US20170342259A1 - Acrylic resin composition and laminate formed by laminating same - Google Patents
Acrylic resin composition and laminate formed by laminating same Download PDFInfo
- Publication number
- US20170342259A1 US20170342259A1 US15/522,442 US201515522442A US2017342259A1 US 20170342259 A1 US20170342259 A1 US 20170342259A1 US 201515522442 A US201515522442 A US 201515522442A US 2017342259 A1 US2017342259 A1 US 2017342259A1
- Authority
- US
- United States
- Prior art keywords
- acrylic resin
- tert
- bis
- butyl
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/24—Layered products comprising a layer of synthetic resin characterised by the use of special additives using solvents or swelling agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0057—Producing floor coverings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/006—Producing casings, e.g. accumulator cases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/02—2 layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2250/00—Layers arrangement
- B32B2250/24—All layers being polymeric
- B32B2250/246—All polymers belonging to those covered by groups B32B27/32 and B32B27/30
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/101—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/104—Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/21—Anti-static
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
- B32B2307/402—Coloured
- B32B2307/4026—Coloured within the layer by addition of a colorant, e.g. pigments, dyes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/71—Resistive to light or to UV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
- B32B2419/04—Tiles for floors or walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
- B32B2419/06—Roofs, roof membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2451/00—Decorative or ornamental articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2471/00—Floor coverings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2509/00—Household appliances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2590/00—Signboards, advertising panels, road signs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/006—Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2607/00—Walls, panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2607/00—Walls, panels
- B32B2607/02—Wall papers, wall coverings
Definitions
- the present invention relates to an acrylic resin composition that includes a specific triazine-based UV absorber in an acrylic resin including at least 80 wt % of methyl methacrylate and having a glass transition temperature of at least 80° C., and a laminate of the acrylic resin composition.
- Molded articles made of an acrylic resin including methyl methacrylate as a main component particularly have excellent transparency among plastic materials. By making use of this characteristic, acrylic-resin molded articles are used for applications in which aesthetic appearance is deemed important and for protective sheets that cover various plastic materials.
- Weather resistance, scratch resistance, contamination resistance, and the ability to adjust surface luster are demanded of protective sheets; among these characteristics, importance is placed particularly on excellent weather resistance.
- Patent Literature 1 proposes a film as an insect-repellent protective film for lighting covers, shop windows, vending machine surface panels, and glazing, wherein the film includes an acrylic resin blended with, for example, an azomethine-based UV absorber, an indole-based UV absorber, a benzophenone-based UV absorber, a benzotriazole-based UV absorber, and/or a triazine-based UV absorber.
- Patent Literature 1 discloses that ultraviolet rays with wavelengths of 400 nm or below are blocked. Patent Literature 1, however, describes nothing about ultraviolet regions equal to or below 340 nm. Further, Patent Literature 1 employs an acrylic resin composition as a protective layer of a polycarbonate resin molded product, but the coloring prevention effect of the protective layer is unsatisfactory.
- Patent Literature 2 discloses a protective film made by laminating, on a rigid PVC plate, an acrylic film wherein a triazine-based UV absorber is blended to an acrylic resin at a proportion of from 0.1 to 5 wt % and from 0.17 to 2.28 g/m 2 .
- the coloring prevention effect of the protective layer is still not satisfactory.
- Patent Literature 3 discloses a laminate that includes: a UV-absorber-containing acrylic resin layer coated on a surface of a polycarbonate resin substrate; and a cured layer formed by coating the acrylic resin layer with a composition including a silicone-containing polymer UV absorber and polyorganosiloxane, and then curing the composition.
- a composition including a silicone-containing polymer UV absorber and polyorganosiloxane is still not satisfactory.
- Patent Literature 4 discloses a resin laminate that includes: a UV-absorber-containing acrylic resin layer coated on a surface of a polycarbonate resin substrate; and a cured layer formed by coating the acrylic resin layer with a resin-coating composition including, at specific proportions, a mixture of organotrialkoxysilanes respectively including specific alkyl groups, colloidal silica containing anhydrous silica and having a particle diameter of from 4 to 20 nm, an amine carboxylate and/or quaternary ammonium carboxylate, and a silicone-containing polymer UV absorber, and then curing the composition.
- a resin-coating composition including, at specific proportions, a mixture of organotrialkoxysilanes respectively including specific alkyl groups, colloidal silica containing anhydrous silica and having a particle diameter of from 4 to 20 nm, an amine carboxylate and/or quaternary ammonium carboxylate, and a silicone-containing polymer UV absorber,
- Patent Literature 5 discloses a decorative sheet formed by blending a UV absorber including 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol with respect to an acrylic resin including cyclohexyl (meth)acrylate as a monomer component.
- Examples of methods for forming such sheets include solution casting film formation methods and melt casting formation methods; the decorative sheet of Patent Literature 5 is formed by the solution casting film formation method.
- the solution casting film formation method is a manufacturing method of first dissolving acrylic resin in a solvent and then forming a film by removing the solvent. This method requires rinsing with water and drying, thus increasing manufacturing costs.
- the melt casting formation method is a method of heating and melting acrylic resin, casting the melt onto a support and cooling and solidifying the same, and then drawing or rolling the same as necessary.
- Patent Literature 1 JP 2000-169767A
- Patent Literature 2 JP 2000-327802A
- Patent Literature 3 U.S. Pat. No. 6,620,509A
- Patent Literature 4 JP 2004-250582A
- Patent Literature 5 JP 2011-16277A
- the invention provides an acrylic resin composition that has excellent weather resistance and can be stably produced at high temperatures.
- the invention provides an acrylic resin composition
- an acrylic resin composition comprising, with respect to 100 parts by mass of an acrylic resin, from 0.1 to 8 parts by mass of a triazine-based UV absorber including 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol, wherein the acrylic resin includes at least 80 wt % of methyl methacrylate as a monomer component, and has a glass transition temperature of at least 80° C.
- the acrylic resin is obtained by polymerizing from 80 to 100 wt % of methyl methacrylate, and from 20 to 0 wt % of a linear or branched alkyl (meth)acrylate including at least two carbon atoms.
- a molded article of the invention is obtained by melting and mixing/kneading the aforementioned acrylic resin composition within a temperature range of from 200 to 260° C.
- a laminate of the invention is a laminate in which a surface of a support material is covered by a thermoplastic resin layer having a thickness of from 30 to 300 ⁇ m, wherein the thermoplastic resin layer is formed by melting and mixing/kneading the aforementioned acrylic resin composition within a temperature range of from 200 to 260° C.
- the support material is a vinyl chloride resin or a polycarbonate resin.
- the invention can provide an acrylic resin composition that has excellent weather resistance and can be stably produced at high temperatures.
- the acrylic resin is a homopolymer of methyl methacrylate, or a copolymer including at least 80 wt % of methyl methacrylate.
- Examples of monomers that may be included together with methyl methacrylate in the copolymer include (meth)acrylates other than methyl methacrylate, and other monomer components. Note that, in the present invention, (meth)acrylate refers to methacrylate, acrylate, and mixtures thereof.
- Examples of (meth)acrylates other than methyl methacrylate include (meth)acrylates, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, t-butyl (meth)acrylate, isobutyl (meth)acrylate, pentyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and 2-hydroxyethyl (meth)acrylate.
- a (meth)acrylate other than methyl methacrylate is preferably an alkyl (meth)acrylate that includes a linear or branched alkyl group including at least two, particularly from two to eight, carbon atoms.
- Examples of other monomer components include: cyclic group-containing (meth)acrylates, such as phenyl (meth)acrylate and benzyl (meth)acrylate; aromatic vinylmonomers, such as vinyl acetate, styrene, p-methylstyrene, ⁇ -methylstyrene, and vinylnaphthalene; cyanide vinylmonomers, such as acrylonitrile and methacrylonitrile; ⁇ , ⁇ -unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, and crotonic acid; and maleimide compounds, such as N-ethylmaleimide and N-cyclohexyl maleimide.
- One type of the aforementioned component may be used alone, or two or more types may be used in combination.
- a preferable blending amount of the monomer that can be included together with methyl methacrylate is from 0 to 20 wt %, preferably from 0 to 10 wt %, more preferably from 0 to 5 wt %, with respect to the entire acrylic resin.
- the blending amount of the monomer component exceeds 20 wt %, the heat resistance of the acrylic resin may become insufficient.
- the acrylic resin a homopolymer of methyl methacrylate or a copolymer of methyl methacrylate and an alkyl (meth)acrylate that includes a linear or branched alkyl group including 2 to 8 carbon atoms.
- the acrylic resin has a glass transition temperature of at least 80° C.
- the use of an acrylic resin having a glass transition temperature below 80° C. may reduce the melt viscosity of the acrylic resin when molten and mixed/kneaded at a temperature of 200° C. or higher, which makes it impossible to form/mold a film.
- the upper limit of the glass transition temperature is 105° C. (which is an acrylic resin wherein the entire monomer component is methyl methacrylate).
- the glass transition temperature is found by measuring the heat absorption amount while raising the temperature of a sample at a rate of 10° C./min with a differential scanning calorimeter (DSC) in a nitrogen atmosphere; the intersection point between the baseline of the temperature-change chart and the tangential line at the inflection point ascribable to enthalpy relaxation of the sample is found as the glass transition temperature.
- DSC differential scanning calorimeter
- the glass transition temperature of a copolymer is the value calculated by applying the glass transition temperature and weight fraction of each monomer component to the Fox equation.
- examples of usable methods for curing the monomer component(s) constituting the acrylic resin include one-part curing methods, two-part curing methods employing a curing agent, and active energy ray curing methods in which curing is effected by irradiation with ultraviolet rays or ionizing radiation.
- the UV curing method is preferable.
- a two-part curing method in which crosslinking is effected by isocyanate curing is preferable.
- a radical polymerization initiator can be used at the time of polymerization of the acrylic resin.
- examples of the radical polymerization initiator include photoradical polymerization initiators and thermal radical polymerization initiators.
- ketone-based compounds such as acetophenone-based compounds, benzil-based compounds, benzophenone-based compounds, and thioxanthone-based compounds
- oxime ester-based compounds examples including: ketone-based compounds, such as acetophenone-based compounds, benzil-based compounds, benzophenone-based compounds, and thioxanthone-based compounds; and oxime ester-based compounds.
- acetophenone-based compound examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4′-isopropyl-2-hydroxy-2-methylpropiophenone, 2-hydroxymethyl-2-methylpropiophenone, 2,2-dimethoxy-1,2-diphenylethan-1-one, p-dimethylaminoacetophenone, p-tertiary-butyldichloroacetophenone, p-tertiary-butyltrichloroacetophenone, p-azidobenzalacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropanone-1,2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropy
- benzil-based compound includes benzil.
- benzophenone-based compound examples include benzophenone, methyl o-benzoylbenzoate, Michler's ketone, 4,4′-bisdiethylaminobenzophenone, 4,4′-dichlorobenzophenone, and 4-benzoyl-4′-methyldiphenyl sulfide.
- thioxanthone-based compound examples include thioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 2,4-diethylthioxanthone.
- Examples of the oxime-based compound include compounds disclosed in JP 2000-80068A, compounds disclosed in JP 2001-233842A, compounds disclosed in JP 2006-342166A, 3-benzoyloxyiminobutan-2-one, 3-acetoxyiminobutan-2-one, 3-propionyloxyiminobutan-2-one, 2-acetoxyiminopentan-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropan-1-one, 3-(4-toluene sulfonyloxy)iminobutan-2-one, and 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one.
- photoradical polymerization initiators examples include phosphine oxide-based compounds, such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and titanocene-based compounds, such as bis(cyclopentadienyl)-bis[2,6-difluoro-3-(pyl-1-yl)]titanium.
- phosphine oxide-based compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide
- titanocene-based compounds such as bis(cyclopentadienyl)-bis[2,6-difluoro-3-(pyl-1-yl)]titanium.
- Known peroxide-based compounds and azo compounds can be used for the thermal radical polymerization initiators.
- peroxide-based compounds examples include: ketone peroxides, such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cyclohexanone peroxide, methylcyclohexane ketone peroxide, and acetylacetone peroxide; diacyl peroxides, such as isobutyl peroxide, m-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, ⁇ -methylbenzoyl peroxide, and bis-3,5,5-trimethylhexanoyl peroxide; hydroperoxides, such as 2,4,4-trimethylpentyl-2-hydroperoxide, diisopropylbenzene hydroperoxide, cumene hydroperoxide, and tert-butyl hydroperoxide; dialkyl peroxides, such as dicumyl peroxide, 2,5-dimethyl-2,5-d
- azo compounds examples include azobisisobutyronitrile, 1,1′-azobiscyclohexane-1-carbonitrile, 2-carbamoylazoisobutyronitrile, 2,2′-azobis-2,4,4-trimethylpentane, 2,2′-azobis-(2,4-dimethylvaleronitrile), 2,2′-azobis-(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis-(methylisobutyrate), ⁇ , ⁇ ′-azobis-(isobutyronitrile), and 4,4′-azobis-(4-cyanovaleric acid).
- a solvent may be mixed as necessary, and a polymerization reaction can be effected by irradiation with active rays or application of heat within the range of from 80 to 150° C.
- solvents include: water; ketones, such as methyl ethyl ketone, methyl amyl ketone, diethyl ketone, acetone, methyl isopropyl ketone, methyl isobutyl ketone, cyclohexanone, and 2-heptanone; ether-based solvents, such as ethyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane, and dipropylene glycol dimethyl ether; ester-based solvents, such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, cyclohexyl acetate, ethyl lactate, dimethyl succinate, and Texanol; cellosolve-based solvents, such as ethylene glycol monomethyl ether and ethylene glycol monoe
- sources emitting light having a wavelength of from 300 to 450 nm can be used, with examples including ultra-high-pressure mercury lamps, mercury-vapor arc lamps, carbon arc lamps, and xenon arc lamps.
- a continuous reaction tank provided in an existing polymerization facility can be used as-is for the polymerization tank employed for the aforementioned polymerization reaction.
- the invention is not particularly limited in terms of size, shape, material, etc., in relation to conventional polymerization facilities.
- the molecular weight of the acrylic resin obtained by polymerization is preferably from 50,000 to 200,000, more preferably from 60,000 to 150,000, in terms of mass average molecular weight measured by GPC. This is preferable because, when the mass average molecular weight of the acrylic resin is 50,000 or higher, the molded article will have excellent strength and durability, and when the mass average molecular weight is 200,000 or lower, processability during molding, such as flowability, will be improved.
- the triazine-based UV absorber used in the invention will be described.
- the acrylic resin composition of the invention includes a triazine-based UV absorber having high absorptivity in the wavelength region from 280 to 300 nm.
- 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol has a high absorptivity in the aforementioned wavelength region and can maintain its absorptivity for a long period of time.
- the triazine-based UV absorber includes 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol as an essential component, and it is preferable that at least 80 wt %, more preferably at least 90 wt %, of the triazine-based UV absorber(s) used in the invention is 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol.
- triazine-based UV absorbers other than the aforementioned 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol (referred to hereinafter also as “other triazine-based UV absorbers”) include 4-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,3-diol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-methoxyphenol, 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-((6-hydroxyhexyl)oxy)phenol, bis(2-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-3-hydroxyphenoxy)ethyl)adipate, 6-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-3-hydroxyphenoxy
- the method for blending the aforementioned triazine-based UV absorber(s) to the acrylic resin is not particularly limited, and various known techniques for blending resin additives can be employed.
- a method of adding the absorber(s) to the polymerization system in advance at the time of polymerizing the acrylic resin a method of adding the absorber(s) during polymerization, or a method of adding the absorber(s) after polymerization.
- a processing device such as an extruder, or a method of making the triazine-based UV absorber(s) into a master batch and blending the same to the acrylic resin.
- a processing device such as an extruder, or a method of making the triazine-based UV absorber(s) into a master batch and blending the same to the acrylic resin.
- a processing device such as an extruder, or a method of making the triazine-based UV absorber(s) into a master batch and blending the same to the acrylic resin.
- the conditions can be selected such that the physical properties of the obtained acrylic resin composition are suitable for the desired use/application.
- Granules may be prepared from the present acrylic resin composition alone, or from a mixture thereof with other resin additives or fillers described below, and such granules may be blended to the acrylic resin.
- the blending amount of the triazine-based UV absorber(s) with respect to 100 parts by mass of the acrylic resin is from 0.1 to 8 parts by mass, preferably from 1 to 5 parts by mass.
- This blending amount refers to the total amount of 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol and other triazine-based UV absorbers.
- the amount is less than 0.1 parts by mass, absorptivity in the UV range may be insufficient.
- the amount is greater than 8 parts by mass, conspicuous coloring may occur in the molded article which is obtained by molding and processing the acrylic resin composition.
- resin additives may be added to the acrylic resin in amounts that do not impair the effects of the invention.
- resin additives include phenol-based antioxidants, phosphorus-based antioxidants, thioether-based antioxidants, UV absorbers other than the triazine-based UV absorber, hindered amine compounds, nucleating agents, flame retardants, flame retardant assistants, lubricants, fillers, metal soaps, hydrotalcites, antistatic agents, pigments, and dyes.
- phenol-based antioxidants examples include 2,6-di-tert-butyl-4-ethylphenol, 2-tert-butyl-4,6-dimethylphenol, styrenated phenol, 2,2′-methylene-bis(4-ethyl-6-tert-butylphenol), 2,2′-thiobis-(6-tert-butyl-4-methylphenol), 2,2′-thiodiethylene-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 2-methyl-4,6-bis(octylsulfanylmethyl)phenol, 2,2′-isobutylidene bis(4,6-dimethylphenol), isooctyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, N,N′-hexane-1,6-diyl bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl
- Examples of the phosphorus-based antioxidants include triphenyl phosphite, diisooctyl phosphite, heptakis triphosphite, triisodecyl phosphite, diphenyl isooctyl phosphite, diisooctyl phenyl phosphite, diphenyl tridecyl phosphite, triisooctyl phosphite, trilauryl phosphite, diphenyl phosphite, tris(dipropylene glycol)phosphite, diisodecyl pentaerythritol diphosphite, dioleyl hydrogen phosphite, trilauryl trithiophosphite, bis(tridecyl)phosphite, tris(isodecyl)phosphite, tris(tridecyl
- the usage amount of the phosphorus-based antioxidant is preferably from 0.001 to 10 parts by mass, more preferably from 0.01 to 0.5 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- thioether-based antioxidants examples include tetrakis[methylene-3-(laurylthio)propionate]methane, bis(methyl-4-[3-n-alkyl (C12/C14) thiopropionyloxy]5-tert-butylphenyl)sulfide, ditridecyl-3,3′-thiodipropionate, dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, lauryl/stearyl thiodipropionate, 4,4′-thiobis(6-tert-butyl-m-cresol), 2,2′-thiobis(6-tert-butyl-p-cresol), and distearyl-disulfide.
- the usage amount of the thioether-based antioxidant is preferably from 0.001 to 10 parts by mass, more preferably from 0.01 to 0.5 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- UV absorbers other than the aforementioned triazine-based UV absorber include: 2-hydroxybenzophenones, such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylene-bis(2-hydroxy-4-methoxybenzophenone); 2-(2-hydroxyphenyl)benzotriazoles, such as 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-(2-hydroxy-3,5-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3-tert-butyl-5-methylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3,5-dicumylphenyl)benzotriazole, 2,2′-methylene-bis(4-tert-octyl-6-benzotriazo
- UV absorbers different from the aforementioned triazine-based UV absorber can be used in amounts that do not impair the effects of the invention.
- the total amount of the triazine-based UV absorber and UV absorbers other than the triazine-based absorber is preferably from 1 to 5 parts by mass with respect to 100 parts by mass of the acrylic resin, and more preferably, the usage amount of UV absorbers other than the triazine-based absorber is from 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the acrylic resin.
- hindered-amine-based light stabilizers examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6,6-tetramethyl-4-piperidyl benzoate, bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane tetracarboxylate, tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butane tetracarboxylate, bis(2,2,6,6-tetramethyl-4-piperidyl).di(tridecyl)-1,2,3,4-butane tetracarboxylate, bis(1,2,2,6,6-pentamethyl-4-piperidyl).di(tridecyl)-1,
- the usage amount of the hindered amine-based light stabilizer is preferably from 0.001 to 5 parts by mass, more preferably from 0.005 to 0.5 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- nucleating agents examples include: metal salts of carboxylic acids, such as sodium benzoate, aluminum 4-tert-butylbenzoate, sodium adipate, and 2-sodium bicyclo[2.2.1]heptane-2,3-dicarboxylate; metal salts of phosphates, such as sodium bis(4-tert-butylphenyl)phosphate, sodium 2,2′-methylene-bis(4,6-di-tert-butylphenyl)phosphate, and lithium 2,2′-methylene-bis(4,6-di-tert-butylphenyl)phosphate; polyol derivatives, such as dibenzylidene sorbitol, bis(methylbenzylidene)sorbitol, bis(3,4-dimethylbenzylidene)sorbitol, bis(p-ethylbenzylidene)sorbitol, and bis(dimethylbenzylidene)sorbitol; and amide compounds, such as N,
- the usage amount of the nucleating agent is preferably from 0.001 to 5 parts by mass, more preferably from 0.005 to 0.5 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- flame retardants examples include: phosphorus-based flame retardants including aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylenyl phosphate, resorcinol bis(diphenylphosphate), (1-methylethylidene)-4,1-phenylene tetraphenyl diphosphate, 1,3-phenylene tetrakis(2,6-dimethylphenyl)phosphate, product name ADK STAB FP-500 from Adeka Corporation, product name ADK STAB FP-600 from Adeka Corporation, and product name ADK STAB FP-800 from Adeka Corporation, phosphonates such as divinyl phenylphosphonate, diallyl phenylphosphonate, and (1-butenyl)phenylphosphonate, phosphinates such as phenyl
- the usage amount of the flame retardant is preferably from 1 to 50 parts by mass, more preferably from 10 to 30 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- lubricant is added to impart the surface of the molded article with lubricity and to improve the effect of preventing scratches/damage.
- lubricants include: unsaturated fatty acid amides such as oleamide and erucamide; saturated fatty acid amides such as behenamide and stearamide; and butyl stearate, stearyl alcohol, stearic acid monoglyceride, sorbitan monopalmitate, sorbitan monostearate, mannitol, stearic acid, hydrogenated castor oil, stearamide, oleamide, and ethylene-bis-stearamide.
- One type of lubricant may be used alone, or two or more types may be used in combination.
- the usage amount of the lubricant is preferably from 0.03 to 2 parts by mass, more preferably from 0.01 to 0.5 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- fillers examples include talc, mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, clay, dolomite, mica, silica, alumina, potassium titanate whisker, wollastonite, and fibrous magnesium oxysulfate. Fillers may be used by selecting, as appropriate, the particle diameter (the fiber diameter, fiber length, and aspect ratio for fibrous fillers). The filler(s) to be used may be subjected to surface treatment if necessary.
- the usage amount of the filler is preferably from 0.01 to 80 parts by mass, more preferably from 1 to 50 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- the metal soap it is possible to use a salt between a metal, such as magnesium, calcium, aluminum, or zinc, and a saturated or unsaturated fatty acid, such as lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, or oleic acid.
- a metal such as magnesium, calcium, aluminum, or zinc
- a saturated or unsaturated fatty acid such as lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, or oleic acid.
- the usage amount of the metal soap is preferably from 0.001 to 10 parts by mass, more preferably from 0.01 to 5 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- the aforementioned hydrotalcite is a naturally-occurring or synthetic composite salt compound including magnesium, aluminum, hydroxyl groups, carbonate groups, and optional water of crystallization
- examples include compounds in which a portion of magnesium and/or aluminum is substituted by an alkali metal or other metals such as zinc, and compounds in which the hydroxyl group(s) and/or carbonate group(s) is/are substituted by other anionic groups.
- examples include compounds in which a metal in a hydrotalcite represented by the following general formula (2) is substituted by an alkali metal.
- Al—Li-based hydrotalcites it is possible to use a compound represented by the following general formula (3).
- x1 and x2 each represent a number satisfying the conditions expressed by 0 ⁇ x2/x1 ⁇ 10 and 2 ⁇ x1+x2 ⁇ 20, and p represents 0 or a positive number.
- a q- represents a q-valent anion
- p represents 0 or a positive number
- a portion of the carbonate anion may be substituted by another anion.
- the water of crystallization of the hydrotalcite may be dehydrated.
- the hydrotalcites may be covered by a higher fatty acid such as stearic acid, a higher fatty acid metal salt such as an alkali metal salt of oleic acid, an organic sulfonic acid metal salt such as an alkali metal salt of dodecylbenzene sulfonic acid, a higher fatty acid amide, a higher fatty acid ester, or a wax.
- the hydrotalcite may be a naturally-occurring product or a synthetic product.
- methods for synthesizing such compounds include known methods disclosed, for example, in JP S46-2280B, JP S50-30039B, JP S51-29129B, JP H3-36839B, JP S61-174270A, and JP H5-179052A.
- Various hydrotalcites may be used regardless of crystal structure, crystal grain system, etc.
- the usage amount of the hydrotalcite is preferably from 0.001 to 5 parts by mass, more preferably from 0.05 to 3 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- Example of the antistatic agents include: cationic antistatic agents such as quaternary ammonium ion salts of fatty acids and polyamine quaternary salts; anionic antistatic agents such as higher alcohol phosphates, higher alcohol EO adducts, polyethylene glycol fatty acid esters, anionic alkyl sulfonates, higher alcohol sulfates, higher alcohol ethylene oxide adduct sulfates, and higher alcohol ethylene oxide adduct phosphates; nonionic antistatic agents such as polyol fatty acid esters, polyglycol phosphates, and polyoxyethylene alkylallyl ethers; and amphoteric antistatic agents such as amphoteric alkyl betaines, e.g. alkyl dimethylaminoacetic acid betaine, and imidazoline-type amphoteric activators. These antistatic agents may be used individually, or two or more types of antistatic agents may be used in combination.
- anionic antistatic agents such as higher alcohol
- the usage amount of the antistatic agent is preferably from 0.03 to 2 parts by mass, more preferably from 0.1 to 0.8 parts by mass, with respect to 100 parts by mass of the acrylic resin.
- pigments may be used for the aforementioned pigments, with examples including: pigment red 1, 2, 3, 9, 10, 17, 22, 23, 31, 38, 41, 48, 49, 88, 90, 97, 112, 119, 122, 123, 144, 149, 166, 168, 169, 170, 171, 177, 179, 180, 184, 185, 192, 200, 202, 209, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240, and 254; pigment orange 13, 31, 34, 36, 38, 43, 46, 48, 49, 51, 52, 55, 59, 60, 61, 62, 64, 65, and 71; pigment yellow 1, 3, 12, 13, 14, 16, 17, 20, 24, 55, 60, 73, 81, 83, 86, 93, 95, 97, 98, 100, 109, 110, 113, 114, 117, 120, 125, 126, 127, 129, 137, 138, 139, 147
- the dyes include azo dyes, anthraquinone dyes, indigoid dyes, triarylmethane dyes, xanthene dyes, alizarin dyes, acridine dyes, stilbene dyes, thiazole dyes, naphthol dyes, quinoline dyes, nitro dyes, indamine dyes, oxazine dyes, phthalocyanine dyes, and cyanine dyes.
- a plurality of dyes may be used as a mixture.
- the method for blending the aforementioned resin additive(s) to the acrylic resin is not particularly limited, and various known techniques for blending resin additives can be employed. For example, it is possible to employ a method of adding the additive(s) to the polymerization system in advance at the time of polymerizing the acrylic resin, a method of adding the additive(s) during polymerization, or a method of adding the additive(s) after polymerization.
- Granules may be prepared from the present acrylic resin composition alone, or by sprinkling the same onto other resin additives or fillers, and such granules may be blended to the acrylic resin.
- a triazine-based UV absorber including 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol and melting and mixing/kneading the mixture
- mixing/kneading at an extrusion temperature within a range from 200° C. to 260° C., more preferably from 210° C. to 250° C.
- the processing device may be subjected to increased load, and the surface of the molded article obtained by molding the acrylic resin composition may become rough. If the extrusion temperature is above 260° C., the molecular weight of the acrylic resin may drop, which may make molding impossible.
- a laminate according to the invention has a structure in which a support material is covered by a molded article of the acrylic resin composition of the invention.
- the support material is covered by a film/sheet in which the thickness of the molded article of the acrylic resin composition of the invention is preferably from 30 to 300 ⁇ m, more preferably from 30 to 200 ⁇ m, even more preferably from 30 to 100 am.
- the thickness of the molded article of the acrylic resin composition is less than 30 ⁇ m, the strength may be insufficient and the molded article may be prone to break. If the thickness is greater than 300 ⁇ m, the heating time at the time of molding may become long, making it uneconomical.
- the support material is not particularly limited, and examples include methacrylic resins, polycarbonate resins, methyl methacrylate-styrene resins, polystyrene resins, polyvinyl chloride resins, polyester resins, and cyclic polyester resins.
- polyvinyl chloride resins and polycarbonate resins can preferably be used because of excellent adhesion to the acrylic resin composition of the invention.
- polyvinyl chloride resins can be polymerized according to any method without particular limitation, with examples including polymerization in bulk, polymerization in solution, suspension polymerization, and emulsion polymerization.
- the polyvinyl chloride resins include: various chlorine-containing resins such as polyvinyl chloride, chlorinated polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer,
- Examples of methods for producing a laminate according to the invention include: coextrusion methods in which molding is performed by simultaneously melting and extruding a support material resin and the acrylic resin composition of the invention; methods of extrusion-molding a support material into a sheet, melting and extruding the acrylic resin composition of the invention, and laminating the same; methods of molding the acrylic resin composition of the invention into a sheet in advance, and thermally-laminating the acrylic resin composition sheet continuously at the time of extrusion-molding a support material; and methods of molding a support material into a sheet, and thermocompression-bonding the acrylic resin composition of the invention onto the support material sheet with a pressing machine.
- the use/application of the molded article of the acrylic resin composition of the invention is not particularly limited, but particularly, can be used preferably for applications in which aesthetic appearance is deemed important.
- applications include window materials for buildings, vehicles, etc., lighting covers, signboards, road signs, household goods, office supplies, windshields, water tanks, and protective sheets.
- the applications of the laminate of the invention are the same as the applications of the support material.
- the support material is a vinyl chloride-based resin or a polycarbonate resin
- examples of applications include housings for electrical household appliances and electronic devices, construction materials, such as resin window sashes, window frames, decorative sheets, top rails, baseboards, floor materials, wall materials, and ceiling materials, as well as pipes, gutters, and ducts.
- the molecular weight was measured according to the following measurement conditions by gel permeation chromatography (GPC) with a GPC device from JASCO Corporation.
- RI detector Refractive index detector
- Injection amount 100 ⁇ L.
- the obtained pellets were dried at 80° C. for over 10 hours. Then, the pellets were molten and mixed/kneaded with a T-die-equipped uniaxial extruder (product name OEX3024 from DDM Co., Ltd.) at a melting temperature of 240° C. and screw speed of 30 rpm, to obtain a 50 ⁇ m-thick acrylic resin sheet.
- a T-die-equipped uniaxial extruder product name OEX3024 from DDM Co., Ltd.
- Each of the obtained acrylic resin sheets was subjected to a weather resistance test at a temperature of 63° C. and humidity of 50% RH under the UV irradiation conditions of 295-780 nm and 75 mW/cm 2 .
- the ⁇ Y.I. and molecular weight of each acrylic resin sheet after irradiation for 200 hours were measured.
- ⁇ Y.I. the difference between the Y.I. of each acrylic resin molded article after 200 hours of UV irradiation as measured by the reflection method using a multiple-light-source spectrophotometric colorimeter from Suga Test Instruments Co., Ltd. and the Y.I. before UV irradiation was evaluated as the ⁇ Y.I. The results are shown in Tables 2 and 3.
- UVA-1 2-[4,6-Bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol.
- UVA-2 2,4-Bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine.
- UVA-3 1-(4-(4,6-Bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-3-methylphenoxy)-3-(C 12-13 alkyloxy)propan-2-ol.
- the obtained pellets were dried at 80° C. for over 10 hours. Then, the pellets were molten and mixed/kneaded with a T-die-equipped uniaxial extruder (product name OEX3024 from DDM Co., Ltd.) at an extrusion temperature of 240° C. and screw speed of 30 rpm, to obtain a 50- ⁇ m-thick acrylic resin sheet.
- the acrylic resin sheet was placed on the surface of a flat-plate-shaped molded article made of a vinyl chloride resin and being 80 mm long, 40 mm wide, and 2 mm thick, and was laminated by performing thermocompression at 140° C. with a press forming machine. The following evaluation was performed using the laminated test pieces.
- Each of the test pieces laminated onto the vinyl chloride resin-made flat-plate-shaped molded article was subjected to a weather resistance test at a temperature of 63° C. and humidity of 50% RH under the UV irradiation conditions of 295-780 nm and 75 mW/cm.
- the difference in color (AE) of the vinyl chloride resin-made test piece after 200 hours was measured.
- the color difference was measured by the reflection method using a multiple-light-source spectrophotometric colorimeter from Suga Test Instruments Co., Ltd. The results are shown in Table 4 below.
- Laminated test pieces were prepared in the same manner as in Example 2-1, except that: the acrylic resin was changed from AC-1 to AC-2; each UV absorber was added according to the blending amounts described in Table 5; and the 80-mm-long, 40-mm-wide, 2-mm-thick vinyl chloride resin-made flat-plate-shaped molded article was changed to a 80-mm-long, 40-mm-wide, 2-mm-thick polycarbonate resin-made flat-plate-shaped molded article.
- test pieces laminated onto the polycarbonate resin-made flat-plate-shaped molded article were subjected to a weather resistance test at a temperature of 65° C. and humidity of 50% RH under the UV irradiation condition of 295-780 nm with a xenon lamp.
- the difference in color (AE) of the test piece after 1080 hours and after 2040 hours of UV irradiation was measured.
- the color difference was measured by the reflection method using a multiple-light-source spectrophotometric colorimeter from Suga Test Instruments Co., Ltd. The results are shown in Table 5 below.
- an acrylic resin including at least 80 wt % of methyl methacrylate and having a glass transition temperature of at least 80° C. a molded article can be obtained, even when molten and mixed/kneaded at 250° C.
- the aforementioned acrylic resin compositions include from 1 to 5 parts by mass of a triazine-based UV absorber including 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]phenol with respect to 100 parts by mass of the acrylic resin including at least 80 wt % of methyl methacrylate and having a glass transition temperature of at least 80° C. According to these Examples, it was verified that excellent weather resistance can be achieved and coloring can be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014256205A JP6472652B2 (ja) | 2014-12-18 | 2014-12-18 | アクリル樹脂組成物及びそれを積層してなる積層体 |
JP2014-256205 | 2014-12-18 | ||
PCT/JP2015/080914 WO2016098471A1 (fr) | 2014-12-18 | 2015-11-02 | Composition de résine acrylique et stratifié formé par stratification de celle-ci |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/080914 A-371-Of-International WO2016098471A1 (fr) | 2014-12-18 | 2015-11-02 | Composition de résine acrylique et stratifié formé par stratification de celle-ci |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/044,011 Division US11884809B2 (en) | 2014-12-18 | 2018-07-24 | Molded article and laminate incorporating acrylic resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170342259A1 true US20170342259A1 (en) | 2017-11-30 |
Family
ID=56126370
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/522,442 Abandoned US20170342259A1 (en) | 2014-12-18 | 2015-11-02 | Acrylic resin composition and laminate formed by laminating same |
US16/044,011 Active US11884809B2 (en) | 2014-12-18 | 2018-07-24 | Molded article and laminate incorporating acrylic resin composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/044,011 Active US11884809B2 (en) | 2014-12-18 | 2018-07-24 | Molded article and laminate incorporating acrylic resin composition |
Country Status (6)
Country | Link |
---|---|
US (2) | US20170342259A1 (fr) |
EP (1) | EP3235866B1 (fr) |
JP (1) | JP6472652B2 (fr) |
KR (1) | KR102441658B1 (fr) |
CN (1) | CN107001762B (fr) |
WO (1) | WO2016098471A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230415709A1 (en) * | 2022-06-24 | 2023-12-28 | Newpark Mats & Integrated Services Llc | Mat and support surface formed from recycled material |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102239091B1 (ko) * | 2017-09-01 | 2021-04-09 | (주)엘지하우시스 | 투명 수지 적층체, 이를 제조하는 방법 및 이를 이용한 자동차용 외장재. |
JP7122234B2 (ja) | 2018-11-22 | 2022-08-19 | テクノUmg株式会社 | 熱可塑性樹脂組成物およびその成形品 |
JP6630461B1 (ja) * | 2019-08-09 | 2020-01-15 | 株式会社Adeka | 農業用フィルム、農業用フィルム形成用樹脂組成物、及びそれを用いた植物の育成方法 |
CN114381081A (zh) * | 2020-10-06 | 2022-04-22 | 三菱化学株式会社 | 树脂组合物、树脂层叠体和成型品 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110073171A1 (en) * | 2009-09-25 | 2011-03-31 | General Electric Company | Protective coating compositions and devices |
WO2013141334A1 (fr) * | 2012-03-22 | 2013-09-26 | 三菱レイヨン株式会社 | Composition de résine acrylique pour film |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000169767A (ja) | 1998-12-10 | 2000-06-20 | Mitsubishi Rayon Co Ltd | 害虫誘引阻止アクリル樹脂フィルムおよび積層体 |
JP2000327802A (ja) | 1999-05-25 | 2000-11-28 | Mitsubishi Rayon Co Ltd | アクリルフィルムおよび積層品 |
US6620509B1 (en) | 2002-04-22 | 2003-09-16 | Mitsubishi Gas Chemical Company, Inc. | Transparent resin laminate and molded article used the same |
JP2004250582A (ja) | 2003-02-20 | 2004-09-09 | Mitsubishi Gas Chem Co Inc | コーティング組成物及び樹脂積層体 |
JP5102624B2 (ja) * | 2004-11-09 | 2012-12-19 | チバ ホールディング インコーポレーテッド | 改善された変色耐性を有する抗菌性ポリマー組成物 |
DE102005062687A1 (de) * | 2005-12-23 | 2007-07-05 | Röhm Gmbh | PMMA-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung |
JP4895290B2 (ja) * | 2006-12-25 | 2012-03-14 | 日東電工株式会社 | 光学フィルムの製造方法、光学フィルム、偏光板、および画像表示装置 |
JP2008260886A (ja) * | 2007-04-13 | 2008-10-30 | Mitsubishi Rayon Co Ltd | アクリル樹脂フィルムおよびその使用 |
JP2009098701A (ja) * | 2007-12-27 | 2009-05-07 | Adeka Corp | 光学フィルム及び光学シート |
JP2009286960A (ja) * | 2008-05-30 | 2009-12-10 | Mitsubishi Rayon Co Ltd | アクリル樹脂フィルムの組成物ならびそれを用いた成形品 |
JP5411525B2 (ja) * | 2009-02-18 | 2014-02-12 | 株式会社Adeka | 耐熱性の改善された紫外線吸収剤組成物及びこれを含有してなる合成樹脂組成物 |
JP5599580B2 (ja) * | 2009-06-26 | 2014-10-01 | 日東電工株式会社 | 太陽電池モジュール用粘着シートおよび太陽電池モジュール |
JP5540589B2 (ja) * | 2009-07-08 | 2014-07-02 | 株式会社トッパン・コスモ | 化粧シート |
AU2011211260A1 (en) * | 2010-01-27 | 2012-08-09 | Teijin Limited | Film |
JP5987526B2 (ja) * | 2012-07-25 | 2016-09-07 | 三菱レイヨン株式会社 | アクリル樹脂ペレットの製造方法及びアクリル樹脂成形体 |
CN107429032B (zh) * | 2015-04-03 | 2019-10-25 | 株式会社可乐丽 | 树脂组合物及其制造方法、成型体、膜以及物品 |
JP6620509B2 (ja) | 2015-10-22 | 2019-12-18 | セイコーエプソン株式会社 | 印刷装置 |
-
2014
- 2014-12-18 JP JP2014256205A patent/JP6472652B2/ja active Active
-
2015
- 2015-11-02 WO PCT/JP2015/080914 patent/WO2016098471A1/fr active Application Filing
- 2015-11-02 KR KR1020177011759A patent/KR102441658B1/ko active IP Right Grant
- 2015-11-02 US US15/522,442 patent/US20170342259A1/en not_active Abandoned
- 2015-11-02 CN CN201580060010.7A patent/CN107001762B/zh not_active Expired - Fee Related
- 2015-11-02 EP EP15869679.9A patent/EP3235866B1/fr active Active
-
2018
- 2018-07-24 US US16/044,011 patent/US11884809B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110073171A1 (en) * | 2009-09-25 | 2011-03-31 | General Electric Company | Protective coating compositions and devices |
WO2013141334A1 (fr) * | 2012-03-22 | 2013-09-26 | 三菱レイヨン株式会社 | Composition de résine acrylique pour film |
US20150044439A1 (en) * | 2012-03-22 | 2015-02-12 | Mitsubishi Rayon Co., Ltd. | Acrylic Resin Composition for Film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230415709A1 (en) * | 2022-06-24 | 2023-12-28 | Newpark Mats & Integrated Services Llc | Mat and support surface formed from recycled material |
Also Published As
Publication number | Publication date |
---|---|
JP2016117782A (ja) | 2016-06-30 |
EP3235866B1 (fr) | 2023-07-05 |
EP3235866A1 (fr) | 2017-10-25 |
EP3235866A4 (fr) | 2018-08-01 |
JP6472652B2 (ja) | 2019-02-20 |
US11884809B2 (en) | 2024-01-30 |
US20180327584A1 (en) | 2018-11-15 |
CN107001762B (zh) | 2022-08-09 |
WO2016098471A1 (fr) | 2016-06-23 |
CN107001762A (zh) | 2017-08-01 |
KR20170095187A (ko) | 2017-08-22 |
KR102441658B1 (ko) | 2022-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11884809B2 (en) | Molded article and laminate incorporating acrylic resin composition | |
EP3527617B1 (fr) | Composition de résine de polyoléfine et article moulé l'utilisant | |
WO2019093204A1 (fr) | Composition et composition de résine ignifuge | |
KR102516905B1 (ko) | 신규 트리아진 화합물 및 이것을 이용하여 이루어지는 합성수지 조성물 | |
JPWO2019021671A1 (ja) | 組成物及び難燃性樹脂組成物 | |
CN113260641A (zh) | (甲基)丙烯酸类树脂组合物和(甲基)丙烯酸类树脂膜 | |
KR102618010B1 (ko) | 조성물, 이것을 사용한 열가소성 수지 조성물, 및 그의 성형체 | |
JP7109455B2 (ja) | 組成物及び難燃性樹脂組成物 | |
CN110678448A (zh) | 三嗪化合物、固化性组合物、固化物的制造方法及其固化物 | |
KR102682334B1 (ko) | 조성물, 이것을 사용한 열가소성 수지 조성물, 및 그 성형체 | |
US20240010825A1 (en) | Uv resistant smma copolymers with low haze and high clarity | |
US11795300B2 (en) | Additive composition, polyolefin resin composition containing same, method for producing polyolefin resin composition, and molded articles thereof | |
JP2017149852A (ja) | ポリオレフィン系樹脂組成物およびそれを用いた自動車内外装材 | |
JP6717624B2 (ja) | 熱可塑性ポリウレタン樹脂組成物 | |
JP2020037603A (ja) | ポリオレフィン系樹脂組成物およびその成形品 | |
US12122898B2 (en) | Polyolefin resin composition and molded article using same | |
US12122899B2 (en) | Composition, thermoplastic resin composition using same, and molded article of same | |
RU2804467C2 (ru) | Композиция, композиция термопластической смолы, использующая ее, и формованное изделие из нее | |
CN115368632A (zh) | 一种亚磷酸酯抗氧剂组合物和使用其的合成树脂组合物 | |
JP2019127496A (ja) | 核剤、これを含有するオレフィン系樹脂組成物およびその成形品 | |
JP2019073646A (ja) | 組成物、オレフィン系樹脂組成物及びこれを用いた成形品 | |
JP2019044063A (ja) | 結晶化遅延剤、これを含むポリオレフィン系樹脂組成物およびその成形品 | |
WO2022215660A1 (fr) | Composition d'agent conférant des propriétés mécaniques, composition de résine et article moulé | |
JP2007238821A (ja) | 樹脂添加剤マスターバッチ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADEKA CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:UEDA, NAOTO;NOMURA, KAZUKIYO;REEL/FRAME:042163/0250 Effective date: 20170406 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |