US20150292069A1 - Stainless steel-clad steel plate having exceptional corrosion resistance to seawater - Google Patents
Stainless steel-clad steel plate having exceptional corrosion resistance to seawater Download PDFInfo
- Publication number
- US20150292069A1 US20150292069A1 US14/443,695 US201314443695A US2015292069A1 US 20150292069 A1 US20150292069 A1 US 20150292069A1 US 201314443695 A US201314443695 A US 201314443695A US 2015292069 A1 US2015292069 A1 US 2015292069A1
- Authority
- US
- United States
- Prior art keywords
- cladding
- mass
- corrosion resistance
- stainless
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/001—Interlayers, transition pieces for metallurgical bonding of workpieces
- B23K35/004—Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
- B23K35/3086—Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/011—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- This disclosure relates to stainless cladding steel plates with excellent sea water corrosion resistance that are used in various applications such as harbor structures, shipbuilding and seawater desalination units.
- Stainless steel is an attractive material that meets such needs.
- alloying elements such as nickel, molybdenum and chromium that are the main raw materials for stainless steel have high and variable prices.
- Stainless cladding steel is an economically efficient material that combines the excellent corrosion resistance of stainless steel with low and stable prices. Thus, this steel has recently attracted attention as a substitute for solid stainless steel.
- the stainless cladding steel is a composite steel that includes two different types of metals joined together, namely, stainless steel as the cladding metal and ordinary steel as the base metal. Because the cladding steel is a metallurgical combination of dissimilar metals, the material is free from exfoliation in contrast to platings and attains new characteristics which are impossible to achieve with single metals or alloys. Thus, the stainless cladding steel allows for reduction of stainless steel consumption and can ensure the same level of corrosion resistance as the solid metal (having the metal composition of the cladding metal throughout the thickness), achieving advantages in terms of economic efficiency and functionality.
- the stainless cladding steel is a highly beneficial functional steel and has recently been increasingly demanded in various industrial fields.
- the stainless cladding steel finds use in seawater environments such as harbor structures, shipbuilding, floating production storage and offloading (hereinafter “FPSO”) systems and seawater desalination units.
- FPSO floating production storage and offloading
- the use in such severely corrosive seawater environments requires sea water corrosion resistance.
- the pitting corrosion resistance of stainless steel depends on the amounts of chromium, molybdenum and nitrogen in the steel. Generally, the pitting resistance equivalent (PRE) or the pitting index (PI) organizes the amounts as Cr (mass %)+3Mo (mass %)+10N (mass %) or Cr (mass %)+3.3Mo (mass %)+16N (mass %). It is accepted that the pitting corrosion resistance is higher with increasing PRE value. However, application of such indexes is limited to solid stainless steel that has undergone heat treatment to dissolve solutes such as precipitates. That is, it is impossible to apply the indexes directly to the pitting corrosion resistance of the cladding metal in stainless cladding steel that is a composite material of stainless steel with carbon steel.
- the stainless cladding steel is conventionally subjected to an off-line heat treatment, namely, normalizing or solution heat treatment.
- Japanese Unexamined Patent Application Publication No. 9-104953 discloses a technique in which a stainless cladding steel plate with excellent corrosion resistance is manufactured by a solution heat treatment in which a cladding steel plate having a specific cladding metal composition is heated to 1050° C. or below and is cooled at 30° C./min or more.
- Japanese Unexamined Patent Application Publication No. 2-254121 discloses a technique in which a cladding steel having a specific cladding metal composition is heated to 1100 to 1250° C., thereafter hot rolled at a finish rolling temperature of 800° C. or above, and cooled at 1° C./sec or more, thereby producing a stainless cladding steel plate with excellent corrosion resistance.
- the solution heat treatment requires that the base metal composition be limited to ensure the mechanical properties of the base metal. Further, the off-line heat treatment adds production steps.
- JP '121 specifies the chemical composition of the cladding metal in the cladding steel plate, the finish rolling temperature and the rate of cooling after the completion of the rolling. However, the technique does not consider the amounts of precipitates such as ⁇ phase which cause a decrease in corrosion resistance. Thus, JP '121 does not give a sufficient measure to ensure corrosion resistance.
- Our seawater-resistant stainless cladding steels exhibit good sea water corrosion resistance of the cladding metal and good mechanical properties of the base metal.
- our steels may be suitably used in applications where sea water corrosion resistance is required, typically in harbor structures, shipbuilding such as FPSO systems, and seawater desalination units.
- the C content is preferably as low as possible from the viewpoint of corrosion resistance, in particular, the corrosion resistance of weld heat-affected zones. It is therefore necessary that the C content be controlled to 0.030% or below, and preferably 0.020% or below.
- the Si content needs to be 0.02% or more. However, any Si content exceeding 1.50% causes a marked decrease in hot workability. Thus, the Si content is limited to 0.02 to 1.50%, and is preferably 0.02 to 0.60%.
- the Mn content needs to be 0.02% or more. However, any Mn content exceeding 2.0% results in a decrease in corrosion resistance. Thus, the Mn content is limited to 0.02 to 2.0%, and is preferably 0.20 to 0.60%.
- the contents of phosphorus and sulfur are preferably as low as possible.
- a decrease in hot workability is caused if the P content exceeds 0.040% or the S content exceeds 0.030%.
- the P content and the S content are limited to not more than 0.040% and not more than 0.030%, respectively.
- the Ni content be not less than 22.0% from the viewpoint of the stability of austenite phase and in light of the balance of nickel mainly with chromium and molybdenum.
- the Ni content is not more than 25.0% in consideration of economic efficiency and an increase in hot deformation resistance due to a high Ni content.
- the Ni content is limited to 22.0 to 25.0%.
- the Ni content is preferably 22.0 to 24.5%, and more preferably 22.5 to 24.5%.
- Chromium is effective to enhance pitting corrosion resistance and crevice corrosion resistance, and 22.0% or more chromium is required. If, on the other hand, the Cr content exceeds 26.0%, the precipitation of ⁇ phase is significantly promoted during production of the cladding metal and during the clad rolling and cooling, thus resulting in decreases in corrosion resistance and hot workability. Thus, the Cr content is limited to 22.0 to 26.0%. To enhance pitting corrosion resistance and crevice corrosion resistance and to suppress the precipitation of ⁇ phase, the Cr content is preferably 23.0 to 26.0%, and more preferably 24.0 to 25.5%.
- Molybdenum is effective to enhance pitting corrosion resistance and crevice corrosion resistance, and 3.5% or more molybdenum is required. If, on the other hand, the Mo content exceeds 5.0%, the precipitation of ⁇ phase is significantly promoted during production of the cladding metal and during the clad rolling and cooling, thus resulting in decreases in corrosion resistance and hot workability. Thus, the Mo content is limited to 3.5 to 5.0%. To enhance pitting corrosion resistance and crevice corrosion resistance and suppress the precipitation of ⁇ phase, the Mo content is preferably 4.0 to 5.0%, and more preferably 4.2 to 4.8%.
- Nitrogen is effective to increase corrosion resistance. To obtain an appropriate effect, 0.10% or more nitrogen is required. On the other hand, any N content exceeding 0.25% causes a decrease in hot workability. Thus, the N content is limited to 0.10 to 0.25%.
- the N content is preferably 0.15 to 0.25%, and more preferably 0.17 to 0.23%.
- the aforementioned components constitute the basic chemical composition of the cladding metal in the cladding steel.
- the balance is iron and inevitable impurities.
- the chemical composition may further include boron and copper in the limited amounts described below.
- Boron is effective to enhance corrosion resistance and hot workability, and 0.0010% or more boron may be added. On the other hand, more than 0.0055% boron causes decreases in corrosion resistance and hot workability. Thus, the B content is limited to 0.0010 to 0.0055%, and is preferably 0.0015 to 0.0035%.
- the Cu content is preferably as low as possible and it may be necessary to limit the Cu content to 0.20% or below.
- the Cu content is preferably not more than 0.10%, and more preferably not more than 0.05%.
- the upper limit of the PI value is 60 because any PI values larger than 60 no longer enhance the sea water corrosion resistance or the life of structures and facilities and only increase costs.
- the base metal in the stainless cladding steel may be carbon steel or low-alloy steel.
- the stainless cladding steel plate is such that one or both surfaces of the base metal are clad with the cladding metal which includes stainless steel having the aforementioned chemical composition.
- the amount of chromium present as precipitates in the steel is not more than 0.3 mass %, and the amount of molybdenum present as precipitates in the steel is not more than 0.2 mass %. It is known that intermetallics are formed as the ⁇ phase depending on the conditions for the manufacturing of austenitic stainless steel to cause a decrease in corrosion resistance. The decrease in corrosion resistance is ascribed to the decrease in the amounts of chromium and molybdenum around the ⁇ phase by formation of intermetallics as the ⁇ phase.
- Formation of the ⁇ phase may be suppressed even in the manufacturing of cladding steel by controlling the chemical composition.
- An indicator of this suppression is that the amount of chromium present as precipitates in the steel is not more than 0.3 mass % and the amount of molybdenum present as precipitates in the steel is not more than 0.2 mass %.
- a decrease in corrosion resistance is caused if the amount of chromium precipitates exceeds 0.3 mass % or if the amount of molybdenum precipitates exceeds 0.2 mass %.
- the quantities of the precipitates may be determined by analyzing chromium and molybdenum extracts obtained by electrolytic extraction. An example of the analysis methods is described below. Constant-current electrolysis is performed using 10 vol % acetylacetone-1 mass % tetramethylammonium chloride-methanol as the electrolytic solution. The extraction residue is filtered off with use of an organic filter. The extract is then subjected to thermolysis in a mixed acid, and the quantities of chromium and molybdenum are determined by inductively-coupled plasma (ICP) emission spectrography.
- ICP inductively-coupled plasma
- the stainless cladding steel plate may be preferably manufactured by the following method.
- Slabs for clad steel rolling are assembled using austenitic stainless steel having the aforementioned chemical composition as the cladding metal and carbon steel as the base metal.
- the slab assembling methods include sandwich methods, open methods and sacrificial methods.
- the slab assembly is subjected to a thermo-mechanical control process in which the assembly is heated, rolled and thereafter acceleratedly cooled, or is subjected to a process in which the assembly is rolled and thereafter treated by a solution heat treatment.
- the thermo-mechanical control process is preferable.
- the target steel plate may be produced by heating the slab assembly to 1150 to 1250° C., hot rolling the slab assembly at a finishing temperature of 980 to 1100° C., and cooling the steel plate at a cooling start temperature of 950 to 1070° C., a cooling end temperature of 500 to 600° C. and a cooling rate of 5.0° C./sec or more. From the viewpoint of suppression of ⁇ phase precipitation, high-temperature heating, high-temperature finish rolling and high-speed cooling are preferable.
- the target steel plate may be produced by heating the slab assembly at 1150 to 1250° C., hot rolling and air cooling the steel sheet, and subjecting the steel sheet to a solution heat treatment in which the steel sheet is heated to 1100° C. to 1200° C. and cooled at 1.0° C./sec or more.
- thermo-mechanical control process Production by a thermo-mechanical control process that is a preferred manufacturing process is described in the Examples.
- austenitic stainless steels having chemical compositions shown in Table 1, and SS400 steel (hereinafter, sometimes written as “ordinary steel”).
- SS400 steel plates with a plate thickness of 115 mm as the base metal were combined with austenitic stainless steel plates with a plate thickness of 10 mm as the cladding metal, thereby fabricating slab assemblies having a thickness of (115+10+10+115) mm.
- the slab assemblies were heated at 1240° C., hot rolled at a finishing temperature of 1000° C. and, thereafter, acceleratedly cooled at a cooling start temperature of 970° C., a cooling end temperature of 600° C. and a cooling rate of 10.0° C./sec.
- a cooling start temperature of 970° C. a cooling end temperature of 600° C.
- a cooling rate of 10.0° C./sec a cooling rate of 10.0° C./sec.
- the stainless cladding steels obtained above were tested in accordance with JIS G0578 (Method of ferric chloride tests for stainless steels) in the following manner to evaluate the pitting corrosion resistance of the cladding metal based on the critical pitting temperature (CPT).
- JIS G0578 Metal of ferric chloride tests for stainless steels
- chromium and molybdenum extracts obtained by electrolytic extraction were analyzed.
- the electrolytic solution was a 10 vol % acetylacetone-1 mass % tetramethylammonium chloride-methanol mixture liquid. Constant-current electrolysis was performed. The extraction residue was filtered off with use of a 0.2 ⁇ m mesh organic filter. The extract was subjected to thermolysis in a mixed acid, and chromium and molybdenum were quantitatively determined by ICP emission spectrography.
- Nos. 1 to 11 representing our Examples achieved a target CPT value of 60° C. or above, indicating that excellent sea water corrosion resistance was obtained.
- Nos. 12 to 21 are Comparative Examples. In Nos. 12 and 13, the Cu content was excessively high and the CPT value was below the target temperature. In Nos. 14, 15 and 19, the amount of chromium precipitates and the amount of molybdenum precipitates were excessively large and the CPT value was below the target temperature. In Nos. 16, 17, 18, 20 and 21, the PI value was excessively low and the CPT value was below the target temperature.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012265883 | 2012-12-05 | ||
JP2012-265883 | 2012-12-05 | ||
PCT/JP2013/007134 WO2014087651A1 (ja) | 2012-12-05 | 2013-12-04 | 耐海水腐食性に優れたステンレスクラッド鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150292069A1 true US20150292069A1 (en) | 2015-10-15 |
Family
ID=50883091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/443,695 Abandoned US20150292069A1 (en) | 2012-12-05 | 2013-12-04 | Stainless steel-clad steel plate having exceptional corrosion resistance to seawater |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150292069A1 (ja) |
EP (1) | EP2930254B1 (ja) |
JP (1) | JP5807669B2 (ja) |
KR (1) | KR20150070428A (ja) |
CN (1) | CN104781439A (ja) |
WO (1) | WO2014087651A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020134675A1 (zh) * | 2018-12-26 | 2020-07-02 | 宝山钢铁股份有限公司 | 一种耐蚀船用复合钢板及其制造方法 |
US11692252B2 (en) | 2018-03-30 | 2023-07-04 | Jfe Steel Corporation | Duplex stainless clad steel plate and method of producing same |
US11891675B2 (en) | 2018-03-30 | 2024-02-06 | Jfe Steel Corporation | Duplex stainless clad steel plate and method of producing same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6511742B2 (ja) * | 2014-07-17 | 2019-05-15 | 大日本印刷株式会社 | 真偽判定具 |
JP6168131B2 (ja) * | 2014-12-09 | 2017-07-26 | Jfeスチール株式会社 | ステンレスクラッド鋼板 |
JP6390567B2 (ja) * | 2015-09-24 | 2018-09-19 | Jfeスチール株式会社 | ステンレスクラッド鋼板の製造方法 |
JP6477735B2 (ja) * | 2017-01-26 | 2019-03-06 | Jfeスチール株式会社 | 二相ステンレスクラッド鋼およびその製造方法 |
CN106956478A (zh) * | 2017-03-24 | 2017-07-18 | 桥运精密部件(苏州)有限公司 | 一种不锈钢复合钢板 |
CN111141671B (zh) * | 2020-01-21 | 2022-11-18 | 鞍钢股份有限公司 | 一种复合钢筋覆层与芯材的电偶腐蚀模拟试验装置及方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02254121A (ja) * | 1989-03-28 | 1990-10-12 | Nkk Corp | 耐海水用クラッド鋼板の製造方法 |
JP2830034B2 (ja) * | 1989-04-26 | 1998-12-02 | 日本鋼管株式会社 | 耐海水用クラッド鋼板の製造方法 |
JP2005133125A (ja) * | 2003-10-29 | 2005-05-26 | Jfe Steel Kk | ステンレスクラッド鋼管の製造方法 |
WO2013132863A1 (ja) * | 2012-03-08 | 2013-09-12 | Jfeスチール株式会社 | 耐海水ステンレスクラッド鋼 |
WO2013132838A1 (ja) * | 2012-03-08 | 2013-09-12 | Jfeスチール株式会社 | ステンレスクラッド鋼 |
WO2013161238A1 (ja) * | 2012-04-25 | 2013-10-31 | Jfeスチール株式会社 | ステンレスクラッド鋼板の合せ材及びそれを用いたステンレスクラッド鋼板並びにその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297443A (ja) * | 1986-06-18 | 1987-12-24 | Nippon Yakin Kogyo Co Ltd | 熱間加工性に優れる高耐食オ−ステナイトステンレス鋼 |
JPS6447817A (en) * | 1987-08-13 | 1989-02-22 | Nippon Steel Corp | Production of austenitic stainless steel having excellent seawater corrosion resistance |
JPH0674490B2 (ja) * | 1987-09-09 | 1994-09-21 | 日本鋼管株式会社 | 耐海水用オーステナイト系ステンレス鋼 |
JPH0694057B2 (ja) * | 1987-12-12 | 1994-11-24 | 新日本製鐵株式會社 | 耐海水性に優れたオーステナイト系ステンレス鋼の製造方法 |
JP3514889B2 (ja) | 1995-10-04 | 2004-03-31 | 株式会社日本製鋼所 | 耐食性に優れたオーステナイト系ステンレスクラッド鋼板およびその製造方法 |
JP2000290754A (ja) * | 1999-04-05 | 2000-10-17 | Nkk Corp | 高耐食性クラッド鋼及び石炭火力プラント用煙突 |
JP3527458B2 (ja) * | 2000-03-16 | 2004-05-17 | Jfeスチール株式会社 | 溶接部の耐食性に優れた石炭焚火力発電プラント煙突内筒用クラッド鋼および煙突 |
AU2002951907A0 (en) * | 2002-10-08 | 2002-10-24 | Bhp Steel Limited | Hot dip coating apparatus |
US10975718B2 (en) * | 2013-02-12 | 2021-04-13 | Garrett Transportation I Inc | Stainless steel alloys, turbocharger turbine housings formed from the stainless steel alloys, and methods for manufacturing the same |
-
2013
- 2013-12-04 JP JP2013250801A patent/JP5807669B2/ja active Active
- 2013-12-04 US US14/443,695 patent/US20150292069A1/en not_active Abandoned
- 2013-12-04 WO PCT/JP2013/007134 patent/WO2014087651A1/ja active Application Filing
- 2013-12-04 CN CN201380059843.2A patent/CN104781439A/zh active Pending
- 2013-12-04 KR KR1020157014965A patent/KR20150070428A/ko not_active Application Discontinuation
- 2013-12-04 EP EP13860037.4A patent/EP2930254B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02254121A (ja) * | 1989-03-28 | 1990-10-12 | Nkk Corp | 耐海水用クラッド鋼板の製造方法 |
JP2830034B2 (ja) * | 1989-04-26 | 1998-12-02 | 日本鋼管株式会社 | 耐海水用クラッド鋼板の製造方法 |
JP2005133125A (ja) * | 2003-10-29 | 2005-05-26 | Jfe Steel Kk | ステンレスクラッド鋼管の製造方法 |
WO2013132863A1 (ja) * | 2012-03-08 | 2013-09-12 | Jfeスチール株式会社 | 耐海水ステンレスクラッド鋼 |
WO2013132838A1 (ja) * | 2012-03-08 | 2013-09-12 | Jfeスチール株式会社 | ステンレスクラッド鋼 |
US20150030883A1 (en) * | 2012-03-08 | 2015-01-29 | Jfe Steel Corporation | Seawater-resistant stainless clad steel |
US20150132177A1 (en) * | 2012-03-08 | 2015-05-14 | Jfe Steel Corporation | Stainless clad steel with excellent corrosion resistance |
WO2013161238A1 (ja) * | 2012-04-25 | 2013-10-31 | Jfeスチール株式会社 | ステンレスクラッド鋼板の合せ材及びそれを用いたステンレスクラッド鋼板並びにその製造方法 |
US20150104667A1 (en) * | 2012-04-25 | 2015-04-16 | Jfe Steel Corporation | Cladding material for stainless steel clad steel plate, stainless steel clad steel plate including the same, and method of manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11692252B2 (en) | 2018-03-30 | 2023-07-04 | Jfe Steel Corporation | Duplex stainless clad steel plate and method of producing same |
US11891675B2 (en) | 2018-03-30 | 2024-02-06 | Jfe Steel Corporation | Duplex stainless clad steel plate and method of producing same |
WO2020134675A1 (zh) * | 2018-12-26 | 2020-07-02 | 宝山钢铁股份有限公司 | 一种耐蚀船用复合钢板及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150070428A (ko) | 2015-06-24 |
CN104781439A (zh) | 2015-07-15 |
JP5807669B2 (ja) | 2015-11-10 |
EP2930254A4 (en) | 2015-12-30 |
WO2014087651A1 (ja) | 2014-06-12 |
EP2930254B1 (en) | 2017-02-22 |
JP2014132113A (ja) | 2014-07-17 |
EP2930254A1 (en) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2930254B1 (en) | Stainless steel-clad steel plate having exceptional corrosion resistance to seawater | |
US20150167135A1 (en) | Duplex stainless steel | |
JP6149102B2 (ja) | 線状加熱性良好な二相ステンレス鋼を合わせ材とするクラッド鋼板およびその製造方法 | |
JP5803890B2 (ja) | 耐孔食性に優れた二相ステンレスクラッド鋼の合せ材及びそれを用いた二相ステンレスクラッド鋼並びにその製造方法 | |
JP6477735B2 (ja) | 二相ステンレスクラッド鋼およびその製造方法 | |
WO2019189871A1 (ja) | 二相ステンレスクラッド鋼板およびその製造方法 | |
WO2012102330A1 (ja) | 合金元素節減型二相ステンレス熱延鋼材、合わせ材として二相ステンレス鋼を具備するクラッド鋼板、およびそれらの製造方法 | |
WO2003044238A1 (en) | Super-austenitic stainless steel | |
CN111902559B (zh) | 双相不锈钢包层钢板和其制造方法 | |
CA3015441C (en) | Ti-containing ferritic stainless steel sheet, manufacturing method, and flange | |
CN107460412B (zh) | 一种高强韧耐蚀钢及其轧制方法 | |
KR101690852B1 (ko) | 스테인리스 클래드 강판의 합재 및 그것을 사용한 스테인리스 클래드 강판 그리고 그 제조 방법 | |
JP6390567B2 (ja) | ステンレスクラッド鋼板の製造方法 | |
CN111918979B (zh) | 双相不锈钢包层钢板和其制造方法 | |
CN101660094B (zh) | 一种大线能量焊接低合金高强度钢板及其制造方法 | |
JP2013255936A (ja) | 耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法 | |
CN108396231A (zh) | 一种功能复合化高强度建筑结构用钢及其制造方法 | |
CN110551947A (zh) | 耐候钢及其制备方法 | |
CN112095052B (zh) | 耐腐蚀钢材及其制备方法和应用、耐腐蚀钢板及其制备方法 | |
CN110475897A (zh) | 高强度低温奥氏体耐腐蚀可焊建筑钢及其生产方法 | |
CN112941422B (zh) | 一种耐co2腐蚀用钢板及制备方法 | |
CN115786815A (zh) | 一种耐碱性环境腐蚀管线钢热轧钢卷及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JFE STEEL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KISHI, KEIICHIRO;YAZAWA, YOSHIHIRO;TACHIBANA, SHUNICHI;AND OTHERS;SIGNING DATES FROM 20150407 TO 20150417;REEL/FRAME:035666/0670 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |