US20180127885A1 - Electrolysis System For The Electrochemical Utilization Of Carbon Dioxide - Google Patents
Electrolysis System For The Electrochemical Utilization Of Carbon Dioxide Download PDFInfo
- Publication number
- US20180127885A1 US20180127885A1 US15/574,865 US201615574865A US2018127885A1 US 20180127885 A1 US20180127885 A1 US 20180127885A1 US 201615574865 A US201615574865 A US 201615574865A US 2018127885 A1 US2018127885 A1 US 2018127885A1
- Authority
- US
- United States
- Prior art keywords
- cathode
- carbon dioxide
- proton
- membrane
- catholyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 278
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 140
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 139
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 68
- 239000012528 membrane Substances 0.000 claims abstract description 130
- 230000009467 reduction Effects 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- -1 polytetrafluoroethylene Polymers 0.000 claims description 30
- 239000002253 acid Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 23
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 18
- 230000005501 phase interface Effects 0.000 claims description 13
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 11
- 239000007848 Bronsted acid Substances 0.000 claims description 8
- 239000007791 liquid phase Substances 0.000 claims description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 239000007790 solid phase Substances 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 32
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 24
- 239000007789 gas Substances 0.000 description 24
- 239000000047 product Substances 0.000 description 20
- 238000009792 diffusion process Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 230000002378 acidificating effect Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 239000005518 polymer electrolyte Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 150000001768 cations Chemical class 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 239000011736 potassium bicarbonate Substances 0.000 description 5
- 235000015497 potassium bicarbonate Nutrition 0.000 description 5
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 5
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 5
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 125000000542 sulfonic acid group Chemical group 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229920000557 Nafion® Polymers 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 229940072033 potash Drugs 0.000 description 2
- 229960003975 potassium Drugs 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 235000015320 potassium carbonate Nutrition 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- YHZNPXHJTFFXCI-UHFFFAOYSA-N CC(F)(F)C(F)(F)C(F)(OC(F)(F)C(C)(F)OC(F)(F)C(F)(F)S(=O)(=O)O)C(C)(F)F Chemical compound CC(F)(F)C(F)(F)C(F)(OC(F)(F)C(C)(F)OC(F)(F)C(F)(F)S(=O)(=O)O)C(C)(F)F YHZNPXHJTFFXCI-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000002483 hydrogen compounds Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VFWRGKJLLYDFBY-UHFFFAOYSA-N silver;hydrate Chemical compound O.[Ag].[Ag] VFWRGKJLLYDFBY-UHFFFAOYSA-N 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/22—Inorganic acids
-
- C25B3/04—
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C25B9/08—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- the present disclosure relates to electrolysis. Teachings thereof may be embodied in a reduction method and/or an electrolysis system for electrochemical carbon dioxide utilization. Typically, carbon dioxide is introduced into an electrolysis cell and reduced at a cathode.
- Natural carbon dioxide degradation proceeds, for example, via photosynthesis. This includes conversion of carbon dioxide to carbohydrates in a process subdivided into many component steps over time and, at the molecular level, in terms of space. As such, this process cannot easily be adapted to the industrial scale. No copy of the natural photosynthesis process with photocatalysis on the industrial scale to date has had adequate efficiency to be implemented.
- the table gives Faraday efficiencies [%] of products that form in the carbon dioxide reduction at various metal electrodes. The values reported apply to a 0.1 M potassium hydrogen-carbonate solution as electrolyte and current densities below 10 mA/cm 2 .
- Electrolysis cells suitable for electrochemical reduction of carbon dioxide typically consist of an anode space and a cathode space.
- FIGS. 2 to 4 show examples of cell arrangements in a schematic diagram. The construction with a gas diffusion electrode is shown, for example, in FIG. 3 .
- the carbon dioxide is introduced through a porous cathode directly from the cathode surface into the cathode space.
- the existing methods of carbon dioxide reduction include conversion of carbon dioxide in physically dissolved or gaseous form in the reaction space.
- None of the known approaches to a solution for carbon dioxide reduction makes use of the chemically bound carbon dioxide content in the electrolysis system: the total molar amount of carbon dioxide present in the electrolysis system is composed of a chemical component and a physical component. Whether the carbon dioxide is in chemically bound or physically dissolved form in the electrolyte depends on various factors, for example the pH, the temperature, the electrolyte concentration or the partial pressure of the carbon dioxide. Both carbon dioxide components are involved in an equilibrium relationship. In the system of carbon dioxide in aqueous carbonate or hydrogencarbonate solution, this equilibrium relationship can be described by the following chemical equation:
- ⁇ i represents the molar amount and is less than 0.01.
- P represents the pressure and is less than 2 bar.
- H ij represents the Henry constant.
- FIG. 1 shows, by way of illustration of the dependence of the concentration and pH parameters, an example of a Hagg diagram of a 0.05 molar solution of carbon dioxide.
- carbon dioxide and salts thereof are present alongside one another.
- carbon dioxide (CO 2 ) is preferentially in the form of carbonate (CO 3 2 ⁇ ) in the strongly basic range and preferentially in the form of hydrogencarbonate (HCO 3 ⁇ ) in the moderate pH range, the hydrogencarbonate ions are driven out of the solution in the form of carbon dioxide at low pH values in the acidic medium.
- the carbon dioxide concentration in a hydrogencarbonate-containing electrolyte can be very low in spite of a high hydrogencarbonate concentration in the range from 0.1 mol/L to well above 1 mol/L up to the solubility limit of the corresponding salt.
- teachings of the present disclosure may be embodied in an improved solution for electrochemical carbon dioxide utilization which avoids these disadvantages described above. More particularly, the solution proposed is to enable particularly effective conversion of carbon dioxide.
- an electrolysis system for carbon dioxide utilization may comprise: an electrolysis cell ( 6 . . . 9 ) having an anode (A) in an anode space (AR), a cathode (K) in a cathode space (KR), and at least one membrane (M 1 ), wherein the cathode space (KR) has a first feed for carbon dioxide (CO 2 ) and is configured to bring the carbon dioxide (CO 2 ) fed in into contact with the cathode (K), characterized in that the electrolysis system comprises a proton donor unit and the cathode space (KR) is connected to the proton donor unit via a second feed for protons (H + ) which is configured to bring the protons (H + ) fed into the cathode space (KR) into contact with the cathode (K).
- the proton donor unit comprises a proton reservoir (PR) and a proton-permeable membrane (M 2 ) which functions as a second feed to the cathode space (KR) for the protons (H + ).
- PR proton reservoir
- M 2 proton-permeable membrane
- the proton reservoir (PR) is an acid reservoir, especially comprising a Br ⁇ nsted acid (HX).
- the proton-permeable membrane (M 2 ) includes sulfonated polytetrafluoroethylene.
- the cathode space (KR) includes a catholyte/carbon dioxide mixture, wherein the catholyte comprises carbonate (CO 3 2 ⁇ ) and/or hydrogencarbonate anions (HCO 3 ⁇ ) and/or dihydrogen carbonate (H 2 CO 3 ).
- the anode space functions as a proton reservoir (PR).
- first membrane and a second membrane there is a first membrane and a second membrane (M 1 , M 2 ), wherein the first membrane (M 1 ) is arranged between the anode (A) and cathode (K), the second membrane (M 2 ) is arranged between the cathode (K) and proton reservoir (P), and at least the second membrane (M 2 ) is proton-permeable.
- the cathode space (KR) is executed as a catholyte gap (KS) that extends along the cathode (K) and has an extent at right angles to the surface area of the cathode of not more than 5 mm.
- KS catholyte gap
- the cathode space (KR) is executed as a catholyte gap (KS) which separates the cathode (K) and membrane (M 1 , M 2 ), wherein cathode (K) and membrane (M 1 ) are arranged at a distance of not more than 5 mm from one another.
- KS catholyte gap
- the cathode space (KR) comprises two catholyte gaps (KS) arranged on either side of the cathode (K), each of which is bounded by a membrane (M 1 , M 2 ), wherein the cathode (K) and membranes (M 1 , M 2 ) are each independently arranged at a maximum distance of 5 mm from one another.
- PSK proton donor cathode
- KP proton-permeable cathode
- Some embodiments may include a reduction method for carbon dioxide utilization by means of an electrolysis system as described above, in which a catholyte/carbon dioxide mixture is introduced into a cathode space (KR) and brought into contact with a cathode (K), and in which local lowering of the pH of the catholyte/carbon dioxide mixture is undertaken in the cathode space (KR) by providing additional protons (H + ).
- the local lowering of the pH of the catholyte/carbon dioxide mixture is undertaken at the liquid/solid phase interface from the catholyte/carbon dioxide mixture to the cathode (K) by providing the additional protons (H + ) via the proton-permeable membrane (M) or via the proton-permeable cathode (K) at the liquid/solid phase interface from the catholyte/carbon dioxide mixture to the cathode (K).
- the protons (H + ) are taken from a proton reservoir (PR), especially an acid reservoir which especially comprises a Br ⁇ nsted acid (HX), e.g. sulfuric acid (H 2 SO 4 ), phosphoric acid (H 3 PO 4 ) or nitric acid (HNO 3 ), hydrochloric acid (HCl), or organic acids such as acetic acid and formic acid.
- HX Br ⁇ nsted acid
- H 2 SO 4 sulfuric acid
- phosphoric acid H 3 PO 4
- NO 3 nitric acid
- HCl hydrochloric acid
- organic acids such as acetic acid and formic acid.
- the catholyte includes carbonate (CO 3 2 ⁇ ) and/or hydrogencarbonate anions (HCO 3 ⁇ ).
- FIG. 1 shows a Hagg diagram for a 0.05 molar carbon dioxide solution
- FIG. 2 shows a schematic diagram of a two-chamber setup of an electrolysis cell, according to teachings of the present disclosure
- FIG. 3 shows a schematic diagram of a three-chamber setup of an electrolysis cell, according to teachings of the present disclosure
- FIG. 4 shows a schematic diagram of a PEM setup of an electrolysis cell, according to teachings of the present disclosure
- FIG. 5 shows an electrolysis cell in a two-chamber setup and the characteristic rise in pH toward the cathode, according to teachings of the present disclosure
- FIG. 6 shows a schematic diagram of a cell arrangement with an additional acid reservoir and porous cathode, according to teachings of the present disclosure
- FIG. 7 shows a cell arrangement with an additional acid reservoir and two catholyte gaps, according to teachings of the present disclosure
- FIG. 8 shows a schematic diagram of a further example of a cell arrangement with an additional acid reservoir and porous cathode, according to teachings of the present disclosure.
- FIG. 9 shows a schematic diagram of a further embodiment of a cell arrangement with an additional acid reservoir and electrolyte gaps, according to teachings of the present disclosure.
- an electrolysis system for carbon dioxide utilization comprises an electrolysis cell having an anode in an anode space, a cathode in a cathode space and at least one membrane, wherein the cathode space has a first feed for carbon dioxide and is configured to bring the carbon dioxide fed in into contact with the cathode.
- Membrane is understood here to mean a mechanically separating layer, for example a diaphragm, which separates at least the electrolysis products formed in the anode space and cathode space from one another. This can also be referred to as a separator membrane or separating layer.
- some embodiments include a membrane having a high bubble point of 10 mbar or higher.
- the “bubble point” is a defining parameter for the membrane used, which describes the pressure difference AP between the two sides of the membrane from which gas flow through the membrane would set in.
- carbon dioxide in chemically bound form for example as carbonate or hydrogencarbonate in the electrolyte
- carbon dioxide gas can be introduced into the cathode space via the first feed separately from the electrolyte or physically dissolved carbon dioxide in an electrolyte.
- the feed may be the electrolyte and reactant inlet.
- the electrolysis system comprises a proton donor unit and the cathode space is connected to the proton donor unit via a second feed for protons.
- the second feed for protons is configured such that the protons are brought into contact with the cathode surface in the cathode space.
- the proton donor unit is defined here in that free protons, e.g. hydrogen cations, are provided. Hydrogen (H 2 ) or other hydrogen compounds are not protons for the purposes of the proton donor unit of the invention.
- the proton donor unit by means of the proton donor unit, local lowering of the pH is possible in the electrolysis system, which promotes the formation of physically dissolved carbon dioxide at the reaction interface of the cathode and significantly increases the conversion of matter.
- the electrolysis system comprises a proton donor unit having a proton reservoir and a proton-permeable membrane.
- the proton-permeable membrane functions here as a second feed to the cathode space for the protons. While the proton reservoir offers continuous replenishment of protons, the proton-permeable membrane serves to assure pure ion flow or proton flow to the cathode space and simultaneously to retain other molecules, liquids, or gases.
- the proton-permeable membrane may include sulfonated polytetrafluoroethylene.
- a cation exchange membrane comprises a proton-permeable membrane.
- the electrolysis system has an acid reservoir as proton reservoir which especially comprises a Br ⁇ nsted acid.
- a Br ⁇ nsted acid is, for example, sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or various organic acids, for example acetic acid or formic acid.
- the definition of an acid according to Br ⁇ nsted describes acids as so-called proton donors, particles that can release protons, e.g., positively charged hydrogen ions.
- Br ⁇ nsted acids may have a pKa correspondingly smaller than the pKa of aqueous carbonate, hydrogencarbonate, or dihydrogen carbonate solution. “Smaller” in this case means that the acid is stronger.
- Using an acid reservoir may provide a relatively continuous proton source which is not reliant on an additional external energy input.
- the electrolysis system has a second proton-permeable membrane comprising sulfonated polytetrafluoroethylene.
- the proton-permeable membrane used may include a Nafion membrane. This membrane may include, for example, a multilayer or porous form.
- the first membrane used, e.g. the separator membrane, may likewise be a proton-permeable membrane, like that of the proton donor unit.
- the cathode space of the electrolysis system comprises a catholyte/carbon dioxide mixture, wherein the catholyte comprises carbonate and/or hydrogencarbonate anions.
- the catholyte in the cathode space of the electrolysis system may include alkali metal and/or ammonium ions (NH 4 + ).
- Alkali metals refer to the chemical elements lithium, sodium, potassium, rubidium, cesium, and francium from the first main group of the Periodic Table.
- the carbonate- and/or hydrogencarbonate-containing electrolyte has the advantage of including chemically bound carbon dioxide.
- carbon dioxide can be introduced into the cathode space in dissolved or gaseous form.
- the pH of the catholyte in the cathode space preferably has a value between 4 and 14.
- the electrolysis system comprises an anode space which functions as proton reservoir. It is possible here, for example, to use an electrolysis system in which a single proton-permeable membrane simultaneously fulfills the function of separating cathode space and anode space and the function of admitting protons into the cathode space.
- the anode space which functions as the proton reservoir is connected to the cathode space by the membrane and an anode in porous form. Further alternatives will be apparent from the embodiments that are still to follow that have two proton reservoirs, for example including connected proton reservoirs. It is not necessary for the proton reservoirs to be connected, since protons can also be produced again at the anode, which depends on the electrolyte concentration. The concentration has to be correspondingly high for the release of carbon dioxide.
- the electrolysis system has a first membrane and a second membrane, wherein the first membrane is arranged between the anode and cathode as separator membrane, the second membrane is arranged between the cathode and proton reservoir, and at least this second membrane is proton-permeable.
- This arrangement of the electrolysis system provides the connection of the proton reservoir via the proton-permeable membrane to the cathode and ensures that the protons are supplied directly to the reaction surface of the cathode.
- the cathode is may have a porous form and is in direct, two-dimensional contact with the proton-permeable membrane adjoining the proton reservoir.
- anolyte, catholyte and proton source for example an acid or acid mixture, can be chosen separately from one another and preferably matched to one another.
- the cathode space of the electrolysis system is in the form of a catholyte gap that extends along the cathode and has a width, an extent at right angles to the surface area of the cathode, of not more than 5 mm.
- a catholyte gap is accordingly understood to mean a thin hollow space in two-dimensional form between the cathode and a membrane. The membrane bounds the catholyte gap, for example, from the proton reservoir or from the anode space or the anode. In the case of a greater gap width than 5 mm, the pH gradient described again plays a non-negligible role in the cathode space.
- the cathode space in the electrolysis system includes a catholyte gap which separates the cathode and proton-permeable membrane or the cathode and the first membrane, and these are each arranged at a distance of not more than 5 mm from one another.
- the cathode space may also comprise two catholyte gaps arranged on either side of the cathode, each of which is bounded by a membrane, wherein the cathode and membranes are each independently arranged at a maximum distance of 5 mm from one another.
- electrolysis products can be generated on both sides of the cathode.
- a solid cathode for example, a cathode sheet, meaning that the cathode is not in porous form.
- a solid cathode of this kind may have a nanostructured surface. In the case of a solid cathode, both membranes are in proton-permeable form to correspondingly assure proton access.
- this distance is typically between 0 and 5 mm, e.g. between 0.1 and 2 mm.
- a distance of 0 mm would correspond to a polymer electrolyte membrane (half-)cell.
- the electrolysis system comprises a proton donor cathode comprising the proton donor unit and a proton-permeable cathode integrated therein.
- the cathode is porous, for example, in the form of a perforated sheet electrode, of a sieve electrode, of a lattice electrode, mesh electrode or weave electrode or, like a gas diffusion electrode, composed of compressed nano- to microparticles, optionally with additional membrane plies.
- the proton-permeable cathode here may be bonded directly to, for example applied to, the proton-permeable membrane, or vice versa, and hence forms part of the second feed to the cathode space for the protons.
- the protons enter the cathode space from the proton reservoir over the entire cathode area, exactly at the point in the cathode space, and the phase interface between cathode surface and catholyte, at which they are to release the carbon dioxide from the catholyte.
- this variant was referred to as proton donor cathode.
- the proton-donating membrane of the proton donor unit can be arranged in the immediate proximity of the cathode; secondly, the cathode can be integrated into the proton donor unit with the proton-donating membrane.
- Some embodiments may include a reduction method for carbon dioxide utilization by means of an electrolysis system according to any of the embodiments described.
- a catholyte/carbon dioxide mixture may be introduced into a cathode space and brought into contact with a cathode, and local lowering of the pH of the catholyte/carbon dioxide mixture is undertaken in the cathode space by providing additional protons.
- the additional protons serve to produce reducible carbon dioxide which is in physically dissolved or gaseous form but is no longer chemically bound, this carbon dioxide being generated or released directly at the cathode reaction interface. This local increase in carbon dioxide concentration significantly increases the conversion thereof.
- the local lowering of the pH of the catholyte/carbon dioxide mixture is undertaken at the liquid/solid phase interface from the catholyte/carbon dioxide mixture to the cathode by providing the additional protons via the proton-permeable membrane or via the proton-permeable cathode at the liquid/solid phase interface from the catholyte/carbon dioxide mixture to the cathode. This brings about in situ carbon dioxide generation in the phase interface region from the hydrogencarbonate or carbonate anions present in the electrolyte.
- protons are taken from a proton reservoir, especially an acid reservoir which especially comprises a Br ⁇ nsted acid, e.g. sulfuric acid, phosphoric acid, and/or nitric acid, hydrochloric acid or an organic acid such as acetic acid and formic acid.
- a Br ⁇ nsted acid e.g. sulfuric acid, phosphoric acid, and/or nitric acid, hydrochloric acid or an organic acid such as acetic acid and formic acid.
- the catholyte includes carbonate and/or hydrogencarbonate anions and/or dihydrogen carbonate.
- the catholyte may include alkali metal and/or ammonium ions.
- the catholyte includes sulfate and/or hydrogensulfate ions, phosphate, hydrogenphosphate, and/or dihydrogenphosphate ions.
- the pH of the catholyte is within a range between 4 and 14.
- the proton-conducting membrane can be backflushed, for example, by an acid.
- the acid strength may be adjusted such that the amount of carbon dioxide driven out of the catholyte is specifically as much as can be reduced at the cathode at a given current density. It is possible in this way to ensure that the product formed or the product mixture is very low in carbon dioxide.
- the cathode itself may have a large surface area.
- the cathode itself may be in porous form, which likewise means an increase or maximization in the reactive surface area.
- the cathode used may include an RVC (reticulated vitreous carbon) electrode. This may be permeable to the electrolyte itself and, by contrast to a gas diffusion electrode, has no hydrophobic constituents. This variant may be suitable with an electrolysis cell as shown in FIG. 4 .
- the cathode used comprises a silver gas diffusion electrode. In some embodiments, this can also be executed with zero carbon content.
- a silver gas diffusion electrode used comprises, for example, silver (Ag), silver oxide (Ag 2 O) and/or polytetrafluoroethylene (PTFE, e.g. Teflon).
- Some embodiments may enable the conversion of the carbon dioxide content chemically bound in carbonates and hydrogencarbonates to physically dissolved carbon dioxide or carbon dioxide gas, which constitutes the desired starting components for the electrochemical carbon dioxide reduction. What are thus described are a method and a system that enable high carbon dioxide conversions with current densities >>100 mA/cm 2 , without requiring an electrode with separate gas supply as cathode.
- a gas diffusion electrode as used to date could be introduced as an additional component in some embodiments.
- phase interface layer between the proton-conducting membrane of the proton donor unit and the catholyte or the phase interface layer between the cathode surface and the catholyte effectively itself serves as a carbon dioxide source.
- a local change in pH occurs as a result of the migrating protons.
- the equilibrium reaction 1 is then affected in such a way that finely divided carbon dioxide gas bubbles arise at the membrane surface or cathode surface through breakdown of carbonate in the acidic medium.
- the locally acidic pH is also determined by the Br ⁇ nsted-acidic surface of the proton-conducting membrane or by the acidic sulfonic acid groups that exist at the cathode surface.
- the sulfonic acid groups come from the sulfonated polytetrafluoroethylene in the membrane.
- the latter comprises, for example, Nafion-Teflon additionally containing a directly coupled sulfonic acid group. In water, this polymer swells to give a kind of “solid” sulfuric acid.
- the cations are then conducted from sulfonic acid group to sulfonic acid group in a kind of hopping transport. Protons can be conducted by tunnelling or hopping particularly efficiently through the Nafion. Divalent cations are more likely to get stuck and not be transported any further. Reference is therefore also made to polymer ion exchangers.
- a strongly acidic electrolyte for example a strongly acidic anolyte, can additionally enhance this effect: in the example that the anode space serves as a proton reservoir, an elevated proton pressure on the membrane is generated from the anode side and amplifies the concentration gradient in the cathode space.
- the anolyte as described, may comprise a Br ⁇ nsted acid, for example sulfuric acid, phosphoric acid or nitric acid.
- the catholyte may be alkali metal or ammonium ions or hydrogencarbonates or carbonates.
- the starting composition of the catholyte especially the hydrogencarbonate or carbonate concentration thereof, can be restored via the introduction or dissolution of carbon dioxide.
- An operation of this kind can be implemented, for example, as described, by the additional use of a gas diffusion electrode.
- the process-intensifying method that has been presented for the electrochemical reduction of carbon dioxide may improve the conversion of matter per unit electrode area and per unit current density. At the same time, undesirably high carbonate and hydrogencarbonate concentrations in the electrolyte, especially in the catholyte, are avoided, these having an adverse effect on the physical solubility of the carbon dioxide.
- the principle of a gas diffusion electrode established in industry can be replaced by the method described.
- the gas diffusion electrode can, however, further be used as an add-on to this new principle described, for example for the replenishment of carbon dioxide in the electrolyte circuit.
- the method is particularly suitable for use in electrolysis cells with external carbon dioxide saturation.
- Some embodiments include the workup of the potassium hydrogencarbonate solution obtained in basic carbon dioxide potash scrubbing within the scope of an in situ electrochemical regeneration of the laden absorbent. Compared to conventional thermal regeneration, the method offers enormous energy-saving potential.
- the Hagg diagram shown in FIG. 1 contains values for a 0.05 molar solution of carbon dioxide in water: the concentration of C in the unit mol/L is plotted against the pH.
- the proton concentration (H + ) starting from a pH>0, drops from 1 to a value of 10 ⁇ 10 mol/L at a pH of 10, while the OH ⁇ ion concentration rises in accordance with the definition of pH.
- CO 2 pH-independent carbon dioxide concentration
- the standard setups of electrolysis cells 2 , 3 , 4 shown in schematic form in FIGS. 2 to 4 comprise at least one anode A in an anode space AR and a cathode K in a cathode space KR.
- the anode space AR and cathode space KR are separated from one another at least by a membrane M 1 .
- This membrane M 1 may separate the gaseous products G 1 and products P 1 , and/or prevent mixing.
- a defining parameter for the membrane M 1 is what is called the bubble point. This describes the pressure difference AP between the two sides of the membrane M 1 from which gas flow would take place through the membrane M 1 .
- some embodiments may include a membrane M 1 having a high bubble point of 10 mbar or higher.
- the membrane M 1 here may be an ion-conducting membrane, for example an anion-conducting membrane or a cation-conducting membrane.
- the membrane may be a porous layer or a diaphragm.
- the membrane M 1 may also be understood to mean an ion-conducting spatial separator that separates electrolytes into anode space and cathode space AR, KR. According to the electrolyte solution E used, a setup without a membrane M 1 would also be conceivable.
- Anode A and cathode K are each connected electrically to a voltage supply.
- the anode space AR of each of the electrolysis cells 2 , 3 , 4 shown is equipped with an electrolyte inlet 21 , 31 , 41 .
- each anode space AR depicted comprises an electrolyte outlet 23 , 33 , 43 , via which the electrolyte E and electrolysis products G 1 formed at the anode A, for example oxygen gas 02 , can flow out of the anode space AR.
- the respective cathode spaces KR each have at least one electrolyte outlet and product outlet 24 , 34 , 44 .
- the overall electrolysis product P 1 here may be composed of a multitude of electrolysis products.
- the anode may comprise a porous anode A and the cathode may comprise a porous cathode K.
- the electrolyte and the carbon dioxide CO 2 may be introduced into the cathode space KR via a common reactant inlet 22 , 42 .
- the carbon dioxide CO 2 is fed into the cathode space KR separately therefrom via the cathode K, which in this case is necessarily in porous form.
- the porous cathode K comprises a gas diffusion electrode GDE.
- a gas diffusion electrode GDE is characterized in that the liquid component, for example an electrolyte, and a gaseous component, for example an electrolysis product, can be contacted with one another in a pore system of the electrode, for example the cathode K.
- the pore system of the electrode is in such a form that the liquid and gaseous phase alike can penetrate into the pore system and be present simultaneously therein.
- a reaction catalyst is in porous form and assumes the electrode function, or a porous electrode includes catalytically active components.
- the gas diffusion electrode GDE comprises a carbon dioxide inlet 320 .
- FIG. 4 It would be possible to implement the teachings herein in one of the electrolysis cell setups known to date, as shown, for example, in FIGS. 2 and 3 , if they were provided with an appropriate proton donor unit.
- the setup shown in FIG. 4 would require more specific modifications for the implementation, for example transport channels for the electrolyte through the cathode, in order to establish membrane-electrolyte contact. In some embodiments, in these transport channels, carbon dioxide evolution or release would take place. Analogously, on the anode side, transport channels for the analyte to the membrane are required in order thus to provide the protons.
- anode space may be executed as a polymer electrolyte membrane half-cell, whereas a cathode space consists of a half-cell, with cathode space between membrane and cathode, as shown in FIGS. 2 and 3 .
- FIG. 5 shows, in schematic form, the setup of an electrolysis cell 5 with an anode space AR between an anode A and a membrane M 1 , and a cathode space KR between the membrane M 1 and the cathode K.
- Anode A and cathode K are connected to one another via a voltage supply.
- An arrow from the anode space AR into the cathode space KR through the membrane M 1 indicates that it is ion-conducting at least to one type of charge carrier, e.g. at least to cations X + , where these can be different metal cations X + depending on which anolyte is used, and to protons H + .
- the cathode space KR has a width d MX , i.e. a distance between membrane M 1 and cathode K.
- the membrane M 1 and the cathode K are arranged in the electrolysis cell 5 such that the surfaces thereof facing the cathode space KR run plane-parallel to one another.
- a slope triangle indicates the pH gradient in the cathode space KR: the pH rises from a locally acidic environment close to the membrane M 1 to a locally basic environment close to the cathode surface K.
- the locally acidic region is identified by I and represented by a dotted line parallel to M 1 ; correspondingly, II and the dotted line in front of the cathode K show the region which is locally basic in the cathode space KR.
- the anode space AR becomes acidic to the same degree as the cathode space KR becomes basic.
- the anions and cations that are present and form on the different sides of the membrane M 1 can migrate, within the electrolyte E and through the membrane M 1 .
- the electrons provided at the anode A for example in an aqueous electrolyte E, convert the water to H + ions and oxygen gas O 2 .
- carbon dioxide CO 2 is, for example, in chemically bound form as hydrogencarbonate HCO 3 ⁇ in the anolyte and/or catholyte, it can react further with the protons H + to give carbon dioxide gas CO 2 and water H 2 O.
- the catholyte preferably comprises alkali metal and/or ammonium ions or the hydrogencarbonates or carbonates thereof.
- the reaction of hydrogencarbonate HCO 3 ⁇ to give carbon dioxide CO2 is referred to as the acidic breakdown of hydrogencarbonate HCO 3 ⁇ .
- a basic medium i.e. at a pH between 6 and 9
- hydrogencarbonate HCO 3 ⁇ is formed, meaning that the equilibrium reaction eq. 1 then runs the other way.
- a potassium hydrogencarbonate solution for example, is then used as anolyte and as catholyte in an electrolysis cell 5
- the pH gradient shown in FIG. 5 from a locally acidic environment I forms in the phase boundary layer between M 1 and catholyte, in which the carbon dioxide is preferentially released.
- the pH owing to ion migration, is already sufficiently high again, for example within a range between 6 and 9, that the reaction of potassium hydrogencarbonate formation predominates and hence only little physically bound carbon dioxide CO 2 is available in the electrolyte solution E for reduction at the cathode K.
- the distance d MX accordingly has to be chosen at such a minimum level that the phase interface layer I between the membrane M 1 and catholyte that functions as the carbon dioxide source abuts, or overlaps or coincides with, the phase interface layer II between the cathode surface K and catholyte, such that sufficient released carbon dioxide CO 2 is provided or replenished at the reaction interface of the cathode K.
- FIGS. 6 to 9 show various embodiments of electrolysis cells. These are in principle designed according to the polymer electrolyte membrane (PEM) setup, or polymer electrolyte membrane half-cell setup.
- PEM polymer electrolyte membrane
- the proton-donating membrane of the proton donor unit can be arranged in the immediate proximity of the cathode, as in FIGS. 7 and 9 ;
- the cathode can be integrated into the proton donor unit with the proton-donating membrane, as shown by way of example by FIGS. 6 and 8 .
- the polymer electrolyte membrane is frequently also called proton exchange membrane and is a semipermeable membrane. These membranes are preferably permeable to cations such as protons H + , lithium cations L + , sodium cations Na + or potassium cations K + , while the transport of gases, for example oxygen O 2 or hydrogen H 2 , is prevented.
- This purpose is fulfilled by the membrane M 1 , for example in the separation of the products P 1 , G 1 of the anode and cathode reactions. In most cases, aqueous liquids can flow through the PEM, although the capillary forces inhibit this transport.
- a polymer electrolyte membrane may be produced, for example, from an ionomer, pure polymer membranes or composite membranes, wherein other materials are embedded into a polymer matrix.
- a commercially available polymer electrolyte membrane is Nafion from DuPont.
- All setups have the same sequence of, on the left-hand side, an anode space AR separated from the cathode space KR by an anode A and a membrane M 1 abutting the side of the anode A facing away from the anode space AR.
- the cathode space KR is abutted by the cathode K, and the latter by the proton donor unit in different designs.
- Arrows indicate the reactant and electrolyte inlets E into the anode space AR and cathode space KR, and the outlets for electrolyte mixtures E and product mixtures P 1 , G 1 .
- the membrane M 1 serves predominantly as separator membrane, but may also be proton-permeable, as required, for example, for the embodiment with an additional acid reservoir PR 1 on the anode side.
- the acid or proton reservoir PR on the cathode side is divided from the cathode K in all cases by a proton-conducting membrane M 2 .
- the cathode K is between two catholyte gaps KS or integrated into the proton donor unit as a proton donor cathode PSK. In the cases of the cell arrangement as shown in FIGS.
- the porous cathode K is not just in proton-permeable form, but preferably also electrolyte-permeable form, such that the carbon dioxide release can occur over a very large cathode surface area, for example within electrolyte channels, in the cathode K.
- the cathode K may be formed from a solid metal sheet, but may also have advantageous nanostructuring to increase the surface area.
- the acid flowing past the cathode K can form the anolyte, since protons H + are then generated on the anode side by water oxidation, for example.
- the anode space AR is explicitly designed as an additional proton reservoir PR 1 and the anolyte used is an acid.
- the two proton or acid reservoirs PR, PR 1 may be connected to one another via a circulation system.
- the separator membrane M 1 may be in proton-conducting form; at least one membrane M 1 that ensures charge balance is used.
- the minimum distance b KR for the cathode space KR in the case of a cell arrangement 6 , 8 with proton donor cathode PSK is 1 mm. In some embodiments, the distance b KR between separator membrane surface M 1 and catalyst surface K is between 1 and 10 mm, not more than 5 mm, or not more than 2 mm.
- the absolute carbon dioxide concentration of the liquid phase but in particular the local availability of the physically dissolved carbon dioxide in the immediate proximity of the electrode surface. Macrokinetic mass transfer operations play only a minor role in the arrangement of the invention, since the carbon dioxide required for electrochemical reduction is effectively provided from the anions of the electrolyte by in situ protonation at the reaction surface.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102015209509.6A DE102015209509A1 (de) | 2015-05-22 | 2015-05-22 | Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung mit Protonenspender-Einheit und Reduktionsverfahren |
| DE102015209509.6 | 2015-05-22 | ||
| PCT/EP2016/061177 WO2016188829A1 (de) | 2015-05-22 | 2016-05-19 | Elektrolysesystem zur elektrochemischen kohlenstoffdioxid-verwertung mit protonenspender-einheit und reduktionsverfahren |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20180127885A1 true US20180127885A1 (en) | 2018-05-10 |
Family
ID=56026862
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/574,865 Abandoned US20180127885A1 (en) | 2015-05-22 | 2016-05-19 | Electrolysis System For The Electrochemical Utilization Of Carbon Dioxide |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US20180127885A1 (cg-RX-API-DMAC7.html) |
| EP (1) | EP3280834B1 (cg-RX-API-DMAC7.html) |
| JP (1) | JP6590951B2 (cg-RX-API-DMAC7.html) |
| CN (1) | CN107849714B (cg-RX-API-DMAC7.html) |
| DE (1) | DE102015209509A1 (cg-RX-API-DMAC7.html) |
| DK (1) | DK3280834T3 (cg-RX-API-DMAC7.html) |
| ES (1) | ES2736852T3 (cg-RX-API-DMAC7.html) |
| PL (1) | PL3280834T3 (cg-RX-API-DMAC7.html) |
| RU (1) | RU2685421C1 (cg-RX-API-DMAC7.html) |
| WO (1) | WO2016188829A1 (cg-RX-API-DMAC7.html) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20180274114A1 (en) * | 2017-03-21 | 2018-09-27 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
| US20200002827A1 (en) * | 2018-03-22 | 2020-01-02 | Kabushiki Kaisha Toshiba | Oxidation electrode and electrochemical reaction device using the same |
| US10626509B2 (en) * | 2017-02-02 | 2020-04-21 | Kabushiki Kaisha Toshiba | Electrolysis cell and electrolytic device for carbon dioxide |
| US11085124B2 (en) * | 2018-03-20 | 2021-08-10 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
| CN114452822A (zh) * | 2020-11-09 | 2022-05-10 | 鼎佳能源股份有限公司 | 二氧化碳回收产生一氧化碳再利用系统 |
| GB2604047A (en) * | 2022-03-24 | 2022-08-24 | Carbon Neutral Petrol Ltd | Electrolyser |
| US11434574B2 (en) * | 2020-04-29 | 2022-09-06 | C2Cnt Llc | System, method and composition for making thin-walled carbon nanomaterials |
| US11473203B2 (en) | 2018-05-30 | 2022-10-18 | Thyssenkrupp Uhde Chlorine Engineers Gmbh | Method and device for providing at least one product stream by electrolysis and use |
| US11846031B2 (en) | 2017-11-16 | 2023-12-19 | Siemens Energy Global GmbH & Co. KG | Hydrocarbon-selective electrode |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102017213471A1 (de) * | 2017-08-03 | 2019-02-07 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zur elektrochemischen Nutzung von Kohlenstoffdioxid |
| JP2019056136A (ja) * | 2017-09-20 | 2019-04-11 | 株式会社東芝 | 電気化学反応装置 |
| JP7273929B2 (ja) * | 2017-09-20 | 2023-05-15 | 株式会社東芝 | 電気化学反応装置および多孔質セパレータ |
| US12006580B2 (en) * | 2018-04-25 | 2024-06-11 | The University Of British Columbia | Systems and methods for electrochemical generation of syngas and other useful chemicals |
| DE102018210303A1 (de) * | 2018-06-25 | 2020-01-02 | Siemens Aktiengesellschaft | Elektrochemische Niedertemperatur Reverse-Watergas-Shift Reaktion |
| WO2020223804A1 (en) * | 2019-05-05 | 2020-11-12 | The Governing Council Of The University Of Toronto | Conversion of carbonate into syngas or c2+ products in electrolysis cell |
| CN110760876A (zh) * | 2019-08-19 | 2020-02-07 | 天津大学 | 一种用于高效合成h2o2的三室反应器装置 |
| CN110923736A (zh) * | 2019-10-23 | 2020-03-27 | 安徽中研理工仪器设备有限公司 | 一种光电催化化学反应电解池装置 |
| CN112973398B (zh) * | 2019-12-13 | 2022-05-10 | 中国科学院大连化学物理研究所 | 一种带有剩余离子的电极在co2电化学还原反应中的应用 |
| WO2021138425A1 (en) * | 2019-12-30 | 2021-07-08 | Xergy Inc. | Environmental control system utilizing an anion conducting mambrane |
| JP7356067B2 (ja) * | 2020-05-11 | 2023-10-04 | 日本電信電話株式会社 | 二酸化炭素の気相還元装置、および、二酸化炭素の気相還元方法 |
| JP2023089321A (ja) * | 2020-05-15 | 2023-06-28 | パナソニックIpマネジメント株式会社 | レドックスフロー電池 |
| CN116072989B (zh) * | 2023-02-13 | 2025-04-04 | 烟台大学 | 一种添加固体酸的锰基氧化物正极水系可充锌锰电池 |
| CN118223052B (zh) * | 2024-03-27 | 2024-11-19 | 清华大学 | 具有多相流直接生成功能的二氧化碳电还原反应装置 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110198236A1 (en) * | 2008-10-17 | 2011-08-18 | Spring Co., Ltd. | Apparatus and method for producing hydrogen-dissolved drinking water |
| US20120085658A1 (en) * | 2010-10-08 | 2012-04-12 | Sai Bhavaraju | Electrochemical systems and methods for operating an electrochemical cell with an acidic anolyte |
| US20130146470A1 (en) * | 2011-12-12 | 2013-06-13 | Hon Hai Precision Industry Co., Ltd. | Method for electrochemically converting carbon dioxide |
| US20130175181A1 (en) * | 2012-07-26 | 2013-07-11 | Liquid Light, Inc. | Integrated Process for Producing Carboxylic Acids from Carbon Dioxide |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04314881A (ja) * | 1991-03-29 | 1992-11-06 | Mitsubishi Electric Corp | 電解装置 |
| JP2001192875A (ja) * | 2000-01-05 | 2001-07-17 | Kurita Water Ind Ltd | 過酸化水素の製造方法及び装置 |
| CN101250711B (zh) * | 2008-03-27 | 2010-11-10 | 昆明理工大学 | 二氧化碳在离子液体中的电化学还原方法和装置 |
| FR2931168B1 (fr) * | 2008-05-15 | 2010-07-30 | Areva | Procede de production de composes du type cxhyoz par reduction de dioxyde de carbone (co2) et/ou de monoxyde de carbone (co) |
| CN102686781A (zh) * | 2010-07-23 | 2012-09-19 | 松下电器产业株式会社 | 还原二氧化碳的方法 |
| CA3048786C (en) * | 2010-09-24 | 2020-11-03 | Dnv Gl As | Method and apparatus for the electrochemical reduction of carbon dioxide |
| WO2012128148A1 (ja) * | 2011-03-18 | 2012-09-27 | 国立大学法人長岡技術科学大学 | 二酸化炭素の還元固定化システム、二酸化炭素の還元固定化方法、及び有用炭素資源の製造方法 |
| WO2013178803A1 (de) * | 2012-05-31 | 2013-12-05 | Hettich Holding Gmbh & Co. Ohg | Verfahren und vorrichtung zur elektrolytischen synthese von methanol und/oder methan |
| US20130105304A1 (en) * | 2012-07-26 | 2013-05-02 | Liquid Light, Inc. | System and High Surface Area Electrodes for the Electrochemical Reduction of Carbon Dioxide |
| CN104822861B (zh) * | 2012-09-24 | 2017-03-08 | 二氧化碳材料公司 | 用于将二氧化碳转化为有用燃料和化学品的装置和方法 |
| JP2014227563A (ja) * | 2013-05-21 | 2014-12-08 | パナソニック株式会社 | 二酸化炭素還元用光化学電極、二酸化炭素還元装置、及び二酸化炭素の還元方法 |
| DE102013226357A1 (de) * | 2013-12-18 | 2015-06-18 | Siemens Aktiengesellschaft | Pulsierende Elektrolytzufuhr in den Reaktionsraum einer Elektrolysezelle mit gasentwickelnden Elektroden |
-
2015
- 2015-05-22 DE DE102015209509.6A patent/DE102015209509A1/de not_active Withdrawn
-
2016
- 2016-05-19 ES ES16724025T patent/ES2736852T3/es active Active
- 2016-05-19 WO PCT/EP2016/061177 patent/WO2016188829A1/de not_active Ceased
- 2016-05-19 EP EP16724025.8A patent/EP3280834B1/de not_active Not-in-force
- 2016-05-19 JP JP2017560988A patent/JP6590951B2/ja not_active Expired - Fee Related
- 2016-05-19 PL PL16724025T patent/PL3280834T3/pl unknown
- 2016-05-19 RU RU2017145096A patent/RU2685421C1/ru active
- 2016-05-19 US US15/574,865 patent/US20180127885A1/en not_active Abandoned
- 2016-05-19 CN CN201680042291.8A patent/CN107849714B/zh not_active Expired - Fee Related
- 2016-05-19 DK DK16724025.8T patent/DK3280834T3/da active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110198236A1 (en) * | 2008-10-17 | 2011-08-18 | Spring Co., Ltd. | Apparatus and method for producing hydrogen-dissolved drinking water |
| US20120085658A1 (en) * | 2010-10-08 | 2012-04-12 | Sai Bhavaraju | Electrochemical systems and methods for operating an electrochemical cell with an acidic anolyte |
| US20130146470A1 (en) * | 2011-12-12 | 2013-06-13 | Hon Hai Precision Industry Co., Ltd. | Method for electrochemically converting carbon dioxide |
| US20130175181A1 (en) * | 2012-07-26 | 2013-07-11 | Liquid Light, Inc. | Integrated Process for Producing Carboxylic Acids from Carbon Dioxide |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10626509B2 (en) * | 2017-02-02 | 2020-04-21 | Kabushiki Kaisha Toshiba | Electrolysis cell and electrolytic device for carbon dioxide |
| US12098470B2 (en) | 2017-03-21 | 2024-09-24 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
| US20180274114A1 (en) * | 2017-03-21 | 2018-09-27 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
| US11846031B2 (en) | 2017-11-16 | 2023-12-19 | Siemens Energy Global GmbH & Co. KG | Hydrocarbon-selective electrode |
| US11085124B2 (en) * | 2018-03-20 | 2021-08-10 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
| US20200002827A1 (en) * | 2018-03-22 | 2020-01-02 | Kabushiki Kaisha Toshiba | Oxidation electrode and electrochemical reaction device using the same |
| US11473203B2 (en) | 2018-05-30 | 2022-10-18 | Thyssenkrupp Uhde Chlorine Engineers Gmbh | Method and device for providing at least one product stream by electrolysis and use |
| US11434574B2 (en) * | 2020-04-29 | 2022-09-06 | C2Cnt Llc | System, method and composition for making thin-walled carbon nanomaterials |
| KR20230002992A (ko) * | 2020-04-29 | 2023-01-05 | 씨2씨엔티 엘엘씨 | 박벽 탄소 나노재료를 제조하기 위한 시스템, 방법 및 조성물 |
| CN115605633A (zh) * | 2020-04-29 | 2023-01-13 | C2Cnt有限责任公司(Us) | 用于制备薄壁碳纳米材料的系统、方法和组合物 |
| KR102533297B1 (ko) | 2020-04-29 | 2023-05-16 | 씨2씨엔티 엘엘씨 | 박벽 탄소 나노재료를 제조하기 위한 시스템, 방법 및 조성물 |
| CN114452822A (zh) * | 2020-11-09 | 2022-05-10 | 鼎佳能源股份有限公司 | 二氧化碳回收产生一氧化碳再利用系统 |
| GB2604047B (en) * | 2022-03-24 | 2023-04-05 | Kratos Energy Ltd | Electrolyser |
| GB2604047A (en) * | 2022-03-24 | 2022-08-24 | Carbon Neutral Petrol Ltd | Electrolyser |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2016188829A1 (de) | 2016-12-01 |
| JP6590951B2 (ja) | 2019-10-16 |
| CN107849714B (zh) | 2020-07-10 |
| ES2736852T3 (es) | 2020-01-08 |
| EP3280834B1 (de) | 2019-04-17 |
| RU2685421C1 (ru) | 2019-04-18 |
| DE102015209509A1 (de) | 2016-11-24 |
| CN107849714A (zh) | 2018-03-27 |
| DK3280834T3 (da) | 2019-07-08 |
| EP3280834A1 (de) | 2018-02-14 |
| JP2018519418A (ja) | 2018-07-19 |
| PL3280834T3 (pl) | 2019-10-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20180127885A1 (en) | Electrolysis System For The Electrochemical Utilization Of Carbon Dioxide | |
| CN110651068B (zh) | 用于co2的电化学还原的双膜结构 | |
| O’Brien et al. | CO2 electrolyzers | |
| Zhang et al. | Porous metal electrodes enable efficient electrolysis of carbon capture solutions | |
| US20210079538A1 (en) | Membrane-Coupled Cathode for the Reduction of Carbon Dioxide in Acid-Based Electrolytes Without Mobile Cations | |
| US9011650B2 (en) | Electrochemical systems and methods for operating an electrochemical cell with an acidic anolyte | |
| US20180195184A1 (en) | Electrolytic System And Reduction Method For Electrochemical Carbon Dioxide Utilization, Alkali Carbonate Preparation And Alkali Hydrogen Carbonate Preparation | |
| US20240271294A1 (en) | System for electrocatalytic conversion of carbon oxides to multicarbon products using a stationary catholyte layer and related process | |
| US20210180196A1 (en) | Anion exchanger fillings through which flow can occur for electrolyte splitting in co2 electrolysis for better spatial distribution of gassing | |
| CN111712593B (zh) | 用于电化学转化的无分离器的双gde电解池 | |
| AU2017273604B2 (en) | Device and method for the electrochemical utilisation of carbon dioxide | |
| AU2018232301A1 (en) | Electrodes comprising metal introduced into a solid-state electrolyte | |
| US20240229256A9 (en) | Electrolyser device and method for carbon dioxide reduction | |
| US20250043438A1 (en) | Cell concept for using non-ionically conductive extraction media | |
| Wei | Electrochemical nitrogen reduction for ammonia synthesis using gas diffusion electrodes | |
| Dominguez et al. | Reliable and Efficient Electrochemical Recovery of O 2 from Metabolic CO 2 at the International Space Station (ISS) | |
| AU2009290161A1 (en) | Electrochemical production of an alkaline solution using CO2 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRAUSE, RALF;NEUBAUER, SEBASTIAN;RELLER, CHRISTIAN;AND OTHERS;SIGNING DATES FROM 20171127 TO 20180131;REEL/FRAME:045019/0544 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |