US20190255825A1 - Multilayer composite material containing special polycarbonate compositions as a matrix material - Google Patents

Multilayer composite material containing special polycarbonate compositions as a matrix material Download PDF

Info

Publication number
US20190255825A1
US20190255825A1 US16/314,772 US201716314772A US2019255825A1 US 20190255825 A1 US20190255825 A1 US 20190255825A1 US 201716314772 A US201716314772 A US 201716314772A US 2019255825 A1 US2019255825 A1 US 2019255825A1
Authority
US
United States
Prior art keywords
composite material
radical
fibre
layers
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/314,772
Other languages
English (en)
Inventor
Rolf Wehrmann
Anke Boumans
Helmut Werner Heuer
Thomas Grimm
Matthias Knaupp
John Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Assigned to COVESTRO DEUTSCHLAND AG reassignment COVESTRO DEUTSCHLAND AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAUER, JOHN, GRIMM, THOMAS, KNAUPP, Matthias, BOUMANS, ANKE, HEUER, HELMUT WERNER, WEHRMANN, ROLF
Publication of US20190255825A1 publication Critical patent/US20190255825A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/10Next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/026Knitted fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/022Particular heating or welding methods not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0072Orienting fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic

Definitions

  • the present invention relates to a fibre composite material comprising one or more fibre layers composed of a fibre material and a polycarbonate-based composition as matrix material, and to a multilayer composite material composed of at least two layers of fibre composite material.
  • the fibre layer(s) is/are embedded in the matrix material.
  • the present invention further relates to a process for producing these fibre composite materials or multilayer composite materials, and to the housings or housing components composed of these (multilayer) composite materials.
  • Fibre-containing multilayer composite materials having a matrix based on a thermoplastic polymer are referred to both hereinafter and in the prior art as “organosheets”.
  • Organosheets of this kind have higher strength and stiffness compared to extruded plastics sheets without fibre reinforcement and even extend as far as, or can actually surpass, the strength and stiffness of metallic sheets.
  • the significance of materials of this kind for example as housing components in the electronics and IT industry, but also in the automotive and aircraft industry, is increasing constantly. These composite materials have high stiffness coupled with simultaneously excellent mechanical properties. Compared to conventional materials such as steel, they additionally have a distinct weight advantage. Owing to the fields of use, it is a requirement that the materials used have high flame retardancy.
  • a further advantage of such polymer-supported multilayer composite materials is the risk of corrosion, which is reduced or entirely ruled out through the absence of steel.
  • thermoplastic substrate materials are in principle a multitude of thermoplastics, such as polyethylene or polypropylene, polyamides, for example nylon-6, nylon-6,6, nylon-6,12, polycarbonates, especially aromatic polycarbonates based on bisphenol A, thermoplastic polyurethanes, polyoxymethylene, polyphenylene ethers, styrene polymers, for example polystyrene, and styrene-containing copolymers such as acrylonitrile-butadiene-styrene copolymers and styrene-acrylonitrile copolymers, polytetrafluoroethylene, polyaromatics, for example polyphenylene sulphide, polyether sulphone, polysulphone, polyether ether ketone, polyether imide, polyacrylate or polyamide imide, polyquinoxalines, polyquinolines or polybenz
  • polycarbonate-based compositions that the person skilled in the art would consider suitable as matrix materials for production of fibre composite materials cannot be processed simultaneously by this advantageous process to give fibre composite materials and do not lead to multilayer composite materials having good flame retardancy properties.
  • Polycarbonate compositions of this kind do not have adequate impregnation properties to achieve an intimate bond between the fibres of the fibre tapes and the polycarbonate phase. This effect is also referred to as inadequate fibre coupling to the matrix and leads to adverse properties, for example elevated brittleness and poorer mechanical properties.
  • elevated dust formation is observed at the surfaces of the fibre composite materials, since the (mechanical) wear on the fibres is higher than in the case of good fibre-matrix coupling. The effects mentioned can also lead to poorer flame retardancy properties.
  • the problem addressed was therefore that of providing a fibre composite material that meets the UL 94 V-0 requirement at 0.8 mm, preferably to 3 mm, and hence is suitable as housing material, possibly as multilayer composite material, for a housing of an electronic device.
  • the material should additionally be lightweight and be producible inexpensively, for example via the process specified.
  • the present invention further provides a multilayer composite material comprising at least two and preferably at least three superposed layers of such a fibre composite material, wherein, in the case of three layers, these are defined relative to one another as two outer layers of fibre composite material and at least one inner layer of fibre composite material.
  • the layers of fibre composite material may consist of the same or of different material of the above-described composition; preferably, the matrix material is the same in all layers.
  • Polycarbonates in the context of the present invention are either homopolycarbonates or copolycarbonates and/or polyester carbonates; the polycarbonates may be linear or branched in a known manner. According to the invention, it is also possible to use mixtures of polycarbonates.
  • thermoplastic polycarbonates including the thermoplastic aromatic polyester carbonates preferably have mean molecular weights M w of 15 000 g/mol to 34 000 g/mol, preferably of 17 000 g/mol to 33 000 g/mol, especially of 19 000 g/mol to 32 000 g/mol, determined by means of gel permeation chromatography using a BPA polycarbonate calibration and dichloromethane as eluent, with a concentration of 2 g/l, flow rate 1.0 ml/min at a temperature of 30° C. using UV and/or RI detection.
  • a portion of up to 80 mol %, preferably of 20 mol % to 50 mol %, of the carbonate groups in the polycarbonates used in accordance with the invention may be replaced by aromatic dicarboxylic ester groups.
  • Polycarbonates of this kind that incorporate both acid radicals from the carbonic acid and acid radicals from aromatic dicarboxylic acids into the molecular chain are referred to as aromatic polyester carbonates. In the context of the present invention, they are covered by the umbrella term of thermoplastic aromatic polycarbonates.
  • the polycarbonates are prepared in a known manner from diphenols, carbonic acid derivatives, optionally chain terminators and optionally branching agents, and the polyester carbonates are prepared by replacing a portion of the carbonic acid derivatives with aromatic dicarboxylic acids or derivatives of the dicarboxylic acids, to a degree according to the extent to which carbonate structural units in the aromatic polycarbonates are to be replaced by aromatic dicarboxylic ester structural units.
  • Dihydroxyaryl compounds suitable for the preparation of polycarbonates are those of the formula (2)
  • Z in formula (2) is a radical of the formula (3)
  • X is a single bond, C 1 - to C 8 -alkylene, C 2 - to C 8 -alkylidene, C 5 - to C 6 -cycloalkylidene, —O—, —SO—, —CO—, —S—, —SO 2 —
  • dihydroxyaryl compounds examples include dihydroxybenzenes, dihydroxydiphenyls, bis(hydroxyphenyl)alkanes, bis(hydroxyphenyl)cycloalkanes, bis(hydroxyphenyl)aryls, bis(hydroxyphenyl) ethers, bis(hydroxyphenyl) ketones, bis(hydroxyphenyl) sulphides, bis(hydroxyphenyl) sulphones, bis(hydroxyphenyl) sulphoxides, 1,1′-bis(hydroxyphenyl)diisopropylbenzenes and the ring-alkylated and ring-halogenated compounds thereof.
  • diphenols suitable for the preparation of the polycarbonates and copolycarbonates to be used in accordance with the invention include hydroquinone, resorcinol, dihydroxydiphenyl, bis(hydroxyphenyl)alkanes, bis(hydroxyphenyl)cycloalkanes, bis(hydroxyphenyl) sulphides, bis(hydroxyphenyl) ethers, bis(hydroxyphenyl) ketones, bis(hydroxyphenyl) sulphones, bis(hydroxyphenyl) sulphoxides, ⁇ , ⁇ ′-bis(hydroxyphenyl)diisopropylbenzenes, and the alkylated, ring-alkylated and ring-halogenated compounds thereof.
  • Preparation of copolycarbonates can also be accomplished using Si-containing telechelics, such that what are called Si copolycarbonates are obtained.
  • Preferred diphenols are 4,4′-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)-1-phenylpropane, 1,1-bis(4-hydroxyphenyl)phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1,3-bis[2-(4-hydroxyphenyl)-2-propyl]benzene (bisphenol M), 2,2-bis(3-methyl-4-hydroxyphenyl)propane, bis(3,5-dimethyl-4-hydroxyphenyl)methane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, bis(3,5-dimethyl-4-hydroxyphenyl) sulphone, 2,4-bis(3,5-dimethyl-4-hydroxyphenyl)-2-methylbutane, 1,3-bis[2-(3,5-dimethyl-4-hydroxyphenyl)-2-propyl]benzene and 1,1-
  • R′ in each case is a C 1 - to C 4 -alkyl radical, aralkyl radical or aryl radical, preferably a methyl radical or phenyl radical, most preferably a methyl radical.
  • Particularly preferred diphenols are 4,4′-dihydroxydiphenyl, 1,1-bis(4-hydroxyphenyl)phenylethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (bisphenol TMC), and also the diphenols of the formulae (I), (II) and/or (III).
  • Particularly preferred polycarbonates are the homopolycarbonate based on bisphenol A, the homopolycarbonate based on 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane and the copolycarbonates based on the two monomers bisphenol A and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane or the two monomers bisphenol A and 4,4′-dihydroxydiphenyl, and homo- or copolycarbonates derived from the diphenols of the formulae (I), (II) and/or (III)
  • the diphenols used may be contaminated with the impurities originating from their own synthesis, handling and storage. However, it is desirable to work with the purest possible raw materials.
  • R 19 is hydrogen, Cl, Br or a C 1 - to C 4 -alkyl radical, preferably hydrogen or a methyl radical, more preferably hydrogen
  • R 17 and R 18 are the same or different and are each independently an aryl radical, a C 1 - to C 10 -alkyl radical or a C 1 - to C 10 -alkylaryl radical, preferably each a methyl radical
  • X is a single bond, —CO—, —O—, a C 1 - to C 6 -alkylene radical, a C 2 - to C 5 -alkylidene radical, a C 5 - to C 12 -cycloalkylidene radical or a C 6 - to C 12 -arylene radical which may optionally be fused to further aromatic rings containing heteroatoms
  • X is preferably a single bond, a C 1 - to C 5 -alkylene radical, a C 2 - to C 5 -alkylidene radical, a
  • Copolycarbonates having monomer units of the formula (1e) and especially also the preparation thereof are described in WO 2015/052106 A2.
  • the total proportion of the monomer units based on the formulae (I), (II), (III), 4,4′-dihydroxydiphenyl and/or bisphenol TMC in the copolycarbonate is preferably 0.1-88 mol %, more preferably 1-86 mol %, even more preferably 5-84 mol % and especially 10-82 mol % (based on the sum total of the moles of diphenols used).
  • the copolycarbonates may be in the form of block and random copolycarbonate. Particular preference is given to random copolycarbonates.
  • the ratio of the frequency of the diphenoxide monomer units in the copolycarbonate is calculated here from the molar ratio of the diphenols used.
  • the relative solution viscosity of the copolycarbonates is preferably in the range of 1.15-1.35.
  • the weight-average molar masses M w of the copolycarbonates are preferably 15 000 to 40 000 g/mol, more preferably 17 000 to 36 000 g/mol, most preferably 17 000 to 34 000 g/mol, and are determined by means of GPC in methylene chloride against polycarbonate calibration.
  • the monofunctional chain terminators required to control the molecular weight such as phenols or alkylphenols, especially phenol, p-tert-butylphenol, isooctylphenol, cumylphenol, the chlorocarbonic esters thereof or acid chlorides of monocarboxylic acids or mixtures of these chain terminators, are either supplied to the reaction with the bisphenoxide(s) or else added to the synthesis at any desired juncture, provided that phosgene or chlorocarbonic acid end groups are still present in the reaction mixture, or in the case of the acid chlorides and chlorocarbonic esters as chain terminators, provided that sufficient phenolic end groups of the forming polymer are available.
  • the chain terminator(s), however, is/are added after the phosgenation at a location or at a juncture where no phosgene is present any longer, but the catalyst has not yet been metered in, or they are metered in upstream of the catalyst, together with the catalyst or in parallel.
  • branching agents or branching agent mixtures to be used are added to the synthesis in the same way, but typically before the chain terminators.
  • trisphenols, quaterphenols or acid chlorides of tri- or tetracarboxylic acids are used, or else mixtures of the polyphenols or the acid chlorides.
  • Some of the compounds having three or more than three phenolic hydroxyl groups that are usable as branching agents are, for example, phloroglucinol, 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)hept-2-ene, 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptane, 1,3,5-tris(4-hydroxyphenyl)benzene, 1,1,1-tri(4-hydroxyphenyl)ethane, tris(4-hydroxyphenyl)phenylmethane, 2,2-bis[4,4-bis(4-hydroxyphenyl)cyclohexyl]propane, 2,4-bis(4-hydroxyphenylisopropyl)phenol, tetra(4-hydroxyphenyl)methane.
  • trifunctional compounds are 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride and 3,3-bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole.
  • Preferred branching agents are 3,3-bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole and 1,1,1-tri(4-hydroxyphenyl)ethane.
  • the amount of any branching agents to be used is 0.05 mol % to 2 mol %, again based on moles of diphenols used in each case.
  • the branching agents may either be included together with the diphenols and the chain terminators in the initially charged aqueous alkaline phase or be added dissolved in an organic solvent before the phosgenation.
  • Aromatic dicarboxylic acids suitable for the preparation of the polyester carbonates are, for example, orthophthalic acid, terephthalic acid, isophthalic acid, tert-butylisophthalic acid, 3,3′-diphenyldicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4-benzophenonedicarboxylic acid, 3,4′-benzophenonedicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenyl sulphone dicarboxylic acid, 2,2-bis(4-carboxyphenyl)propane, trimethyl-3-phenylindane-4,5′-dicarboxylic acid.
  • aromatic dicarboxylic acids particular preference is given to using terephthalic acid and/or isophthalic acid.
  • Derivatives of the dicarboxylic acids are the dicarbonyl halides and the dialkyl dicarboxylates, especially the dicarbonyl chlorides and the dimethyl dicarboxylates.
  • the carbonate groups are replaced essentially stoichiometrically and also quantitatively by the aromatic dicarboxylic ester groups, and so the molar ratio of the coreactants is also reflected in the finished polyester carbonate.
  • the aromatic dicarboxylic ester groups can be incorporated either randomly or in blocks.
  • Preferred modes of preparation of the polycarbonates for use in accordance with the invention are the known interfacial process and the known melt transesterification process (cf. e.g. WO 2004/063249 A1, WO 2001/05866 A1, U.S. Pat. Nos. 5,340,905 A, 5,097,002 A, 5,717,057 A).
  • the acid derivatives used are preferably phosgene and optionally dicarbonyl chlorides, and in the latter case preferably diphenyl carbonate and optionally dicarboxylic esters.
  • Catalysts, solvents, workup, reaction conditions etc. for polycarbonate preparation or polyester carbonate preparation are sufficiently well-described and known in both cases.
  • Polycarbonate compositions or else “polycarbonate-based compositions” are those compositions wherein the base material, i.e. the predominant component present, is a polycarbonate. “Predominant” here means more than 50% by weight, preferably more than 70% by weight, even more preferably more than 80% by weight, even more preferably still more than 90% by weight, of polycarbonate.
  • component B it is possible to use naturally occurring or synthetically produced talc.
  • Pure, synthetically produced talc, in the ideal composition has the chemical composition 3 MgO′4SiO 2 ′H 2 O and hence an MgO content of 31.9% by weight, an SiO 2 content of 63.4% by weight and a content of chemically bound water of 4.8% by weight.
  • This is a silicate having a sheet structure.
  • Naturally occurring talc materials generally do not have the above-recited ideal composition since they are contaminated through partial exchange of the magnesium for other elements, through partial exchange of silicon for aluminium, for example, and/or through intergrowth with other minerals, for example dolomite, magnesite and chlorite.
  • component B it is preferably possible to use those talc types having particularly high purity. These are characterized by an MgO content of 28% to 35% by weight, preferably 30% to 33% by weight, more preferably 30.5% to 32% by weight, and an SiO 2 content of 55% to 65% by weight, preferably 58% to 64% by weight, more preferably 60% to 62.5% by weight. Particularly preferred talc types additionally feature an Al 2 O 3 content of less than 5% by weight, more preferably less than 1% by weight, especially less than 0.7% by weight.
  • the talc-based mineral fillers for use in accordance with the invention preferably have an upper particle size or grain size d 97 of less than 50 ⁇ m, preferably less than 10 ⁇ m, more preferably less than 6 ⁇ m and especially preferably less than 2.5 ⁇ m.
  • the d 97 and d 50 values of the fillers are determined by SEDIGRAPH D 5 000 sedimentation analysis according to ISO 13317-3:2001.
  • the particulate fillers may have a smaller do or d 50 in the moulding composition or in the moulding than in the talc originally used.
  • the preferred ranges specified are based on the talc in its form as originally used in the compositions.
  • the talc may have been surface-treated in order to assure better coupling to the polymer matrix.
  • the talc may, for example, have been modified with an adhesion promoter system based on functionalized silanes. With regard to the processing and production of the compositions, the use of compacted talc is advantageous.
  • 1% by weight to 14% by weight, preferably 2% to 12% by weight and more preferably 3% to 12% by weight of talc is used, based on the overall composition.
  • Phosphazenes according to component C which are used according to the present invention are cyclic phosphazenes of formula (1)
  • k 1, 2 or 3.
  • the proportion of phosphazenes that are halogen-substituted on the phosphorous is less than 1000 ppm, further preferably less than 500 ppm.
  • the phosphazenes can be used alone or in a mixture.
  • the R radical may always be the same or two or more radicals in the formulae may be different.
  • the R radicals in a phosphazene are identical.
  • the proportion of the oligomers with k ⁇ 8 is from 0 to 2.0 mol %, based on component C, and preferably from 0.10 to 1.00 mol %.
  • the phosphazenes of component C fulfil all three aforementioned conditions with regard to the proportions of oligomers.
  • n defined as the arithmetic mean of k, is in the range from 1.10 to 1.75, preferably from 1.15 to 1.50, further preferably from 1.20 to 1.45 and more preferably from 1.20 to 1.40 (including range limits).
  • the oligomer compositions in the respective blend samples can be detected and quantified by means of 31 P NMR (chemical shift; ⁇ trimer 6.5 to 10.0 ppm; ⁇ tetramer: ⁇ 10 to ⁇ 13.5 ppm; ⁇ higher oligomers: ⁇ 16.5 to ⁇ 25.0 ppm).
  • Components D in the context of the invention are selected from the group of the mono- and oligomeric phosphoric and phosphonic esters, and it is also possible to use mixtures of multiple components selected from one or more than one of these groups as component D.
  • Mono- and oligomeric phosphoric and phosphonic esters used in accordance with the invention are phosphorus compounds of the general formula (V)
  • R 1 , R 2 , R 3 and R 4 are each independently a C 1 - to C 8 -alkyl radical, in each case optionally halogenated and in each case branched or unbranched, and/or C 5 - to C 6 -cycloalkyl radical, C 6 - to C 20 -aryl radical or C 7 - to C 12 -aralkyl radical, in each case optionally substituted by branched or unbranched alkyl and/or halogen
  • n is independently 0 or 1
  • q is an integer from 0 to 30
  • X is a mono- or polycyclic aromatic radical having 6 to 30 carbon atoms or a linear or branched aliphatic radical having 2 to 30 carbon atoms, each of which may be substituted or unsubstituted, and bridged or unbridged.
  • R 1 , R 2 , R 3 and R 4 are independently branched or unbranched C 1 - to C 4 -alkyl, phenyl, naphthyl or C 1 - to C 4 -alkyl-substituted phenyl.
  • aromatic R 1 , R 2 , R 3 and R 4 groups these may in turn be substituted by halogen and/or alkyl groups, preferably chlorine, bromine and/or C 1 - to C 4 -alkyl, branched or unbranched.
  • Particularly preferred aryl radicals are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl, and the corresponding brominated and chlorinated derivatives thereof.
  • X in the formula (V) preferably derives from diphenols.
  • X in formula (V) is more preferably
  • X (together with the adjoining oxygen atoms) derives from hydroquinone, bisphenol A or diphenylphenol. Likewise preferably, X derives from resorcinol. More preferably, X derives from bisphenol A.
  • n in the formula (V) is preferably 1.
  • q is preferably 0 to 20, more preferably 0 to 10, and in the case of mixtures has average values of 0.8 to 5.0, preferably 1.0 to 3.0, more preferably 1.05 to 2.00, and especially preferably of 1.08 to 1.60.
  • a phosphorus compound of the general formula (V) which is present with preference is a compound of the formula (V′)
  • Phosphorus compounds of the formula (V) are especially tributyl phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl cresyl phosphate, diphenyl octyl phosphate, diphenyl 2-ethylcresyl phosphate, tri(isopropylphenyl) phosphate, resorcinol-bridged oligophosphate and bisphenol A-bridged oligophosphate.
  • the use of oligomeric phosphoric esters of the formula (V) which derive from bisphenol A is especially preferred.
  • component D is bisphenol A-based oligophosphate of formula (Va)
  • oligophosphates analogous to the formula (Va) in which q is from 0 to 5, further preferably from 1.0 to 1.2.
  • the phosphorus compounds according to component D are known (cf., for example, EP 363 608 A1, EP 640 655 A2) or can be prepared in an analogous manner by known methods (e.g. Ullmanns Enzyklopädie der ischen Chemie [Ullmann's Encyclopedia of Industrial Chemistry], vol. 18, p. 301 ff. 1979; Houben-Weyl, Methoden der organischen Chemie, vol. 12/1, p. 43; Beilstein vol. 6, p. 177).
  • the q value reported is the mean q value.
  • the mean q value is determined by determining the composition of the phosphorus compound mixture (molecular weight distribution) by means of high-pressure liquid chromatography (HPLC) at 40° C. in a mixture of acetonitrile and water (50:50) and using this to calculate the mean values of q.
  • compositions used in accordance with the invention contain up to 11% by weight, preferably 2% to 10% by weight, more preferably 5% to 10% by weight, of phosphorus compound according to component B, most preferably bisphenol A-based oligophosphate of formula (Va), based on the overall composition.
  • compositions used in accordance with the invention may also comprise one or more stabilizers from the group of alkyl phosphate, ethylenediaminetetraacetic acid and/or citric acid.
  • Alkyl phosphates suitable in accordance with the invention are, for example, mono-, di- and trihexyl phosphate, triisooctyl phosphate and trinonyl phosphate.
  • the alkyl phosphate used is preferably triisooctyl phosphate (tris-2-ethylhexyl phosphate). It is also possible to use mixtures of various mono-, di- and trialkyl phosphates.
  • alkyl phosphate preferably triisoctyl phosphate
  • the proportion of this stabilizer in the composition used in accordance with the invention is 0 to 400 ppm, based on the overall composition.
  • the proportion of this stabilizer in the composition used in accordance with the invention is likewise 0 to 400 ppm, based on the overall composition.
  • citric acid is present as stabilizer
  • the proportion of this stabilizer in the composition used in accordance with the invention is 0 to 0.2% by weight, based on the overall composition.
  • a significant task for the stabilizers is to neutralize alkali residues in the polycarbonate-based compositions, such that degradation reactions of the polycarbonate are prevented or at least reduced. If, however, excessive amounts of stabilizer are used, this effect is reversed and the excess acid residues lead to degradation of the polycarbonate.
  • the person skilled in the art will be able to determine a suitable amount without difficulty.
  • compositions may also comprise standard additives such as flame retardants, thermal stabilizers, UV stabilizers, IR stabilizers, demoulding agents, flow auxiliaries, antistats, impact modifiers, colourants and/or fillers as further additives.
  • standard additives such as flame retardants, thermal stabilizers, UV stabilizers, IR stabilizers, demoulding agents, flow auxiliaries, antistats, impact modifiers, colourants and/or fillers as further additives.
  • Suitable customary additives for polycarbonate compositions are described, for example, in the “Additives for Plastic Handbook”, John Murphy, Elsevier, Oxford 1999 or in the “Plastics Additives Handbook”, Hans Zweifel, Hanser, Kunststoff 2001.
  • “Further additives” do not include talc, any cyclic phosphazene, any phosphorus compound of the general formula (V) or any stabilizer selected from the group consisting of alkyl phosphate, ethylenediaminetetraacetic acid and/or citric acid, since these are already described as components B to E.
  • compositions used in accordance with the invention comprise, as further flame retardant, at least one organic flame retardant salt selected from the group consisting of alkali metal and/or alkaline earth metal salts of aliphatic and aromatic sulphonic acid, sulphonamide and/or sulphonimide derivatives, more preferably in an amount of up to 1% by weight.
  • at least one organic flame retardant salt selected from the group consisting of alkali metal and/or alkaline earth metal salts of aliphatic and aromatic sulphonic acid, sulphonamide and/or sulphonimide derivatives, more preferably in an amount of up to 1% by weight.
  • Preference is given to sodium or potassium perfluorobutanesulphonate, sodium or potassium perfluorooctanesulphonate, sodium or potassium diphenylsulphonesulphonate.
  • Potassium nonafluoro-1-butanesulphonate is commercially available, inter alia as Bayowet®C4 (from Lanxess, Leverkusen, Germany, CAS No. 29420-49-3), RM64 (from Miteni, Italy) or as 3MTM perfluorobutanesulphonyl fluoride FC-51 (from 3M, USA). Mixtures of the salts mentioned are likewise suitable. Potassium nonafluoro-1-butanesulphonate is used with particular preference.
  • compositions according to the invention do not comprise any additional further flame retardants.
  • the compositions according to the invention are free of fluorine-containing anti-dripping agents, for instance of PTFE (polytetrafluoroethylene) or coated PTFE/SAN (styrene-acrylonitrile).
  • the amount of further additives is 0% to 10% by weight, preferably up to 5% by weight, more preferably 0.01% to 3% by weight, based on the overall composition.
  • compositions consist at most of components A to F.
  • the polycarbonate compositions comprising components A to C and optionally D to F are produced by standard methods of incorporation by combining, mixing and homogenizing the individual constituents, and the homogenization in particular preferably takes place in the melt with application of shear forces.
  • the combining and mixing prior to the melt homogenization is preferably effected using powder premixes.
  • premixes that have been produced from solutions of the mixture components in suitable solvents, in which case it is optionally possible to homogenize in solution and to remove the solvent thereafter.
  • additives for the composition according to the invention can be introduced into the polycarbonate by known methods or as a masterbatch.
  • composition according to the invention can be combined, mixed and homogenized in standard apparatuses such as screw extruders (for example twin-screw extruders (TSE)), kneaders or Brabender or Banbury mills. It is also possible to premix individual components and then to add the remaining starting materials singly and/or likewise in a mixture.
  • screw extruders for example twin-screw extruders (TSE)
  • kneaders for example twin-screw extruders (TSE)
  • kneaders for example twin-screw extruders (TSE)
  • kneaders for example twin-screw extruders (TSE)
  • kneaders for example twin-screw extruders (TSE)
  • Brabender for example twin-screw extruders (TSE)
  • Banbury mills for example twin-screw extruders (TSE)
  • TSE twin-
  • the fibre materials have a higher softening or melting point than the thermoplastic material present in each case.
  • the fibre material used has preferably been coated with suitable sizes.
  • the fibre material is preferably in the form of a weave or knit or in the form of endless fibres, more preferably in the form of endless fibres.
  • endless fibre in the context of the invention should be regarded as a delimitation from the short or long fibres that are likewise known to the person skilled in the art. Endless fibres generally extend across the entire length of the layer of fibre composite material. The derivation of the term “endless fibre” is that these fibres are present in wound form on a roll and are unwound and impregnated with plastic during the production of the individual fibre composite material layers, such that, with the exception of occasional fracture or roll changing, their length typically corresponds essentially to the length of the fibre composite material layer produced.
  • fibre materials are inorganic materials such as a wide variety of different kinds of silicatic and nonsilicatic glasses, carbon, basalt, boron, silicon carbide, metals, metal alloys, metal oxides, metal nitrides, metal carbides and silicates, and organic materials such as natural and synthetic polymers, for example polyacrylonitriles, polyesters, ultrahigh-draw polyamides, polyimides, aramids, liquid-crystalline polymers, polyphenylene sulphides, polyether ketones, polyether ether ketones, polyetherimides.
  • inorganic materials such as a wide variety of different kinds of silicatic and nonsilicatic glasses, carbon, basalt, boron, silicon carbide, metals, metal alloys, metal oxides, metal nitrides, metal carbides and silicates
  • organic materials such as natural and synthetic polymers, for example polyacrylonitriles, polyesters, ultrahigh-draw polyamides, polyimides, aramids, liquid-crystalline polymers, polyphenylene
  • high-melting materials for example glasses, carbon, aramids, basalt, liquid-crystal polymers, polyphenylene sulphides, polyether ketones, polyether ether ketones and polyether imides.
  • Particularly preferred fibre materials are glass fibres or carbon fibres, in the form of endless fibres and in the form of weaves and knits, particular preference being given to endless glass fibres or endless carbon fibres.
  • the endless fibres especially extend essentially across the entire length of the layer of fibre composite material.
  • Unidirectional in the context of the invention is that the endless fibres are aligned essentially unidirectionally, i.e. point in one direction in terms of their length and hence have the same running direction. “Essentially unidirectional” means here that a deviation in the fibre running direction of up to 5% is possible. Preferably, however, the deviation in the fibre running direction is well below 3%, more preferably well below 1%.
  • a layer of fibre material also referred to as fibre layer, is understood to mean a flat layer which is formed by fibres arranged essentially in a plane.
  • the fibres may be bonded to one another by virtue of their position, for example via a weave-like arrangement of the fibres.
  • the fibre layer may also include a proportion of resin or another adhesive in order to bind the fibres to one another.
  • the fibres may alternatively also be unbonded. This is understood to mean that the fibres can be detached from one another without expenditure of any significant force.
  • the fibre layer may also have a combination of bonded and unbonded fibres. At least one side of the fibre layer is embedded into the polycarbonate-based compositions used in accordance with the invention as matrix material.
  • the fibre layer is surrounded at least on one side, preferably on both sides, by the polycarbonate-based composition.
  • the outer edge of the fibre composite material or of the multilayer composite material is preferably formed by the matrix composed of polycarbonate-based composition.
  • the inner layers of fibre composite material may have essentially the same orientation and the orientation thereof relative to the outer layers of fibre composite material may be rotated by 300 to 900, wherein the orientation of one layer of fibre composite material is determined by the orientation of the unidirectionally aligned fibres present therein.
  • the layers are arranged in alternation.
  • the outer layers are in a 0° orientation. It has been found to be of particular practical relevance when the inner layers of fibre composite material have the same orientation and their orientation is rotated by 90° relative to the outer layers of fibre composite material. Alternatively, it is possible to rotate the inner layers by 30°, 40°, 50°, 60°, 70° or 80° relative to the outer layer. The orientation in each case may deviate from the guide values mentioned by ⁇ 5°, preferably by ⁇ 30, more preferably by ⁇ 1°. “Alternating” means that the inner layers are each arranged in an alternating manner by an angle of 90° or an angle of 30° to 90°. The outer layers are in a 0° orientation in each case. The angles may each be varied from 30° to 90° per layer.
  • At least some of the layers have the same orientation and at least some other layers are rotated by 30° to 90°.
  • the outer layers are in a 0° orientation.
  • the inner layers have the same orientation and their orientation is rotated by 30° to 90° relative to the outer layers of fibre composite material, and the outer layers are present in a 0° orientation relative thereto.
  • the layers of fibre composite materials are stacked alternately in warp direction (0°) and weft direction (90°), or at the above-specified angles.
  • the multilayer composite material comprises six, preferably five, especially four, more preferably three, inner layers of fibre composite material.
  • the multilayer composite material according to the invention may also comprise two or more than six, for example seven, eight, nine, ten or more than ten inner fibre composite material layers.
  • fibre layers in a fibre composite material There is in principle no limit to the number of fibre layers in a fibre composite material. It is therefore also possible for two or more fibre layers to be arranged one on top of another. Two fibre layers one on top of another may each be embedded individually into the matrix material, such that they are each surrounded by the matrix material on either side. In addition, two or more fibre layers may also lie directly one on top of another, such that their entirety is surrounded by the matrix material. In this case, these two or more fibre layers may also be regarded as one thick fibre layer.
  • the fibre layer takes the form of a unidirectional fibre layer, of a woven fabric or laid scrim layer, of a loop-drawn knit, loop-formed knit or braid, or of long fibres in the form of random fibre mats or nonwoven tapes, or combinations thereof.
  • a preferred embodiment of a multilayer composite material according to the invention comprises eight layers, and thus two outer and six inner layers.
  • the inner layers comprise unidirectionally oriented endless fibres as fibre material, preferably carbon fibres.
  • the two outer layers of the inner layers have a 0° orientation.
  • the four innermost layers of the inner layers all have the same orientation and are rotated by 90° thereto.
  • Applied as the outer layer in each case is a layer of composite material which, rather than unidirectionally oriented endless fibres, comprises a fibre weave.
  • the matrix material of the inner layers of the composite material is a composition as described above, especially one emphasized as preferred. More preferably, the matrix material of all the layers of fibre composite material having endless fibres is the same.
  • the fibre volume content in the six inner layers of composite material is preferably 40%-50% by volume and is preferably the same in these layers.
  • the multilayer composite materials according to the invention can have a metallic appearance, metallic sound and metallic tactile properties, and metal-like mechanical properties.
  • the multilayer composite materials of the invention also have the advantage that they can be produced inexpensively and that they are extremely lightweight because of the plastic used therein.
  • What is also advantageous about the multilayer composite materials according to the invention is that the configuration, for example of a housing part, can be effected in a particularly simple and flexible manner owing to the thermoformability of the multilayer composite materials.
  • all fibre composite material layers of the multilayer composite material are bonded face-to-face, wherein the fibre material is aligned unidirectionally within the respective layer and is embedded in the matrix material.
  • further material layers to be present between the layers of the fibre composite material, for example finishing layers, for example paint layers, typically based on urethane-based and acrylate-based paint systems, in single-layer or multilayer form, which can be hardened thermally or by means of UV radiation (the surfaces, prior to finishing, can optionally be correspondingly pretreated, activated, for example by means of plasma or flame treatment, or cleaned).
  • thin films may be applied to one or both sides of a multilayer construct composed of several layers of composite material each with unidirectionally oriented fibres as fibre material, in order to provide a particularly homogeneous surface for subsequent painting.
  • These films may or may not have been rendered flame-retardant.
  • veneer is applied as outer layer on one or both sides of the multilayer construct.
  • the multilayer composite material according to the invention may also comprise one or more further layers.
  • further layers include further layers of a plastic which may be identical to or different from the plastics matrix used in the layers of fibre composite material.
  • These plastics layers may in particular also comprise fillers which are distinct from the fibre materials provided in accordance with the invention.
  • the multilayer composite material according to the invention may additionally also comprise adhesive layers, woven layers, nonwoven layers or surface enhancement layers, for example paint layers.
  • These further layers may be present between inner and outer layers of fibre composite material, between a plurality of inner layers of fibre composite material and/or atop one or both of the outer layers of fibre composite material.
  • the multilayer composite material may also be composed exclusively of fibre composite material layers according to the invention in which the fibres are unidirectionally aligned within the respective layer and embedded into a polycarbonate-based plastics matrix, wherein one or more surface enhancement layers, for example paint layers, may optionally be present atop one or both of the outer layers of fibre composite material.
  • one or more surface enhancement layers for example paint layers
  • the individual layers of fibre composite material may have a substantially identical or different construction and/or orientation.
  • a “substantially identical construction” of the layers of fibre composite material is understood in the context of the invention to mean that at least one feature from the group comprising chemical composition, fibre volume content and layer thickness is identical.
  • “Chemical composition” is understood to mean the chemical composition of the polymer matrix of the fibre composite material and/or the chemical composition of the fibre material, such as endless fibres.
  • the outer layers of fibre composite material have a substantially identical construction in terms of their composition, their fibre volume content and their layer thickness.
  • the multilayer composite material has a total thickness of 0.5 to 2 mm, preferably 0.8 to 1.8 mm, especially 0.9 to 1.2 mm. Practical tests have shown that the multilayer composite material according to the invention can achieve excellent mechanical properties even at these low thicknesses.
  • the sum total of all inner layers of fibre composite material has a total thickness of 200 ⁇ m to 1200 ⁇ m, preferably 400 ⁇ m to 1000 ⁇ m, more preferably 500 ⁇ m to 750 ⁇ m.
  • each of the two outer layers of fibre composite material is 100 to 250 ⁇ m, preferably 120 ⁇ m to 230 ⁇ m, more preferably 130 ⁇ m to 180 ⁇ m.
  • Fibre composite material layers that are preferred in accordance with the invention have a fibre volume content of ⁇ 30% by volume and ⁇ 60% by volume, preferably ⁇ 35% by volume and ⁇ 55% by volume, more preferably of ⁇ 37% by volume and ⁇ 52% by volume. If the fibre volume content is less than 30% by volume then the mechanical properties of the resulting fibre composite material under a point load are often suboptimal, i.e. the fibre composite material cannot adequately withstand a point load and in some cases is even pierced. A fibre volume content exceeding 60% by volume likewise results in a deterioration in the mechanical properties of the fibre composite material.
  • the volume content of the fibre material in the total volume of the multilayer composite material is in the range from 30% to 60% by volume, preferably in the range of 40% to 55% by volume.
  • the outer layers of fibre composite material have a fibre volume content of not more than 50% by volume, preferably not more than 45% by volume, especially not more than 42% by volume.
  • the outer layers of fibre composite material have a fibre volume content of at least 30% by volume, preferably at least 35% by volume, especially at least 37% by volume.
  • the outer layers of fibre composite material have a lower volume content of fibres, based on the total volume of the layer of fibre composite material, than the at least one inner layer of fibre composite material.
  • the inner layers of fibre composite material can have a fibre volume content of 40% to 60% by volume, preferably 45% to 55% by volume, more preferably 48% to 52% by volume, based on the total volume of the layer of fibre composite material.
  • % by volume is understood here to mean the proportion by volume (% v/v), based on the total volume of the layer of fibre composite material.
  • the preferably at least three layers of fibre composite material in the multilayer composite material according to the invention preferably have essentially no voids, in particular essentially no air inclusions.
  • Essentially no voids in one embodiment means that the void content of the at least three layers of fibre composite material in the multilayer composite material according to the invention is below 2% by volume, in particular below 1% by volume, more preferably below 0.5% by volume.
  • the void content of a layer of fibre composite material or of the multilayer composite material can be determined in different ways which are regarded as generally accepted.
  • the void content of a test specimen can be determined by the resin ashing test, in which a test specimen is exposed for example to a temperature of 600° C. for 3 hours in an oven in order to incinerate the resin which encloses the fibres in the test specimen. The mass of the fibres thus exposed can then be determined in order to arrive after a further computational step at the void content of the test specimen.
  • Such a resin ashing test can be performed as per ASTM D 2584-08 to determine the individual weights of the fibres and of the polymer matrix.
  • the void content of the test specimen can be determined therefrom in a further step by utilizing the following equation 1:
  • Vf 100*( ⁇ t ⁇ c )/ ⁇ t (equation 1)
  • ⁇ m is the density of the polymer matrix (for example for an appropriate crystallinity); ⁇ f is the density of the fibres used; Wf is the proportion by weight of the fibres used and Wm is the weight fraction of the polymer matrix.
  • the void content can be determined by chemical leaching of the polymer matrix out of the test specimen as per ASTM D 3171-09.
  • the resin ashing test and the chemical dissolution method are more suitable for glass fibres which are generally inert to melting or chemical treatment.
  • Further methods for more sensitive fibres are indirect computation of the void content by the densities of the polymer, of the fibres and of the test specimen as per ASTM D 2734-09 (method A), wherein the densities can be determined as per ASTM D792-08 (method A).
  • image processing programs, grid templates or defect counting to evaluate the void content of an image recording determined by conventional microscopy.
  • a further way to determine void content is the thickness differential method which comprises determination of the differential in layer thickness between a theoretical component thickness and the actual component thickness for known basis weights and densities of polymer and fibre. Computation of the theoretical component thicknesses assumes no voids are present in the construction and complete wetting of the fibres with polymer. Relating the thickness difference to the actual component thickness affords the percentage void content. These thicknesses may be measured with a micrometer for example. For this method, error-minimized results can preferably be determined by determining the void content on components composed of a plurality of individual layers, preferably more than 4 layers, more preferably more than 6 layers and very particularly preferably more than 8 layers.
  • the layers of fibre composite material in the multilayer composite material according to the invention have no voids, especially no inclusions of air.
  • the invention further provides a process for producing the fibre composite material according to the invention or the multilayer composite material.
  • the fibre composite material layers of the multilayer composite material according to the invention can be produced by the customary processes for producing fibre composite materials that are known to one skilled in the art.
  • the fibre composite materials or multilayer composite materials For the production of the fibre composite materials or multilayer composite materials according to the invention, it is possible to use various production methods. First of all, it is possible to make a fundamental distinction as to whether the fibre composite material or the multilayer composite material consists, for example, of unidirectional fibre layers, weave layers, random fibre layers or of combinations thereof, it being possible to introduce unidirectional fibres into the composite material layers either in the form of a semifinished product (e.g. laid scrim) or directly as a pure fibre strand.
  • a semifinished product e.g. laid scrim
  • the fibre strands are generally first impregnated at least in one layer with the thermoplastic resin (the fibre composite material), in order then to be pressed to form a multilayered system (laminate), the multilayer composite material, for which there are various methods of impregnation.
  • the composite sheet is produced from semifinished fibre products (weaves, scrims, random fibres etc.)
  • the prior art likewise indicates various means by which fibres and matrix can be combined. Standard methods are, for example, the process with the aid of powder prepregs or what is called the film stacking process.
  • the film stacking process can preferably be used for the production of the above-described fibre composite materials. This involves alternate layering of films and weave layers, where the basis weight of the weave and thickness of the films, for example, can be matched to one another so as to obtain a desired fibre volume content.
  • the fibre composite material layers of the multilayer composite material are producible by applying a molten polycarbonate-based plastic to an endless fibre tape preheated to above the glass transition temperature of the plastic under pressure-shear vibration.
  • a molten polycarbonate-based plastic to an endless fibre tape preheated to above the glass transition temperature of the plastic under pressure-shear vibration.
  • An “endless fibre tape” is understood in accordance with the invention to mean a plurality of rovings that have been brought together, the rovings being untwisted bundles composed of many endless fibres.
  • the preferred process for producing a layer of fibre composite material of the multilayer composite material especially comprises the following steps:
  • the temperature of the endless fibre tape is typically between 180° C. and 280° C., preferably between 200° C. and 260° C., more preferably to 240° C., especially preferably between 210° C. and 230° C., in particular 220° C.
  • heating to above the glass transition temperature of the plastic or holding at above the glass transition temperature of the plastic this means heating to a temperature at which the plastic is in a fully molten state.
  • the glass transition temperature of the plastic is determined as per DIN EN ISO 17025.
  • a difference between the fibre temperature and the melt temperature on contacting of the plastics melt with the endless fibre tape is in the range from 60° C. to 120° C., preferably from 70° C. to 110° C., more preferably from 80° C. to 100° C.
  • the application of pressure-shear vibration causes efficient expulsion of gas volumes still present within the raw fibre tape.
  • the process may be performed in continuous fashion.
  • the holding of the endless fibre tape at a temperature above the glass transition temperature of the plastic ensures that the polycarbonate-based plastic does not undergo undesired solidification before complete penetration and apportioning within and atop the endless fibre tape.
  • the temperature is preferably still kept above the melting temperature of the polymer during a rest interval.
  • the layer of fibre composite material is cooled down in a defined manner. Once the indicated process steps have been performed the produced, impregnated endless fibre tape can be cooled in a defined manner.
  • the endless fibre tape may comprise a multiplicity of endless fibres.
  • the application of pressure-shear vibration makes it possible to achieve good penetration of the plastic into the fibre tape, i.e. good impregnation, with little, if any, damage to the fibres.
  • the process can be performed continuously or batchwise.
  • a rest interval where the raw fibre tape does not have a pressure and/or shear vibration applied to it for a predefined time interval may in each case be provided in a targeted fashion between the consecutive applications of pressure-shear vibration.
  • An application of pressure-shear vibration from both sides may be effected by way of pressure application devices arranged consecutively in the processing line. Alternatively, a simultaneous application of pressure-shear vibration from both sides is possible.
  • the application of pressure-shear vibration from both sides can also be effected with the transverse motion components occurring in synchronized opposing fashion, i.e. in a controlled push-pull manner.
  • the frequencies of the application of pressure-shear vibration are preferably in the range between 1 Hz and 40 kHz. Amplitudes for the application of shear vibration are typically in the range between 0.1 mm and 5 mm. A pressure of the application of pressure-shear vibration is preferably in the range between 0.01 MPa and 2 MPa.
  • “Bonding of the layered layers of fibre composite material” is understood in accordance with the invention to mean any process which results in physical bonding of the layered layers of fibre composite material. It is preferable when the bonding of the layered layers of fibre composite material to afford the multilayer composite material is effected by means of pressure and/or temperature, for example by lamination.
  • the pressure employed for bonding of the layered layers of fibre composite material to afford the multilayer composite material may be in the range from 5 to 15 bar, preferably 7 to 13 bar, more preferably 8 to 12 bar.
  • the temperature for bonding of the fibre composite material layers may be 80° C. to 300° C. If a bonding process with heating and cooling zones is employed the temperature for bonding of the fibre composite material layers in the heating zones may be from 220° C.
  • the temperature in the cooling zones may be from 80° C. to 140° C., preferably from 90° C. to 130° C., more preferably from 100° C. to 120° C.
  • the bonding of the layered layers of fibre composite material results in layers of fibre composite material bonded face-to-face.
  • “Face-to-face” in this context means that at least 50%, preferably at least 75%, 90%, 95%, 99% or 100% (“uniform” bonding) of the surfaces of two adjacent layers of the fibre composite material that are facing one another are directly bonded to one another.
  • the degree of bonding may be determined in cross sections by microscopy or else determined by the absence of cavities, for example air inclusions, in the fibre composite material.
  • a preferred process for producing an inventive multilayer composite material composed of at least three inventive layers of fibre composite material comprises the following steps:
  • Multilayer composite materials can additionally also be produced by means of a static press. This involves alternate layering of films composed of the polycarbonate-based compositions used in accordance with the invention and the weave layers, where the outer layers are each concluded by a film layer.
  • “Broad layers of fibre composite material” means here that the layers of fibre composite material can reach a width of several metres. Typically, the broad layers of fibre composite material have widths of 280 mm to 1800 mm.
  • shear vibration is applied to the consolidated individual fibre tapes with the heated pressurization unit, with exertion of a shear force on the individual fibre tapes in the longitudinal direction of a shear force application unit (y), which is at right angles to a conveying direction (x) and at right angles to a tape normal (z).
  • a shear force application unit y
  • x conveying direction
  • z tape normal
  • the spreading may be associated with a decrease in the tape thickness of the broad layer of fibre composite materials produced compared to the tape thickness of the individual fibre tapes.
  • the pressure unit of the heated pressurization unit is preferably a pressing ram or a roll pair, or alternatively an interval heating press, an isobaric twin belt or membrane press, a calender or a combination of these alternatives.
  • the process described for production of a broad layer of fibre composite material is conducted continuously or batchwise.
  • a further advantage of the multilayer composite material according to the invention is that it can be formed into any desired shape. Forming may be achieved by any forming processes known to one skilled in the art. Such forming processes may be effected under the action of pressure and/or heat.
  • the forming is effected with evolution of heat, especially by thermoforming.
  • the fibre layers, especially the endless fibres or weaves/knits can be surface pretreated with a silane compound.
  • silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane.
  • the fibres can be chemically and/or physically modified by means of sizes in such a way as to establish, for example, the desired degree of binding between fibres and the matrix material in the subsequent production of fibre composite materials from the fibre layers and the matrix material.
  • any sizes known to those skilled in the art specifically not only the abovementioned silane compounds but also preferably the epoxy resins and derivatives thereof, epoxy esters, epoxy ethers, epoxy urethanes, polyurethane esters, polyurethane ethers, isocyanates, polyimides, polyamides, and any desired mixtures of two or more of the aforementioned compounds.
  • the specific selection of the size material depends on the material for the fibres and the desired strength of binding.
  • the size can be used here, for example, in the form of an aqueous or nonaqueous solution or emulsion, and the size can be attached to the fibres according to the invention by known methods for the sizing of short fibres, for example in a dipping process.
  • An essential aspect is the fact that the structure-stiffening fibre material and the thermoplastic material enter into a cohesive bond with one another.
  • the cohesive bond is established via the process parameters, especially melt temperature and mould temperature and pressure, and also depends on the abovementioned size.
  • a fibre composite material comprising at least one layer of fibre material embedded into an aromatic polycarbonate-based composition free of PTFE, comprising
  • R 1 , R 2 , R 3 and R 4 are each independently a C 1 - to C 8 -alkyl radical, in each case in each case halogenated and in each case branched or unbranched, and/or C 5 - to C 6 -cycloalkyl radical, C 6 - to C 20 -aryl radical or C 7 - to C 12 -aralkyl radical, in each case optionally substituted by branched or unbranched alkyl and/or halogen, n is independently 0 or 1, q is an integer from 0 to 30, X is a mono- or polycyclic aromatic radical having 6 to 30 carbon atoms or a linear or branched aliphatic radical having 2 to 30 carbon atoms, each of which may be substituted or unsubstituted, and bridged or unbridged; E) 0% to 0.2% by weight of at least one stabilizer selected from the group consisting of alkyl phosphate, ethylenediaminetetraacetic acid and/or cit
  • a fibre composite material comprising at least one layer of fibre material embedded into an aromatic polycarbonate-based composition free of PTFE, comprising
  • R 1 , R 2 , R 3 and R 4 are each independently a C 1 - to C 8 -alkyl radical, in each case in each case halogenated and in each case branched or unbranched, and/or C 5 - to C 6 -cycloalkyl radical, C 6 - to C 20 -aryl radical or C 7 - to C 12 -aralkyl radical, in each case optionally substituted by branched or unbranched alkyl and/or halogen, n is independently 0 or 1, q is an integer from 0 to 30, X is a mono- or polycyclic aromatic radical having 6 to 30 carbon atoms or a linear or branched aliphatic radical having 2 to 30 carbon atoms, each of which may be substituted or unsubstituted, and bridged or unbridged; E) 0% to 0.2% by weight of at least one stabilizer selected from the group consisting of alkyl phosphate, ethylenediaminetetraacetic acid and/or cit
  • fibre composite material comprising at least one layer of fibre material embedded into an aromatic polycarbonate-based composition free of PTFE, consisting of
  • R 1 , R 2 , R 3 and R 4 are each independently a C 1 - to C 8 -alkyl radical, in each case optionally halogenated and in each case branched or unbranched, and/or C 5 - to C 6 -cycloalkyl radical, C 6 - to C 20 -aryl radical or C 7 - to C 12 -aralkyl radical, in each case optionally substituted by branched or unbranched alkyl and/or halogen, n is independently 0 or 1, q is an integer from 0 to 30, X is a mono- or polycyclic aromatic radical having 6 to 30 carbon atoms or a linear or branched aliphatic radical having 2 to 30 carbon atoms, each of which may be substituted or unsubstituted, and bridged or unbridged; E) 0% to 0.2% by weight of at least one stabilizer selected from the group consisting of alkyl phosphate, ethylenediaminetetraacetic acid and/or citric
  • all R radicals phenoxy radicals; very particular preference is given to using hexaphenoxyphosphazene.
  • the particularly preferred phosphorus compound of component D is
  • fibre volume content of the layers of fibre composite material is more preferably ⁇ 35% by volume and ⁇ 55% by volume.
  • the invention further provides a housing or a housing component suitable for use as or employment in a housing of an electronic device, wherein the housing component comprises a multilayer composite material according to the invention.
  • a housing part may be the back of a mobile phone, the underside of a laptop, the monitor backside of a laptop, the back of a tablet, etc. or else may merely be a constituent of a back of a mobile phone, an underside of a laptop, a monitor backside of a laptop, a back of a tablet, etc.
  • the housing component is the monitor backside (a cover) or the underside (d cover) of a laptop.
  • Corresponding housings or housing components can especially be obtained by forming and/or assembly together with further components.
  • the invention further provides components and structural or trim elements for motor vehicle interiors (walls, cover trim, doors, windows, etc.), parcel shelves, driver's consoles, tables, sound insulation and other insulation materials, vertical surfaces of the outer vehicle skin, outer faces of the underbody, light covers, light diffusers, etc., where the part or structural or trim element comprises a multilayer composite material according to the invention.
  • Fibre composite materials of the present invention can especially be used for production of thin-wall components (e.g. housing components in data processing, TV housings, notebooks, ultrabooks), where particularly high demands are made on notched impact resistance, flame retardancy and surface quality of the materials used.
  • Thin-wall mouldings are those where wall thicknesses are less than about 3 mm, preferably less than 3 mm, more preferably less than 2.5 mm, yet more preferably less than 2.0 mm, most preferably less than 1.5 mm.
  • “about” is understood to mean that the actual value does not deviate substantially from the stated value, a “non-substantial” deviation being deemed to be one of not more than 25%, preferably not more than 10%.
  • fibre composite materials according to the invention can be used for production of housing components, for example for domestic appliances, office appliances such as monitors or printers, covering panels for the construction sector, components for the motor vehicles sector or components for the electronics sector.
  • FIG. 1 a schematic and perspective diagram of a multilayer composite material composed of three superposed layers of fibre composite material with enlarged detail, wherein the inner layer is rotated by 90° relative to the outer layers of fibre composite material,
  • FIG. 2 a schematic and perspective diagram of a multilayer composite material composed of five superposed layers of fibre composite material, wherein the inner layers have the same orientation and their orientations are rotated by 90° relative to the outer layers of fibre composite material,
  • FIG. 3 a a schematic and perspective diagram of a multilayer composite material composed of six superposed layers of fibre composite material, wherein the inner layers have the same orientation and their orientations are rotated by 90° relative to the outer layers of fibre composite material,
  • FIG. 3 b a schematic and perspective diagram of a multilayer composite material composed of three superposed layers of fibre composite material, wherein the inner layer has a greater thickness than the sum of the two outer layers.
  • the thickness ratio of the inner layer to the sum total of the two outer layers is the same as the thickness ratio of the sum of all inner layers to the sum of the two outer layers of the multilayer composite material from FIG. 3 a,
  • FIG. 4 a a schematic and perspective diagram of a multilayer composite material composed of three superposed layers of fibre composite material and an additional material layer on an outer layer of fibre composite material
  • FIG. 4 b a schematic and perspective diagram of a multilayer composite material composed of three superposed layers of fibre composite material and two additional inner further material layers, for example plastics layers, wherein an inner further material layer is disposed between each outer layer of fibre composite material and the inner layer of fibre composite material.
  • FIG. 1 shows a detail of a multilayer composite material 1 composed of three superposed layers of fibre composite material 2 , 3 , wherein the inner layer of fibre composite material 2 is rotated by 90° relative to the outer layers 3 of fibre composite material.
  • the enlarged detail in FIG. 1 shows that each of the layers 2 , 3 of the multilayer composite material comprises endless fibres 4 which are unidirectionally aligned within the respective layer and are embedded in polycarbonate-based plastic 5 .
  • the orientation of the respective layer of fibre composite material 2 , 3 is determined by the orientation of the unidirectionally aligned endless fibres 4 present therein.
  • the endless fibres 4 extend over the entire length/width of the multilayer composite material.
  • the layers 2 , 3 are uniformly bonded to one another.
  • the multilayer composite material 1 as per FIG. 2 is composed of five superposed layers of fibre composite material 2 , 3 , wherein the inner layers of fibre composite material 2 have the same orientation and their orientation relative to the outer layers of fibre composite material 3 is rotated by 90°.
  • the multilayer composite material 1 as per FIG. 3 a is composed of six superposed layers of fibre composite material 2 , 3 , wherein the inner layers of fibre composite material 2 have the same orientation and their orientation relative to the outer layers of fibre composite material 3 is rotated by 90°.
  • FIG. 3 b shows a multilayer composite material 1 composed of three superposed layers of fibre composite material 2 , 3 , wherein the inner layer 2 has a greater thickness than the sum of the two outer layers 3 .
  • FIG. 4 a shows the multilayer composite material 1 composed of three superposed layers of fibre composite material 2 , 3 as described for FIG. 1 but with an additional further outer material layer 6 atop one of the outer layers of fibre composite material 3 .
  • the outer material layer 6 may for example comprise one or more fibre-free plastics layers and/or a thin facing, for example a paint layer or a veneer.
  • FIG. 4 b shows a multilayer composite material 1 composed of three superposed layers of fibre composite material 2 , 3 as described for FIG. 1 but with two additional further inner material layers 7 , wherein a respective inner further material layer 7 is located between one of the outer layers 3 of fibre composite material and the inner layer 2 of fibre composite material respectively.
  • the further inner material layers 7 may have an identical or different construction and may comprise for example one or more fibre-free plastics layers.
  • the polycarbonate compositions described in the examples which follow were produced by compounding in an Evolum EV32HT extruder from Clextral (France) with a screw diameter of 32 mm.
  • the screw set used was L7-8.2 at a throughput of 40-70 kg/h.
  • the speed was 200-300 rpm at a melt temperature of 240-320° C. (according to the composition).
  • the pellets of the test formulations detailed were dried in a Labotek DDM180 dry air dryer at 80° C. for 4 hours.
  • the fibre composite material layers were produced in an experimental setup as described in DE 10 2011 005 462 B3.
  • the rovings of the above-described fibres were rolled out with constant spool tension from a creel and spread out by means of a spreading apparatus to give a raw fibre tape of individual filaments of width 60 mm in a torsion-free manner.
  • the raw fibre tape was heated to a temperature above the glass transition temperature of the respective pellets.
  • the pellets of the respective experimental formulations were melted in an Ecoline 30x25d extruder from Maschinenbau Heilsbronn GmbH and conducted through melt channels to slot dies arranged-above and below and transverse to the running direction of the fibre tape.
  • the temperature in the melt zones of the extruder was about 280° C. to 300° C.
  • the respective melt encountered the heated raw fibre tape, with contact of the raw fibre tape with the melt on both sides.
  • the raw fibre tape that had been contacted with melt, having been heated further by means of a permanently heated plate was transported to vibration shoes that were again heated.
  • pressure-shear vibration by means of the vibration shoe as described in DE 10 2011 005 462 B3
  • the respective melts were introduced into the raw fibre tape.
  • the result was fibre composite material layers of width 60 mm which, after passing through chill rolls, were rolled up.
  • the composite material layers of width 60 mm were welded at their edges by means of an experimental setup as described in DE 10 2011 090 143 A1 to give broader tapes of width 480 mm, with all individual filaments still arranged in the same direction.
  • the consolidated composite material layers were rolled up again.
  • All the organosheets examined hereinafter consisted of 4 fibre composite material layers, with 2 outer fibre composite material layers having the same fibre orientation and 2 inner fibre composite material layers having the same fibre orientation, the fibre orientation of the inner fibre composite material layers having been rotated by 90° in relation to the fibre orientation of the outer fibre composite material layers.
  • fibre composite material layers having corresponding orientation were rolled out and laid one on top of another in the sequence described above. Thereafter, the stack was supplied to a PLA 500 interval heating press from BTS Maschinenstechnik GmbH and pressed at a temperature above the glass transition temperature of the impregnation formulations to give an organosheet.
  • the pressure applied across the surface here was 10 bar.
  • the temperature in the heating zone was 280° C. and the temperature in the cooling zone was 100° C.
  • the advance rate per cycle was 30 mm and the cycle time was 10 sec.
  • the fibre composite material layers used for production of the organosheets accordingly had thicknesses of 175 ⁇ m and 200 ⁇ m.
  • the fibre volume content of the fibre composite material layers was about 50% by volume per individual layer.
  • the organosheets thus produced were used to prepare samples with a Mutronic Diadisc 5200 tabletop circular saw. This involved preparing samples parallel to the fibre orientation in the outer layers, referred to hereinafter as 0° orientation, and transverse to the fibre orientation in the outer layers, referred to hereinafter as 90° orientation.
  • Melt volume flow rate was determined according to ISO 1133:2012-03 (predominantly at a test temperature of 300° C., mass 1.2 kg) using a Zwick 4106 instrument from Zwick Roell.
  • Molecular weight Mw and Mn of the polycarbonate used was determined by means of gel permeation chromatography using a BPA polycarbonate calibration (method from Currenta GmbH & Co. OHG, Leverkusen: PSS SECcurity System; dichloromethane as eluent, column 1 (PL-PC5) with a concentration of 2 g/l, flow rate 1.0 ml/min at a temperature of 30° C. using UV and/or RI detection).
  • Polydispersity U is calculated as follows:
  • the thickness of the multilayer composite materials that result after joining was determined using a commercially available micrometer. The result reported is the arithmetic mean of 5 individual measurements at different positions.
  • the fire characteristics were measured according to UL94 V on bars of dimensions 127 mm ⁇ 12.7 mm ⁇ organosheet thickness [mm].
  • multilayer composite materials composed of four layers of fibre composite material were analysed.
  • the fibre material was unidirectionally oriented carbon fibres as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
US16/314,772 2016-07-04 2017-07-03 Multilayer composite material containing special polycarbonate compositions as a matrix material Abandoned US20190255825A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16177707 2016-07-04
EP16177707.3 2016-07-04
PCT/EP2017/066527 WO2018007335A1 (de) 2016-07-04 2017-07-03 Mehrschichtverbundwerkstoff enthaltend spezielle polycarbonat-zusammensetzungen als matrixmaterial

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/066527 A-371-Of-International WO2018007335A1 (de) 2016-07-04 2017-07-03 Mehrschichtverbundwerkstoff enthaltend spezielle polycarbonat-zusammensetzungen als matrixmaterial

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/538,218 Division US11993061B2 (en) 2016-07-04 2021-11-30 Multilayer composite material containing special polycarbonate compositions as a matrix material

Publications (1)

Publication Number Publication Date
US20190255825A1 true US20190255825A1 (en) 2019-08-22

Family

ID=56372761

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/314,772 Abandoned US20190255825A1 (en) 2016-07-04 2017-07-03 Multilayer composite material containing special polycarbonate compositions as a matrix material
US17/538,218 Active 2037-09-26 US11993061B2 (en) 2016-07-04 2021-11-30 Multilayer composite material containing special polycarbonate compositions as a matrix material

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/538,218 Active 2037-09-26 US11993061B2 (en) 2016-07-04 2021-11-30 Multilayer composite material containing special polycarbonate compositions as a matrix material

Country Status (7)

Country Link
US (2) US20190255825A1 (de)
EP (1) EP3478757B1 (de)
JP (1) JP2019526652A (de)
KR (1) KR102375055B1 (de)
CN (1) CN109715716B (de)
TW (1) TWI764909B (de)
WO (1) WO2018007335A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242839A1 (en) * 2021-05-19 2022-11-24 Huawei Technologies Co., Ltd. Electronic apparatus comprising composite structure
WO2024022701A1 (en) 2022-07-27 2024-02-01 Sabic Global Technologies B.V. Flame-retardant impact-modified thermoplastic compositions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3502173A1 (de) * 2017-12-19 2019-06-26 Covestro Deutschland AG Design-mehrschichtverbundwerkstoff mit speziellen polycarbonat-zusammensetzungen als matrixmaterial
EP3502170A1 (de) * 2017-12-19 2019-06-26 Covestro Deutschland AG Mehrschichtverbundwerkstoff enthaltend spezielle polycarbonat-zusammensetzungen als matrixmaterial
WO2020065536A1 (en) 2018-09-24 2020-04-02 Sabic Global Technologies B.V. Flame-retardant polycarbonate resin compositions
CN112208168A (zh) * 2019-07-09 2021-01-12 朗盛德国有限责任公司 多层复合材料
EP3815898A1 (de) 2019-10-28 2021-05-05 Covestro Deutschland AG Schichtenverbund aus polycarbonat und polycarbonatblend zur verbesserten lackierbarkeit
WO2023167054A1 (ja) * 2022-03-04 2023-09-07 帝人株式会社 繊維強化複合成形体用樹脂組成物および繊維強化複合成形体

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1007996B (de) 1955-03-26 1957-05-09 Bayer Ag Verfahren zur Herstellung thermoplastischer Kunststoffe
US2991273A (en) 1956-07-07 1961-07-04 Bayer Ag Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates
US3148172A (en) 1956-07-19 1964-09-08 Gen Electric Polycarbonates of dihydroxyaryl ethers
US2999846A (en) 1956-11-30 1961-09-12 Schnell Hermann High molecular weight thermoplastic aromatic sulfoxy polycarbonates
US2999835A (en) 1959-01-02 1961-09-12 Gen Electric Resinous mixture comprising organo-polysiloxane and polymer of a carbonate of a dihydric phenol, and products containing same
GB1122003A (en) 1964-10-07 1968-07-31 Gen Electric Improvements in aromatic polycarbonates
NL152889B (nl) 1967-03-10 1977-04-15 Gen Electric Werkwijze ter bereiding van een lineair polycarbonaatcopolymeer, alsmede orienteerbare textielvezel van dit copolymeer.
NL6817492A (de) 1968-12-06 1969-02-25
DE2036052A1 (en) 1970-07-21 1972-01-27 Milchwirtschafthche Forschungs und Untersuchungs Gesellschaft mbH, 2100 Hamburg Working up of additives in fat and protein - contng foodstuffs
US3879348A (en) 1970-12-22 1975-04-22 Bayer Ag Saponification-resistant polycarbonates
DE2063050C3 (de) 1970-12-22 1983-12-15 Bayer Ag, 5090 Leverkusen Verseifungsbeständige Polycarbonate, Verfahren zu deren Herstellung und deren Verwendung
DE2211956A1 (de) 1972-03-11 1973-10-25 Bayer Ag Verfahren zur herstellung verseifungsstabiler blockcopolycarbonate
ES2107999T3 (es) 1988-07-11 1997-12-16 Gen Electric Procedimiento para preparar policarbonatos.
NO170326C (no) 1988-08-12 1992-10-07 Bayer Ag Dihydroksydifenylcykloalkaner
DE3844633A1 (de) 1988-08-12 1990-04-19 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
NL8802346A (nl) 1988-09-22 1990-04-17 Gen Electric Polymeermengsel met aromatisch polycarbonaat, styreen bevattend copolymeer en/of entpolymeer en een vlamvertragend middel, daaruit gevormde voorwerpen.
DE4238123C2 (de) 1992-11-12 2000-03-09 Bayer Ag Verfahren zur Herstellung von thermoplastischen Polycarbonaten
DE4328656A1 (de) 1993-08-26 1995-03-02 Bayer Ag Flammwidrige, spannungsrißbeständige Polycarbonat-ABS-Formmassen
US5717057A (en) 1994-12-28 1998-02-10 General Electric Company Method of manufacturing polycarbonate
DE69629971T2 (de) 1995-02-27 2004-07-22 Mitsubishi Chemical Corp. Hammhemmende thermoplastische Harzzusammensetzung
DE19615230A1 (de) 1996-04-18 1997-10-23 Basf Ag Flammgeschützte thermoplastische Formmassen
WO1999019383A1 (fr) 1997-10-15 1999-04-22 Otsuka Chemical Co., Ltd. Composes phenoxyphosphazene reticules, agent ignifugeant, compositions de resine ignifugeante et moulages a base de resines ignifugeante
JPH11181268A (ja) * 1997-12-25 1999-07-06 Kanegafuchi Chem Ind Co Ltd 難燃性熱可塑性樹脂組成物
DE19828535A1 (de) * 1998-06-26 1999-12-30 Bayer Ag Flammwidrige Polycarbonat-ABS-Formmassen
DE19933132A1 (de) 1999-07-19 2001-01-25 Bayer Ag Verfahren zur Herstellung von modifizierten Polycarbonaten
KR100427531B1 (ko) * 2001-09-13 2004-04-30 제일모직주식회사 난연성 열가소성 수지 조성물
KR100422778B1 (ko) * 2001-09-03 2004-03-12 제일모직주식회사 난연성 열가소성 수지조성물
TWI314944B (en) * 2002-01-02 2009-09-21 Cheil Ind Inc Flame retardant thermoplastic resin composition
DE10300598A1 (de) 2003-01-10 2004-07-22 Bayer Ag Verfahren zur Herstellung von Polycarbonaten
JP2006130862A (ja) * 2004-11-09 2006-05-25 Toray Ind Inc 複合成形品および複合成形品の製造方法
DE102005058847A1 (de) * 2005-12-09 2007-06-14 Bayer Materialscience Ag Polycarbonat-Formmassen
DE202008009748U1 (de) * 2008-07-21 2009-12-03 Kögel Fahrzeugwerke GmbH Verbundplatte
DE102011005462B8 (de) 2011-03-11 2012-10-11 Thermoplast Composite Gmbh Verfahren sowie Vorrichtung zur Herstellung eines Faserverbundwerkstoffes in Form eines mit einem Polymer imprägnierten Faserbandes
DE102011090143A1 (de) 2011-12-29 2013-07-04 Thermoplast Composite Gmbh Verfahren sowie Vorrichtung zur Herstellung eines Faserverbundwerkstoffes in Form mindestens eines mit einem Polymer imprägnierten Breit-Faserbandes
CN105324421B (zh) 2013-06-26 2019-09-03 三菱瓦斯化学株式会社 阻燃性片材或阻燃性膜、以及使用该片材或膜的制品及其制造方法
KR102294921B1 (ko) 2013-10-08 2021-08-30 코베스트로 도이칠란트 아게 약산의 염을 이용하는 폴리실록산-폴리카보네이트 블록 공축합물의 제조 방법
WO2015052114A1 (de) * 2013-10-08 2015-04-16 Bayer Materialscience Ag Faserverbundwerkstoff, verwendung dafür und verfahren zu dessen herstellung
EP2886305B1 (de) 2013-12-20 2018-05-30 LANXESS Deutschland GmbH Verbindungsverfahren
KR20150076650A (ko) * 2013-12-27 2015-07-07 제일모직주식회사 외관 및 유동성이 향상된 폴리카보네이트 수지 조성물
KR20160106696A (ko) * 2014-01-10 2016-09-12 사빅 글로벌 테크놀러지스 비.브이. 상용화된 조성물, 그로부터 형성된 물품, 및 그것의 제조 방법
US10780677B2 (en) * 2014-06-04 2020-09-22 Bright Lite Structures Llc Composite structure exhibiting energy absorption and/or including a defect free surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022242839A1 (en) * 2021-05-19 2022-11-24 Huawei Technologies Co., Ltd. Electronic apparatus comprising composite structure
WO2024022701A1 (en) 2022-07-27 2024-02-01 Sabic Global Technologies B.V. Flame-retardant impact-modified thermoplastic compositions

Also Published As

Publication number Publication date
US11993061B2 (en) 2024-05-28
WO2018007335A1 (de) 2018-01-11
TW201821531A (zh) 2018-06-16
JP2019526652A (ja) 2019-09-19
CN109715716A (zh) 2019-05-03
KR102375055B1 (ko) 2022-03-17
US20220088906A1 (en) 2022-03-24
CN109715716B (zh) 2020-12-22
TWI764909B (zh) 2022-05-21
EP3478757A1 (de) 2019-05-08
KR20190034522A (ko) 2019-04-02
EP3478757B1 (de) 2020-08-19

Similar Documents

Publication Publication Date Title
US11993061B2 (en) Multilayer composite material containing special polycarbonate compositions as a matrix material
US11130321B2 (en) Multi-layer composite material containing special copolycarbonates as a matrix material
KR102292854B1 (ko) 섬유 복합재, 그에 대한 용도 및 그의 제조 방법
US11155059B2 (en) Multi-layered fibre composite material
TW201706361A (zh) 聚碳酸酯樹脂組成物、及聚碳酸酯樹脂製預浸體
US20190232608A1 (en) Multi-layered fibre composite material
US20200331247A1 (en) Multilayer composite material containing special polycarbonate compositions as a matrix material
US20220025134A1 (en) Multilayer composite design material having special polycarbonate compositions as matrix material
US11505665B2 (en) Multilayer composite material containing special polycarbonate compositions as a matrix material

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVESTRO DEUTSCHLAND AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEHRMANN, ROLF;BOUMANS, ANKE;HEUER, HELMUT WERNER;AND OTHERS;SIGNING DATES FROM 20181207 TO 20190115;REEL/FRAME:048133/0779

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION