US20150333088A1 - Semiconductor Device and Display Device Including the Same - Google Patents

Semiconductor Device and Display Device Including the Same Download PDF

Info

Publication number
US20150333088A1
US20150333088A1 US14/710,029 US201514710029A US2015333088A1 US 20150333088 A1 US20150333088 A1 US 20150333088A1 US 201514710029 A US201514710029 A US 201514710029A US 2015333088 A1 US2015333088 A1 US 2015333088A1
Authority
US
United States
Prior art keywords
film
oxide semiconductor
semiconductor film
insulating film
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/710,029
Other languages
English (en)
Inventor
Shunpei Yamazaki
Junichi Koezuka
Masami Jintyou
Daisuke Kurosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Assigned to SEMICONDUCTOR ENERGY LABORATORY CO., LTD. reassignment SEMICONDUCTOR ENERGY LABORATORY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YAMAZAKI, SHUNPEI, JINTYOU, MASAMI, KOEZUKA, JUNICHI, KUROSAKI, DAISUKE
Publication of US20150333088A1 publication Critical patent/US20150333088A1/en
Priority to US16/776,856 priority Critical patent/US10998448B2/en
Priority to US17/242,562 priority patent/US11594642B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs

Definitions

  • One embodiment of the present invention relates to a semiconductor device including an oxide semiconductor film and a display device including the semiconductor device.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, and a manufacturing method.
  • the present invention relates to a process, a machine, manufacture, and a composition of matter.
  • one embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a storage device, a driving method thereof, a manufacturing method thereof, and a manufacturing apparatus thereof.
  • a semiconductor device generally means a device that can function by utilizing semiconductor characteristics.
  • a semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a storage device are each an embodiment of a semiconductor device.
  • An imaging device, a display device, a liquid crystal display device, a light-emitting device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like), and an electronic appliance may each include a semiconductor device.
  • FET field-effect transistor
  • TFT thin film transistor
  • Such transistors are applied to a wide range of electronic appliances such as an integrated circuit (IC) and an image display device (display device).
  • a semiconductor material typified by silicon is widely known as a material for a semiconductor thin film that can be used for a transistor.
  • an oxide semiconductor has been attracting attention (e.g., Patent Document 1).
  • Patent Document 2 discloses a semiconductor device in which, to reduce oxygen vacancy in an oxide semiconductor layer where a channel is formed, an insulating layer which releases oxygen by heating is used as a base insulating layer of the oxide semiconductor layer.
  • an oxide insulating layer is formed over the oxide semiconductor layer; oxygen is introduced (added) through the oxide insulating layer; heat treatment is performed; and impurities such as hydrogen, moisture, a hydroxyl group, or hydride are removed from the oxide semiconductor layer by the introduction of oxygen and the heat treatment (e.g., Patent Document 3).
  • Patent Document 1 Japanese Published Patent Application No. 2006-165529
  • Patent Document 2 Japanese Published Patent Application No. 2012-009836
  • Patent Document 3 Japanese Published Patent Application No. 2011-199272
  • oxygen vacancy formed in the channel formation region of the oxide semiconductor film adversely affects the transistor characteristics; therefore, the oxygen vacancy causes a problem.
  • oxygen vacancy formed in the channel formation region of the oxide semiconductor film is bonded with hydrogen to serve as a carrier supply source.
  • the carrier supply source generated in the channel formation region of the oxide semiconductor film causes a change in the electrical characteristics, typically, a shift in the threshold voltage, of the transistor including the oxide semiconductor film.
  • electrical characteristics fluctuate among the transistors. Therefore, it is preferable that the amount of oxygen vacancy in the channel formation region of the oxide semiconductor film be as small as possible.
  • an object of one embodiment of the present invention is to inhibit a change in electrical characteristics and to improve reliability in a semiconductor device using a transistor including an oxide semiconductor. Another object of one embodiment of the present invention is to provide a semiconductor device with low power consumption. Another object of one embodiment of the present invention is to provide a novel semiconductor device. Another object of one embodiment of the present invention is to provide a novel display device.
  • One embodiment of the present invention is a semiconductor device including a transistor which includes a first gate electrode; a first insulating film over the first gate electrode; an oxide semiconductor film over the first insulating film; a source electrode electrically connected to the oxide semiconductor film; a drain electrode electrically connected to the oxide semiconductor film; a second insulating film over the oxide semiconductor film, the source electrode, and the drain electrode; and a second gate electrode over the second insulating film.
  • the second insulating film includes oxygen.
  • the second gate electrode includes the same metal element as at least one of metal elements of the oxide semiconductor film and has a region thinner than the oxide semiconductor film.
  • Another embodiment of the present invention is a semiconductor device including a transistor which includes a first gate electrode; a first insulating film over the first gate electrode; an oxide semiconductor film over the first insulating film; a source electrode electrically connected to the oxide semiconductor film; a drain electrode electrically connected to the oxide semiconductor film; a second insulating film over the oxide semiconductor film, the source electrode, and the drain electrode; and a second gate electrode over the second insulating film.
  • the second gate electrode is electrically connected to the first gate electrode through an opening provided in the first insulating film and the second insulating film.
  • the second insulating film includes oxygen.
  • the second gate electrode includes the same metal element as at least one of metal elements of the oxide semiconductor film and has a region thinner than the oxide semiconductor film.
  • Another embodiment of the present invention is a semiconductor device including a transistor which includes a first gate electrode; a first insulating film over the first gate electrode; an oxide semiconductor film over the first insulating film; a second insulating film over the oxide semiconductor film; a source electrode electrically connected to the oxide semiconductor film through an opening provided in the second insulating film; a drain electrode electrically connected to the oxide semiconductor film through an opening provided in the second insulating film; and a second gate electrode over the second insulating film.
  • the second insulating film includes oxygen.
  • the second gate electrode includes the same metal element as at least one of metal elements of the oxide semiconductor film and has a region thinner than the oxide semiconductor film.
  • Another embodiment of the present invention is a semiconductor device including a transistor which includes a first gate electrode; a first insulating film over the first gate electrode; an oxide semiconductor film over the first insulating film; a_second insulating film over the oxide semiconductor film; a source electrode electrically connected to the oxide semiconductor film through an opening provided in the second insulating film; a drain electrode electrically connected to the oxide semiconductor film through an opening provided in the second insulating film; and a second gate electrode over the second insulating film.
  • the second gate electrode is electrically connected to the first gate electrode through an opening provided in the first insulating film and the second insulating film.
  • the second insulating film includes oxygen.
  • the second gate electrode includes the same metal element as at least one of metal elements of the oxide semiconductor film and has a region thinner than the oxide semiconductor film.
  • the thickness of the second gate electrode is preferably greater than or equal to 5 nm and less than or equal to 35 nm.
  • the oxide semiconductor film preferably includes oxygen, In, Zn, and M (M is Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf). It is preferable that the oxide semiconductor film include a crystal part and that the crystal part have c-axis alignment.
  • Another embodiment of the present invention is a display device including the semiconductor device according to any one of the above structures, and a display element.
  • Another embodiment of the present invention is a display module including the display device and a touch sensor.
  • Another embodiment of the present invention is an electronic appliance including the semiconductor device according to any one of the above structures, the display device, or the display module; and an operation key or a battery.
  • a change in electrical characteristics can be inhibited and reliability can be improved in a semiconductor device using a transistor including an oxide semiconductor.
  • a semiconductor device with low power consumption can be provided.
  • a novel semiconductor device can be provided.
  • a novel display device can be provided.
  • FIGS. 1A to 1C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
  • FIGS. 2A to 2C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
  • FIGS. 3A to 3C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
  • FIGS. 4A to 4C are a top view and cross-sectional views illustrating one embodiment of a semiconductor device.
  • FIGS. 5A to 5D are cross-sectional views each illustrating one embodiment of a semiconductor device.
  • FIGS. 6A and 6B are band diagrams.
  • FIGS. 7A to 7H are cross-sectional views illustrating an example of a manufacturing process of a semiconductor device.
  • FIGS. 8A to 8H are cross-sectional views illustrating an example of a manufacturing process of a semiconductor device.
  • FIGS. 9A to 9H are cross-sectional views illustrating an example of a manufacturing process of a semiconductor device.
  • FIGS. 10A and 10B are cross-sectional views illustrating examples of a step in a manufacturing process of a semiconductor device.
  • FIGS. 11A to 11H are cross-sectional views illustrating an example of a manufacturing process of a semiconductor device.
  • FIGS. 12A to 12H are cross-sectional views illustrating an example of a manufacturing process of a semiconductor device.
  • FIGS. 13A to 13H are cross-sectional views illustrating an example of a manufacturing process of a semiconductor device.
  • FIGS. 14A and 14B are a schematic diagram illustrating an ashing apparatus and a conceptual diagram illustrating oxygen plasma in the ashing apparatus during oxygen addition treatment.
  • FIGS. 15A to 15D are Cs-corrected high-resolution TEM images of a cross section of a CAAC-OS and a cross-sectional schematic view of a CAAC-OS.
  • FIGS. 16A to 16D are Cs-corrected high-resolution TEM images of a plane of a CAAC-OS.
  • FIGS. 17A to 17C show structural analysis of a CAAC-OS and a single crystal oxide semiconductor by XRD.
  • FIGS. 18A and 18B show electron diffraction patterns of a CAAC-OS.
  • FIG. 19 shows a change in crystal part of an In—Ga—Zn oxide induced by electron irradiation.
  • FIG. 20 is a top view illustrating one embodiment of a display device.
  • FIG. 21 is a cross-sectional view illustrating one embodiment of a display device.
  • FIG. 22 is a cross-sectional view illustrating one embodiment of a display device.
  • FIGS. 23A to 23C are a block diagram and circuit diagrams illustrating a display device.
  • FIG. 24 illustrates a display module
  • FIGS. 25A to 25G illustrate electronic appliances.
  • FIGS. 26A and 26B are cross-sectional views illustrating structures of samples in Examples 1 to 4.
  • FIGS. 27A and 27B show TDS measurement results in Example 1.
  • FIGS. 28A and 28B show TDS measurement results in Example 1.
  • FIG. 29 shows the amount of oxygen released in Example 1.
  • FIGS. 30A to 30C show TDS measurement results in Example 2.
  • FIG. 31 shows the amount of oxygen released in Example 2.
  • FIG. 32 shows the amount of oxygen released in Example 3.
  • FIG. 33 shows the amount of oxygen released in Example 4.
  • a transistor is an element having at least three terminals of a gate, a drain, and a source.
  • the transistor has a channel formation region between a drain (a drain terminal, a drain region, or a drain electrode) and a source (a source terminal, a source region, or a source electrode), and current can flow through the drain region, the channel formation region, and the source region.
  • a drain a drain terminal, a drain region, or a drain electrode
  • a source a source terminal, a source region, or a source electrode
  • source and drain functions of a source and a drain might be switched when transistors having different polarities are employed or a direction of current flow is changed in circuit operation, for example. Therefore, the terms “source” and “drain” can be switched in this specification and the like.
  • the expression “electrically connected” includes the case where components are connected through an “object having any electric function”.
  • an “object having any electric function” is no particular limitation on an “object having any electric function” as long as electric signals can be transmitted and received between components that are connected through the object.
  • Examples of an “object having any electric function” are a switching element such as a transistor, a resistor, an inductor, a capacitor, and elements with a variety of functions as well as an electrode and a wiring.
  • a “silicon oxynitride film” refers to a film that includes oxygen at a higher proportion than nitrogen
  • a “silicon nitride oxide film” refers to a film that includes nitrogen at a higher proportion than oxygen.
  • the term “parallel” indicates that the angle formed between two straight lines is greater than or equal to ⁇ 10° and less than or equal to 10°, and accordingly also includes the case where the angle is greater than or equal to ⁇ 5° and less than or equal to 5°.
  • a term “substantially parallel” indicates that the angle formed between two straight lines is greater than or equal to ⁇ 30° and less than or equal to 30°.
  • a tenn “perpendicular” indicates that the angle formed between two straight lines is greater than or equal to 80° and less than or equal to 100°, and accordingly includes the case where the angle is greater than or equal to 85° and less than or equal to 95°.
  • a term “substantially perpendicular” indicates that the angle formed between two straight lines is greater than or equal to 600 and less than or equal to 120°.
  • the terms “film” and “layer” can be interchanged with each other depending on the case or circumstances.
  • the term “conductive layer” can be changed into the term “conductive film” in some cases.
  • the term “insulating film” can be changed into the term “insulating layer” in some cases.
  • FIGS. 1A to 1C a semiconductor device of one embodiment of the present invention and a method for manufacturing the semiconductor device will be described with reference to FIGS. 1A to 1C , FIGS. 2A to 2C , FIGS. 3A to 3C , FIGS. 4A to 4C , FIGS. 5A to 5D , FIGS. 6A and 6B , FIGS. 7A to 7H , FIGS. 8A to 8H , FIGS. 9A to 9H , FIGS. 10A and 10B , FIGS. 11A to 11H , FIGS. 12A to 12H , FIGS. 13A to 13H , and FIGS. 14A and 14B .
  • FIG. 1A is a top view of a transistor 100 that is a semiconductor device of one embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along a dashed dotted line X 1 -X 2 in FIG. 1A
  • FIG. 1C is a cross-sectional view taken along a dashed dotted line Y 1 -Y 2 in FIG. 1A .
  • some components of the transistor 100 e.g., an insulating film serving as a gate insulating film
  • the direction of the dashed dotted line X 1 -X 2 may be called a channel length direction
  • the direction of the dashed dotted line Y 1 -Y 2 may be called a channel width direction.
  • FIG. 1A some components are not illustrated in some cases in top views of transistors described below.
  • the transistor 100 includes a conductive film 104 functioning as a first gate electrode over a substrate 102 , an insulating film 106 over the substrate 102 and the conductive film 104 , an insulating film 107 over the insulating film 106 , an oxide semiconductor film 108 over the insulating film 107 , conductive films 112 a and 112 b functioning as source and drain electrodes electrically connected to the oxide semiconductor film 108 , insulating films 114 and 116 over the oxide semiconductor film 108 and the conductive films 112 a and 112 b , and an oxide semiconductor film 117 functioning as a second gate electrode over the insulating film 116 .
  • the oxide semiconductor film 117 is electrically connected to the conductive film 104 through openings 142 a and 142 b provided in the insulating films 106 , 107 , 114 , and 116 . As illustrated in FIGS. 1A to 1C , an insulating film 118 covering the insulating film 116 and the oxide semiconductor film 117 may be provided. Furthermore, a conductive film 120 electrically connected to the conductive film 112 b through an opening 143 , which is provided in the insulating films 114 , 116 , and 118 , may be provided.
  • the insulating films 106 and 107 are collectively referred to as a first insulating film, which functions as a first gate insulating film of the transistor 100 .
  • the insulating films 114 and 116 are collectively referred to as a second insulating film, which includes oxygen and has a function of supplying oxygen to the oxide semiconductor film 108 .
  • the second insulating film functions as a second gate insulating film of the transistor 100 .
  • the insulating film 118 functions as a protective insulating film for inhibiting entry of impurities into the transistor 100 .
  • the oxide semiconductor film 108 of the transistor 100 includes a channel formation region.
  • oxygen vacancy is formed in the oxide semiconductor film 108 included in the transistor 100 , electrons serving as carriers are generated; as a result, the transistor 100 tends to be normally-on. Therefore, it is important to reduce oxygen vacancy in the oxide semiconductor film 108 for stable transistor characteristics.
  • excess oxygen is introduced into an insulating film over the oxide semiconductor film 108 , here, the insulating film 114 over the oxide semiconductor film 108 , whereby oxygen is moved from the insulating film 114 to the oxide semiconductor film 108 to fill oxygen vacancy in the oxide semiconductor film 108 .
  • excess oxygen is introduced into the insulating film 116 over the oxide semiconductor film 108 , whereby oxygen is moved from the insulating film 116 to the oxide semiconductor film 108 through the insulating film 114 to fill oxygen vacancy in the oxide semiconductor film 108 .
  • excess oxygen is introduced into the insulating films 114 and 116 over the oxide semiconductor film 108 , whereby oxygen is moved from both the insulating films 114 and 116 to the oxide semiconductor film 108 to fill oxygen vacancy in the oxide semiconductor film 108 .
  • the insulating films 114 and 116 each include a region (oxygen excess region) including oxygen in excess of that in the stoichiometric composition.
  • the insulating films 114 and 116 are each an insulating film capable of releasing oxygen.
  • the oxygen excess region is formed in each of the insulating films 114 and 116 in such a manner that oxygen is introduced into the insulating films 114 and 116 after the deposition, for example.
  • a method for introducing oxygen an ion implantation method, an ion doping method, a plasma immersion ion implantation method, plasma treatment, or the like may be employed.
  • an apparatus with which an oxygen gas is made to be plasma by high-frequency power also referred to as a plasma etching apparatus or a plasma ashing apparatus
  • a plasma etching apparatus also referred to as a plasma etching apparatus or a plasma ashing apparatus
  • oxygen is introduced into the insulating films 114 and 116 through an oxide semiconductor film to be the oxide semiconductor film 117 functioning as a second gate electrode later so that the oxygen excess region is provided in the insulating films 114 and 116 .
  • the oxide semiconductor film becomes the oxide semiconductor film 117 functioning as a second gate electrode by being processed after oxygen is introduced into the insulating films 114 and 116 .
  • the oxide semiconductor film is used as a protective film at the time of introducing oxygen into the insulating films 114 and 116 and then processed into a second gate electrode, whereby the manufacturing process can be simplified.
  • the oxide semiconductor film 117 functioning as a second gate electrode has a function of transmitting oxygen when oxygen is introduced and has conductivity after being processed.
  • the oxide semiconductor film 117 includes the same metal element as at least one of metal elements of the oxide semiconductor film 108 and has a region thinner than the oxide semiconductor film 108 . With the above structure of the oxide semiconductor film 117 , oxygen can be favorably introduced into the insulating films 114 and 116 .
  • Oxygen of the insulating films 114 and 116 is released, and diffused to the oxide semiconductor film 108 by heat treatment.
  • the number of oxygen molecules released from the insulating films 114 and 116 can be measured by thermal desorption spectroscopy (TDS).
  • the oxide semiconductor film 117 which has a function as a second gate electrode, provided over the insulating film 116 can control a potential on the back channel side of the channel formation region of the oxide semiconductor film 108 . Therefore, in the semiconductor device of one embodiment of the present invention, the oxygen vacancy in the oxide semiconductor film 108 can be filled favorably and the potential on the back channel side of the oxide semiconductor film 108 can be controlled, whereby a highly reliable semiconductor device can be provided.
  • the oxide semiconductor film 117 functioning as a second gate electrode is connected to the conductive film 104 functioning as a first gate electrode through the openings 142 a and 142 b provided in the insulating films 106 , 107 , 114 , and 116 . Accordingly, the oxide semiconductor film 117 and the conductive film 104 are supplied with the same potential.
  • the openings 142 a and 142 b are provided so that the oxide semiconductor film 117 and the conductive film 104 are connected to each other
  • one embodiment of the present invention is not limited thereto.
  • a structure in which only one of the openings 142 a and 142 b is provided so that the oxide semiconductor film 117 and the conductive film 104 are connected to each other may be employed.
  • the oxide semiconductor film 108 is positioned to face each of the conductive film 104 functioning as a first gate electrode and the oxide semiconductor film 117 functioning as a second gate electrode, and is sandwiched between the two gate electrodes.
  • the lengths in the channel length direction and the channel width direction of the oxide semiconductor film 117 functioning as a second gate electrode are longer than those in the channel length direction and the channel width direction of the oxide semiconductor film 108 .
  • the whole oxide semiconductor film 108 is covered with the oxide semiconductor film 117 with the insulating films 114 and 116 positioned therebetween.
  • the oxide semiconductor film 117 functioning as a second gate electrode is connected to the conductive film 104 functioning as a first gate electrode through the opening 142 a and 142 b provided in the insulating films 106 , 107 , 114 , and 116 , a side surface of the oxide semiconductor film 108 in the channel width direction faces the oxide semiconductor film 117 functioning as a second gate electrode with the insulating films 114 and 116 positioned therebetween.
  • the conductive film 104 functioning as a first gate electrode and the oxide semiconductor film 117 functioning as a second gate electrode are connected to each other through the openings provided in the insulating films 106 and 107 functioning as first gate insulating films and the insulating films 114 and 116 functioning as second gate insulating films; and the conductive film 104 and the oxide semiconductor film 117 surround the oxide semiconductor film 108 with the insulating films 106 and 107 functioning as first gate insulating films and the insulating films 114 and 116 functioning as second gate insulating films positioned therebetween.
  • Such a structure enables electric fields of the conductive film 104 functioning as a first gate electrode and the oxide semiconductor film 117 functioning as a second gate electrode to electrically surround the oxide semiconductor film 108 included in the transistor 100 .
  • a device structure of a transistor, like that of the transistor 100 , in which electric fields of a first gate electrode and a second gate electrode electrically surround an oxide semiconductor film where a channel formation region is formed can be referred to as a surrounded channel (s-channel) structure.
  • the transistor 100 Since the transistor 100 has the s-channel structure, an electric field for inducing a channel can be effectively applied to the oxide semiconductor film 108 by the conductive film 104 functioning as a first gate electrode; therefore, the current drive capability of the transistor 100 can be improved and high on-state current characteristics can be obtained. Since the on-state current can be increased, the size of the transistor 100 can be reduced. In addition, since the transistor 100 is surrounded by the conductive film 104 functioning as a first gate electrode and the oxide semiconductor film 117 functioning as a second gate electrode, the mechanical strength of the transistor 100 can be increased.
  • the conductive film 120 in the transistor 100 functions as, for example, a pixel electrode used for a display device.
  • the substrate 102 there is no particular limitation on the property of a material and the like of the substrate 102 as long as the material has heat resistance enough to withstand at least heat treatment to be performed later.
  • a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, or the like may be used as the substrate 102 .
  • a single crystal semiconductor substrate or a polycrystalline semiconductor substrate made of silicon, silicon carbide, or the like, a compound semiconductor substrate made of silicon germanium or the like, an SOI substrate, or the like may be used as the substrate 102 .
  • any of these substrates provided with a semiconductor element may be used as the substrate 102 .
  • a glass substrate having any of the following sizes can be used: the 6th generation (1500 mm ⁇ 1850 mm), the 7th generation (1870 mm ⁇ 2200 mm), the 8th generation (2200 mm ⁇ 2400 mm), the 9th generation (2400 mm ⁇ 2800 mm), and the 10th generation (2950 mm ⁇ 3400 mm).
  • the 6th generation (1500 mm ⁇ 1850 mm
  • the 7th generation (1870 mm ⁇ 2200 mm
  • the 8th generation (2200 mm ⁇ 2400 mm
  • the 9th generation (2400 mm ⁇ 2800 mm the 9th generation
  • 10th generation 2950 mm ⁇ 3400 mm
  • a flexible substrate may be used as the substrate 102 , and the transistor 100 may be provided directly on the flexible substrate.
  • a separation layer may be provided between the substrate 102 and the transistor 100 . The separation layer can be used when part or the whole of a semiconductor device formed over the separation layer is separated from the substrate 102 and transferred onto another substrate. In such a case, the transistor 100 can be transferred to a substrate having low heat resistance or a flexible substrate as well.
  • the conductive film 104 functioning as a first gate electrode and the conductive films 112 a and 112 b functioning as source and drain electrodes can each be formed using a metal element selected from chromium (Cr), copper (Cu), aluminum (Al), gold (Au), silver (Ag), zinc (Zn), molybdenum (Mo), tantalum (Ta), titanium (Ti), tungsten (W), manganese (Mn), nickel (Ni), iron (Fe), and cobalt (Co); an alloy including any of these metal element as its component; an alloy including a combination of any of these elements; or the like.
  • a metal element selected from chromium (Cr), copper (Cu), aluminum (Al), gold (Au), silver (Ag), zinc (Zn), molybdenum (Mo), tantalum (Ta), titanium (Ti), tungsten (W), manganese (Mn), nickel (Ni), iron (Fe), and cobalt (Co); an alloy including any of these metal
  • the conductive films 104 , 112 a , and 112 b may have a single-layer structure or a stacked-layer structure of two or more layers.
  • the conductive films 104 , 112 a , and 112 b can be formed using a light-transmitting conductive material such as indium tin oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, indium tin oxide including titanium oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added.
  • a light-transmitting conductive material such as indium tin oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, indium tin oxide including titanium oxide, indium zinc oxide, or indium tin oxide to which silicon oxide is added.
  • a Cu—X alloy film (X is Mn, Ni, Cr, Fe, Co, Mo, Ta, or Ti) may be used for the conductive films 104 , 112 a , and 112 b .
  • Use of a Cu—X alloy film enables the manufacturing cost to be reduced because wet etching process can be used in the processing.
  • an insulating layer including at least one of the following films formed by a plasma enhanced chemical vapor deposition (PECVD) method, a sputtering method, or the like can be used: a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
  • PECVD plasma enhanced chemical vapor deposition
  • the insulating film 106 functions as a blocking film which keeps out oxygen.
  • the insulating film 106 can keep out oxygen.
  • the insulating film 107 that is in contact with the oxide semiconductor film 108 functioning as a channel formation region of the transistor 100 is preferably an oxide insulating film and preferably includes a region including oxygen in excess of the stoichiometric composition (oxygen-excess region).
  • the insulating film 107 is an insulating film which is capable of releasing oxygen.
  • the oxygen excess region may be formed by introduction of oxygen into the insulating film 107 after the deposition.
  • a method for introducing oxygen an ion implantation method, an ion doping method, a plasma immersion ion implantation method, plasma treatment, or the like may be employed.
  • hafnium oxide has a higher dielectric constant than silicon oxide and silicon oxynitride. Therefore, by using hafnium oxide, a thickness can be made larger than that of silicon oxide; thus, leakage current due to tunnel current can be low. That is, it is possible to provide a transistor with a low off-state current.
  • hafnium oxide with a crystalline structure has higher dielectric constant than hafnium oxide with an amorphous structure. Therefore, it is preferable to use hafnium oxide with a crystalline structure in order to provide a transistor with a low off-state current. Examples of the crystalline structure include a monoclinic crystal structure and a cubic crystal structure. Note that one embodiment of the present invention is not limited thereto.
  • a silicon nitride film is formed as the insulating film 106
  • a silicon oxide film is formed as the insulating film 107 .
  • the silicon nitride film has a higher dielectric constant than a silicon oxide film and needs a larger thickness for capacitance equivalent to that of the silicon oxide film.
  • the thickness of the insulating film can be increased. This makes it possible to reduce a decrease in withstand voltage of the transistor 100 and furthermore to increase the withstand voltage, thereby reducing electrostatic discharge damage to the transistor 100 .
  • the oxide semiconductor film 108 includes oxygen, In, Zn, and M (M is Ti, Ga, Y, Zr, Sn, La, Ce, Nd, or Hf).
  • M is Ti, Ga, Y, Zr, Sn, La, Ce, Nd, or Hf.
  • In—Ga oxide, In—Zn oxide, or In-M-Zn oxide can be used for the oxide semiconductor film 108 . It is particularly preferable to use In-M-Zn oxide for the oxide semiconductor film 108 .
  • the oxide semiconductor film 108 is formed of In-M-Zn oxide
  • the atomic ratio of metal elements of a sputtering target used for forming the In-M-Zn oxide satisfy In ⁇ M and Zn ⁇ M.
  • the oxide semiconductor film 108 is formed of In-M-Zn oxide
  • the use of the target including polycrystalline In-M-Zn oxide facilitates formation of the oxide semiconductor film 108 having crystallinity. Note that the atomic ratios of metal elements in the formed oxide semiconductor film 108 vary from the above atomic ratio of metal elements of the sputtering target within a range of +40% as an error.
  • the proportion of In and the proportion of M are preferably greater than or equal to 25 atomic % and less than 75 atomic %, respectively, or further preferably greater than or equal to 34 atomic % and less than 66 atomic %, respectively.
  • the energy gap of the oxide semiconductor film 108 is 2 eV or more, preferably 2.5 eV or more, or further preferably 3 eV or more. With the use of an oxide semiconductor having such a wide energy gap, the off-state current of the transistor 100 can be reduced.
  • the thickness of the oxide semiconductor film 108 is greater than or equal to 3 nm and less than or equal to 200 nm, preferably greater than or equal to 3 nm and less than or equal to 100 nm, or further preferably greater than or equal to 3 nm and less than or equal to 50 nm.
  • An oxide semiconductor film with low carrier density is used as the oxide semiconductor film 108 .
  • an oxide semiconductor film whose carrier density is lower than or equal to 1 ⁇ 10 17 /cm 3 , preferably lower than or equal to 1 ⁇ 10 15 /cm 3 , further preferably lower than or equal to 1 ⁇ 10 13 /cm 3 , or still further preferably lower than or equal to 1 ⁇ 10 11 /cm 3 is used as the oxide semiconductor film 108 .
  • a material with an appropriate composition may be used depending on required semiconductor characteristics and electrical characteristics (e.g., field-effect mobility and threshold voltage) of a transistor. Furthermore, in order to obtain required semiconductor characteristics of a transistor, it is preferable that the carrier density, the impurity concentration, the defect density, the atomic ratio of a metal element to oxygen, the interatomic distance, the density, and the like of the oxide semiconductor film 108 be set to be appropriate.
  • the oxide semiconductor film 108 an oxide semiconductor film in which the impurity concentration is low and density of defect states is low, in which case the transistor can have more excellent electrical characteristics.
  • the state in which impurity concentration is low and density of defect states is low (the amount of oxygen vacancy is small) is referred to as “highly purified intrinsic” or “substantially highly purified intrinsic”.
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has few carrier generation sources, and thus can have a low carrier density.
  • a transistor in which a channel formation region is formed in the oxide semiconductor film rarely has a negative threshold voltage (is rarely normally on).
  • a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has a low density of defect states and accordingly has few carrier traps in some cases. Furthermore, the highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film has an extremely low off-state current; even when an element has a channel width W of 1 ⁇ 10 6 ⁇ m and a channel length L of 10 ⁇ m, the off-state current can be less than or equal to the measurement limit of a semiconductor parameter analyzer, i.e., less than or equal to 1 ⁇ 10 ⁇ 13 A, at a voltage (drain voltage) between a source electrode and a drain electrode of from 1 V to 10 V.
  • the transistor in which the channel formation region is formed in the highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor film can have a small variation in electrical characteristics and high reliability. Charges trapped by the trap states in the oxide semiconductor film take a long time to be released and may behave like fixed charges. Thus, the transistor whose channel formation region is formed in the oxide semiconductor film having a high density of trap states has unstable electrical characteristics in some cases.
  • the impurities hydrogen, nitrogen, alkali metal, alkaline earth metal, and the like are given.
  • Hydrogen included in the oxide semiconductor film reacts with oxygen bonded to a metal atom to be water, and also causes oxygen vacancy in a lattice from which oxygen is released (or a portion from which oxygen is released). Due to entry of hydrogen into the oxygen vacancy, an electron serving as a carrier is generated in some cases. Furthermore, in some cases, bonding of part of hydrogen to oxygen bonded to a metal element causes generation of an electron serving as a carrier. Thus, a transistor including an oxide semiconductor film which contains hydrogen is likely to be normally on. Accordingly, it is preferable that hydrogen be reduced as much as possible in the oxide semiconductor film 108 .
  • the concentration of hydrogen which is measured by secondary ion mass spectrometry is lower than or equal to 2 ⁇ 10 20 atoms/cm 3 , preferably lower than or equal to 5 ⁇ 10 19 atoms/cm 3 , further preferably lower than or equal to 1 ⁇ 10 19 atoms/cm 3 , further preferably lower than or equal to 5 ⁇ 10 18 atoms/cm 3 , further preferably lower than or equal to 1 ⁇ 10 18 atoms/cm 3 , further preferably lower than or equal to 5 ⁇ 10 17 atoms/cm 3 , or further preferably lower than or equal to 1 ⁇ 10 16 atoms/cm 3 .
  • SIMS secondary ion mass spectrometry
  • the concentration of silicon or carbon (the concentration measured by SIMS) in the oxide semiconductor film 108 or the concentration of silicon or carbon (the concentration measured by SIMS) in the vicinity of an interface with the oxide semiconductor film 108 is set to be lower than or equal to 2 ⁇ 10 18 atoms/cm 3 , preferably lower than or equal to 2 ⁇ 10 17 atoms/cm 3 .
  • the concentration of alkali metal or alkaline earth metal of the oxide semiconductor film 108 which is measured by SIMS, is lower than or equal to 1 ⁇ 10 18 atoms/cm 3 , preferably lower than or equal to 2 ⁇ 10 16 atoms/cm 3 .
  • Alkali metal and alkaline earth metal might generate carriers when bonded to an oxide semiconductor, in which case the off-state current of the transistor might be increased. Therefore, it is preferable to reduce the concentration of alkali metal or alkaline earth metal of the oxide semiconductor film 108 .
  • the oxide semiconductor film 108 when including nitrogen, the oxide semiconductor film 108 easily becomes n-type by generation of electrons serving as carriers and an increase of carrier density. Thus, a transistor including an oxide semiconductor film which contains nitrogen is likely to have normally-on characteristics. For this reason, nitrogen in the oxide semiconductor film is preferably reduced as much as possible; the concentration of nitrogen which is measured by SIMS is preferably set to be, for example, lower than or equal to 5 ⁇ 10 18 atoms/cm 3 .
  • the oxide semiconductor film 108 may have a non-single-crystal structure, for example.
  • the non-single crystal structure includes a c-axis aligned crystalline oxide semiconductor (CAAC-OS) which is described later, a polycrystalline structure, a microcrystalline structure, or an amorphous structure, for example.
  • CAAC-OS c-axis aligned crystalline oxide semiconductor
  • the amorphous structure has the highest density of defect states
  • CAAC-OS has the lowest density of defect states.
  • the oxide semiconductor film 108 may have an amorphous structure, for example.
  • the oxide semiconductor films having the amorphous structure each have disordered atomic arrangement and no crystalline component, for example.
  • the oxide films having an amorphous structure have, for example, an absolutely amorphous structure and no crystal part.
  • the oxide semiconductor film 108 may be a mixed film including two or more of the following: a region having an amorphous structure, a region having a microcrystalline structure, a region having a polycrystalline structure, a region of CAAC-OS, and a region having a single-crystal structure.
  • the mixed film has a single-layer structure including, for example, two or more of a region having an amorphous structure, a region having a microcrystalline structure, a region having a polycrystalline structure, a CAAC-OS region, and a region having a single-crystal structure in some cases.
  • the mixed film has a stacked-layer structure of two or more of a region having an amorphous structure, a region having a microcrystalline structure, a region having a polycrystalline structure, a CAAC-OS region, and a region having a single-crystal structure.
  • the insulating films 114 and 116 each have a function as a second gate insulating film of the transistor 100 .
  • the insulating films 114 and 116 each have a function of supplying oxygen to the oxide semiconductor film 108 .
  • the insulating films 114 and 116 include oxygen.
  • the insulating film 114 is an insulating film which can transmit oxygen. Note that the insulating film 114 also functions as a film which relieves damage to the oxide semiconductor film 108 at the time of forming the insulating film 116 in a later step.
  • ESR electron spin resonance
  • the insulating film 114 can be formed using an oxide insulating film having a low density of states due to nitrogen oxide between the energy of the valence band maximum (E v — os ) and the energy of the conduction band minimum (E c — os ) of the oxide semiconductor film.
  • a silicon oxynitride film that releases less nitrogen oxide, an aluminum oxynitride film that releases less nitrogen oxide, and the like can be used as the oxide insulating film in which the density of states due to nitrogen oxide is low between E v — os and E c — os .
  • a silicon oxynitride film that releases less nitrogen oxide is a film of which the amount of released ammonia is larger than the amount of released nitrogen oxide in thermal desorption spectroscopy analysis; the amount of released ammonia is typically greater than or equal to 1 ⁇ 10 18 /cm 3 and less than or equal to 5 ⁇ 10 19 /cm 3 .
  • the amount of released ammonia is the amount of ammonia released by heat treatment with which the surface temperature of a film becomes higher than or equal to 50° C. and lower than or equal to 650° C., preferably higher than or equal to 50° C. and lower than or equal to 550° C.
  • Nitrogen oxide (NO x ; x is greater than or equal to 0 and less than or equal to 2, preferably greater than or equal to 1 and less than or equal to 2), typically NO 2 or NO, forms levels in the insulating film 114 , for example.
  • the level is positioned in the energy gap of the oxide semiconductor film 108 . Therefore, when nitrogen oxide is released and diffused to the interface between the insulating film 114 and the oxide semiconductor film 108 , an electron is in some cases trapped by the level on the insulating film 114 side. As a result, the trapped electron remains in the vicinity of the interface between the insulating film 114 and the oxide semiconductor film 108 ; thus, the threshold voltage of the transistor is shifted in the positive direction.
  • Nitrogen oxide reacts with ammonia and oxygen in heat treatment. Since nitrogen oxide included in the insulating film 114 reacts with ammonia included in the insulating film 116 in heat treatment, nitrogen oxide included in the insulating film 114 is reduced. Therefore, an electron is hardly trapped at the interface between the insulating film 114 and the oxide semiconductor film 108 .
  • the insulating film 114 can be formed using an oxide insulating film having a low density of states due to nitrogen oxide. Note that the density of states due to nitrogen oxide can be formed between the energy of the valence band maximum (E v — os ) and the energy of the conduction band minimum (E c — os ) of the oxide semiconductor film. By using such an oxide insulating film, the shift in the threshold voltage of the transistor can be reduced, which leads to a smaller change in the electrical characteristics of the transistor.
  • the split width of the first and second signals and the split width of the second and third signals that are obtained by ESR measurement using an X-band are each approximately 5 mT.
  • the sum of the spin densities of the first signal that appears at a g-factor of greater than or equal to 2.037 and less than or equal to 2.039, the second signal that appears at a g-factor of greater than or equal to 2.001 and less than or equal to 2.003, and the third signal that appears at a g-factor of greater than or equal to 1.964 and less than or equal to 1.966 is lower than 1 ⁇ 10 18 spins/cm 3 , typically higher than or equal to 1 ⁇ 10 17 spins/cm 3 and lower than 1 ⁇ 10 18 spins/cm 3 .
  • the first signal that appears at a g-factor of greater than or equal to 2.037 and less than or equal to 2.039, the second signal that appears at a g-factor of greater than or equal to 2.001 and less than or equal to 2.003, and the third signal that appears at a g-factor of greater than or equal to 1.964 and less than or equal to 1.966 correspond to signals attributed to nitrogen oxide (NO x ; x is greater than or equal to 0 and less than or equal to 2, preferably greater than or equal to 1 and less than or equal to 2).
  • nitrogen oxide include nitrogen monoxide and nitrogen dioxide.
  • the lower the total spin density of the first signal that appears at a g-factor of greater than or equal to 2.037 and less than or equal to 2.039, the second signal that appears at a g-factor of greater than or equal to 2.001 and less than or equal to 2.003, and the third signal that appears at a g-factor of greater than or equal to 1.964 and less than or equal to 1.966 is, the lower the content of nitrogen oxide in the oxide insulating film is.
  • the concentration of nitrogen of the oxide insulating film having a low density of states due to nitrogen oxide between E v — os and E c — os measured by SIMS is lower than or equal to 6 ⁇ 10 20 atoms/cm 3 .
  • the oxide insulating film in which the density of states due to nitrogen oxide is low between E v — os and E c — os is formed by a PECVD method at a substrate temperature higher than or equal to 220° C., higher than or equal to 280° C., or higher than or equal to 350° C. using silane and dinitrogen monoxide, whereby a dense and hard film can be formed.
  • the insulating film 116 is formed using an oxide insulating film that includes oxygen in excess of that in the stoichiometric composition. Part of oxygen is released by heating from the oxide insulating film including oxygen in excess of that in the stoichiometric composition.
  • the oxide insulating film including oxygen in excess of that in the stoichiometric composition is an oxide insulating film of which the amount of released oxygen converted into oxygen atoms is greater than or equal to 1.0 ⁇ 10 19 atoms/cm 3 , preferably greater than or equal to 3.0 ⁇ 10 20 atoms/cm 3 , in TDS measurement. Note that the temperature of the film surface in the TDS measurement is preferably higher than or equal to 100° C. and lower than or equal to 700° C., or higher than or equal to 100° C. and lower than or equal to 500° C.
  • the insulating film 116 is provided more apart from the oxide semiconductor film 108 than the insulating film 114 is; thus, the insulating film 116 may have higher density of defects than the insulating film 114 .
  • the insulating films 114 and 116 can be formed using insulating films formed of the same kinds of materials; thus, a boundary between the insulating films 114 and 116 cannot be clearly observed in some cases. Thus, in this embodiment, the boundary between the insulating films 114 and 116 is shown by a dashed line. Although a two-layer structure of the insulating films 114 and 116 is described in this embodiment, the present invention is not limited to this. For example, a single-layer structure of the insulating film 114 may be used.
  • the oxide semiconductor film 117 functioning as a second gate electrode includes the same metal element as at least one of the metal elements of the oxide semiconductor film 108 .
  • the oxide semiconductor filmhn 108 includes oxygen, In, Zn, and M (M is Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf)
  • the oxide semiconductor film 117 includes at least one element selected from In, Zn, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf.
  • In—Sn oxide, In—Zn oxide, In—Ga oxide, Zn oxide, Al—Zn oxide, or In—Ga—Zn oxide is preferably used for the oxide semiconductor film 117 .
  • the oxide semiconductor film 117 preferably includes at least Ga. In the case where In—Ga—Zn oxide is used for the oxide semiconductor film 108 , the oxide semiconductor film 117 preferably includes at least Zn. In the case where In—Ga—Zn oxide is used for the oxide semiconductor film 108 , the oxide semiconductor film 117 preferably includes at least Ga and Zn.
  • the thickness of the oxide semiconductor film 117 is greater than or equal to 5 nm and less than or equal to 35 nm, preferably greater than or equal to 5 nm and less than or equal to 15 nm.
  • the resistivity of the oxide semiconductor film 117 is greater than or equal to 10 ⁇ 8 ⁇ cm and less than or equal to 10 ⁇ 1 ⁇ cm, preferably greater than or equal to 10 ⁇ 5 ⁇ cm and less than or equal to 10 ⁇ 2 ⁇ cm, for example.
  • the insulating film 118 functions as a protective insulating film for the transistor 100 .
  • the insulating film 118 includes nitrogen.
  • the insulating film 118 includes nitrogen and silicon.
  • the insulating film 118 has a function of blocking oxygen, hydrogen, water, alkali metal, alkaline earth metal, or the like. It is possible to prevent outward release and diffusion of oxygen from the oxide semiconductor film 108 , outward release and diffusion of oxygen included in the insulating films 114 and 116 , and entry of hydrogen, water, or the like into the oxide semiconductor film 108 from the outside by providing the insulating film 118 .
  • a nitride insulating film can be used as the insulating film 118 , for example.
  • nitride insulating film a silicon nitride film, a silicon nitride oxide film, an aluminum nitride film, an aluminum nitride oxide film, and the like can be given. Note that instead of the nitride insulating film having a blocking effect against oxygen, hydrogen, water, alkali metal, alkaline earth metal, and the like, an oxide insulating film having a blocking effect against oxygen, hydrogen, water, and the like may be provided.
  • an aluminum oxide film, an aluminum oxynitride film, a gallium oxide film, a gallium oxynitride film, an yttrium oxide film, an yttrium oxynitride film, a hafnium oxide film, a hafnium oxynitride film, and the like can be given.
  • films such as the conductive films, the insulating films, and the oxide semiconductor film which are described above can be formed by a sputtering method or a PECVD method
  • such films may be formed by another method, e.g., a thermal CVD method or an atomic layer deposition (ALD) method.
  • a thermal CVD method a metal organic chemical vapor deposition (MOCVD) method can be given.
  • MOCVD metal organic chemical vapor deposition
  • a thermal CVD method has an advantage that no defect due to plasma damage is generated because it does not utilize plasma for forming a film.
  • Deposition by a thermal CVD method may be performed in such a manner that a source gas and an oxidizer are supplied to a chamber at a time so that the pressure in the chamber is set to an atmospheric pressure or a reduced pressure, and react with each other in the vicinity of the substrate or over the substrate.
  • Deposition by an ALD method may be performed in such a manner that the pressure in a chamber is set to an atmospheric pressure or a reduced pressure, source gases for reaction are sequentially introduced into the chamber, and then the sequence of the gas introduction is repeated.
  • source gases for reaction are sequentially introduced into the chamber, and then the sequence of the gas introduction is repeated.
  • two or more kinds of source gases are sequentially supplied to the chamber by switching respective switching valves (also referred to as high-speed valves).
  • a first source gas is introduced, an inert gas (e.g., argon or nitrogen) or the like is introduced at the same time as or after the introduction of the first gas so that the source gases are not mixed, and then a second source gas is introduced.
  • an inert gas e.g., argon or nitrogen
  • the inert gas serves as a carrier gas, and the inert gas may also be introduced at the same time as the introduction of the second source gas.
  • the first source gas may be exhausted by vacuum evacuation instead of the introduction of the inert gas, and then the second source gas may be introduced.
  • the first source gas is adsorbed on the surface of the substrate to form a first layer; then the second source gas is introduced to react with the first layer; as a result, a second layer is stacked over the first layer, so that a thin film is formed.
  • the sequence of the gas introduction is repeated plural times until a desired thickness is obtained, whereby a thin film with excellent step coverage can be formed.
  • the thickness of the thin film can be adjusted by the number of repetition times of the sequence of the gas introduction; therefore, an ALD method makes it possible to accurately adjust a thickness and thus is suitable for manufacturing a minute FET.
  • the variety of films such as the conductive films, the insulating films, and the oxide semiconductor films which are described above can be formed by a thermal CVD method such as an MOCVD method.
  • a thermal CVD method such as an MOCVD method.
  • trimethylindium, trimethylgallium, and dimethylzinc are used.
  • the chemical formula of trimethylindium is In(CH 3 ) 3 .
  • the chemical formula of trimethylgallium is Ga(CH 3 ) 3 .
  • the chemical formula of dimethylzinc is Zn(CH 3 ) 2 .
  • triethylgallium (chemical formula: Ga(C 2 H 5 ) 3 ) can be used instead of trimethylgallium and diethylzinc (chemical formula: Zn(C 2 H 5 ) 2 ) can be used instead of dimethylzinc.
  • a hafnium oxide film is formed by a deposition apparatus using an ALD method
  • two kinds of gases i.e., ozone (O 3 ) as an oxidizer and a source gas which is obtained by vaporizing liquid containing a solvent and a hafnium precursor compound (e.g., a hafnium alkoxide or a hafnium amide such as tetrakis(dimethylamide)hafnium (TDMAH)
  • a hafnium precursor compound e.g., a hafnium alkoxide or a hafnium amide such as tetrakis(dimethylamide)hafnium (TDMAH)
  • TDMAH tetrakis(dimethylamide)hafnium
  • the chemical formula of tetrakis(dimethylamide)hafnium is Hf[N(CH 3 ) 2 ] 4 .
  • another material liquid include tetrakis(eth
  • an aluminum oxide film is formed by a deposition apparatus using an ALD method
  • two kinds of gases e.g., H 2 O as an oxidizer and a source gas which is obtained by vaporizing liquid containing a solvent and an aluminum precursor compound (e.g., trimethylaluminum (TMA)) are used.
  • TMA trimethylaluminum
  • the chemical formula of trimethylaluminum is Al(CH 3 ) 3 .
  • another material liquid include tris(dimethylamide)aluminum, triisobutylaluminum, and aluminum tris(2,2,6,6-tetramethyl-3,5-heptanedionate).
  • hexachlorodisilane is adsorbed on a surface where a film is to be formed, chlorine included in the adsorbate is removed, and radicals of an oxidizing gas (e.g., O 2 or dinitrogen monoxide) are supplied to react with the adsorbate.
  • an oxidizing gas e.g., O 2 or dinitrogen monoxide
  • a WF 6 gas and a B 2 H 6 gas are sequentially introduced plural times to form an initial tungsten film, and then a WF 6 gas and an H 2 gas are sequentially introduced plural times to form a tungsten film.
  • an SiH 4 gas may be used instead of a B 2 H 6 gas.
  • an oxide semiconductor film e.g., an In—Ga—Zn—O film
  • an In(CH 3 ) 3 gas and an O 3 gas are sequentially introduced plural times to form an InO layer
  • a Ga(CH 3 ) 3 gas and an O 3 gas are sequentially introduced plural times to form a GaO layer
  • a Zn(CH 3 ) 2 gas and an O 3 gas are sequentially introduced plural times to form a ZnO layer.
  • a mixed compound layer such as an In—Ga—O layer, an In—Zn—O layer, or a Ga—Zn—O layer may be formed by mixing of these gases.
  • an H 2 O gas which is obtained by bubbling with an inert gas such as Ar may be used instead of an O 3 gas, it is preferable to use an O 3 gas, which does not contain H.
  • an In(CH 3 ) 3 gas instead of an In(CH 3 ) 3 gas, an In(C 2 H 5 ) 3 gas may be used.
  • a Ga(CH 3 ) 3 gas instead of a Ga(C 2 H 5 ) 3 gas, a Zn(CH 3 ) 2 gas may be used.
  • FIGS. 2A to 2C A structure example different from that of the transistor 100 in FIGS. 1A to 1C is described with reference to FIGS. 2A to 2C . Note that in the case where a portion has a function similar to that described above, the same hatch pattern is applied to the portion, and the portion is not especially denoted by a reference numeral in some cases.
  • FIG. 2A is a top view of a transistor 100 A that is a semiconductor device of one embodiment of the present invention.
  • FIG. 2B is a cross-sectional view taken along dashed-dotted line X 1 -X 2 illustrated in FIG. 2A
  • FIG. 2C is a cross-sectional view taken along dashed-dotted line Y 1 -Y 2 illustrated in FIG. 2A .
  • the transistor 100 A includes the conductive film 104 functioning as a first gate electrode over the substrate 102 , the insulating film 106 over the substrate 102 and the conductive film 104 , the insulating film 107 over the insulating film 106 , the oxide semiconductor film 108 over the insulating film 107 , the conductive films 112 a and 112 b functioning as source and drain electrodes electrically connected to the oxide semiconductor film 108 , the insulating films 114 and 116 over the oxide semiconductor film 108 and the conductive films 112 a and 112 b , and the oxide semiconductor film 117 functioning as a second gate electrode over the insulating film 116 . As illustrated in FIGS.
  • the insulating film 118 covering the insulating film 116 and the oxide semiconductor film 117 may be provided. Furthermore, the conductive film 120 electrically connected to the conductive film 112 b through the opening 143 , which is provided in the insulating films 114 , 116 , and 118 , may be provided.
  • the transistor 100 A is different from the transistor 100 described above in that the openings 142 a and 142 b are not provided. Note that the other components of the transistor 100 A are the same as those of the transistor 100 described above, and an effect similar to that of the transistor 100 can be obtained.
  • potentials which are different and independent from each other can be supplied to the conductive film 104 functioning as a first gate electrode and the oxide semiconductor film 117 functioning as a second gate electrode.
  • a negative or positive bias voltage is applied to the oxide semiconductor film 117 functioning as a second gate electrode so that the oxide semiconductor film 117 can have a function of adjusting the threshold voltage of the transistor 100 A.
  • a ground potential is applied to the oxide semiconductor film 117 functioning as a second gate electrode so that the potential of the oxide semiconductor film 117 can be a fixed potential.
  • FIGS. 3A to 3C A structure example different from that of the transistor 100 in FIGS. 1A to 1C is described with reference to FIGS. 3A to 3C . Note that in the case where a portion has a function similar to that described above, the same hatch pattern is applied to the portion, and the portion is not especially denoted by a reference numeral in some cases.
  • FIG. 3A is a top view of a transistor 100 B that is a semiconductor device of one embodiment of the present invention.
  • FIG. 3B is a cross-sectional view taken along dashed-dotted line X 1 -X 2 illustrated in FIG. 3A
  • FIG. 3C is a cross-sectional view taken along dashed-dotted line Y 1 -Y 2 illustrated in FIG. 3A .
  • the transistor 100 B includes the conductive film 104 functioning as a first gate electrode over the substrate 102 , the insulating film 106 over the substrate 102 and the conductive film 104 , the insulating film 107 over the insulating film 106 , the oxide semiconductor film 108 over the insulating film 107 , the insulating film 114 over the oxide semiconductor film 108 , the insulating film 116 over the insulating film 114 , the conductive films 112 a and 112 b functioning as source and drain electrodes electrically connected to the oxide semiconductor film 108 though openings 141 a and 141 b provided in the insulating film 114 and the insulating film 116 , and the oxide semiconductor film 117 functioning as a second gate electrode, which is provided over the insulating film 116 and overlaps with the oxide semiconductor film 108 .
  • the oxide semiconductor film 117 is electrically connected to the conductive film 104 through the openings 142 a and 142 b provided in the insulating films 106 , 107 , 114 , and 116 .
  • the insulating film 118 covering the insulating film 116 , the conductive films 112 a and 112 b , and the oxide semiconductor film 117 may be provided.
  • the conductive film 120 electrically connected to the conductive film 112 b through the opening 143 which is provided in the insulating film 118 , may be provided.
  • the transistor 100 and the transistor 100 A have channel-etched structures
  • the transistor 100 B in FIGS. 3A to 3C has a channel-protective structure.
  • either the channel-etched structure or the channel-protective structure can be applied to the semiconductor device of one embodiment of the present invention.
  • the transistor 100 B is provided with the insulating films 114 and 116 over the oxide semiconductor film 108 ; therefore, oxygen included in the insulating films 114 and 116 can fill oxygen vacancy in the oxide semiconductor film 108 .
  • the oxide semiconductor film 117 which has a function as a second gate electrode, provided over the insulating film 116 can control a potential on the back channel side of the channel formation region of the oxide semiconductor film 108 . Therefore, in the semiconductor device of one embodiment of the present invention, the oxygen vacancy in the oxide semiconductor film 108 can be filled favorably and the potential on the back channel side of the oxide semiconductor film 108 can be controlled, whereby a highly reliable semiconductor device can be provided.
  • FIGS. 4A to 4C A structure example different from that of the transistor 100 C in FIGS. 3A to 3C is described with reference to FIGS. 4A to 4C . Note that in the case where a portion has a function similar to that described above, the same hatch pattern is applied to the portion, and the portion is not especially denoted by a reference numeral in some cases.
  • FIG. 4A is a top view of a transistor 100 C that is a semiconductor device of one embodiment of the present invention.
  • FIG. 4B is a cross-sectional view taken along a dashed dotted line X 1 -X 2 in FIG. 4A
  • FIG. 4C is a cross-sectional view taken along a dashed dotted line Y 1 -Y 2 in FIG. 4A .
  • the transistor 100 C includes the conductive film 104 functioning as a first gate electrode over the substrate 102 , the insulating film 106 over the substrate 102 and the conductive film 104 , the insulating film 107 over the insulating film 106 , the oxide semiconductor film 108 over the insulating film 107 , the insulating film 114 over the oxide semiconductor film 108 , the insulating film 116 over the insulating film 114 , the conductive films 112 a and 112 b functioning as source and drain electrodes electrically connected to the oxide semiconductor film 108 though the openings 141 a and 141 b provided in the insulating film 114 and the insulating film 116 , and the oxide semiconductor film 117 functioning as a second gate electrode, which is provided over the insulating film 116 and overlaps with the oxide semiconductor film 108 .
  • the insulating film 118 covering the insulating film 116 , the conductive films 112 a and 112 b , and the oxide semiconductor film 117 may be provided. Furthermore, the conductive film 120 electrically connected to the conductive film 112 b through the opening 143 , which is provided in the insulating film 118 , may be provided.
  • the transistor 100 C is different from the transistor 100 B described above in that the openings 142 a and 142 b are not provided. Note that the other components of the transistor 100 C are the same as those of the transistor 100 B described above, and an effect similar to that of the transistor 100 B can be obtained.
  • the oxide semiconductor film 117 functioning as a second gate electrode has a function of adjusting the threshold voltage of the transistor 100 C by applying a negative or positive bias voltage thereto.
  • the potential of the oxide semiconductor film 117 functioning as a second gate electrode can be a fixed potential by applying a ground potential (GND) thereto.
  • transistor 100 C the other components of the transistor 100 C are the same as those of the transistor 100 illustrated in FIGS. 1A to 1C , and an effect similar to that of the transistor 100 can be obtained.
  • FIGS. 5A to 5D A structure example different from that of the transistor 100 in FIGS. 1A to 1C is described with reference to FIGS. 5A to 5D . Note that in the case where a portion has a function similar to that described above, the same hatch pattern is applied to the portion, and the portion is not especially denoted by a reference numeral in some cases.
  • FIGS. 5A and 5B each illustrate a cross-sectional view of a modification example of the transistor 100 in FIGS. 1B and 1C .
  • FIGS. 5C and 5D each illustrate a cross-sectional view of another modification example of the transistor 100 in FIGS. 1B and 1C .
  • a transistor 100 D in FIGS. 5A and 5B has the same structure as the transistor 100 in FIGS. 1B and 1C except that the oxide semiconductor film 108 has a three-layer structure.
  • the oxide semiconductor film 108 of the transistor 100 D includes an oxide semiconductor film 108 a , an oxide semiconductor film 108 b , and an oxide semiconductor film 108 c .
  • a transistor 100 E in FIGS. 5C and 5D has the same structure as the transistor 100 in FIGS. 1B and 1C except that the oxide semiconductor film 108 has a two-layer structure.
  • the oxide semiconductor film 108 of the transistor 100 E includes the oxide semiconductor film 108 b and the oxide semiconductor film 108 c.
  • band structures including the oxide semiconductor films 108 a , 108 b , and 108 c and insulating films in contact with the oxide semiconductor films 108 b and 108 c are described with reference to FIGS. 6A and 6B .
  • FIG. 6A shows an example of a band structure in the thickness direction of a stack including the insulating film 107 , the oxide semiconductor films 108 a , 108 b , and 108 c , and the insulating film 114 .
  • FIG. 6B shows an example of a band structure in the thickness direction of a stack including the insulating film 107 , the oxide semiconductor films 108 b and 108 c , and the insulating film 114 .
  • energy level of the conduction band minimum (Ec) of each of the insulating film 107 , the oxide semiconductor films 108 a , 108 b , and 108 c , and the insulating film 114 is shown in the band structures.
  • the energy level of the conduction band minimum gradually varies between the oxide semiconductor film 108 a and the oxide semiconductor film 108 b and between the oxide semiconductor film 108 b and the oxide semiconductor film 108 c .
  • the energy level of the conduction band minimum is continuously varied or continuously connected.
  • impurity which forms a defect state such as a trap center or a recombination center for the oxide semiconductor, at the interface between the oxide semiconductor film 108 a and the oxide semiconductor film 108 b or at the interface between the oxide semiconductor film 108 b and the oxide semiconductor film 108 c.
  • the oxide semiconductor film 108 b serves as a well, and a channel formation region is formed in the oxide semiconductor film 108 b in the transistor with the stacked-layer structure.
  • the oxide semiconductor film 108 b can be distanced away from trap states.
  • the trap states might be more distant from the vacuum level than the energy level of the conduction band minimum (Ec) of the oxide semiconductor film 108 b functioning as a channel formation region, so that electrons are likely to be accumulated in the trap states.
  • the electrons When the electrons are accumulated in the trap states, the electrons become negative fixed electric charge, so that the threshold voltage of the transistor is shifted in the positive direction. Therefore, it is preferable that the trap states be closer to the vacuum level than the energy level of the conduction band minimum (Ec) of the oxide semiconductor film 108 b .
  • Such a structure inhibits accumulation of electrons in the trap states. As a result, the on-state current and the field-effect mobility of the transistor can be increased.
  • the energy level of the conduction band minimum of each of the oxide semiconductor films 108 a and 108 c is closer to the vacuum level than that of the oxide semiconductor film 108 b .
  • a difference in energy level between the conduction band minimum of the oxide semiconductor film 108 b and the conduction band minimum of each of the oxide semiconductor films 108 a and 108 c is 0.15 eV or more or 0.5 eV or more and 2 eV or less or 1 eV or less.
  • the difference between the electron affinity of each of the oxide semiconductor films 108 a and 108 c and the electron affinity of the oxide semiconductor film 108 b is 0.15 eV or more or 0.5 eV or more and 2 eV or less or 1 eV or less.
  • the oxide semiconductor film 108 b serves as a main path of current and functions as a channel formation region.
  • the oxide semiconductor films 108 a and 108 c each include one or more metal elements included in the oxide semiconductor film 108 b in which a channel formation region is formed, interface scattering is less likely to occur at the interface between the oxide semiconductor film 108 a and the oxide semiconductor film 108 b or at the interface between the oxide semiconductor film 108 b and the oxide semiconductor film 108 c .
  • the transistor can have high field-effect mobility because the movement of carriers is not hindered at the interface.
  • a material having sufficiently low conductivity is used for the oxide semiconductor films 108 a and 108 c .
  • a material which has a smaller electron affinity (a difference in energy level between the vacuum level and the conduction band minimum) than the oxide semiconductor film 108 b and has a difference in energy level in the conduction band minimum from the oxide semiconductor film 108 b (band offset) is used for the oxide semiconductor films 108 a and 108 c .
  • the oxide semiconductor films 108 a and 108 c using a material whose energy level of the conduction band minimum is closer to the vacuum level than that of the oxide semiconductor film 108 b by 0.2 eV or more, preferably 0.5 eV or more.
  • the oxide semiconductor films 108 a and 108 c not have a spinel crystal structure. This is because if the oxide semiconductor films 108 a and 108 c have a spinel crystal structure, constituent elements of the conductive films 112 a and 112 b might be released, and diffused to the oxide semiconductor film 108 b at the interface between the spinel crystal structure and another region.
  • each of the oxide semiconductor film 108 a and 108 c is preferably a CAAC-OS, which is described later, in which case a higher blocking property against constituent elements of the conductive films 112 a and 112 b , for example, copper elements, is obtained.
  • each of the oxide semiconductor films 108 a and 108 c is greater than or equal to a thickness that is capable of inhibiting release and diffusion of the constituent elements of the conductive films 112 a and 112 b to the oxide semiconductor film 108 b , and less than a thickness that inhibits supply of oxygen from the insulating film 114 to the oxide semiconductor film 108 b .
  • a thickness that is capable of inhibiting release and diffusion of the constituent elements of the conductive films 112 a and 112 b to the oxide semiconductor film 108 b is less than a thickness that inhibits supply of oxygen from the insulating film 114 to the oxide semiconductor film 108 b .
  • the thickness of each of the oxide semiconductor films 108 a and 108 c is less than or equal to 100 nm, oxygen can be effectively supplied from the insulating films 114 and 116 to the oxide semiconductor film 108 b.
  • the oxide semiconductor films 108 a and 108 c are each an In-M-Zn oxide in which the atomic ratio of the element M (M is Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf) is higher than that of In, the energy gap of each of the oxide semiconductor films 108 a and 108 c can be large and the electron affinity thereof can be small. Therefore, a difference in electron affinity between the oxide semiconductor film 108 b and each of the oxide semiconductor films 108 a and 108 c may be controlled by the proportion of the element M.
  • M is Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf
  • oxygen vacancy is less likely to be generated in the oxide semiconductor film in which the atomic ratio of Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf is higher than that of In because Ti, Ga, Sn, Y, Zr, La, Ce, Nd, and Hf each are a metal element that is strongly bonded to oxygen.
  • the proportions of In and M is preferably as follows: the atomic percentage of In is less than 50 atomic % and the atomic percentage of Mis greater than or equal to 50 atomic %; or further preferably, the atomic percentage of In is less than 25 atomic % and the atomic percentage of M is greater than or equal to 75 atomic %.
  • a gallium oxide film may be used as each of the oxide semiconductor films 108 a and 108 c .
  • a Ga—Zn oxide film may be used as each of the oxide semiconductor films 108 a and 108 c.
  • each of the oxide semiconductor films 108 a , 108 b , and 108 c is an In-M-Zn oxide
  • the proportion of M atoms in each of the oxide semiconductor films 108 a and 108 c is higher than that in the oxide semiconductor film 108 b .
  • the proportion of M atoms in each of the oxide semiconductor films 108 a and 108 c is 1.5 or more times, preferably twice or more times, or further preferably three or more times as high as that in the oxide semiconductor film 108 b.
  • the oxide semiconductor films 108 a , 108 b , and 108 c are each an In-M-Zn oxide
  • y 2 /x 2 is larger than y 1 /x 1
  • preferably y 2 /x 2 is 1.5 or more times as large as y 1 /x 1
  • y 2 /x 2 is two or more times as large as y 1 /x 1
  • or still further preferably y 2 /x 2 is three or more times or four or more times as large as y 1 /x 1 .
  • y 1 is preferably greater than or equal to x 1 in the oxide semiconductor film 108 b , because stable electrical characteristics of a transistor including the oxide semiconductor film 108 b can be achieved.
  • y 1 is three or more times as large as x 1 , the field-effect mobility of the transistor including the oxide semiconductor film 108 b is reduced. Accordingly, y 1 is preferably smaller than three times x 1 .
  • x 1 /y 1 is preferably greater than or equal to 1 ⁇ 3 and less than or equal to 6, or further preferably greater than or equal to 1 and less than or equal to 6, and z 1 /y 1 is preferably greater than or equal to 1 ⁇ 3 and less than or equal to 6, or further preferably greater than or equal to 1 and less than or equal to 6.
  • a CAAC-OS to be described later is easily formed as the oxide semiconductor film 108 b .
  • x 2 /y 2 is preferably less than x 1 /y 1
  • z 2 /Y 2 is preferably greater than or equal to 1 ⁇ 3 and less than or equal to 6, or further preferably greater than or equal to 1 and less than or equal to 6.
  • the oxide semiconductor films 108 a and 108 c are each an In-M oxide
  • a divalent metal element e.g., zinc
  • the oxide semiconductor films 108 a and 108 c which do not include a spinel crystal structure can be formed.
  • an In—Ga oxide film can be used as the oxide semiconductor films 108 a and 108 c .
  • y/(x+y) be less than or equal to 0.96, or further preferably less than or equal to 0.95, for example, 0.93.
  • the proportions of the atoms in the above atomic ratio vary within a range of ⁇ 40% as an error.
  • the structures of the transistors of this embodiment can be freely combined with each other.
  • FIGS. 7A to 7H , FIGS. 8A to 8H , and FIGS. 9A to 9H are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIGS. 7A , 7 C, 7 E, and 7 G, FIGS. 8A , 8 C, 8 E, and 8 G, and FIGS. 9A , 9 C, 9 E, and 9 G are each a cross-sectional view in the channel length direction of the transistor 100
  • FIGS. 7B , 7 D, 7 F, and 7 H, FIGS. 8B , 8 D, 8 F, and 8 H, and FIGS. 9B , 9 D, 9 F, and 9 H are each a cross-sectional view in the channel width direction of the transistor 100 .
  • the films included in the transistor 100 can be formed by any of a sputtering method, a chemical vapor deposition (CVD) method, a vacuum evaporation method, and a pulsed laser deposition (PLD) method.
  • a coating method or a printing method can be used.
  • the sputtering method and a PECVD method are typical examples of the film formation method, a thermal CVD method or an atomic layer deposition (ALD) method may be used.
  • the thermal CVD method an MOCVD method may be used, for example.
  • Deposition by the thermal CVD method may be performed in such a manner that the pressure in a chamber is set to an atmospheric pressure or a reduced pressure, and a source gas and an oxidizer are supplied to the chamber at a time and react with each other in the vicinity of the substrate or over the substrate.
  • the thermal CVD method has an advantage that no defect due to plasma damage is caused.
  • Deposition by the ALD method may be performed in such a manner that the pressure in a chamber is set to an atmospheric pressure or a reduced pressure, source gases for reaction are sequentially introduced into the chamber, and then the sequence of the gas introduction is repeated.
  • source gases for reaction are sequentially introduced into the chamber, and then the sequence of the gas introduction is repeated.
  • two or more kinds of source gases are sequentially supplied to the chamber by switching switching valves (also referred to as high-speed valves).
  • a first source gas is introduced, an inert gas (e.g., argon or nitrogen) or the like is introduced at the same time as or after introduction of the first gas so that the source gases are not mixed, and then a second source gas is introduced.
  • an inert gas e.g., argon or nitrogen
  • the inert gas serves as a carrier gas, and the inert gas may also be introduced at the same time as the introduction of the second source gas.
  • the first source gas may be exhausted by vacuum evacuation instead of the introduction of the inert gas, and then the second source gas may be introduced.
  • the first source gas is adsorbed on the surface of the substrate to form a first single-atomic layer; then the second source gas is introduced to react with the first single-atomic layer; as a result, a second single-atomic layer is stacked over the first single-atomic layer, so that a thin film is formed.
  • the sequence of the gas introduction is repeated plural times until a desired thickness is obtained, whereby a thin film with excellent step coverage can be formed.
  • the thickness of the thin film can be adjusted by the number of repetition times of the sequence of the gas introduction; therefore, an ALD method makes it possible to accurately adjust a thickness and thus is suitable for manufacturing a minute transistor.
  • a conductive film is formed over the substrate 102 and processed through a lithography process and an etching process, whereby the conductive film 104 functioning as a first gate electrode is formed. Then, the insulating films 106 and 107 functioning as first gate insulating films are formed over the conductive film 104 (see FIGS. 7A and 7B ).
  • the conductive film 104 functioning as a first gate electrode can be formed by a sputtering method, a CVD method, a vacuum evaporation method, or a PLD method. Alternatively, a coating method or a printing method can be used. Although typical deposition methods are a sputtering method and a PECVD method, a thermal CVD method, such as an MOCVD method, or an ALD method described above may be used.
  • a glass substrate is used as the substrate 102 , and as the conductive film 104 functioning as a first gate electrode, a 100-nm-thick tungsten film is formed by a sputtering method.
  • the insulating films 106 and 107 functioning as first gate insulating films can be formed by a sputtering method, a PECVD method, a thermal CVD method, a vacuum evaporation method, a PLD method, or the like.
  • a 400-nm-thick silicon nitride film as the insulating film 106 and a 50-nm-thick silicon oxynitride film as the insulating film 107 are formed by a PECVD method.
  • the insulating film 106 can have a stacked-layer structure of silicon nitride films. Specifically, the insulating film 106 can have a three-layer structure of a first silicon nitride film, a second silicon nitride film, and a third silicon nitride film.
  • An example of the three-layer structure is as follows.
  • the first silicon nitride film can be formed to have a thickness of 50 nm under the conditions where silane at a flow rate of 200 sccm, nitrogen at a flow rate of 2000 sccm, and an ammonia gas at a flow rate of 100 sccm are supplied as a source gas to a reaction chamber of a PECVD apparatus, the pressure in the reaction chamber is controlled to 100 Pa, and the power of 2000 W is supplied using a 27.12 MHz high-frequency power source.
  • the second silicon nitride film can be formed to have a thickness of 300 nm under the conditions where silane at a flow rate of 200 sccm, nitrogen at a flow rate of 2000 sccm, and an ammonia gas at a flow rate of 2000 sccm are supplied as a source gas to the reaction chamber of the PECVD apparatus, the pressure in the reaction chamber is controlled to 100 Pa, and the power of 2000 W is supplied using a 27.12 MHz high-frequency power source.
  • the third silicon nitride film can be formed to have a thickness of 50 nm under the conditions where silane at a flow rate of 200 sccm and nitrogen at a flow rate of 5000 sccm are supplied as a source gas to the reaction chamber of the PECVD apparatus, the pressure in the reaction chamber is controlled to 100 Pa, and the power of 2000 W is supplied using a 27.12 MHz high-frequency power source.
  • first silicon nitride film, the second silicon nitride film, and the third silicon nitride film can each be formed at a substrate temperature of 350° C.
  • the insulating film 106 has the three-layer structure of silicon nitride films, for example, in the case where a conductive film including Cu is used as the conductive film 104 , the following effect can be obtained.
  • the first silicon nitride film can inhibit release and diffusion of a copper (Cu) element from the conductive film 104 .
  • the second silicon nitride film has a function of releasing hydrogen and can improve withstand voltage of the insulating film functioning as a gate insulating film.
  • the third silicon nitride film releases a small amount of hydrogen and can inhibit diffusion of hydrogen released from the second silicon nitride film.
  • the insulating film 107 is preferably an insulating film including oxygen to Improve characteristics of an interface with the oxide semiconductor film 108 formed later.
  • the oxide semiconductor film 108 is formed over the insulating film 107 (see FIGS. 7C and 7D ).
  • heat treatment may be performed at a temperature higher than or equal to 150° C. and lower than the strain point of the substrate, preferably higher than or equal to 200° C. and lower than or equal to 450° C., or further preferably higher than or equal to 300° C. and lower than or equal to 450° C.
  • the heat treatment performed here serves as one kind of treatment for increasing the purity of the oxide semiconductor film and can reduce hydrogen, water, and the like included in the oxide semiconductor film 108 .
  • the heat treatment for the purpose of reducing hydrogen, water, and the like may be performed before the oxide semiconductor film 108 is processed into an island shape.
  • An electric furnace, an RTA apparatus, or the like can be used for the heat treatment performed on the oxide semiconductor film 108 .
  • the heat treatment can be performed at a temperature higher than or equal to the strain point of the substrate if the heating time is short. Therefore, the heat treatment time can be shortened.
  • the heat treatment performed on the oxide semiconductor film 108 may be performed under an atmosphere of nitrogen, oxygen, ultra-dry air (air in which a water content is 20 ppm or less, preferably 1 ppm or less, or further preferably 10 ppb or less), or a rare gas (argon, helium, or the like).
  • the atmosphere of nitrogen, oxygen, ultra-dry air, or a rare gas preferably does not contain hydrogen, water, and the like.
  • heat treatment may be additionally performed in an oxygen atmosphere or an ultra-dry air atmosphere.
  • the oxide semiconductor film 108 is formed by a sputtering method
  • a rare gas typically argon
  • oxygen or a mixed gas of a rare gas and oxygen
  • the proportion of oxygen to a rare gas is preferably increased.
  • increasing the purity of a sputtering gas is necessary.
  • an oxygen gas or an argon gas used for a sputtering gas a gas which is highly purified to have a dew point of ⁇ 40° C. or lower, preferably ⁇ 80° C. or lower, further preferably ⁇ 100° C. or lower, or still further preferably ⁇ 120° C. or lower is used, whereby entry of moisture and the like into the oxide semiconductor film 108 can be minimized.
  • a chamber in a sputtering apparatus is preferably evacuated to be a high vacuum state (to the degree of about 5 ⁇ 10 ⁇ 7 Pa to 1 ⁇ 10 ⁇ 4 Pa) with an adsorption vacuum evacuation pump such as a cryopump in order to remove water or the like, which serves as an impurity for the oxide semiconductor film 108 ; as much as possible.
  • an adsorption vacuum evacuation pump such as a cryopump
  • a turbo molecular pump and a cold trap are preferably combined so as to prevent a backflow of a gas, especially a gas including carbon or hydrogen, from an exhaust system to the inside of the chamber.
  • the conductive films 112 a and 112 b functioning as source and drain electrodes are formed over the insulating film 107 and the oxide semiconductor film 108 (see FIGS. 7E and 7F ).
  • the conductive films 112 a and 112 b are formed in the following manner: a stack of a 50-nm-thick tungsten film and a 400-nm-thick aluminum film is formed by a sputtering method, a mask is formed over the stack through a lithography process, and the stack is processed into desired regions.
  • the conductive films 112 a and 112 b each have a two-layer structure in this embodiment, one embodiment of the present invention is not limited thereto.
  • the conductive films 112 a and 112 b each may have a three-layer structure of a 50-nm-thick tungsten film, a 400-nm-thick aluminum film, and a 100-nm-thick titanium film.
  • a surface of the oxide semiconductor film 108 may be cleaned.
  • the cleaning may be performed, for example, using a chemical solution such as phosphoric acid.
  • the cleaning using a chemical solution such as a phosphoric acid can remove impurities (e.g., an element included in the conductive films 112 a and 112 b ) attached to the surface of the oxide semiconductor film 108 .
  • a recessed portion might be formed in part of the oxide semiconductor film 108 at the step of forming the conductive films 112 a and 112 b and/or the cleaning step.
  • the insulating films 114 and 116 functioning as second gate insulating films are formed (see FIGS. 7G and 7H ).
  • the insulating film 116 is preferably formed in succession without exposure to the air.
  • the insulating film 116 is formed in succession by adjusting at least one of the flow rate of a source gas, pressure, a high-frequency power, and a substrate temperature without exposure to the air, whereby the concentration of impurities attributed to the atmospheric component at the interface between the insulating film 114 and the insulating film 116 can be reduced, and oxygen in the insulating films 114 and 116 can be moved to the oxide semiconductor film 108 ; accordingly, the amount of oxygen vacancy in the oxide semiconductor film 108 can be reduced.
  • a silicon oxynitride film can be formed by a PECVD method.
  • a deposition gas including silicon and an oxidizing gas are preferably used as a source gas.
  • the deposition gas including silicon include silane, disilane, trisilane, and silane fluoride.
  • the oxidizing gas include dinitrogen monoxide and nitrogen dioxide.
  • An insulating film including nitrogen and having a small number of defects can be formed as the insulating film 114 by a PECVD method under the conditions where the ratio of the oxidizing gas to the deposition gas is higher than 20 times and lower than 100 times, preferably higher than or equal to 40 times and lower than or equal to 80 times, and the pressure in a treatment chamber is lower than 100 Pa, preferably lower than or equal to 50 Pa.
  • a 50-m-thick silicon oxynitride film is formed as the insulating film 114 by a PECVD method under the conditions where the substrate 102 is held at a temperature of 220° C., silane at a flow rate of 50 sccm and dinitrogen monoxide at a flow rate of 2000 sccm are used as a source gas, the pressure in the treatment chamber is 20 Pa, and a high-frequency power of 100 W at 13.56 MHz (1.6 ⁇ 10 ⁇ 2 W/cm 2 as the power density) is supplied to parallel-plate electrodes.
  • a silicon oxide film or a silicon oxynitride film is formed under the conditions where the substrate placed in a treatment chamber of the PECVD apparatus, which is vacuum-evacuated, is held at a temperature higher than or equal to 180° C. and lower than or equal to 280° C., preferably higher than or equal to 200° C.
  • the pressure is greater than or equal to 100 Pa and less than or equal to 250 Pa, preferably greater than or equal to 100 Pa and less than or equal to 200 Pa, with introduction of a source gas into the treatment chamber, and a high-frequency power greater than or equal to 0.17 W/cm 2 and less than or equal to 0.5 W/cm 2 , preferably greater than or equal to 0.25 W/cm 2 and less than or equal to 0.35 W/cm 2 , is supplied to an electrode provided in the treatment chamber.
  • the high-frequency power having the above power density is supplied to a reaction chamber having the above pressure, whereby the degradation efficiency of the source gas in plasma is increased, oxygen radicals are increased, and oxidation of the source gas is promoted; thus, the oxygen content in the insulating film 116 becomes higher than that in the stoichiometric composition.
  • the bond between silicon and oxygen is weak, and accordingly, part of oxygen in the film is released by heat treatment in a later step.
  • an oxide insulating film which includes oxygen in excess of that in the stoichiometric composition and from which part of oxygen is released by heating can be formed.
  • the insulating film 114 functions as a protective film for the oxide semiconductor film 108 in the step of forming the insulating film 116 . Therefore, the insulating film 116 can be formed using the high-frequency power having a high power density while damage to the oxide semiconductor film 108 is reduced.
  • the number of defects in the insulating film 116 can be reduced.
  • the reliability of the transistor can be improved.
  • Heat treatment may be performed after the insulating films 114 and 116 are formed.
  • the heat treatment can reduce nitrogen oxide included in the insulating films 114 and 116 .
  • part of oxygen included in the insulating films 114 and 116 can be moved to the oxide semiconductor film 108 , so that the amount of oxygen vacancy included in the oxide semiconductor film 108 can be reduced.
  • the temperature of the heat treatment performed on the insulating films 114 and 116 is typically higher than or equal to 150° C. and lower than or equal to 400° C., preferably higher than or equal to 300° C. and lower than or equal to 400° C., or further preferably higher than or equal to 320° C. and lower than or equal to 370° C.
  • the heat treatment may be performed under an atmosphere of nitrogen, oxygen, ultra-dry air (air in which a water content is 20 ppm or less, preferably 1 ppm or less, or further preferably 10 ppb or less), or a rare gas (argon, helium, and the like).
  • an electric furnace, an RTA apparatus, and the like can be used for the heat treatment, in which it is preferable that hydrogen, water, and the like not be included in the nitrogen, oxygen, ultra-dry air, or rare gas.
  • the heat treatment is performed at 350° C. in a nitrogen atmosphere for 1 hour.
  • a mask is formed over the insulating film 116 through a lithography process, and the openings 142 a and 142 b are formed in the insulating films 106 , 107 , 114 , and 116 (see FIGS. 8A and 8B ).
  • the openings 142 a and 142 b reach the conductive film 104 functioning as a first gate electrode.
  • the openings 142 a and 142 b can be formed with a dry etching apparatus and/or a wet etching apparatus.
  • an oxide semiconductor film 115 is formed over the insulating film 116 to cover the openings 142 a and 142 b (see FIGS. 8C and 8D ).
  • oxygen is used as a deposition gas, and the proportion of oxygen in the deposition gas is preferably increased.
  • oxygen is used as a deposition gas, and sputtering can be performed under an atmosphere containing oxygen at 100%.
  • the oxide semiconductor film 115 includes excess oxygen by a high proportion of oxygen in the deposition gas.
  • oxygen can transmit effectively through the oxide semiconductor film 115 when oxygen is added later; therefore, oxygen can be added effectively to the insulating films 114 and 116 .
  • oxygen 141 is added to the insulating films 114 and 116 and the oxide semiconductor film 108 through the oxide semiconductor film 117 (see FIGS. 8E and 8F ).
  • an ion doping method, an ion implantation method, plasma treatment, or the like is given as a method for adding the oxygen 141 to the insulating films 114 and 116 and the oxide semiconductor film 108 through the oxide semiconductor film 115 .
  • the oxygen 141 can be effectively added to the insulating films 114 and 116 and the oxide semiconductor film 108 .
  • the bias voltage for example, an ashing apparatus is used, and power density applied to a substrate side of the ashing apparatus can be greater than or equal to 1 W/cm 2 and less than or equal to 5 W/cm 2 .
  • FIG. 14A is a schematic diagram illustrating an ashing apparatus capable of performing oxygen addition treatment.
  • FIG. 14B is a conceptual diagram illustrating the state of oxygen plasma in the ashing apparatus during oxygen addition treatment.
  • An ashing apparatus 200 illustrated in FIG. 14A uses inductively-coupled plasma (ICP).
  • ICP inductively-coupled plasma
  • the ashing apparatus 200 includes an upper electrode 201 provided above a reaction space, a first high-frequency power source 205 electrically connected to the upper electrode 201 with a matching box 203 provided therebetween, a dielectric 207 provided between the upper electrode 201 and the reaction space, a lower electrode 202 provided below the reaction space, a second high-frequency power source 206 electrically connected to the lower electrode 202 with a matching box 204 provided therebetween, and a substrate stage 208 provided between the lower electrode 202 and the reaction space.
  • a substrate 250 to be treated is provided over the substrate stage 208 of the ashing apparatus 200 .
  • the upper electrode 201 is provided with an antenna coil 209 .
  • first high-frequency power source 205 a high-frequency power source of 1 MHz or more and 50 MHz or less, typically 13.56 MHz, can be used.
  • second high-frequency power source 206 a high-frequency power source of 100 kHz or more and 60 MHz or less, typically 3.2 MHz, can be used.
  • dielectric 207 quartz, ceramic, or the like can be used.
  • a region apart from the upper electrode 201 has a small influence of the magnetic field of the high-density plasma 210 ; therefore, the high-density plasma 210 is expanded flat near the dielectric 207 of the upper electrode 201 .
  • the high-frequency power applied to the lower electrode 202 a region where the high-density plasma 210 is produced can be closer to a region on the substrate 250 side.
  • the upper electrode 201 and the lower electrode 202 each individually have a high-frequency power source, whereby the bias voltage applied to each electrode can be controlled separately.
  • O 2 molecules and/or O* radicals can be efficiently added to the substrate 250 by controlling the bias voltage applied to the substrate 250 , specifically increasing high-frequency power applied to the lower electrode 202 .
  • the outermost surface of the substrate 250 has an insulating property, the oxygen cannot be added efficiently in some cases.
  • the outermost surface of the substrate 250 is an oxide semiconductor film; therefore, the oxygen can be efficiently added to an insulating film positioned below the oxide semiconductor film.
  • the temperature of the substrate 250 during oxygen addition treatment is greater than or equal to room temperature and lower than or equal to 300° C., preferably higher than or equal to 100° C.
  • a heater may be provided in the substrate stage 208 to raise the temperature of the substrate 250 .
  • heating may be performed using a resistance heater, or heat conduction or heat radiation from a medium such as a heated gas (e.g., a He gas).
  • ashing apparatus using ICP is described as an example in FIGS. 14A and 14B , a plasma etching apparatus using capacitively coupled plasma (CCP) may be used, for example.
  • CCP capacitively coupled plasma
  • plasma etching apparatus using a reactive ion etching (RIE) instead of ICP may be used.
  • the oxide semiconductor film 115 When the oxide semiconductor film 115 is provided over the insulating film 116 and then oxygen is added, the oxide semiconductor film 115 functions as a protective film for inhibiting release of oxygen from the insulating film 116 . Thus, a larger amount of oxygen can be added to the insulating films 114 and 116 and the oxide semiconductor film 108 . By adding the oxygen 141 , oxygen vacancy of the oxide semiconductor film 115 is filled and the oxide semiconductor film 115 has higher resistance in some cases.
  • oxygen is introduced by plasma treatment
  • the amount of oxygen introduced into the insulating films 114 and 116 through the oxide semiconductor film 115 can be increased.
  • FIGS. 10A and 10B are cross-sectional views illustrating addition of the oxygen 141 , which are different from that in FIGS. 8E and 8F .
  • FIG. 10A is a cross-sectional view illustrating an example of a step in a method for manufacturing a semiconductor device manufactured through the same formation process as the transistor 100 .
  • the semiconductor device in FIG. 10A includes the insulating film 106 over the substrate 102 , the insulating film 107 over the insulating film 106 , a conductive film 112 c over the insulating film 107 , the insulating film 114 over the insulating film 107 and the conductive film 112 c , the insulating film 116 over the insulating film 114 , and the oxide semiconductor film 115 over the insulating film 116 .
  • the conductive film 112 c is formed by processing a conductive film used for forming the conductive films 112 a and 112 b functioning as source and drain electrodes of the transistor 100 .
  • FIG. 10B is a cross-sectional view illustrating another example of the step in a method for manufacturing a semiconductor device for comparison.
  • the semiconductor device in FIG. 10B includes the insulating film 106 over the substrate 102 , the insulating film 107 over the insulating film 106 , the conductive film 112 c over the insulating film 107 , the insulating film 114 over the insulating film 107 and the conductive film 112 c , the insulating film 116 over the insulating film 114 , and a conductive film 115 a over the insulating film 116 .
  • the conductive film 112 c is formed by processing the conductive film used for forming the conductive films 112 a and 112 b .
  • the conductive film 115 a is formed using a metal film having high conductivity (e.g., a film of silver, copper, aluminum, titanium, tantalum, or molybdenum).
  • FIG. 10A illustrates the case where the oxide semiconductor film 115 is formed to cover an uneven surface of the insulating films 114 and 116 .
  • FIG. 10B illustrates the case where the conductive film 115 a which does not cover the uneven surface of the insulating films 114 and 116 .
  • the oxide semiconductor film 115 is formed along the uneven surface of the insulating films 114 and 116 covering the conductive film 112 c .
  • the surfaces of the insulating films 114 and 116 are not exposed. Therefore, when the oxygen 141 is added, the oxide semiconductor film 115 can inhibit release of oxygen from the insulating films 114 and 116 .
  • the conductive film 115 a is not formed along the uneven surface of the insulating films 114 and 116 covering the conductive film 112 c .
  • the conductive film 115 a includes a region 146 in which the surface of the insulating film 116 is partly exposed. Therefore, when the oxygen 141 is added, oxygen is released from the region 146 in FIG. 10B .
  • the region 146 may be formed in the case where coverage with the conductive film 115 a is not sufficient or where the end portions of the conductive film 115 a and the insulating film 116 are partly reduced when the oxygen 141 is added. Since the conductive film 115 a is formed using a metal film having high conductivity, concentration of an electric field occurs at the end portion of the conductive film 115 a because a bias voltage is applied to the substrate 102 side when the oxygen 141 is added, so that the insulating films 114 and 116 and the conductive film 115 a might be partly removed.
  • the concentration of electric field can be relieved by employing a structure in which the oxide semiconductor film 115 is used instead of the conductive film 115 a and the oxide semiconductor film 115 is formed using the same metal element as at least one of the metal elements of the oxide semiconductor film 108 .
  • the oxide semiconductor film 115 is preferably formed to cover the uneven surface of the insulating films 114 and 116 .
  • a mask is formed over the oxide semiconductor film 115 through a lithography process, and the oxide semiconductor film 115 is processed into desired regions to form the oxide semiconductor film 117 functioning as a second gate electrode (see FIGS. 8G and 8H ).
  • the insulating film 118 is formed over the insulating film 116 and the oxide semiconductor film 117 (see FIGS. 9A and 9B ).
  • the substrate temperature is set to be higher than or equal to 300° C. and lower than or equal to 400° C., or preferably higher than or equal to 320° C. and lower than or equal to 370° C., so that a dense film can be formed.
  • a deposition gas including silicon, nitrogen, and ammonia are preferably used as a source gas.
  • a small amount of ammonia compared with the amount of nitrogen is used, whereby ammonia is dissociated in the plasma and activated species are generated.
  • the activated species cleave a bond between silicon and hydrogen which are included in a deposition gas including silicon and a triple bond between nitrogen molecules.
  • a flow rate ratio of the nitrogen to the ammonia is set to be greater than or equal to 5 and less than or equal to 50, preferably greater than or equal to 10 and less than or equal to 50.
  • a 50-nm-thick silicon nitride film is formed as the insulating film 118 using silane, nitrogen, and ammonia as a source gas.
  • the flow rate of silane is 50 sccm
  • the flow rate of nitrogen is 5000 sccm
  • the flow rate of ammonia is 100 sccm.
  • the pressure in the treatment chamber is 100 Pa
  • the substrate temperature is 350° C.
  • high-frequency power of 1000 W is supplied to parallel-plate electrodes with a 27.1.2 MHz high-frequency power source.
  • the PECVD apparatus is a parallel-plate PECVD apparatus in which the electrode area is 6000 cm 2 , and the power per unit area (power density) into which the supplied power is converted is 1.7 ⁇ 10 ⁇ 1 W/cm 2 .
  • Heat treatment may be performed after the formation of the insulating film 118 .
  • the heat treatment is performed typically at a temperature higher than or equal to 150° C. and lower than or equal to 400° C., preferably higher than or equal to 300° C. and lower than or equal to 400° C., or further preferably higher than or equal to 320° C. and lower than or equal to 370° C.
  • excess oxygen included in the insulating films 114 and 116 can be diffused to the oxide semiconductor film 108 , so that the oxygen vacancy in the oxide semiconductor film 108 can be filled.
  • the oxide semiconductor film 117 can function as a second gate electrode.
  • the oxide semiconductor film 117 can also be referred to as an oxide conductor (OC).
  • a mask is formed over the insulating film 118 through a lithography process, and the opening 143 is formed in the insulating films 114 , 116 , and 118 (see FIGS. 9C and 9D ).
  • the opening 143 reaches the conductive film 112 b .
  • the openings 143 can be formed with a dry etching apparatus and/or a wet etching apparatus.
  • a conductive film 119 is formed over the insulating film 118 to cover the opening 143 (see FIGS. 9E and 9F ).
  • a material including one of indium (In), zinc (Zn), and tin (Sn) can be used.
  • a light-transmitting conductive material such as indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, indium tin oxide including titanium oxide, indium tin oxide (ITO), indium zinc oxide, or indium tin oxide to which silicon oxide is added (indium tin SiO 2 doped oxide; hereinafter referred to as ITSO) can be used.
  • ITSO indium tin SiO 2 doped oxide
  • the conductive film 119 can be formed by a sputtering method, for example. In this embodiment, a 110-nm-thick ITSO film is formed by a sputtering method.
  • a mask is formed over the conductive film 119 through a lithography process, and the conductive film 119 is processed into desired regions to form the conductive film 120 (see FIGS. 9G and 9H ).
  • the transistor 100 illustrated in FIGS. 1A to 1C can be manufactured.
  • the transistor 100 A in FIGS. 2A to 2C can be manufactured without performing the step of forming the openings 142 a and 142 b.
  • FIGS. 11A to 11H , FIGS. 12A to 12H , and FIGS. 13A to 13H are cross-sectional views illustrating a method for manufacturing a semiconductor device.
  • FIGS. 11A , 11 C, 11 E, and 11 G, FIGS. 12A , 12 C, 12 E, and 12 G, and FIGS. 13A , 13 C, 13 E, and 13 G are each a cross-sectional view in the channel length direction of the transistor 100 B, and FIGS. 11B , 11 D, 11 F, and 11 H, FIGS. 12B , 12 D, 12 F, and 12 H, and FIGS. 13B , 13 D, 13 F, and 13 H are each a cross-sectional view in the channel width direction of the transistor 100 B.
  • the steps up to the step in FIGS. 7C and 7D are performed, and then the insulating films 114 and 116 functioning as second gate insulating films are formed over the insulating film 107 and the oxide semiconductor film 108 (see FIGS. 11A and 11B ).
  • a mask is formed over the insulating film 116 through a lithography process, and the openings 142 a and 142 b are formed in the insulating films 106 , 107 , 114 , and 116 (see FIGS. 11C and 11D ).
  • the openings 142 a and 142 b reach the conductive film 104 functioning as a first gate electrode.
  • the openings 142 a and 142 b can be formed with a dry etching apparatus and/or a wet etching apparatus.
  • the oxide semiconductor film 115 is formed over the insulating film 116 to cover the opening 142 a and 142 b (see FIGS. 11E and 11F ).
  • the oxygen 141 is added to the insulating films 114 and 116 and the oxide semiconductor film 108 through the oxide semiconductor film 115 (see FIGS. 11G and 11H ).
  • a mask is formed over the oxide semiconductor film 115 through a lithography process, and the oxide semiconductor film 115 is processed into desired regions to form the oxide semiconductor film 117 functioning as a second gate electrode (see FIGS. 12A and 12B ).
  • a mask is formed over the insulating film 116 and the oxide semiconductor film 117 through a lithography process, and the openings 141 a and 141 b are formed in the insulating films 114 and 116 (see FIGS. 12C and 12D ).
  • the openings 141 a and 141 b reach the oxide semiconductor film 108 .
  • the openings 141 a and 141 b can be formed with a dry etching apparatus and/or a wet etching apparatus.
  • a conductive film 112 is formed over the insulating film 116 and the oxide semiconductor film 117 to cover the opening 141 a and 141 b (see FIGS. 12E and 12F ).
  • the conductive film 112 is formed in such a manner that a stack of a 50-nm-thick tungsten film and a 400-nm-thick aluminum film is formed by a sputtering method.
  • a mask is formed over the conductive film 112 through a lithography process, and the conductive film 112 is processed into desired regions, whereby the conductive films 112 a and 112 b functioning as source and drain electrodes are formed (see FIGS. 12G and 12H ).
  • the insulating film 118 is formed over the insulating film 116 , the oxide semiconductor film 117 , and the conductive films 112 a and 112 b (see FIGS. 13A and 13B ).
  • a mask is formed over the insulating film 118 through a lithography process, and the opening 143 is formed in the insulating film 118 (see FIGS. 13C and 13D ).
  • the opening 143 reaches the conductive film 112 b .
  • the openings 143 can be formed with a dry etching apparatus and/or a wet etching apparatus.
  • the conductive film 119 is formed over the insulating film 118 to cover the opening 143 (see FIGS. 13E and 13F ).
  • a mask is formed over the conductive film 119 through a lithography process, and the conductive film 119 is processed into desired regions to form the conductive film 120 (see FIGS. 13G and 13H ).
  • the transistor 100 B illustrated in FIGS. 3A to 3C can be manufactured.
  • the transistor 100 C in FIGS. 4A to 4C can be manufactured without performing the step of forming the openings 142 a and 142 b.
  • one embodiment of the present invention has been described. Other embodiments of the present invention are described in Embodiments 2 to 5. Note that one embodiment of the present invention is not limited to the embodiments. Although an example in which the transistor 100 and the like include the oxide semiconductor film is shown as one embodiment of the present invention, one embodiment of the present invention is not limited thereto. Depending on circumstances or conditions, the transistor 100 and the like do not necessarily include an oxide semiconductor film in one embodiment of the present invention.
  • a channel, the vicinity of the channel, a source region, a drain region, or the like of the transistor 100 and the like may be formed using a material _including silicon (Si), germanium (Ge), silicon germanium (SiGe), gallium arsenide (GaAs), or the like.
  • An oxide semiconductor is classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
  • a non-single-crystal oxide semiconductor include a c-axis aligned crystalline oxide semiconductor (CAAC-OS), a polycrystalline oxide semiconductor, a nanocrystalline oxide semiconductor (nc-OS), an amorphous-like oxide semiconductor (a-like OS), and an amorphous oxide semiconductor.
  • an oxide semiconductor is classified into an amorphous oxide semiconductor and a crystalline oxide semiconductor.
  • examples of a crystalline oxide semiconductor include a single crystal oxide semiconductor, a CAAC-OS, a polycrystalline oxide semiconductor, and an nc-OS.
  • an amorphous structure is generally defined as being metastable and unfixed, and being isotropic and having no non-uniform structure.
  • an amorphous structure has a flexible bond angle and a short-range order but does not have a long-range order.
  • an inherently stable oxide semiconductor cannot be regarded as a completely amorphous oxide semiconductor.
  • an oxide semiconductor that is not isotropic e.g., an oxide semiconductor film that has a periodic structure in a microscopic region
  • an a-like OS has a periodic structure in a microscopic region, but at the same time has a void and has an unstable structure. For this reason, an a-like OS has physical properties similar to those of an amorphous oxide semiconductor.
  • a CAAC-OS is one of oxide semiconductors having a plurality of c-axis aligned crystal parts (also referred to as pellets).
  • a combined analysis image also referred to as a high-resolution transmission electron microscope (TEM) image
  • TEM transmission electron microscope
  • FIG. 15A shows a high-resolution TEM image of a cross section of the CAAC-OS which is observed from a direction substantially parallel to the sample surface.
  • the high-resolution TEM image is obtained with a spherical aberration corrector function.
  • the high-resolution TEM image obtained with a spherical aberration corrector function is particularly referred to as a Cs-corrected high-resolution TEM image.
  • the Cs-corrected high-resolution TEM image can be obtained with, for example, an atomic resolution analytical electron microscope JEM-ARM200F manufactured by JEOL Ltd.
  • FIG. 15B is an enlarged Cs-corrected high-resolution TEM image of a region ( 1 ) in FIG. 15A .
  • FIG. 15B shows that metal atoms are arranged in a layered manner in a pellet.
  • Each metal atom layer has a configuration reflecting unevenness of a surface over which a CAAC-OS film is formed (hereinafter, the surface is referred to as a formation surface) or a top surface of the CAAC-OS, and is arranged parallel to the formation surface or the top surface of the CAAC-OS.
  • the CAAC-OS has a characteristic atomic arrangement.
  • the characteristic atomic arrangement is denoted by an auxiliary line in FIG. 15C .
  • FIGS. 15B and 15C prove that the size of a pellet is greater than or equal to 1 nm or greater than or equal to 3 nm, and the size of a space caused by tilt of the pellets is approximately 0.8 nm. Therefore, the pellet can also be referred to as a nanocrystal (nc).
  • a CAAC-OS can be referred to as an oxide semiconductor including c-axis aligned nanocrystals (CANC).
  • the schematic arrangement of pellets 5100 of a CAAC-OS over a substrate 5120 is illustrated by such a structure in which bricks or blocks are stacked (see FIG. 15D ).
  • the part in which the pellets are tilted as observed in FIG. 15C corresponds to a region 5161 illustrated in FIG. 15D .
  • FIG. 16A shows a Cs-corrected high-resolution TEM image of a plane of the CAAC-OS observed from a direction substantially perpendicular to the sample surface.
  • FIGS. 16B , 16 C, and 16 D are enlarged Cs-corrected high-resolution TEM images of regions ( 1 ), ( 2 ), and ( 3 ) in FIG. 16A , respectively.
  • FIGS. 16B , 16 C, and 16 D indicate that metal atoms are arranged in a triangular, quadrangular, or hexagonal configuration in a pellet. However, there is no regularity of arrangement of metal atoms between different pellets.
  • a CAAC-OS analyzed by X-ray diffraction is described.
  • XRD X-ray diffraction
  • a CAAC-OS analyzed by electron diffraction is described.
  • a diffiaction pattern also referred to as a selected-area transmission electron diffraction pattern
  • spots derived from the (009) plane of an InGaZnO 4 crystal are included.
  • the electron diffraction also indicates that pellets included in the CAAC-OS have c-axis alignment and that the c-axes are aligned in a direction substantially perpendicular to the formation surface or the top surface of the CAAC-OS.
  • FIG. 18B shows a diffraction pattern obtained in such a manner that an electron beam with a probe diameter of 300 nm is incident on the same sample in a direction perpendicular to the sample surface. As shown in FIG. 18B , a ring-like diffraction pattern is observed.
  • the electron diffraction also indicates that the a-axes and b-axes of the pellets included in the CAAC-OS do not have regular alignment.
  • the first ring in FIG. 18B is considered to be derived from the (010) plane, the (100) plane, and the like of the InGaZnO 4 crystal. Furthermore, it is supposed that the second ring in FIG. 18B is derived from the (110) plane and the like.
  • the CAAC-OS is an oxide semiconductor with high crystallinity. Entry of impurities, formation of defects, or the like might decrease the crystallinity of an oxide semiconductor. This means that the CAAC-OS has small amounts of impurities and defects (e.g., oxygen vacancy).
  • the impurity means an element other than the main components of the oxide semiconductor, such as hydrogen, carbon, silicon, or a transition metal element.
  • an element specifically, silicon or the like
  • a heavy metal such as iron or nickel, argon, carbon dioxide, or the like has a large atomic radius (or molecular radius), and thus disturbs the atomic arrangement of the oxide semiconductor and decreases crystallinity.
  • the characteristics of an oxide semiconductor having impurities or defects might be changed by light, heat, or the like.
  • Impurities included in the oxide semiconductor might serve as carrier traps or carrier generation sources, for example.
  • oxygen vacancy in the oxide semiconductor might serve as a carrier trap or serve as a carrier generation source when hydrogen is captured therein.
  • the CAAC-OS having small amounts of impurities and oxygen vacancy is an oxide semiconductor film with low carrier density (specifically, lower than 8 ⁇ 10 11 /cm 3 , preferably lower than 1 ⁇ 10 11 /cm 3 , or further preferably lower than 1 ⁇ 10 10 /cm 3 , and higher than or equal to 1 ⁇ 10 ⁇ 9 /cm 3 ).
  • Such an oxide semiconductor is referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • a CAAC-OS has a low impurity concentration and a low density of defect states.
  • the CAAC-OS can be referred to as an oxide semiconductor having stable characteristics.
  • An nc-OS has a region in which a crystal part is observed and a region in which a crystal part is not clearly observed in a high-resolution TEM image.
  • the size of a crystal part included in the nc-OS is greater than or equal to 1 nm and less than or equal to 10 nm, or greater than or equal to 1 nm and less than or equal to 3 nm.
  • an oxide semiconductor including a crystal part whose size is greater than 10 nm and less than or equal to 100 nm is sometimes referred to as a microcrystalline oxide semiconductor.
  • a grain boundary is not clearly observed in some cases.
  • a crystal part of the nc-OS may be referred to as a pellet in the following description.
  • nc-OS In the nc-OS, a microscopic region (e.g., a region with a size greater than or equal to 1 nm and less than or equal to 10 nm, in particular, a region with a size greater than or equal to 1 nm and less than or equal to 3 nm) has a periodic atomic arrangement. There is no regularity of crystal orientation between different pellets in the nc-OS. Thus, the orientation of the whole film is not observed. Accordingly, the nc-OS cannot be distinguished from an a-like OS and an amorphous oxide semiconductor, depending on an analysis method.
  • nc-OS when the nc-OS is analyzed by an out-of-plane method using an X-ray beam having a diameter larger than the size of a pellet, a peak which shows a crystal plane does not appear. Furthermore, a diffraction pattern like a halo pattern is observed when the nc-OS is subjected to electron diffraction using an electron beam with a probe diameter (e.g., 50 nm or larger) that is larger than the size of a pellet. Meanwhile, spots appear in a nanobeam electron diffraction pattern of the nc-OS when an electron beam having a probe diameter close to or smaller than the size of a pellet is used.
  • a probe diameter e.g. 50 nm or larger
  • a nanobeam electron diffraction pattern of the nc-OS regions with high luminance in a circular (ring) pattern are shown in some cases. Also in a nanobeam electron diffraction pattern of the nc-OS layer, a plurality of spots is shown in a ring-like region in some cases.
  • the nc-OS can also be referred to as an oxide semiconductor including random aligned nanocrystals (RANC) or an oxide semiconductor including non-aligned nanocrystals (NANC).
  • RNC random aligned nanocrystals
  • NANC non-aligned nanocrystals
  • the nc-OS is an oxide semiconductor that has high regularity as compared with an amorphous oxide semiconductor. Therefore, the nc-OS is likely to have a lower density of defect states than an a-like OS and an amorphous oxide semiconductor. Note that there is no regularity of crystal orientation between different pellets in the nc-OS. Therefore, the nc-OS has a higher density of defect states than the CAAC-OS.
  • An a-like OS has a structure intermediate between those of the nc-OS and the amorphous oxide semiconductor.
  • a void may be observed. Furthermore, in the high-resolution TEM image, there are a region where a crystal part is clearly observed and a region where a crystal part is not observed.
  • the a-like OS has an unstable structure because it contains a void.
  • an a-like OS has an unstable structure as compared with a CAAC-OS and an nc-OS, a change in structure caused by electron irradiation is described below.
  • An a-like OS (sample A), an nc-OS (sample B), and a CAAC-OS (sample C) are prepared as samples subjected to electron irradiation.
  • Each of the samples is an In—Ga—Zn oxide.
  • a unit cell of the InGaZnO 4 crystal has a structure in which nine layers including three In—O layers and six Ga—Zn—O layers are stacked in the c-axis direction.
  • the distance between the adjacent layers is equivalent to the lattice spacing on the (009) plane (also referred to as d value).
  • the value is calculated to be 0.29 nm from crystal structural analysis. Accordingly, a portion where the lattice spacing between lattice fringes is greater than or equal to 0.28 nm and less than or equal to 0.30 nm is regarded as a crystal part of InGaZnO 4 .
  • Each of lattice fringes corresponds to the a-b plane of the InGaZnO 4 crystal.
  • FIG. 19 shows change in the average size of crystal parts (at 22 points to 45 points) in each sample. Note that the crystal part size corresponds to the length of a lattice fringe. FIG. 19 indicates that the crystal part size in the a-like OS increases with an increase in the cumulative electron dose. Specifically, as shown by ( 1 ) in FIG. 19 , a crystal part of approximately 1.2 nm at the start of TEM observation (the crystal part is also referred to as an initial nucleus) grows to a size of approximately 2.6 nm at a cumulative electron dose of 4.2 ⁇ 10 8 e ⁇ /nm 2 .
  • the crystal part size in the nc-OS and the CAAC-OS shows little change from the start of electron irradiation to a cumulative electron dose of 4.2 ⁇ 10 8 e ⁇ /nm 2 .
  • the average crystal sizes in an nc-OS and a CAAC-OS are approximately 1.4 nm and approximately 2.1 nm, respectively, regardless of the cumulative electron dose.
  • the a-like OS has an unstable structure as compared with the nc-OS and the CAAC-OS.
  • the a-like OS has a lower density than the nc-OS and the CAAC-OS because it contains a void.
  • the density of the a-like OS is higher than or equal to 78.6% and lower than 92.3% of the density of the single crystal oxide semiconductor having the same composition.
  • the density of each of the nc-OS and the CAAC-OS is higher than or equal to 92.3% and lower than 100% of the density of the single crystal oxide semiconductor having the same composition. Note that it is difficult to deposit an oxide semiconductor having a density lower than 78% of the density of the single crystal oxide semiconductor.
  • the density of each of the nc-OS and the CAAC-OS is higher than or equal to 5.9 g/cm 3 and lower than 6.3 g/cm 3 .
  • the density of a single crystal oxide semiconductor having the desired composition can be calculated using a weighted average according to the combination ratio of the single crystal oxide semiconductors with different compositions. Note that it is preferable to use as few kinds of single crystal oxide semiconductors as possible to calculate the density.
  • oxide semiconductors have various structures and various properties.
  • an oxide semiconductor may be a stacked layer including two or more of an amorphous oxide semiconductor, an a-like OS, an nc-OS, and a CAAC-OS, for example.
  • FIG. 20 an example of a display device that includes any of the transistors described in the embodiment above is described below with reference to FIG. 20 , FIG. 21 , and FIG. 22 .
  • FIG. 20 is a top view of an example of a display device.
  • a display device 700 illustrated in FIG. 20 includes a pixel portion 702 provided over a first substrate 701 ; a source driver circuit portion 704 and a gate driver circuit portion 706 provided over the first substrate 701 ; a sealant 712 provided to surround the pixel portion 702 , the source driver circuit portion 704 , and the gate driver circuit portion 706 ; and a second substrate 705 provided to face the first substrate 701 .
  • the first substrate 701 and the second substrate 705 are sealed with the sealant 712 .
  • the pixel portion 702 , the source driver circuit portion 704 , and the gate driver circuit portion 706 are sealed with the first substrate 701 , the sealant 712 , and the second substrate 705 .
  • a display element is provided between the first substrate 701 and the second substrate 705 .
  • a flexible printed circuit (FPC) terminal portion 708 electrically connected each other to the pixel portion 702 , the source driver circuit portion 704 , and the gate driver circuit portion 706 is provided in a region different from the region which is surrounded by the sealant 712 and positioned over the first substrate 701 . Furthermore, an FPC 716 is connected to the FPC terminal portion 708 , and a variety of signals and the like are supplied to the pixel portion 702 , the source driver circuit portion 704 , and the gate driver circuit portion 706 through the FPC 716 .
  • FPC flexible printed circuit
  • a signal line 710 is connected to the pixel portion 702 , the source driver circuit portion 704 , the gate driver circuit portion 706 , and the FPC terminal portion 708 .
  • Various signals and the like are applied to the pixel portion 702 , the source driver circuit portion 704 , the gate driver circuit portion 706 , and the FPC terminal portion 708 via the signal line 710 from the FPC 716 .
  • a plurality of gate driver circuit portions 706 may be provided in the display device 700 .
  • An example of the display device 700 in which the source driver circuit portion 704 and the gate driver circuit portion 706 are formed over the first substrate 701 where the pixel portion 702 is also formed is described; however, the structure is not limited thereto.
  • only the gate driver circuit portion 706 may be formed over the first substrate 701 or only the source driver circuit portion 704 may be formed over the first substrate 701 .
  • a substrate where a source driver circuit, a gate driver circuit, or the like is formed e.g., a driver-circuit substrate formed using a single-crystal semiconductor film or a polycrystalline semiconductor film
  • a substrate where a source driver circuit, a gate driver circuit, or the like may be mounted on the first substrate 701 .
  • a driver-circuit substrate formed using a single-crystal semiconductor film or a polycrystalline semiconductor film may be mounted on the first substrate 701 .
  • COG chip on glass
  • the pixel portion 702 , the source driver circuit portion 704 , and the gate driver circuit portion 706 included in the display device 700 include a plurality of transistors.
  • the plurality of transistors any of the transistors that are the semiconductor devices of embodiments of the present invention can be used.
  • the display device 700 can include any of a variety of elements.
  • the element includes, for example, at least one of a liquid crystal element, an electroluminescence (EL) element (e.g., an EL element including organic and inorganic materials, an organic EL element, or an inorganic EL element), an LED (e.g., a white LED, a red LED, a green LED, or a blue LED), a transistor (a transistor that emits light depending on current), an electron emitter, electronic ink, an electrophoretic element, a grating light valve (GLV), a plasma display panel (PDP), a display element using micro electro mechanical system (MEMS), a digital micromirror device (DMD), a digital micro shutter (DMS), MIRASOL (registered trademark), an interferometric modulator display (IMOD) element, a MEMS shutter display element, an optical-interference-type MEMS display element, an electrowetting element, a piezoelectric ceramic display, and a display element including a
  • display media whose contrast, luminance, reflectivity, transmittance, or the like is changed by an electrical or magnetic effect may be included.
  • Examples of display devices having EL elements include an EL display.
  • Examples of display devices including electron emitters include a field emission display (FED) and an SED-type flat panel display (SED: surface-conduction electron-emitter display).
  • Examples of display devices including liquid crystal elements include a liquid crystal display (e.g., a transmissive liquid crystal display, a transflective liquid crystal display, a reflective liquid crystal display, a direct-view liquid crystal display, or a projection liquid crystal display).
  • An example of a display device including electronic ink or electrophoretic elements is electronic paper.
  • some of or all of pixel electrodes function as reflective electrodes.
  • some or all of pixel electrodes are formed to include aluminum, silver, or the like.
  • a memory circuit such as an SRAM can be provided under the reflective electrodes, leading to lower power consumption.
  • a progressive method, an interlace method, or the like can be employed.
  • color elements controlled in a pixel at the time of color display are not limited to three colors: R, G, and B (R, G; and B correspond to red, green, and blue, respectively).
  • R, G R, G
  • B red, green, and blue
  • four pixels of the R pixel, the G pixel, the B pixel, and a W (white) pixel may be included.
  • a color element may be composed of two colors among R, G and B as in PenTile layout. The two colors may differ among color elements.
  • one or more colors of yellow, cyan, magenta, and the like may be added to RGB.
  • the size of a display region may be different depending on respective dots of the color components.
  • Embodiments of the disclosed invention are not limited to a display device for color display; the disclosed invention can also be applied to a display device for monochrome display.
  • a coloring layer (also referred to as a color filter) may be used in order to obtain a full-color display device in which white light (W) for a backlight (e.g., an organic EL element, an inorganic EL element, an LED, or a fluorescent lamp) is used.
  • white light (W) for a backlight e.g., an organic EL element, an inorganic EL element, an LED, or a fluorescent lamp
  • red (R), green (G), blue (B), yellow (Y), or the like may be combined as appropriate, for example.
  • RGB red
  • B blue
  • Y yellow
  • white light in the region without the coloring layer may be directly utilized for display.
  • FIG. 21 is a cross-sectional view along the dashed-dotted line Q-R shown in FIG. 20 and shows a structure including a liquid crystal element as a display element
  • FIG. 22 is a cross-sectional view along the dashed-dotted line Q-R shown in FIG. 20 and shows a structure including an EL element as a display element.
  • FIG. 21 and FIG. 22 Common portions between FIG. 21 and FIG. 22 are described first, and then different portions are described.
  • the display device 700 illustrated in FIG. 21 and FIG. 22 include a lead wiring portion 711 , the pixel portion 702 , the source driver circuit portion 704 , and the FPC terminal portion 708 .
  • the lead wiring portion 711 includes the signal line 710 .
  • the pixel portion 702 includes a transistor 750 and a capacitor 790 .
  • the source driver circuit portion 704 includes a transistor 752 .
  • any of the transistors described above can be used as the transistors 750 and 752 .
  • the transistors used in this embodiment each include an oxide semiconductor film which is highly purified and in which formation of oxygen vacancy is suppressed.
  • the current in an off state (off-state current) can be made small. Accordingly, an electrical signal such as an image signal can be held for a longer period, and a writing interval can be set longer in an on state. Accordingly, frequency of refresh operation can be reduced, which leads to an effect of suppressing power consumption.
  • the transistor used in this embodiment can have relatively high field-effect mobility and thus is capable of high speed operation.
  • a switching transistor in a pixel portion and a driver transistor in a driver circuit portion can be formed over one substrate. That is, a semiconductor device formed using a silicon wafer or the like is not additionally needed as a driver circuit, whereby the number of components of the semiconductor device can be reduced.
  • the transistor which can operate at high speed can be used also in the pixel portion, whereby a high-quality image can be provided.
  • the capacitor 790 includes a dielectric between a pair of electrodes. Specifically, a conductive film which is formed using the same step as a conductive film functioning as a gate electrode of the transistor 750 is used as one electrode of the capacitor 790 , and a conductive film functioning as a source electrode or a drain electrode of the transistor 750 is used as the other electrode of the capacitor 790 . Furthermore, an insulating film functioning as a gate insulating film of the transistor 750 is used as the dielectric between the pair of electrodes.
  • insulating films 764 , 766 , and 768 , an oxide semiconductor film 767 , and a planarization insulating film 770 are formed over the transistor 750 , the transistor 752 , and the capacitor 790 .
  • the insulating films 764 , 766 , and 768 can be formed using materials and methods similar to those of the insulating films 114 , 116 , and 118 described in the above embodiment, respectively.
  • the oxide semiconductor film 767 can be formed using a material and a method similar to those of the oxide semiconductor film 117 described in the above embodiment.
  • the planarization insulating film 770 can be formed using a heat-resistant organic material, such as a polyimide resin, an acrylic resin, a polyimide amide resin, a benzocyclobutene resin, a polyamide resin, or an epoxy resin. Note that the planarization insulating film 770 may be formed by stacking a plurality of insulating films formed from these materials. Alternatively, a structure without the planarization insulating film 770 may be employed.
  • the signal line 710 is formed in the same steps as conductive films functioning as source and drain electrodes of the transistor 750 or 752 .
  • the signal line 710 may be formed using a conductive film which is formed in different steps as a source electrode and a drain electrode of the transistor 750 or 752 , for example, a conductive film functioning as a gate electrode may be used.
  • a conductive film functioning as a gate electrode may be used.
  • the signal line 710 is formed using a material including a copper element, signal delay or the like due to wiring resistance is reduced, which enables display on a large screen.
  • the FPC terminal portion 708 includes a connection electrode 760 , an anisotropic conductive film 780 , and the FPC 716 .
  • the connection electrode 760 is formed in the same steps as conductive films functioning as source and drain electrodes of the transistor 750 or 752 .
  • the connection electrode 760 is electrically connected to a terminal included in the FPC 716 through the anisotropic conductive film 780 .
  • a glass substrate can be used as the first substrate 701 and the second substrate 705 .
  • a flexible substrate may be used as the first substrate 701 and the second substrate 705 .
  • the flexible substrate include a plastic substrate.
  • a structure body 778 is provided between the first substrate 701 and the second substrate 705 .
  • the structure body 778 is a columnar spacer obtained by selective etching of an insulating film and provided to control the distance (cell gap) between the first substrate 701 and the second substrate 705 .
  • a spherical spacer may be used as the structure body 778 .
  • the structure in which the structure body 778 is provided on the first substrate 701 side is described as an example in this embodiment, one embodiment of the present invention is not limited thereto.
  • a structure in which the structure body 778 is provided on the second substrate 705 side, or a structure in which both of the first substrate 701 and the second substrate 705 are provided with the structure body 778 may be employed.
  • a light-blocking film 738 functioning as a black matrix, a coloring film 736 functioning as a color filter, and an insulating film 734 in contact with the light-blocking film 738 and the coloring film 736 are provided on the second substrate 705 side.
  • the display device 700 in FIG. 21 includes a liquid crystal element 775 .
  • the liquid crystal element 775 includes a conductive film 772 , a conductive film 774 , and a liquid crystal layer 776 .
  • the conductive film 774 is provided on the second substrate 705 side and functions as a counter electrode.
  • the display device 700 in FIG. 21 is capable of displaying an image in such a manner that transmission or non-transmission is controlled by change in the alignment state of the liquid crystal layer 776 depending on a voltage applied to the conductive film 772 and the conductive film 774 .
  • the conductive film 772 is connected to the conductive film functioning as a source or drain electrode included in the transistor 750 .
  • the conductive film 772 is formed over the planarization insulating film 770 to function as a pixel electrode, i.e., one electrode of the display element.
  • the conductive film 772 functions as a reflective electrode.
  • the display device 700 in FIG. 21 is what is called a reflective color liquid crystal display device in which external light is reflected by the conductive film 772 to display an image through the coloring film 736 .
  • a conductive film that transmits visible light or a conductive film that reflects visible light can be used as the conductive film 772 .
  • a material including one kind selected from indium (In), zinc (Zn), and tin (Sn) is preferably used for the conductive film that transmits visible light.
  • a material including aluminum or silver may be used for the conductive film that reflects visible light.
  • the conductive film that reflects visible light is used as the conductive film 772 .
  • the conductive film may have a stacked-layer structure.
  • a 100-nm-thick aluminum film is formed as the bottom layer
  • a 30-nm-thick silver alloy film is formed as the top layer.
  • Adhesion between the base film and the conductive film 772 can be improved.
  • the aluminum film and the silver alloy film can be collectively etched depending on a chemical solution.
  • the conductive film 772 can have a favorable cross-sectional shape (e.g., a tapered shape).
  • the reason for (3) is as follows: the etching rate of the aluminum film with the chemical solution is lower than that of the silver alloy film, or etching of the aluminum film that is the bottom layer is developed faster than that of the silver alloy film because, when the aluminum film that is the bottom layer is exposed after the etching of the silver alloy film that is the top layer, electrons are extracted from metal that is less noble than the silver alloy film, i.e., aluminum that is metal having a high ionization tendency, and thus etching of the silver alloy film is suppressed.
  • projections and depressions are provided in part of the planarization insulating film 770 of the pixel portion 702 in the display device 700 in FIG. 21 .
  • the projections and depressions can be formed in such a manner that the planarization insulating film 770 is formed using an organic resin film or the like, and projections and depressions are formed on the surface of the organic resin film.
  • the conductive film 772 functioning as a reflective electrode is formed along the projections and depressions. Therefore, when external light is incident on the conductive film 772 , the light is reflected diffusely at the surface of the conductive film 772 , whereby visibility can be improved.
  • the display device 700 in FIG. 21 is a reflective color liquid crystal display device given as an example, but a display type is not limited thereto.
  • a transmissive color liquid crystal display device in which the conductive film 772 is a conductive film that transmits visible light may be used.
  • projections and depressions are not necessarily provided on the planarization insulating film 770 .
  • an alignment film may be provided on a side of the conductive film 772 in contact with the liquid crystal layer 776 and on a side of the conductive film 774 in contact with the liquid crystal layer 776 .
  • an optical member an optical substrate
  • polarizing member a retardation member
  • anti-reflection member may be provided as appropriate.
  • circular polarization may be employed by using a polarizing substrate and a retardation substrate.
  • a backlight, a sidelight, or the like may be used as a light source.
  • thermotropic liquid crystal a low-molecular liquid crystal, a high-molecular liquid crystal, a polymer-dispersed liquid crystal, a ferroelectric liquid crystal, an anti-ferroelectric liquid crystal, or the like
  • a liquid crystal material exhibits a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, or the like depending on conditions.
  • a liquid crystal exhibiting a blue phase for which an alignment film is unnecessary may be used.
  • a blue phase is one of liquid crystal phases, which is generated just before a cholesteric phase changes into an isotropic phase while temperature of cholesteric liquid crystal is increased. Since the blue phase appears only in a narrow temperature range, a liquid crystal composition in which several weight percent or more of a chiral material is mixed is used for the liquid crystal layer in order to improve the temperature range.
  • the liquid crystal composition which includes liquid crystal exhibiting a blue phase and a chiral material has a short response time and optical isotropy, which makes the alignment process unneeded.
  • liquid crystal composition which includes liquid crystal exhibiting a blue phase and a chiral material has a small viewing angle dependence.
  • An alignment film does not need to be provided and rubbing treatment is thus not necessary; accordingly, electrostatic discharge damage caused by the rubbing treatment can be prevented and defects and damage of the liquid crystal display device in the manufacturing process can be reduced.
  • a liquid crystal element In the case where a liquid crystal element is used as the display element, a twisted nematic (TN) mode, an in-plane-switching (IPS) mode, a fringe field switching (FFS) mode, an axially symmetric aligned micro-cell (ASM) mode, an optical compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, an antiferroelectric liquid crystal (AFLC) mode, or the like can be used.
  • TN twisted nematic
  • IPS in-plane-switching
  • FFS fringe field switching
  • ASM axially symmetric aligned micro-cell
  • OBC optical compensated birefringence
  • FLC ferroelectric liquid crystal
  • AFLC antiferroelectric liquid crystal
  • a normally black liquid crystal display device such as a transmissive liquid crystal display device utilizing a vertical alignment (VA) mode may also be used.
  • VA vertical alignment
  • a vertical alignment mode for example, a multi-domain vertical alignment (MVA) mode, a patterned vertical alignment (PVA) mode, an ASV mode, or the like can be employed.
  • MVA multi-domain vertical alignment
  • PVA patterned vertical alignment
  • ASV ASV mode
  • the display device 700 illustrated in FIG. 22 includes a light-emitting element 782 .
  • the light-emitting element 782 includes a conductive film 784 , an EL layer 786 , and a conductive film 788 .
  • the display device 700 in FIG. 22 is capable of displaying an image by light emission from the EL layer 786 included in the light-emitting element 782 .
  • the conductive film 784 is connected to the conductive film functioning as a source or drain electrode included in the transistor 750 .
  • the conductive film 784 is formed over the planarization insulating film 770 to function as a pixel electrode, i.e., one electrode of the display element.
  • a conductive film which transmits visible light or a conductive film which reflects visible light can be used as the conductive film 784 .
  • the conductive film which transmits visible light can be formed using a material including one kind selected from indium (In), zinc (Zn), and tin (Sn), for example.
  • the conductive film which reflects visible light can be formed using a material including aluminum or silver, for example.
  • an insulating film 730 is provided over the planarization insulating film 770 and the conductive film 784 .
  • the insulating film 730 covers part of the conductive film 784 .
  • the light-emitting element 782 has a top emission structure. Therefore, the conductive film 788 has a light-transmitting property and transmits light emitted from the EL layer 786 .
  • the top-emission structure is described as an example in this embodiment, one embodiment of the present invention is not limited thereto.
  • a bottom-emission structure in which light is emitted to the conductive film 784 side, or a dual-emission structure in which light is emitted to both the conductive film 784 side and the conductive film 788 side may be employed.
  • the coloring film 736 is provided to overlap with the light-emitting element 782
  • the light-blocking film 738 is provided to overlap with the insulating film 730 and to be included in the lead wiring portion 711 and in the source driver circuit portion 704 .
  • the coloring film 736 and the light-blocking film 738 are covered with the insulating film 734 .
  • a space between the light-emitting element 782 and the insulating film 734 is filled with a sealing film 732 .
  • FIGS. 23A to 23C a display device that includes a semiconductor device of one embodiment of the present invention will be described with reference to FIGS. 23A to 23C .
  • the display device illustrated in FIG. 23A includes a region including pixels of display elements (hereinafter the region is referred to as a pixel portion 502 ), a circuit portion being provided outside the pixel portion 502 and including a circuit for driving the pixels (hereinafter the portion is referred to as a driver circuit portion 504 ), circuits each having a function of protecting an element (hereinafter the circuits are referred to as protection circuits 506 ), and a terminal portion 507 . Note that the protection circuits 506 are not necessarily provided.
  • Part or the whole of the driver circuit portion 504 is preferably formed over a substrate over which the pixel portion 502 is formed, in which case the number of components and the number of terminals can be reduced.
  • the part or the whole of the driver circuit portion 504 can be mounted by COG or tape automated bonding (TAB).
  • the pixel portion 502 includes a plurality of circuits for driving display elements arranged in X rows (X is a natural number of 2 or more) and Y columns (Y is a natural number of 2 or more) (hereinafter, such circuits are referred to as pixel circuits 501 ).
  • the driver circuit portion 504 includes driver circuits such as a circuit for supplying a signal (scan signal) to select a pixel (hereinafter, the circuit is referred to as a gate driver 504 a ) and a circuit for supplying a signal (data signal) to drive a display element in a pixel (hereinafter, the circuit is referred to as a source driver 504 b ).
  • the gate driver 504 a includes a shift register or the like.
  • the gate driver 504 a receives a signal for driving the shift register through the terminal portion 507 and outputs a signal.
  • the gate driver 504 a receives a start pulse signal, a clock signal, or the like and outputs a pulse signal.
  • the gate driver 504 a has a function of controlling the potentials of wirings supplied with scan signals (hereinafter, such wirings are referred to as scan lines GL_ 1 to GL_X). Note that a plurality of gate drivers 504 a may be provided to control the scan lines GL_ 1 to GL_X separately. Alternatively, the gate driver 504 a has a function of supplying an initialization signal. Without being limited thereto, the gate driver 504 a can supply another signal.
  • the source driver 504 b includes a shift register or the like.
  • the source driver 504 b receives a signal (video signal) from which a data signal is derived, as well as a signal for driving the shift register, through the terminal portion 507 .
  • the source driver 504 b has a function of generating a data signal to be written to the pixel circuit 501 which is based on the video signal.
  • the source driver 504 b has a function of controlling output of a data signal in response to a pulse signal produced by input of a start pulse signal, a clock signal, or the like.
  • the source driver 504 b has a function of controlling the potentials of wirings supplied with data signals (hereinafter such wirings are referred to as data lines DL_ 1 to DL_Y). Alternatively, the source driver 504 b has a function of supplying an initialization signal. Without being limited thereto, the source driver 504 b can supply another signal.
  • the source driver 504 b includes a plurality of analog switches, for example.
  • the source driver 504 b can output, as the data signals, signals obtained by time-dividing the video signal by sequentially turning on the plurality of analog switches.
  • the source driver 504 b may include a shift register or the like.
  • a pulse signal and a data signal are input to each of the plurality of pixel circuits 501 through one of the plurality of scan lines GL supplied with scan signals and one of the plurality of data lines DL supplied with data signals, respectively.
  • Writing and holding of the data signal to and in each of the plurality of pixel circuits 501 are controlled by the gate driver 504 a .
  • a pulse signal is input from the gate driver 504 a through the scan line GL_m, and a data signal is input from the source driver 504 b through the data line DL_n in accordance with the potential of the scan line GL_m.
  • the protection circuit 506 illustrated in FIG. 23A is connected to, for example, the scan line GL between the gate driver 504 a and the pixel circuit 501 .
  • the protection circuit 506 is connected to the data line DL between the source driver 504 b and the pixel circuit 501 .
  • the protection circuit 506 can be connected to a wiring between the gate driver 504 a and the terminal portion 507 .
  • the protection circuit 506 can be connected to a wiring between the source driver 504 b and the terminal portion 507 .
  • the terminal portion 507 means a portion having terminals for inputting power, control signals, and video signals to the display device from external circuits.
  • the protection circuit 506 is a circuit that electrically connects a wiring connected to the protection circuit to another wiring when a potential out of a certain range is applied to the wiring connected to the protection circuit.
  • the protection circuits 506 are provided for the pixel portion 502 and the driver circuit portion 504 , so that the resistance of the display device to overcurrent generated by electrostatic discharge (ESD) or the like can be improved.
  • ESD electrostatic discharge
  • the configuration of the protection circuits 506 is not limited to that, and for example, the protection circuit 506 may be configured to be connected to the gate driver 504 a or the protection circuit 506 may be configured to be connected to the source driver 504 b . Alternatively, the protection circuit 506 may be configured to be connected to the terminal portion 507 .
  • the driver circuit portion 504 includes the gate driver 504 a and the source driver 504 b is shown; however, the structure is not limited thereto.
  • the gate driver 504 a may be formed and a separately prepared substrate where a source driver circuit is formed (e.g., a driver circuit substrate formed with a single crystal semiconductor film or a polycrystalline semiconductor film) may be mounted.
  • Each of the plurality of pixel circuits 501 in FIG. 23A can have the structure illustrated in FIG. 23B , for example.
  • the pixel circuit 501 illustrated in FIG. 23B includes a liquid crystal element 570 , a transistor 550 , and a capacitor 560 .
  • the transistor 550 any of the transistors described in the above embodiment, for example, can be used.
  • the potential of one of a pair of electrodes of the liquid crystal element 570 is set in accordance with the specifications of the pixel circuit 501 as appropriate.
  • the alignment state of the liquid crystal element 570 depends on written data.
  • a common potential may be supplied to one of the pair of electrodes of the liquid crystal element 570 included in each of the plurality of pixel circuits 501 .
  • the potential supplied to one of the pair of electrodes of the liquid crystal element 570 in the pixel circuit 501 in one row may be different from the potential supplied to one of the pair of electrodes of the liquid crystal element 570 in the pixel circuit 501 in another row.
  • any of the following modes can be given: a TN mode, an STN mode, a VA mode, an axially symmetric aligned micro-cell (ASM) mode, an optically compensated birefringence (OCB) mode, a ferroelectric liquid crystal (FLC) mode, an antiferroelectric liquid crystal (AFLC) mode, an MVA mode, a patterned vertical alignment (PVA) mode, an IPS mode, an FFS mode, a transverse bend alignment (TBA) mode, and the like.
  • the driving method of the display device include an electrically controlled birefringence (ECB) mode, a polymer-dispersed liquid crystal (PDLC) mode, a polymer network liquid crystal (PNLC) mode, and a guest-host mode.
  • EBC electrically controlled birefringence
  • PDLC polymer-dispersed liquid crystal
  • PNLC polymer network liquid crystal
  • guest-host mode a guest-host mode
  • one of a source electrode and a drain electrode of the transistor 550 is electrically connected to the data line DL_n, and the other is electrically connected to the other of the pair of electrodes of the liquid crystal element 570 .
  • a gate electrode of the transistor 550 is electrically connected to the scan line GL_m.
  • the transistor 550 has a function of controlling whether to write a data signal by being turned on or off.
  • One of a pair of electrodes of the capacitor 560 is electrically connected to a wiring to which a potential is supplied (hereinafter referred to as a potential supply line VL), and the other is electrically connected to the other of the pair of electrodes of the liquid crystal element 570 .
  • the potential of the potential supply line VL is set in accordance with the specifications of the pixel circuit 501 as appropriate.
  • the capacitor 560 functions as a storage capacitor for storing written data.
  • the pixel circuits 501 are sequentially selected row by row by the gate driver 504 a illustrated in FIG. 23A , whereby the transistors 550 are turned on and a data signal is written.
  • the transistors 550 When the transistors 550 are turned off, the pixel circuits 501 in which the data has been written are brought into a holding state. This operation is sequentially performed row by row; thus, an image can be displayed.
  • each of the plurality of pixel circuits 501 in FIG. 23A can have the structure illustrated in FIG. 23C , for example.
  • the pixel circuit 501 illustrated in FIG. 23C includes transistors 552 and 554 , a capacitor 562 , and a light-emitting element 572 . Any of the transistors described in the above embodiment, for example, can be used as one or both of the transistors 552 and 554 .
  • One of a source electrode and a drain electrode of the transistor 552 is electrically connected to a wiring to which a data signal is supplied (hereinafter referred to as a signal line DL_n).
  • a gate electrode of the transistor 552 is electrically connected to a wiring to which a gate signal is supplied (hereinafter referred to as a scan line GL_n).
  • the transistor 552 has a function of controlling whether to write a data signal by being turned on or off.
  • One of a pair of electrodes of the capacitor 562 is electrically connected to a wiring to which a potential is supplied (hereinafter referred to as a potential supply line VL_a), and the other is electrically connected to the other of the source electrode and the drain electrode of the transistor 552 .
  • the capacitor 562 functions as a storage capacitor for storing written data.
  • One of a source electrode and a drain electrode of the transistor 554 is electrically connected to the potential supply line VL_a. Furthermore, a gate electrode of the transistor 554 is electrically connected to the other of the source electrode and the drain electrode of the transistor 552 .
  • One of an anode and a cathode of the light-emitting element 572 is electrically connected to a potential supply line VL_b, and the other is electrically connected to the other of the source electrode and the drain electrode of the transistor 554 .
  • an organic electroluminescent element also referred to as an organic EL element
  • the light-emitting element 572 is not limited to an organic EL element; an inorganic EL element including an inorganic material may be used
  • a high power supply potential VDD is supplied to one of the potential supply line VL_a and the potential supply line VL_b, and a low power supply potential VSS is supplied to the other.
  • the pixel circuits 501 are sequentially selected row by row by the gate driver 504 a illustrated in FIG. 23A , whereby the transistors 552 are turned on and a data signal is written.
  • the transistors 552 When the transistors 552 are turned off, the pixel circuits 501 in which the data has been written are brought into a holding state. Furthermore, the amount of current flowing between the source electrode and the drain electrode of the transistor 554 is controlled in accordance with the potential of the written data signal.
  • the light-emitting element 572 emits light with luminance corresponding to the amount of flowing current. This operation is sequentially performed row by row; thus, an image can be displayed.
  • FIG. 24 a display module and electronic appliances that include a semiconductor device of one embodiment of the present invention will be described with reference to FIG. 24 and FIGS. 25A to 25G .
  • a touch panel 8004 connected to an FPC 8003 a display panel 8006 connected to an FPC 8005 , a backlight 8007 , a frame 8009 , a printed board 8010 , and a battery 8011 are provided between an upper cover 8001 and a lower cover 8002 .
  • the semiconductor device of one embodiment of the present invention can be used for, for example, the display panel 8006 .
  • the shapes and sizes of the upper cover 8001 and the lower cover 8002 can be changed as appropriate in accordance with the sizes of the touch panel 8004 and the display panel 8006 .
  • the touch panel 8004 can be a resistive touch panel or a capacitive touch panel and can be formed to overlap with the display panel 8006 .
  • a counter substrate (sealing substrate) of the display panel 8006 can have a touch panel function.
  • a photosensor may be provided in each pixel of the display panel 8006 to form an optical touch panel.
  • the backlight 8007 includes a light source 8008 .
  • a structure in which the light sources 8008 are provided over the backlight 8007 is illustrated in FIG. 24 , one embodiment of the present invention is not limited to this structure.
  • a structure in which the light source 8008 is provided at an end portion of the backlight 8007 and a light diffusion plate is further provided may be employed.
  • the backlight 8007 need not be provided in the case where a self-luminous light-emitting element such as an organic EL element is used or in the case where a reflective panel or the like is employed.
  • the frame 8009 protects the display panel 8006 and also functions as an electromagnetic shield for blocking electromagnetic waves generated by the operation of the printed board 8010 .
  • the frame 8009 may function as a radiator plate.
  • the printed board 8010 is provided with a power supply circuit and a signal processing circuit for outputting a video signal and a clock signal.
  • a power source for supplying power to the power supply circuit an external commercial power source or a power source using the battery 8011 provided separately may be used.
  • the battery 8011 can be omitted in the case of using a commercial power source.
  • the display module 8000 may be additionally provided with a member such as a polarizing plate, a retardation plate, or a prism sheet.
  • FIGS. 25A to 25G illustrate electronic appliances. These electronic appliances can include a housing 9000 , a display portion 9001 , a speaker 9003 , operation keys 9005 (including a power switch or an operation switch), a connection terminal 9006 , a sensor 9007 (a sensor having a function of measuring or sensing force, displacement, position, speed, acceleration, angular velocity, rotational frequency, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, oscillation, odor, or infrared ray), a microphone 9008 , and the like.
  • a sensor 9007 a sensor having a function of measuring or sensing force, displacement, position, speed, acceleration, angular velocity, rotational frequency, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, oscillation, odor, or infrared
  • the electronic appliances illustrated in FIGS. 25A to 25G can have a variety of functions, for example, a function of displaying a variety of data (a still image, a moving image, a text image, and the like) on the display portion, a touch panel function, a function of displaying a calendar, date, time, and the like, a function of controlling a process with a variety of software (programs), a wireless communication function, a function of being connected to a variety of computer networks with a wireless communication function, a function of transmitting and receiving a variety of data with a wireless communication function, a function of reading a program or data stored in a memory medium and displaying the program or data on the display portion, and the like.
  • a function of displaying a variety of data (a still image, a moving image, a text image, and the like) on the display portion
  • a touch panel function a function of displaying a calendar, date, time, and the like
  • the electronic appliances illustrated in FIGS. 25A to 25G are not limited to those described above, and the electronic appliances can have a variety of functions.
  • the electronic appliance may include a plurality of display portions.
  • the electronic appliance may be provided with a camera and the like and have a function of shooting a still image, a function of shooting a moving image, a function of storing a shot image in a memory medium (an external memory medium or a memory medium incorporated in the camera), a function of displaying a shot image on the display portion, or the like.
  • FIGS. 25A to 25G are described in detail below.
  • FIG. 25A is a perspective view illustrating a portable information terminal 9100 .
  • a display portion 9001 of the portable information terminal 9100 is flexible. Therefore, the display portion 9001 can be incorporated along a bent surface of a bent housing 9000 . Furthermore, the display portion 9001 includes a touch sensor, and operation can be performed by touching the screen with a finger, a stylus, or the like. For example, by touching an icon displayed on the display portion 9001 , application can be started.
  • FIG. 25B is a perspective view illustrating a portable information terminal 9101 .
  • the portable information terminal 9101 function as, for example, one or more of a telephone set, a notebook, and an information browsing system.
  • the portable information terminal 9101 can be used as a smartphone.
  • the speaker 9003 , the connection terminal 9006 , the sensor 9007 , and the like of the portable information terminal 9101 are not illustrated in FIG. 25B , they can be provided in the same positions as the portable information terminal 9100 in FIG. 25A .
  • the portable information terminal 9101 can display characters and image information on its plurality of surfaces. For example, three operation buttons 9050 (also referred to as operation icons or simply icons) can be displayed on one surface of the display portion 9001 .
  • information 9051 indicated by dashed rectangles can be displayed on another surface of the display portion 9001 .
  • Examples of the information 9051 include display indicating reception of an incoming email, social networking service (SNS) message, and call; the title and sender of an email and SNS massage; the date; the time; remaining battery; and the reception strength of an antenna.
  • the operation buttons 9050 or the like may be displayed in place of the information 9051 .
  • FIG. 25C is a perspective view illustrating a portable information terminal 9102 .
  • the portable information terminal 9102 has a function of displaying information, for example, on three or more sides of the display portion 9001 .
  • information 9052 , information 9053 , and information 9054 are displayed on different sides.
  • a user of the portable information terminal 9102 can see the display (here, the information 9053 ) with the portable information terminal 9102 put in a breast pocket of his/her clothes.
  • a caller's phone number, name, or the like of an incoming call is displayed in a position that can be seen from above the portable information terminal 9102 .
  • the user can see the display without taking out the portable information terminal 9102 from the pocket and decide whether to answer the call.
  • FIG. 25D is a perspective view illustrating a wrist-watch-type portable information terminal 9200 .
  • the portable information terminal 9200 is capable of executing a variety of applications such as mobile phone calls, e-mailing, reading and editing texts, music reproduction, Internet communication, and a computer game.
  • the display surface of the display portion 9001 is bent, and images can be displayed on the bent display surface.
  • the portable information terminal 9200 can employ near field communication that is a communication method based on an existing communication standard. In that case, for example, mutual communication between the portable information terminal 9200 and a headset capable of wireless communication can be performed, and thus hands-free calling is possible.
  • the portable information terminal 9200 includes the connection terminal 9006 , and data can be directly transmitted to and received from another information terminal via a connector. Charging through the connection terminal 9006 is possible. Note that the charging operation may be performed by wireless power feeding without using the connection terminal 9006 .
  • FIGS. 25E , 25 F, and 25 G are perspective views each illustrating a foldable portable information terminal 9201 .
  • FIG. 25E is a perspective view illustrating the portable information terminal 9201 that is opened
  • FIG. 25F is a perspective view illustrating the portable information terminal 9201 that is being opened or being folded
  • FIG. 25G is a perspective view illustrating the portable information terminal 9201 that is folded.
  • the portable information terminal 9201 is highly portable when folded. When the portable information terminal 9201 is opened, a seamless large display region is highly browsable.
  • the display portion 9001 of the portable information terminal 9201 is supported by three housings 9000 joined together by hinges 9055 .
  • the portable information terminal 9201 By folding the portable information terminal 9201 at a connection portion between two housings 9000 with the hinges 9055 , the portable information terminal 9201 can be reversibly changed in shape from an opened state to a folded state.
  • the portable information terminal 9201 can be bent with a radius of curvature of greater than or equal to 1 mm and less than or equal to 150 mm.
  • the electronic appliances described in this embodiment each include the display portion for displaying some sort of data.
  • the semiconductor device of one embodiment of the present invention can also be used for an electronic appliance that does not have a display portion.
  • the structure in which the display portion of the electronic appliance described in this embodiment is flexible and display can be performed on the bent display surface or the structure in which the display portion of the electronic appliance is foldable is described as an example; however, the structure is not limited thereto and a structure in which the display portion of the electronic appliance is not flexible and display is performed on a plane portion may be employed.
  • the amount of oxygen released from an insulating film included in a semiconductor device of one embodiment of the present invention was measured.
  • Samples A1, A2, A3, A4, A5, A6, A7, and A8 described below were used for evaluation in this example.
  • FIG. 26A is a cross-sectional view schematically illustrating the samples A1, A3, A5, and A7
  • FIG. 26B is a cross-sectional view schematically illustrating the samples A2, A4, A6, and A8.
  • the samples A1, A3, A5, and A7 illustrated in FIG. 26A each include a substrate 302 , an insulating film 316 over the substrate 302 , and an oxide semiconductor film 317 over the insulating film 316 .
  • the samples A2, A4, A6, and A8 illustrated in FIG. 26B each include the substrate 302 and the insulating film 316 over the substrate 302 .
  • the insulating film 316 was formed over the substrate 302 .
  • a 400-nm-thick silicon oxynitride film (hereinafter described as a SiON film in some cases) was used as the insulating film 316 .
  • the silicon oxynitride film was deposited under the conditions where the substrate temperature was 220° C.; a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into a chamber; the pressure was 200 Pa; and an RF power of 1500 W was supplied between parallel-plate electrodes provided in a PECVD apparatus.
  • the heat treatment was performed at 650° C. in a nitrogen atmosphere for 6 minutes with an RTA apparatus. By the heat treatment, oxygen included in the insulating film 316 is released.
  • the oxide semiconductor film 317 was formed over the insulating film 316 .
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 .
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • oxygen addition treatment was performed on the insulating film 316 through the oxide semiconductor film 317 .
  • the oxygen addition treatment was performed with an ashing apparatus under the conditions where the substrate temperature was 160° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 4500 W was supplied for 120 seconds between parallel-plate electrodes provided in the ashing apparatus so that a bias voltage would be applied to the substrate side.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method after the same fabrication steps as the sample A1 were performed.
  • the fabrication method of the sample A3 was different from that of the sample A1 only in the step of forming the oxide semiconductor film 317 , and the other steps were the same as those of the sample A1.
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample A3.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method after the same fabrication steps as the sample A3 were performed.
  • the fabrication method of the sample A5 was different from that of the sample A1 only in the step of forming the oxide semiconductor filmhn 317 , and the other steps were the same as those of the sample A1.
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample A5.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method after the same fabrication steps as the sample A5 were performed.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method after the same fabrication steps as the sample A7 were performed.
  • Table 1 briefly shows fabrication processes and structures of the samples A1 to A8.
  • the samples A1 to A8 are different from one another in composition of the oxide semiconductor film 317 and/or whether the step of removing the oxide semiconductor film 317 after its formation was performed or not.
  • the samples A1 to A8 fabricated as described above were subjected to thermal desorption spectroscopy (TDS) measurement.
  • TDS thermal desorption spectroscopy
  • each sample was heated at temperatures ranging from 50° C. to 500° C. to evaluate the amount of oxygen released from the insulating film 316 in each sample.
  • M/z mass-to-charge ratio
  • FIGS. 27A and 27B show TDS measurement results of the samples A1 and A2 and TDS measurement results of the samples A3 and A4, respectively; and FIGS. 28A and 28B show TDS measurement results of the samples A5 and A6 and TDS measurement results of the samples A7 and A8, respectively.
  • the vertical axis represents intensity (arbitrary unit), and the horizontal axis represents temperature (° C.).
  • FIG. 29 shows the amount of a gas having a mass-to-charge ratio (M/z) of 32 which was released in TDS measurement. Note that FIG. 29 shows the amounts of a gas having a mass-to-charge ratio (M/z) of 32, i.e.
  • the gas corresponding to an oxygen molecule which was released in the TDS measurements shown in FIGS. 27A and 27B and FIGS. 28A and 28B and was calculated from the ratio of the integrated intensity to that of the gas having a mass-to-charge ratio (M/z) of 32 which was obtained by the TDS measurement.
  • the amount of oxygen released in the sample A1 was approximately 2.6 ⁇ 10 20 /cm 3
  • that in the sample A2 was approximately 3.1 ⁇ 10 20 /cm 3
  • that in the sample A3 was approximately 2.6 ⁇ 10 20 /cm 3
  • that in the sample A4 was approximately 2.7 ⁇ 10 20 /cm 3
  • that in the sample A5 was approximately 2.0 ⁇ 10 20 /cm 3
  • that in the sample A6 was approximately 1.8 ⁇ 10 20 /cm 3
  • that in the sample A7 was approximately 2.5 ⁇ 10 20 /cm 3
  • that in the sample A8 was approximately 2.4 ⁇ 10 20 /cm 3 .
  • FIG. 26A is a cross-sectional view schematically illustrating the samples B1, B3, and B5
  • FIG. 26B is a cross-sectional view schematically illustrating the samples B2, B4, and B6.
  • the samples B1, B3, and B5 illustrated in FIG. 26A each include the substrate 302 , the insulating film 316 over the substrate 302 , and the oxide semiconductor film 317 over the insulating film 316 .
  • the samples B2, B4, and B6 illustrated in FIG. 26B each include the substrate 302 and the insulating film 316 over the substrate 302 .
  • the insulating film 316 was formed over the substrate 302 .
  • a 400-nm-thick silicon oxynitride film was used as the insulating film 316 .
  • the silicon oxynitride film was deposited under the conditions where the substrate temperature was 220° C.; a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into a chamber; the pressure was 200 Pa; and an RF power of 1500 W was supplied between parallel-plate electrodes provided in a PECVD apparatus.
  • the heat treatment was performed at 650° C. in a nitrogen atmosphere for 6 minutes with an RTA apparatus. By the heat treatment, oxygen included in the insulating film 316 is released.
  • the oxide semiconductor film 317 was formed over the insulating film 316 .
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 .
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 10%.
  • oxygen addition treatment was performed on the insulating film 316 through the oxide semiconductor film 317 .
  • the oxygen addition treatment was performed with an ashing apparatus under the conditions where the substrate temperature was 160° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 4500 W was supplied for 120 seconds between parallel-plate electrodes provided in the ashing apparatus so that a bias voltage would be applied to the substrate side.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method after the same fabrication steps as the sample B1 were performed.
  • the fabrication method of the sample B3 was different from that of the sample B1 only in the step of forming the oxide semiconductor film 317 , and the other steps were the same as those of the sample B1.
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample B3.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 50%.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method after the same fabrication steps as the sample B3 were performed.
  • the fabrication method of the sample B5 was different from that of the sample B1 only in the step of forming the oxide semiconductor film 317 , and the other steps were the same as those of the sample B1.
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample B5.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method after the same fabrication steps as the sample B5 were performed.
  • Table 2 briefly shows fabrication processes and structures of the samples B1 to B6.
  • the values in parentheses in the step 3 represent composition ratios of In:Ga:Zn (atomic %) of targets for forming IGZO films.
  • the bottom in the step 3 represents the thicknesses of the IGZO films and percentages of oxygen gas to the whole deposition gas.
  • the bottom in the step 4 represents time of oxygen addition treatment and substrate temperature during oxygen addition treatment
  • the samples B1 to B6 are different from one another in a flow rate of deposition gas at the formation of the oxide semiconductor film 317 and/or whether the step of removing the oxide semiconductor film 317 after its formation was performed or not.
  • FIGS. 30A , 30 B, and 30 C show TDS measurement results of the samples B1 and B2, TDS measurement results of the samples B3 and B4, and TDS measurement results of the sample B5 and B6, respectively.
  • the vertical axis represents intensity (arbitrary unit), and the horizontal axis represents temperature (° C.).
  • FIG. 31 shows the amount of a gas having a mass-to-charge ratio (M/z) of 32 which was released in TDS measurement.
  • Mz mass-to-charge ratio
  • FIG. 31 shows the amounts of a gas having a mass-to-charge ratio (Mz) of 32, i.e. the gas corresponding to an oxygen molecule, which was released in the TDS measurements shown in FIGS. 30A to 30C and was calculated from the ratio of the integrated intensity to that of the gas having a mass-to-charge ratio (M/z) of 32 which was obtained by the TDS measurement.
  • the intensity of a gas having a mass-to-charge ratio (M/z) of 32, which corresponds to the amount of oxygen released, is observed at a higher temperature than that in the samples B2, B4, and B6 each of which does not include the oxide semiconductor film 317 .
  • the amount of oxygen released in the sample B1 was approximately 1.7 ⁇ 10 20 /cm 3
  • that in the sample B2 was approximately 1.6 ⁇ 10 20 /cm 3
  • that in the sample B3 was approximately 1.8 ⁇ 10 20 /cm 3
  • that in the sample B4 was approximately 1.8 ⁇ 10 20 /cm 3
  • that in the sample B5 was approximately 2.6 ⁇ 10 20 /cm 3
  • that in the sample B6 was approximately 3.1 ⁇ 10 20 /cm 3 .
  • the amount of an oxygen gas released from the insulating film 316 increased by raising the flow rate of the oxygen gas at the formation of the oxide semiconductor film 317 . Therefore, as the flow rate of an oxygen gas at the formation of the oxide semiconductor film, the percentage of the oxygen gas to the whole deposition gas was preferably 10% or higher, or further preferably 50% or higher and 100% or lower.
  • FIG. 26B is a cross-sectional view schematically illustrating the samples C1 to C4.
  • the samples C1 to C4 illustrated in FIG. 26B each include the substrate 302 and the insulating film 316 over the substrate 302 .
  • the insulating film 316 was formed over the substrate 302 .
  • a 400-nm-thick silicon oxynitride film was used as the insulating film 316 .
  • the silicon oxynitride film was deposited under the conditions where the substrate temperature was 220° C.; a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into a chamber; the pressure was 200 Pa; and an RF power of 1500 W was supplied between parallel-plate electrodes provided in a PECVD apparatus.
  • the heat treatment was performed at 650° C. in a nitrogen atmosphere for 6 minutes with an RTA apparatus. By the heat treatment, oxygen included in the insulating film 316 is released.
  • the oxide semiconductor film 317 was formed over the insulating film 316 .
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 .
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • oxygen addition treatment was performed on the insulating film 316 through the oxide semiconductor film 317 .
  • the oxygen addition treatment was performed with an ashing apparatus under the conditions where the substrate temperature was 160° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 4500 W was supplied for 120 seconds between parallel-plate electrodes provided in the ashing apparatus so that a bias voltage would be applied to the substrate side.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method.
  • the sample C2 is different from the sample C1 in the conditions of the oxygen addition treatment.
  • the oxygen addition treatment of the sample C2 was performed with an ashing apparatus under the conditions where the substrate temperature was 104° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 8000 W was supplied to an upper electrode side and power of 4500 W with a frequency of 3.2 MHz was supplied to a lower electrode side of parallel-plate electrodes provided in the ashing apparatus, each for 120 seconds, so that a bias voltage would be applied to the substrate side.
  • the sample C3 is different from the sample C1 in the conditions of the oxygen addition treatment.
  • the oxygen addition treatment of the sample C3 was performed with an ashing apparatus under the conditions where the substrate temperature was 143° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 8000 W was supplied to an upper electrode side and power of 4500 W with a frequency of 3.2 MHz was supplied to a lower electrode side of parallel-plate electrodes provided in the ashing apparatus, each for 120 seconds, so that a bias voltage would be applied to the substrate side.
  • the sample C4 is different from the sample C1 in the conditions of the oxygen addition treatment.
  • the oxygen addition treatment of the sample C4 was performed with an ashing apparatus under the conditions where the substrate temperature was 171° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 8000 W was supplied to an upper electrode side and power of 4500 W with a frequency of 3.2 MHz was supplied to a lower electrode side of parallel-plate electrodes provided in the ashing apparatus, each for 120 seconds, so that a bias voltage would be applied to the substrate side.
  • Table 3 briefly shows fabrication processes and structures of the samples C1 to C4.
  • the samples C1 to C4 are different in substrate temperature during the oxygen addition treatment.
  • FIG. 32 shows the amount of a gas having a mass-to-charge ratio (M/z) of 32 which was released in TDS measurement. Note that FIG. 32 shows the amounts of a gas having a mass-to-charge ratio (M/z) of 32, i.e. the gas corresponding to an oxygen molecule, which was released in the TDS measurements and was calculated from the ratio of the integrated intensity to that of the gas having a mass-to-charge ratio (M/z) of 32 which was obtained by the TDS measurement.
  • M/z mass-to-charge ratio
  • the amount of oxygen released in the sample C1 was approximately 2.7 ⁇ 10 20 /cm 3
  • that in the sample C2 was approximately 1.2 ⁇ 10 20 /cm 3
  • that in the sample C3 was approximately 2.0 ⁇ 10 20 /cm 3
  • that in the sample C4 was approximately 2.9 ⁇ 10 20 /cm 3 .
  • the amount of an oxygen gas released from the insulating film 316 was increased at a high substrate temperature during the oxygen addition treatment. That is, much oxygen can be introduced into the insulating film 316 at a high substrate temperature during the oxygen addition treatment.
  • oxygen in the insulating film 316 is diffused at a temperature around 300° C.; therefore, the oxygen addition treatment is preferably performed at a temperature lower than the temperature at which oxygen is released.
  • the substrate temperature during the oxygen addition treatment is higher than or equal to room temperature and lower than or equal to 300° C., preferably higher than or equal to 100° C. and lower than or equal to 250° C.
  • FIG. 26B is a cross-sectional view schematically illustrating the samples D1 to D7.
  • the samples D1 to D7 illustrated in FIG. 26B each include the substrate 302 and the insulating film 316 over the substrate 302 .
  • the insulating film 316 was formed over the substrate 302 .
  • a 200-nm-thick silicon nitride film and a 400-nm-thick silicon oxynitride film were stacked as the insulating film 316 .
  • the silicon nitride film was deposited under the conditions where the substrate temperature was 350° C.; a silane gas at a flow rate of 200 sccm, a nitrogen gas at a flow rate of 2000 sccm, and an ammonia gas at a flow rate of 2000 sccm were introduced into a chamber; the pressure was 100 Pa; and an RF power of 2000 W was supplied between parallel-plate electrodes provided in a PECVD apparatus.
  • the silicon oxynitride film was deposited under the conditions where the substrate temperature was 220° C.; a silane gas at a flow rate of 160 sccm and a dinitrogen monoxide gas at a flow rate of 4000 sccm were introduced into a chamber; the pressure was 200 Pa; and an RF power of 1500 W was supplied between parallel-plate electrodes provided in a PECVD apparatus.
  • the heat treatment was performed at 650° C. in a nitrogen atmosphere for 6 minutes with an RTA apparatus. By the heat treatment, oxygen included in the insulating film 316 is released.
  • the oxide semiconductor film 317 was formed over the insulating film 316 .
  • a 5-nm-thick IGZO film was used as the oxide semiconductor film 317 .
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • oxygen addition treatment was performed on the insulating film 316 through the oxide semiconductor film 317 .
  • the oxygen addition treatment was performed with an ashing apparatus under the conditions where the substrate temperature was 160° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 4500 W was supplied for 600 seconds between parallel-plate electrodes provided in the ashing apparatus so that a bias voltage would be applied to the substrate side.
  • an IGZO film serving as the oxide semiconductor film 317 was removed by a wet etching method.
  • the fabrication method of the sample D2 was different from that of the sample D1 only in the step of forming the oxide semiconductor film 317 , and the other steps were the same as those of the sample D1.
  • a 10-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample D2.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • the fabrication method of the sample D3 was different from that of the sample D1 only in the step of forming the oxide semiconductor film 317 , and the other steps were the same as those of the sample D1.
  • a 15-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample D3.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • the fabrication method of the sample D4 was different from that of the sample D1 only in the step of forming the oxide semiconductor film 317 , and the other steps were the same as those of the sample D1.
  • a 20-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample D4.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • the fabrication method of the sample D5 was different from that of the sample D1 only in the step of forming the oxide semiconductor film 317 , and the other steps were the same as those of the sample D1.
  • a 35-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample D5.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • the sample D6 is different from the sample D1 only in the step of performing the oxygen addition treatment, and the other steps are the same as those of the sample D1.
  • the oxygen addition treatment of the sample D6 was performed with an ashing apparatus under the conditions where the substrate temperature was 160° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 4500 W was supplied for 120 seconds between parallel-plate electrodes provided in the ashing apparatus so that a bias voltage would be applied to the substrate side.
  • the fabrication method of the sample D7 was different from that of the sample D1 in the step of forming the oxide semiconductor film 317 and the step of performing the oxygen addition treatment, and the other steps are the same as those of the sample D1.
  • a 10-nm-thick IGZO film was used as the oxide semiconductor film 317 of the sample D7.
  • the IGZO film was deposited under the condition where the percentage of the oxygen (O 2 ) gas to the whole deposition gas was 100%.
  • the oxygen addition treatment of the sample D7 was performed with an ashing apparatus under the conditions where the substrate temperature was 160° C., an oxygen gas at a flow rate of 250 sccm was introduced into a chamber, the pressure was 15 Pa, and an RF power of 4500 W was supplied for 120 seconds between parallel-plate electrodes provided in the ashing apparatus so that a bias voltage would be applied to the substrate side.
  • Table 4 briefly shows fabrication processes and structures of the samples D1 to D7.
  • the samples D1 to D7 are different in the thickness of the oxide semiconductor film 317 and time for the oxygen addition treatment.
  • FIG. 33 shows the amount of a gas having a mass-to-charge ratio (M/z) of 32 which was released in TDS measurement. Note that FIG. 33 shows the amounts of a gas having a mass-to-charge ratio (M/z) of 32, i.e. the gas corresponding to an oxygen molecule, which was released in the TDS measurements and was calculated from the ratio of the integrated intensity to that of the gas having a mass-to-charge ratio (M/z) of 32 which was obtained by the TDS measurement.
  • M/z mass-to-charge ratio
  • the amount of oxygen released in the sample D1 was approximately 3.5 ⁇ 10 20 /cm 3
  • that in the sample D2 was approximately 1.0 ⁇ 10 21 /cm 3
  • that in the sample D3 was approximately 3.5 ⁇ 10 20 /cm 3
  • that in the sample D4 was approximately 6.0 ⁇ 10 19 /cm 3
  • that in the sample D5 was approximately 1.7 ⁇ 10 19 /cm 3
  • that in the sample D6 was approximately 3.1 ⁇ 10 20 /cm 3
  • that in the sample D7 was approximately 5.3 ⁇ 10 19 /cm 3 .
  • the amount of oxygen added to the insulating film 316 seems to be large when the oxide semiconductor film 317 has a thickness of approximately 10 nm.
  • the amount of oxygen added to the insulating film 316 when the oxide semiconductor film 317 has a thickness of 5 nm was larger than that when the oxide semiconductor film 317 has a thickness of 10 nm. Therefore, the thickness of the oxide semiconductor film 317 is greater than or equal to 5 nm and less than or equal to 35 nm, preferably greater than or equal to 5 nm and less than or equal to 15 nm.
  • the thickness of an oxide semiconductor film which is used as a channel formation region of a transistor is greater than 35 nm and less than or equal to 100 nm, the thickness of the oxide semiconductor film 317 is made thinner than that of the oxide semiconductor film used as the channel formation region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Liquid Crystal (AREA)
US14/710,029 2014-05-15 2015-05-12 Semiconductor Device and Display Device Including the Same Abandoned US20150333088A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/776,856 US10998448B2 (en) 2014-05-15 2020-01-30 Thin film semiconductor device including back gate comprising oxide semiconductor material
US17/242,562 US11594642B2 (en) 2014-05-15 2021-04-28 Thin film semiconductor device including back gate comprising oxide semiconductor material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-101183 2014-05-15
JP2014101183 2014-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/776,856 Continuation US10998448B2 (en) 2014-05-15 2020-01-30 Thin film semiconductor device including back gate comprising oxide semiconductor material

Publications (1)

Publication Number Publication Date
US20150333088A1 true US20150333088A1 (en) 2015-11-19

Family

ID=54539171

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/710,029 Abandoned US20150333088A1 (en) 2014-05-15 2015-05-12 Semiconductor Device and Display Device Including the Same
US16/776,856 Active US10998448B2 (en) 2014-05-15 2020-01-30 Thin film semiconductor device including back gate comprising oxide semiconductor material
US17/242,562 Active 2035-07-11 US11594642B2 (en) 2014-05-15 2021-04-28 Thin film semiconductor device including back gate comprising oxide semiconductor material

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/776,856 Active US10998448B2 (en) 2014-05-15 2020-01-30 Thin film semiconductor device including back gate comprising oxide semiconductor material
US17/242,562 Active 2035-07-11 US11594642B2 (en) 2014-05-15 2021-04-28 Thin film semiconductor device including back gate comprising oxide semiconductor material

Country Status (3)

Country Link
US (3) US20150333088A1 (ja)
JP (3) JP6560894B2 (ja)
KR (2) KR102333604B1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115210A1 (en) * 2015-12-28 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US9852926B2 (en) 2015-10-20 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
US9911755B2 (en) 2012-12-25 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and capacitor
US10002970B2 (en) 2015-04-30 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, or display device including the same
US10008609B2 (en) 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US10158008B2 (en) 2015-10-12 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10276594B2 (en) 2016-09-12 2019-04-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10367095B2 (en) 2015-03-03 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US10985283B2 (en) * 2017-03-03 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide layer with a concentration gradient of oxygen and an insulating layer with excess oxygen
US11099284B2 (en) * 2019-05-22 2021-08-24 Innolux Corporation Radiation sensing device and operating method thereof
US11842901B2 (en) 2016-02-18 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, display device, and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230114890A (ko) * 2022-01-26 2023-08-02 삼성전자주식회사 전기 영동 소자를 포함하는 웨어러블 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120061662A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US20120248433A1 (en) * 2011-03-31 2012-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20120300151A1 (en) * 2009-07-18 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US20130037799A1 (en) * 2009-07-03 2013-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US20150004762A1 (en) * 2011-11-09 2015-01-01 Japan Science And Technology Agency Method for producing functional device and apparatus for producing functional device
US20150123115A1 (en) * 2012-04-16 2015-05-07 Korea Electronics Technology Institute Method for producing an oxide film using a low temperature process, an oxide film and an electronic device thereof

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053147A (ja) * 1973-09-08 1975-05-12
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2776083B2 (ja) * 1991-08-23 1998-07-16 日本電気株式会社 液晶表示装置およびその製造方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
KR100394896B1 (ko) 1995-08-03 2003-11-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 투명스위칭소자를포함하는반도체장치
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
JP2000243963A (ja) * 1999-02-17 2000-09-08 Sanyo Electric Co Ltd 薄膜トランジスタ及び表示装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP4620046B2 (ja) 2004-03-12 2011-01-26 独立行政法人科学技術振興機構 薄膜トランジスタ及びその製造方法
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
KR100953596B1 (ko) 2004-11-10 2010-04-21 캐논 가부시끼가이샤 발광장치
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
KR100911698B1 (ko) 2004-11-10 2009-08-10 캐논 가부시끼가이샤 비정질 산화물을 사용한 전계 효과 트랜지스터
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5138163B2 (ja) 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7601984B2 (en) 2004-11-10 2009-10-13 Canon Kabushiki Kaisha Field effect transistor with amorphous oxide active layer containing microcrystals and gate electrode opposed to active layer through gate insulator
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101112655B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP5264197B2 (ja) 2008-01-23 2013-08-14 キヤノン株式会社 薄膜トランジスタ
US8586979B2 (en) * 2008-02-01 2013-11-19 Samsung Electronics Co., Ltd. Oxide semiconductor transistor and method of manufacturing the same
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
WO2011043218A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101789309B1 (ko) 2009-10-21 2017-10-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 아날로그 회로 및 반도체 장치
KR20210043743A (ko) 2009-12-04 2021-04-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
CN106340542A (zh) 2010-02-26 2017-01-18 株式会社半导体能源研究所 制造半导体装置的方法
KR101403409B1 (ko) * 2010-04-28 2014-06-03 한국전자통신연구원 반도체 장치 및 그 제조 방법
CN102906881B (zh) 2010-05-21 2016-02-10 株式会社半导体能源研究所 半导体装置
US8441010B2 (en) * 2010-07-01 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2012033836A (ja) 2010-08-03 2012-02-16 Canon Inc トップゲート型薄膜トランジスタ及びこれを備えた表示装置
CN103081092B (zh) 2010-08-27 2016-11-09 株式会社半导体能源研究所 存储器件及半导体器件
US8883556B2 (en) 2010-12-28 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2012146805A (ja) * 2011-01-12 2012-08-02 Sony Corp 放射線撮像装置、放射線撮像表示システムおよびトランジスタ
JP6016455B2 (ja) * 2012-05-23 2016-10-26 株式会社半導体エネルギー研究所 半導体装置
JP6289822B2 (ja) * 2012-05-31 2018-03-07 株式会社半導体エネルギー研究所 発光装置及び電子機器
KR102171650B1 (ko) * 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
JP2014074908A (ja) * 2012-09-13 2014-04-24 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の駆動方法
KR102318728B1 (ko) 2014-04-18 2021-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 이를 가지는 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130037799A1 (en) * 2009-07-03 2013-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device including transistor and manufacturing method thereof
US20120300151A1 (en) * 2009-07-18 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US20120061662A1 (en) * 2010-09-13 2012-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US20120248433A1 (en) * 2011-03-31 2012-10-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20150004762A1 (en) * 2011-11-09 2015-01-01 Japan Science And Technology Agency Method for producing functional device and apparatus for producing functional device
US20150123115A1 (en) * 2012-04-16 2015-05-07 Korea Electronics Technology Institute Method for producing an oxide film using a low temperature process, an oxide film and an electronic device thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9911755B2 (en) 2012-12-25 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and capacitor
US10367095B2 (en) 2015-03-03 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US10008609B2 (en) 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
US10002970B2 (en) 2015-04-30 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, or display device including the same
US10158008B2 (en) 2015-10-12 2018-12-18 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9852926B2 (en) 2015-10-20 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
US10784285B2 (en) 2015-12-28 2020-09-22 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10083991B2 (en) 2015-12-28 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
WO2017115210A1 (en) * 2015-12-28 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
CN112635494A (zh) * 2015-12-28 2021-04-09 株式会社半导体能源研究所 显示装置、显示模块及电子设备
US11069718B2 (en) 2015-12-28 2021-07-20 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US11791344B2 (en) 2015-12-28 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US11842901B2 (en) 2016-02-18 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, display device, and electronic device
US10276594B2 (en) 2016-09-12 2019-04-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10985283B2 (en) * 2017-03-03 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide layer with a concentration gradient of oxygen and an insulating layer with excess oxygen
US11817508B2 (en) 2017-03-03 2023-11-14 Semiconductor Energy Laboratory Co., Ltd. Methods for manufacturing a semiconductor device having a metal oxide layer with a concentration gradient of oxygen and an insulating layer with excess oxygen
US11099284B2 (en) * 2019-05-22 2021-08-24 Innolux Corporation Radiation sensing device and operating method thereof

Also Published As

Publication number Publication date
US20210313471A1 (en) 2021-10-07
US10998448B2 (en) 2021-05-04
US20200168738A1 (en) 2020-05-28
JP2020021957A (ja) 2020-02-06
US11594642B2 (en) 2023-02-28
JP6608089B2 (ja) 2019-11-20
JP2019195101A (ja) 2019-11-07
JP2015233135A (ja) 2015-12-24
KR20210148041A (ko) 2021-12-07
KR102333604B1 (ko) 2021-11-30
KR102596645B1 (ko) 2023-10-31
JP6560894B2 (ja) 2019-08-14
KR20150131978A (ko) 2015-11-25

Similar Documents

Publication Publication Date Title
US10998448B2 (en) Thin film semiconductor device including back gate comprising oxide semiconductor material
US11282865B2 (en) Semiconductor device including indium at insulating film interface
US10164075B2 (en) Manufacturing method of semiconductor device including transistor
US9768315B2 (en) Semiconductor device and display device having the same
US11158745B2 (en) Semiconductor device and display device including the same
US10431600B2 (en) Method for manufacturing a semiconductor device including a metal oxide film
US9722090B2 (en) Semiconductor device including first gate oxide semiconductor film, and second gate
US10290656B2 (en) Semiconductor device with oxide semiconductor film electrical characteristic change of which is inhibited
US9887291B2 (en) Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, or the display module
US20150270403A1 (en) Semiconductor device, display device including semiconductor device, display module including display device, and electronic device including semiconductor device, display device, and display module

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEMICONDUCTOR ENERGY LABORATORY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAZAKI, SHUNPEI;KOEZUKA, JUNICHI;JINTYOU, MASAMI;AND OTHERS;SIGNING DATES FROM 20150415 TO 20150421;REEL/FRAME:035619/0410

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION