,329 Abandoned US20200064670A1 (en) | 2018-08-22 | 2018-08-22 | Electronic device and method for manufacturing the same |
US17/243,805 Active US11269209B2 (en) | 2018-08-22 | 2021-04-29 | Electronic device and method for manufacturing the same |
US17/670,675 Active US11630337B2 (en) | 2018-08-22 | 2022-02-14 | Electronic device |
US18/186,298 Active US12078882B2 (en) | 2018-08-22 | 2023-03-20 | Electronic device |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/243,805 Active US11269209B2 (en) | 2018-08-22 | 2021-04-29 | Electronic device and method for manufacturing the same |
US17/670,675 Active US11630337B2 (en) | 2018-08-22 | 2022-02-14 | Electronic device |
US18/186,298 Active US12078882B2 (en) | 2018-08-22 | 2023-03-20 | Electronic device |
Country Status (2)
Country | Link |
---|---|
US (4) | US20200064670A1 (zh) |
CN (2) | CN110858034B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220149021A1 (en) * | 2020-11-09 | 2022-05-12 | Samsung Display Co., Ltd. | Tiled display device |
WO2024004344A1 (ja) * | 2022-07-01 | 2024-01-04 | 株式会社ジャパンディスプレイ | 表示装置及び液晶表示装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230402282A1 (en) * | 2020-11-13 | 2023-12-14 | Enkris Semiconductor, Inc. | Substrate and manufacturing method therefor |
CN114527592A (zh) * | 2020-11-23 | 2022-05-24 | 群创光电股份有限公司 | 电子装置及其制造方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6290405B1 (en) * | 1999-06-01 | 2001-09-18 | Tokyo Electron Limited | Substrate processing apparatus |
US20100052060A1 (en) * | 2008-08-29 | 2010-03-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dummy gate structure for gate last process |
US20140211144A1 (en) * | 2013-01-29 | 2014-07-31 | Seiko Epson Corporation | Electro-optical device and electronic apparatus |
US20140233161A1 (en) * | 2013-02-21 | 2014-08-21 | Htc Corporation | Electronic device, glass cover and method of manufacturing glass cover |
US20140302282A1 (en) * | 2011-11-14 | 2014-10-09 | Siemens Aktiengesellschaft | Layer system with a structured substrate surface and production process |
US20170285378A1 (en) * | 2016-03-30 | 2017-10-05 | Seiko Epson Corporation | Large substrate and method of manufacturing large substrate |
US20180120531A1 (en) * | 2016-10-28 | 2018-05-03 | Canon Kabushiki Kaisha | Imaging apparatus |
US20180196324A1 (en) * | 2011-12-12 | 2018-07-12 | View, Inc. | Electrochromic laminates |
US20190067630A1 (en) * | 2017-08-22 | 2019-02-28 | Samsung Display Co., Ltd. | Display device |
US20190127631A1 (en) * | 2017-10-26 | 2019-05-02 | Boe Technology Group Co., Ltd. | Display panel and encapsulating method thereof |
US20190258096A1 (en) * | 2016-12-28 | 2019-08-22 | HKC Corporation Limited | Display panel and method for manufacturing of display panel |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2911082B2 (ja) * | 1993-01-27 | 1999-06-23 | シャープ株式会社 | パネルの実装構造および実装方法 |
JPH0922022A (ja) * | 1995-07-06 | 1997-01-21 | Nissin Electric Co Ltd | 液晶表示パネル |
JPH0968714A (ja) * | 1995-08-30 | 1997-03-11 | Sharp Corp | 液晶表示装置及びその製造方法 |
US8395746B2 (en) * | 2006-01-31 | 2013-03-12 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
JP2008083356A (ja) * | 2006-09-27 | 2008-04-10 | Optrex Corp | 表示パネルおよび表示パネルの端縁処理方法 |
CN101251669A (zh) * | 2008-03-17 | 2008-08-27 | 友达光电股份有限公司 | 液晶面板显示单元的制造方法及其结构 |
KR101073563B1 (ko) * | 2010-02-08 | 2011-10-14 | 삼성모바일디스플레이주식회사 | 표시 장치 및 이의 제조 방법 |
KR101155902B1 (ko) * | 2010-03-11 | 2012-06-20 | 삼성모바일디스플레이주식회사 | 그라인더, 상기 그라인더를 사용한 연마 방법, 상기 연마 방법을 사용한 표시 장치의 제조 방법 및 이를 사용하여 제조한 표시 장치 |
CN102225841B (zh) * | 2011-06-24 | 2013-06-05 | 西藏贝珠亚电子科技有限公司 | 一种液晶显示面板的切割制造方法 |
US9315412B2 (en) * | 2011-07-07 | 2016-04-19 | Corning Incorporated | Surface flaw modification for strengthening of glass articles |
US9488857B2 (en) * | 2014-01-10 | 2016-11-08 | Corning Incorporated | Method of strengthening an edge of a glass substrate |
CN104090405B (zh) * | 2014-07-02 | 2017-05-03 | 京东方科技集团股份有限公司 | 一种拼接显示面板及显示装置 |
KR102430346B1 (ko) * | 2014-12-16 | 2022-08-05 | 엘지디스플레이 주식회사 | 유기 발광 표시 장치 |
CN106020757B (zh) * | 2016-05-16 | 2019-10-29 | 联想(北京)有限公司 | 一种屏幕拼接方法及电子设备 |
-
2018
- 2018-08-22 US US16/108,329 patent/US20200064670A1/en not_active Abandoned
-
2019
- 2019-04-11 CN CN201910288345.4A patent/CN110858034B/zh active Active
- 2019-04-11 CN CN202310237486.XA patent/CN116243514A/zh active Pending
-
2021
- 2021-04-29 US US17/243,805 patent/US11269209B2/en active Active
-
2022
- 2022-02-14 US US17/670,675 patent/US11630337B2/en active Active
-
2023
- 2023-03-20 US US18/186,298 patent/US12078882B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6290405B1 (en) * | 1999-06-01 | 2001-09-18 | Tokyo Electron Limited | Substrate processing apparatus |
US20100052060A1 (en) * | 2008-08-29 | 2010-03-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dummy gate structure for gate last process |
US20140302282A1 (en) * | 2011-11-14 | 2014-10-09 | Siemens Aktiengesellschaft | Layer system with a structured substrate surface and production process |
US20180196324A1 (en) * | 2011-12-12 | 2018-07-12 | View, Inc. | Electrochromic laminates |
US20140211144A1 (en) * | 2013-01-29 | 2014-07-31 | Seiko Epson Corporation | Electro-optical device and electronic apparatus |
US20140233161A1 (en) * | 2013-02-21 | 2014-08-21 | Htc Corporation | Electronic device, glass cover and method of manufacturing glass cover |
US20170285378A1 (en) * | 2016-03-30 | 2017-10-05 | Seiko Epson Corporation | Large substrate and method of manufacturing large substrate |
US20180120531A1 (en) * | 2016-10-28 | 2018-05-03 | Canon Kabushiki Kaisha | Imaging apparatus |
US20190258096A1 (en) * | 2016-12-28 | 2019-08-22 | HKC Corporation Limited | Display panel and method for manufacturing of display panel |
US20190067630A1 (en) * | 2017-08-22 | 2019-02-28 | Samsung Display Co., Ltd. | Display device |
US20190127631A1 (en) * | 2017-10-26 | 2019-05-02 | Boe Technology Group Co., Ltd. | Display panel and encapsulating method thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220149021A1 (en) * | 2020-11-09 | 2022-05-12 | Samsung Display Co., Ltd. | Tiled display device |
WO2024004344A1 (ja) * | 2022-07-01 | 2024-01-04 | 株式会社ジャパンディスプレイ | 表示装置及び液晶表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210247639A1 (en) | 2021-08-12 |
CN110858034A (zh) | 2020-03-03 |
CN116243514A (zh) | 2023-06-09 |
US12078882B2 (en) | 2024-09-03 |
US20220171229A1 (en) | 2022-06-02 |
US20230236452A1 (en) | 2023-07-27 |
US11269209B2 (en) | 2022-03-08 |
US11630337B2 (en) | 2023-04-18 |
CN110858034B (zh) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11269209B2 (en) | Electronic device and method for manufacturing the same | |
US11011733B2 (en) | Display panel and method of fabricating the same | |
US8368863B2 (en) | Liquid crystal display panel | |
KR102052686B1 (ko) | 플렉서블 표시장치 및 그 제조 방법 | |
CN110325005B (zh) | 拼接电子装置 | |
JP5379817B2 (ja) | 表示パネル | |
CN108693667B (zh) | 显示装置 | |
CN111599908B (zh) | 发光装置以及制造发光装置的方法 | |
CN113130575B (zh) | 透明显示装置 | |
KR20190044015A (ko) | 표시 장치 및 표시 장치 제조 방법 | |
KR20150074409A (ko) | 표시 장치 및 그 제조 방법 | |
US10957718B2 (en) | Pixel structure | |
US9507207B2 (en) | Display device | |
US10661465B2 (en) | Display panel | |
KR101778364B1 (ko) | 디스플레이 디바이스 | |
US8294867B2 (en) | Liquid crystal display having a terminal portion and a sealing member wherein neither a first or a second substrate extends beyond an outer periphery of the sealing member along a side of the display | |
CN113267920B (zh) | 电子装置 | |
CN111323942B (zh) | 电子装置以及电子装置的框胶涂布方法 | |
TWI687739B (zh) | 顯示裝置 | |
US9798354B2 (en) | Display apparatus | |
US20240179999A1 (en) | Display device and method of manufacturing the same | |
JP2019113731A (ja) | 表示パネルおよび湾曲型表示装置 | |
TW202425350A (zh) | 電子裝置 | |
CN117729796A (zh) | 显示装置和用于制造显示装置的方法 | |
JP2011102947A (ja) | 表示装置用パネルおよび表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INNOLUX CORPORATION, TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIU, LIANG-YUN;TSAI, TSUNG-HAN;WU, YUAN-LIN;REEL/FRAME:046659/0073 Effective date: 20180815 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |