US20150221649A1 - Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material - Google Patents
Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material Download PDFInfo
- Publication number
- US20150221649A1 US20150221649A1 US14/666,494 US201514666494A US2015221649A1 US 20150221649 A1 US20150221649 A1 US 20150221649A1 US 201514666494 A US201514666494 A US 201514666494A US 2015221649 A1 US2015221649 A1 US 2015221649A1
- Authority
- US
- United States
- Prior art keywords
- iii
- nitride
- channel
- inverted
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 223
- 230000005669 field effect Effects 0.000 title claims abstract description 70
- 230000000295 complement effect Effects 0.000 title claims abstract description 30
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 title claims description 30
- 229910052733 gallium Inorganic materials 0.000 title claims description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title description 68
- 229910052757 nitrogen Inorganic materials 0.000 title description 34
- 239000000758 substrate Substances 0.000 claims abstract description 78
- 230000004888 barrier function Effects 0.000 claims abstract description 68
- 239000004047 hole gas Substances 0.000 claims abstract description 15
- 230000005533 two-dimensional electron gas Effects 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 230000012010 growth Effects 0.000 claims description 33
- 229910002601 GaN Inorganic materials 0.000 claims description 27
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 24
- 238000000206 photolithography Methods 0.000 claims description 11
- 239000000969 carrier Substances 0.000 claims description 10
- 229910052594 sapphire Inorganic materials 0.000 claims description 8
- 239000010980 sapphire Substances 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 239000002019 doping agent Substances 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910002704 AlGaN Inorganic materials 0.000 claims 3
- 238000000151 deposition Methods 0.000 claims 2
- 238000000034 method Methods 0.000 description 29
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 17
- 230000008569 process Effects 0.000 description 15
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 10
- 238000013459 approach Methods 0.000 description 9
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000012876 topography Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003631 wet chemical etching Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/095—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02609—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/2654—Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
- H01L21/26546—Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28575—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28575—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
- H01L21/28587—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
- H01L21/30612—Etching of AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8222—Bipolar technology
- H01L21/8228—Complementary devices, e.g. complementary transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/8252—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0922—Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
- H01L29/045—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/201—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/201—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
- H01L29/205—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/207—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
- H01L29/365—Planar doping, e.g. atomic-plane doping, delta-doping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41766—Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
- H01L29/452—Ohmic electrodes on AIII-BV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66431—Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66439—Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7781—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
- H01L29/7783—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7782—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
- H01L29/7783—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
- H01L29/7784—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material with delta or planar doped donor layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
Definitions
- III-nitride material layer refers to a compound semiconductor formed from the elements indium, aluminum, gallium, or nitrogen that includes at least nitrogen and another alloying element from group III.
- III-nitride compound semiconductors are gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), indium nitride (InN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), indium aluminum gallium nitride (InAlGaN), or any combination of elements that includes nitrogen and at least one element from group III.
- III-Nitride barrier material can comprise of one or more III-Nitride barrier epitaxial layer(s).
- the III-Nitride barrier epitaxial layers in the barrier material can have different functions.
- a barrier epitaxial layer can be selected to induce spontaneous polarization and/or piezoelectric polarization carrier density in the two-dimensional hole or electron gas.
- Another barrier epitaxial layer can be a thin III-Nitride spacer material layer such as a 1 nm thick AlN spacer (adjacent to the spontaneous polarization and/or piezoelectric polarization barrier epitaxial layer) to minimize the alloy scattering of carriers in the two-dimensional hole or electron gas.
- Another epitaxial layer in the barrier layer can serve as an etch stop layer.
- III-Nitride barrier epitaxial layer(s) will typically be selected from the group of III-Nitride material such as GaN, AlN, AlGaN, InAlN, and AlInGaN.
- the nitrogen-polar III-Nitride material can comprise of one or more III-Nitride epitaxial material layers grown in such a manner that when GaN is epitaxially grown (and other III-Nitride epitaxial layers), the top surface of the epitaxial layer is nitrogen-polar (nitrogen-face).
- One process sequence for growing the III-nitride nitrogen polar first material and III-Nitride gallium polar second material regions is to deposit oxide on a substrate, define an openings in a oxide to the substrate, selectively epitaxially grow the nitrogen-polar III-Nitride first material in the oxide opening using MOCVD, deposit an oxide material on the substrate that protects the nitrogen-polar III-Nitride first material from additional epitaxial growth, define openings in a oxide to the substrate, selectively epitaxially grow the AlN nucleation/polarity inversion layer, thereafter selective epitaxially grow the gallium-polar III-Nitride second material in the oxide opening using MOCVD.
- III-Nitride barrier material in the region where the gate will be formed. This approach of recessing (thinning) the III-Nitride barrier material can also be use to implement normally-off non-inverted P-channel III-Nitride FET.
- the gallium-polar III-Nitride first material epitaxial layers can be selected to incorporate epitaxial layer and/or doping to eliminate the two-dimensional electron gas at the top side of the III-Nitride barrier material.
- P-type doping can be incorporated into the second gallium polar III-Nitride material to compensate or eliminate the 2DEG on the top side of the barrier material.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
- This application claims priority to and the benefits of U.S. patent application Ser. No. 14,170,161 filed on Jan. 31, 2014 and U.S. Provisional Patent Application No. 61/790,591 filed on Mar. 15, 2013 and U.S. Provisional Patent Application No. 61/787,280 filed on Mar. 15, 2013 and U.S. Provisional Patent Application No. 61/789,160 filed on Mar. 15, 2013 and U.S. Provisional Patent Application No. 61/787,783 filed on Mar. 15, 2013, the entireties of each are hereby incorporated by reference.
- This disclosure describes monolithic III-Nitride complementary Field Effect Transistor (FET) device structures. The structures have N-channel and P-channel III-Nitride Field Effect Transistors (complementary III-Nitride FET transistors) monolithically integrated on a substrate.
- This disclosure describes at least two primary device structures having N-channel and P-channel III-Nitride field effect transistors on a substrate.
- This disclosure describes device structures and method of fabricating monolithic N-Channel and P-Channel III-Nitride Field effect transistors fabricated on a substrate for complementary circuits having a non-inverted P-channel III-Nitride FET fabricated in nitrogen polar (nitrogen face) III-nitride epitaxial material and a non-inverted N-channel III-Nitride FET fabricated in gallium polar (gallium face) III-nitride epitaxial material.
- A technology for sequentially growing nitrogen polar and then gallium polar material on a substrate is described in U.S. patent application Ser. No. 13/235,624 with the title “Method for Vertical and Lateral Control of III-N Polarity.” U.S. patent application Ser. No. 13/235,624 with the title “Method for Vertical and Lateral Control of III-N Polarity” also describes how to first grow a AlN polarity inversion material layer on Nitrogen polar or sapphire substrate that allows for the growth of Gallium polar (gallium face) epitaxial III-nitride layers on the surface of the AlN polarity inversion material layer and nitrogen polar (nitrogen face) material in the selected area of the substrate that does not have the AlN polarity inversion material layer.
- In the first device structure implementation, Non-Inverted P-channel III-Nitride Field Effect Transistors (FET) are implemented or fabricated in first regions on a first nitrogen-polar nitrogen face III-Nitride material and a non-inverted P-channel III-Nitride Field Effect Transistors are implemented in second regions on a second gallium-polar gallium face III-Nitride material with both first nitrogen-polar III-Nitride material and the second gallium-polar III-Nitride material grown epitaxially on a substrate.
- Two or more epitaxial growth steps can be used to fabricate the non-inverted P-channel and N-channel III-Nitride Field Effect Transistor on a substrate. A preferred embodiment is that both the non-inverted P-channel III-Nitride FET and the non-inverted N-channel III-Nitride FET have normally-off (enhancement mode) characteristics.
- This disclosure describes device structure and methods of fabrication for monolithic N-Channel and P-Channel III-Nitride Field effect transistors fabricated on a substrate for complementary circuits having an inverted P-channel III-Nitride FET fabricated in gallium polar (gallium face) III-nitride epitaxial material and an inverted N-channel III-Nitride FET fabricated in nitrogen polar (nitrogen face) III-nitride epitaxial material.
- A technology for sequentially growing nitrogen polar and then gallium polar material on a substrate is described in U.S. Provisional patent application Ser. No. 13/235,624 with the title “Method for Vertical and Lateral Control of III-N Polarity.” U.S. Provisional patent application Ser. No. 13/235,624 with the title “Method for Vertical and Lateral Control of III-N Polarity” also describes how to first grow a AlN polarity inversion material layer on Nitrogen polar or sapphire substrate that allows for the growth of Gallium polar (gallium face) epitaxial III-nitride layers in on the surface of the AlN polarity inversion material layer and nitrogen polar (nitrogen face) material in the selected area of the substrate that does not have the AlN polarity inversion material layer.
- In the first device structure implementation, Inverted P-channel III-Nitride Field Effect Transistors (FET) are implemented (fabricated) in a first regions on a first gallium-polar (gallium face) III-Nitride material and an inverted N-channel III-Nitride Field Effect Transistors are implemented in second regions on a second nitrogen-polar (nitrogen face) III-Nitride material with both first gallium-polar III-Nitride material and the second nitrogen-polar III-Nitride material grown epitaxially on a substrate.
- Two or more epitaxial growth steps can be used to fabricate the non-inverted P-channel and N-channel III-Nitride Field Effect Transistor on a substrate.
- A preferred embodiment is that both the inverted P-channel III-Nitride FET and the inverted N-channel III-Nitride FET have normally-off (enhancement mode) characteristics.
- The following description and drawings set forth certain illustrative implementations of the disclosure in detail, which are indicative of several exemplary ways in which the various principles of the disclosure may be carried out. The illustrated examples, however, are not exhaustive of the many possible embodiments of the disclosure. Other objects, advantages and novel features of the disclosure will be set forth in the following detailed description when considered in conjunction with the drawings.
-
FIG. 1 illustrates inverted FET+non-inverted FET approach for III-N Complementary Transistors using epitaxial regrowth. -
FIG. 2 illustrates inverted FET+non-inverted FET approach for III-N Complementary Transistors using one epitaxial growth. -
FIG. 3 illustrates inverted FET+non-inverted FET approach for III-N Complementary Transistors using one two epitaxial growths. -
FIG. 4 illustrates inverted FET+non-inverted FET approach for III-N Complementary Transistors using one two epitaxial growths. - III-Nitride material layer: III-nitride material layer refers to a compound semiconductor formed from the elements indium, aluminum, gallium, or nitrogen that includes at least nitrogen and another alloying element from group III. Examples of III-nitride compound semiconductors are gallium nitride (GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), indium nitride (InN), indium gallium nitride (InGaN), indium aluminum nitride (InAlN), indium aluminum gallium nitride (InAlGaN), or any combination of elements that includes nitrogen and at least one element from group III.
- Gallium-polar: gallium-polar (gallium-face) material having a gallium polar (gallium-face) surface, typically grown on the Ga-polar (000-1) face of GaN of the wurtzite-phase material.
- Nitrogen-Polar: nitrogen-polar (nitrogen-face) material having a nitrogen polar (nitrogen-face) surface, typically grown on the nitrogen-polar (000-1) face of GaN.
- III-Nitride barrier material: The III-Nitride barrier material can comprise of one or more III-Nitride barrier epitaxial layer(s). The III-Nitride barrier epitaxial layers in the barrier material can have different functions. For example, a barrier epitaxial layer can be selected to induce spontaneous polarization and/or piezoelectric polarization carrier density in the two-dimensional hole or electron gas. Another barrier epitaxial layer can be a thin III-Nitride spacer material layer such as a 1 nm thick AlN spacer (adjacent to the spontaneous polarization and/or piezoelectric polarization barrier epitaxial layer) to minimize the alloy scattering of carriers in the two-dimensional hole or electron gas. Another epitaxial layer in the barrier layer can serve as an etch stop layer.
- The two-dimensional hole or electron gas will be at the interface of a III-Nitride barrier epitaxial layer and a III-Nitride channel epitaxial layer.
- The barrier epitaxial layers can also be doped with a P-type dopant such as magnesium (modulation doping) to aid in providing hole carriers for the two-dimensional hole gas or doped with a N-type dopant such as silicon (modulation doping) to aid in providing electron carriers for the two-dimensional electron gas.
- The III-Nitride barrier epitaxial layer(s) will typically be selected from the group of III-Nitride material such as GaN, AlN, AlGaN, InAlN, and AlInGaN.
- The III-Nitride channel epitaxial layer that is adjacent to the III-Nitride barrier epitaxial layer can be typically selected from the group GaN or InGaN but can also include AlGaN or InAlN.
- In the first device structure implementation, Non-Inverted P-channel III-Nitride Field Effect Transistors (FET) are implemented (fabricated) in first regions on a first nitrogen-polar (nitrogen face) III-Nitride material and an Non-Inverted N-channel III-Nitride Field Effect Transistors are implemented in second regions on a second gallium-polar III-Nitride material with both first and second III-Nitride material grown epitaxially on a substrate.
- The nitrogen-polar III-Nitride material can comprise of one or more III-Nitride epitaxial material layers grown in such a manner that when GaN is epitaxially grown (and other III-Nitride epitaxial layers), the top surface of the epitaxial layer is nitrogen-polar (nitrogen-face).
- The substrate can be selected for optimizing the epitaxial growth of nitrogen-polar III-Nitride material. For example, a carbon-face SiC substrate is known to allow the growth of nitrogen-polar III-Nitride material. A sapphire substrate without an AlN buffer can be used to grow nitrogen polar III-Nitride material. A gallium nitride bulk substrate can be used with the nitrogen-polar surface selected for epitaxial growth of the nitrogen-polar III-Nitride material. There are other substrates known to those skilled in the art that can be used to grow nitrogen polar material.
- The non-inverted P-channel III-Nitride FET has a two-dimensional hole gas (2DHG) on the bottom side (side closest to the barrier) of a III-Nitride barrier material. The 2DHG will be at the interface of a III-Nitride barrier material and a III-Nitride channel epitaxial layer.
- The Non-Inverted N-Channel transistor will have a two-dimensional electron gas (2DEG) on the top-side of the III-Nitride barrier material.
- The first nitrogen-polar III-Nitride material can be epitaxially grown to have a different stacked sequence (combination) of III-Nitride epitaxial layers than the combination of epitaxial layers that are used for the second nitrogen-polar III-Nitride material. Thus, one epitaxial growth process can be used to grow the first nitrogen-polar III-Nitride material comprising a stacked sequence of III-nitride epitaxial layers.
- A second epitaxial growth process can be use to grow the second gallium-polar III-Nitride material comprising a stacked sequence of III-nitride epitaxial layer. Thus, the III-Nitride first material and III-Nitride second material can be grown in two or more epitaxial growth operations.
- The stacked sequence of III-Nitride epitaxial layers can include differences in doping of the III-Nitride epitaxial layer(s). For example, there can be a P-type dopant such as magnesium incorporated within the nitrogen-polar III-Nitride first material to act as a modulation doping source to aid in providing hole carriers for the two-dimensional hole gas.
- The P-type doping can be a delta-doped layer within one of the III-Nitride epitaxial layers, a P-type doping within the III-Nitride barrier material, a P-type doping within one or more of the III-Nitride epitaxial layer (s), or other designs for incorporating P-type doping within the nitrogen-polar III-Nitride first material known to those skilled in the art.
- One process sequence for growing the III-nitride nitrogen polar first material and III-Nitride gallium polar second material regions is to deposit oxide on a substrate, define an openings in a oxide to the substrate, selectively epitaxially grow the nitrogen-polar III-Nitride first material in the oxide opening using MOCVD, deposit an oxide material on the substrate that protects the nitrogen-polar III-Nitride first material from additional epitaxial growth, define openings in a oxide to the substrate, selectively epitaxially grow the AlN nucleation/polarity inversion layer, thereafter selective epitaxially grow the gallium-polar III-Nitride second material in the oxide opening using MOCVD.
- The nitrogen-polar III-Nitride first material can be laterally adjacent (co-incident) to the gallium polar III-Nitride second material or the nitrogen-polar III-Nitride first material can be laterally separated from the gallium polar III-Nitride second material. In the case that the materials are laterally separated, an optional process is to deposit and planarize dielectric material in the region between the materials to reduce the topography to facilitate photolithography operations.
- Another design that would be desirable is to perform only one gallium nitride buffer epitaxial growth process. In this case, an example of one process is to deposit oxide on a substrate, define an openings in a oxide to the substrate, selectively epitaxially grow the AlN nucleation/polarity inversion layer, etch the oxide from the remaining portion of the substrate, perform a second epitaxial step that would grow a common GaN buffer layer and optional barrier layer and optional epitaxial layers for carrier density enhancement in the source and drain access regions.
- An example of a desirable embodiment is to etch selected III-Nitride epitaxial layers in the nitrogen-polar III-Nitride first material region and stop the etch at the top of the III-Nitride barrier material or at a cap III-Nitride epitaxial layer that is on the surface of the III-Nitride barrier material. The III-Nitride barrier material can be recessed (etched) in the area where the gate will be formed to achieve normally-off non-inverted N-channel III-Nitride FET as is known to those skilled in the art. A dielectric layer can also be incorporated between the gate and the III-Nitride barrier material. If the dielectric is selected to have positive charge, the negative charge can aid in achieving normally-off operation for the N-channel III-Nitride FET.
- The non-inverted P-channel III-Nitride FET and the non-inverted N-channel III-Nitride FET can be implemented in a manner that is known to those that are skilled in the art. A preferred embodiment is that both the non-inverted P-channel III-Nitride FET and the non-inverted N-channel III-Nitride FET have normally-off (enhancement mode) characteristics and are implemented in a manner that is known to those skilled in the art.
- A number of device implementations have been described in the literature for achieving normally-off operation for non-inverted N-channel III-Nitride FET devices. A common approach is to recess (thin) the III-Nitride barrier material in the region where the gate will be formed. This approach of recessing (thinning) the III-Nitride barrier material can also be use to implement normally-off non-inverted P-channel III-Nitride FET.
- An example of an N-channel FET embodiment that can achieve normally-off operation for a non-inverted III-Nitride FET that uses selective etching to achieve an ultrathin barrier material layer is discussed in “Transistor with Enhanced Channel Charge Inducing Material Layer and Threshold Voltage Control” U.S. patent application Ser. No. 12/823,210. The basic device concepts discussed in U.S. patent application Ser. No. 12/823,210 for a normally-off N-channel FET such as using an ultrathin barrier layer and enhanced carrier charge in the source and drain access regions be used to achieve normally-off non-inverted P-channel III-Nitride FET, except that the process has to be modified for incorporating P-type ohmic contact metals, hole carriers in the channel, and optimized P-type dopant layers for modulation doping generation of free hole carriers.
- There are other approaches for implementing normally-off Non-Inverted and Inverted III-Nitride Field Effect Transistors that are known to those skilled in the art. This disclosure describes a device structure in which a Non-Inverted P-channel III-Nitride Field Effect Transistors (FET) are implemented (fabricated) in first regions on a first nitrogen-polar (nitrogen face) III-Nitride material and an non-inverted N-channel III-Nitride Field Effect Transistors are implemented in second regions on a second gallium-polar III-Nitride material with both first and second nitrogen-polar III-Nitride material grown epitaxially on a substrate.
- Photolithography defined procedures can then be used to remove one or more than one epitaxial layer(s) from the III-nitride first material or III-nitride second material. Etch stop material layers combined with selected wet chemical etching or selected plasma etching can facilitate the accurate etching of the III-Nitride material from either the first or second nitrogen-polar III-Nitride material region.
- An example of a desirable embodiment is to etch selected III-Nitride epitaxial layers in the first nitrogen-polar III-Nitride material region and stop the etch at the top of the III-Nitride barrier material or at a cap III-Nitride epitaxial layer that is on the surface of the III-Nitride barrier material. The III-Nitride barrier material can be recessed (etched) in the area where the gate will be formed to achieve normally-off non-inverted P-channel III-Nitride FET as is known to those skilled in the art. A dielectric layer can also be incorporated between the gate and the III-Nitride barrier material. If the dielectric is selected to have positive charge, the positive charge can aid in achieving normally-off operation for the P-channel III-Nitride FET.
- Examples of the types of N-channel and P-channel III-Nitride Field Effect Transistors include High Electron Mobility Transistor (HEMT), a HIGFET, a MOSHEMT, a MOSFET, etc.
- One process sequence for growing the III-nitride nitrogen polar first material and III-Nitride gallium polar second material regions is to deposit oxide on a substrate, define an openings in a oxide to the substrate, selectively epitaxially grow the nitrogen-polar III-Nitride first material in the oxide opening using MOCVD, deposit an oxide material on the substrate that protects the nitrogen-polar III-Nitride first material from additional epitaxial growth, define openings in a oxide to the substrate, selectively epitaxially grow the AlN nucleation/polarity inversion layer, thereafter selective epitaxially grow the gallium-polar III-Nitride second material in the oxide opening using MOCVD.
- Fabricate a normally-off non-inverted P-channel III-Nitride Field Effect transistor in the first nitrogen-polar III-Nitride. For example, we have earlier described a device structure and method of fabrication of a P-channel III-nitride field effect transistor.
- The non-inverted P-channel transistor can be fabricated to be normally off using the concepts of ultrathin barrier layer and enhanced channel carrier density in the source and drain region as described in U.S. patent application Ser. No. 12/823,210, “Transistor with Enhanced Channel Charge Inducing Material Layer and Threshold Voltage Control,” except that the ohmic contacts and channel carriers are for a P-type transistor rather than a N-channel transistor. The basic device concepts discussed in U.S. patent application Ser. No. 12/823,210 for a normally off N-channel FET such as using an ultrathin barrier layer and enhanced carrier charge in the source and drain access regions can be used to achieve normally-off non-inverted P-channel III-Nitride FET, except that the process has to be modified for incorporating P-type ohmic contact metals, hole carriers in the channel, optimized P-type dopant layers for modulation doping generation of free hole carriers.
- Fabricate a normally-off non-inverted N-channel III-Nitride Field Effect transistor in the gallium-polar III-Nitride second material using procedures known to those skilled in the art.
-
-
- 1. Grow III-nitride epitaxial layers on a substrate in such a manner that the nitrogen-polar (001) face is the dominant face for growth of III-Nitride material. Typically substrates that can be used for the preferred III-nitride nitrogen polar growth are sapphire, carbon face SiC, GaN nitrogen polar.
- 2. Deposit an oxide on a substrate.
- 3. Use photolithography define an openings in the oxide to the substrate.
- 4. Selectively epitaxially grow the first nitrogen-polar III-Nitride material including epitaxial layers such as GaN buffer layer, AlGaN back barrier, channel layer, spacer layer, barrier layer, cap layer, carrier enhancement epitaxial layer for the source drain access region, etc that are known to those skilled in the art using the oxide opening to selectively grow the epitaxial layers using MOCVD.
- 5. Deposit an oxide material on the substrate such that the oxide protects the first nitrogen-polar III-Nitride from additional epitaxial growth.
- 6. Use photolithography to define openings in a oxide to the substrate.
- 7. Selectively epitaxially grow an AlN nucleation layer/polarity inversion layer.
- 8. Selectively epitaxially grow gallium-polar III-Nitride second material including epitaxial layers such as GaN buffer layer, AlGaN back barrier, channel layer, spacer layer, barrier layer, cap layer, carrier enhancement epitaxial layer for the source drain access region, etc that are known to those skilled in the art using the oxide opening to selectively grow the epitaxial layers using MOCVD.
- 9. Deposit dielectric and planarize the dielectric to reduce the topography at the edge of the first and second nitrogen-polar III-Nitride material to facilitate photolithography operation.
- 10. Fabricate a normally-off non-inverted P-channel III-Nitride Field Effect transistor in the first nitrogen-polar III-Nitride using procedures known to those skilled in the art. Recess etching of the barrier material in the gate area can be used to achieve normally-off P-channel III-Nitride field effect transistor.
- 11. Fabricate a normally-off non-inverted N-channel III-Nitride Field Effect transistor in the second gallium-polar III-Nitride using procedures known to those skilled in the art.
- In a second device structure implementation, Inverted P-channel III-Nitride Field Effect Transistors (FET) are implemented (fabricated) in first regions on a gallium-polar (gallium-face) III-Nitride first material and an Inverted N-channel III-Nitride Field Effect Transistors are implemented in second regions on a nitrogen-polar III-Nitride second material with both first and second gallium-polar III-Nitride material grown epitaxially on a substrate.
- The gallium-polar III-Nitride material can comprise of one or more III-Nitride epitaxial material layers grown in such a manner that when GaN is epitaxially grown (and other III-Nitride epitaxial layers), the top surface of the epitaxial layer is gallium-polar (gallium-face). The substrate can be selected for optimizing the epitaxial growth of nitrogen-polar III-Nitride material. For example, a carbon-face SiC substrate is known to allow the growth of nitrogen-polar III-Nitride material. A sapphire substrate without an AlN buffer can be used to grow nitrogen polar III-Nitride material. A gallium nitride bulk substrate can be used with the nitrogen-polar surface selected for epitaxial growth of the nitrogen-polar III-Nitride material. There are other substrates known to those skilled in the art that can be used to grow nitrogen-polar material.
- The inverted N-channel III-Nitride FET will have a two-dimensional electron gas (2DEG) on the bottom side (side closet to the substrate) of a III-Nitride barrier material.
- The Inverted N-channel transistor also has the potential to have a two-dimensional hole gas on the top side of the III-Nitride barrier material. The epitaxial layers and the doping in the second nitrogen-polar III-Nitride material is preferable grown to compensate or eliminate the two-dimensional hole gas at the top of the III-Nitride channel epitaxial layer.
- The Inverted P-Channel transistor has a two-dimensional hole gas (2DHG) on the bottom of the III-Nitride barrier material. The Inverted P-Channel transistor also has the potential to have a two-dimensional electron gas on the top side of the III-Nitride barrier material. The epitaxial layers and the doping in the first nitrogen-polar III-Nitride material is preferable grown to compensate or eliminate the two-dimensional electron gas at the top of the III-Nitride barrier layer.
- The gallium polar III-Nitride second material can be selected to incorporate epitaxial layer and/or doping to eliminate the two-dimensional hole gas at the top side of the III-Nitride barrier material. For example, N-type doping can be incorporated into the second nitrogen polar III-Nitride material to compensate or eliminate the 2DHG on the top side of the barrier material.
- The gallium-polar III-Nitride first material can be epitaxially grown to have a different stacked sequence (combination) of III-Nitride epitaxial layers than the combination of epitaxial layers that are used for the gallium-polar III-Nitride second material. Thus, one epitaxial growth process can be used to grow the gallium-polar III-Nitride first material comprising a stacked sequence of III-nitride epitaxial layers. A second epitaxial growth process can be use to grow the nitrogen-polar III-Nitride second material comprising a stacked sequence of III-nitride epitaxial layer. Thus, the III-nitride first material and III-nitride second material can be grown in two or more epitaxial growth operations. The stacked sequence of III-Nitride epitaxial layers can include differences in doping of the III-Nitride epitaxial layer(s). One process sequence for growing the III-nitride nitrogen polar first material and III-Nitride gallium polar second material regions is to deposit oxide on a substrate, define an openings in a oxide to the substrate, selectively epitaxially grow the nitrogen-polar III-Nitride first material in the oxide opening using MOCVD, deposit an oxide material on the substrate that protects the nitrogen-polar III-Nitride first material from additional epitaxial growth, define openings in a oxide to the substrate, selectively epitaxially grow the AlN nucleation/polarity inversion layer, thereafter selective epitaxially grow the gallium-polar III-Nitride second material in the oxide opening using MOCVD.
- For example, there can be a P-type dopant such as magnesium incorporated within the gallium-polar III-Nitride first material to act as a modulation doping source to aid in providing hole carriers for the two-dimensional hole gas. The P-type doping can be a delta-doped layer within one of the III-Nitride epitaxial layers, a P-type doping within the III-Nitride barrier material, a P-type doping within one or more of the III-Nitride epitaxial layer (s), or other designs for incorporating P-type doping within the gallium-polar III-Nitride first material known to those skilled in the art.
- The gallium-polar III-Nitride first material epitaxial layers can be selected to incorporate epitaxial layer and/or doping to eliminate the two-dimensional electron gas at the top side of the III-Nitride barrier material. For example, P-type doping can be incorporated into the second gallium polar III-Nitride material to compensate or eliminate the 2DEG on the top side of the barrier material.
- The gallium-polar III-Nitride first material can be laterally adjacent (co-incident) to the second nitrogen polar III-Nitride second material or the gallium-polar III-Nitride first material can be laterally separated from the nitrogen polar III-Nitride second material. In the case that the materials are laterally separated, an optional process is to deposit and planarize dielectric material in the region between the materials to reduce the topography to facilitate photolithography operations.
- Another design that would be desirable is to perform only one epitaxial growth process. In this case, the first and second region gallium Nitride buffer material would be the same and produced in one epitaxial growth process. Photolithography defined procedures can then be used to remove one or more than one epitaxial layer(s) from the III-Nitride first or second material regions. Etch stop material layers combined with selected wet chemical etching or selected plasma etching can facilitate the accurate etching of the III-Nitride material from either the first or second nitrogen-polar III-Nitride material region.
- The inverted N-channel III-Nitride FET and the inverted P-channel III-Nitride FET can be implemented in a manner that is known to those that are skilled in the art. A preferred embodiment is that both the inverted N-channel III-Nitride FET and the inverted P-channel III-Nitride FET have normally-off (enhancement mode) characteristics and can be implemented in a manner that is known to those skilled in the art.
- The approach to achieve normally-off operation for an Inverted N-channel III-Nitride FET is to incorporated a compensating III-Nitride epitaxial material such as AlGaN, AlN, InAlN, or AlInGaN epitaxial layer (or a stacked sequence of III-nitride epitaxial materials) on top of the III-Nitride epitaxial channel layer (typically a GaN epitaxial layer) in the area beneath the gate (or gate region) that completely or partially compensates (cancels) the spontaneous polarization and/or piezoelectric polarization induced two-dimensional electron gas at the top side of the III-Nitride barrier material (i.e., at the interface between the channel III-Nitride epitaxial layer and the III-Nitride barrier material layer).
- The compensating III-Nitride epitaxial material can comprise AlGaN, AlN, InAlN, or AlInGaN epitaxial layer (or a stacked sequence of III-nitride epitaxial materials).
- The two-dimensional electron will have a high carrier density in the III-Nitride epitaxial channel layer in those regions where the compensating III-Nitride epitaxial material is not on top of the III-Nitride epitaxial channel layer. Thus, those regions can have low source and drain access resistance.
- The compensating III-Nitride epitaxial material will preferably be beneath the gate or gate region but not extend laterally significantly into the source or drain access region in order to allow a low source and drain access resistance. The compensating III-Nitride epitaxial material can be self-aligned to the gate or preferably extend less than 1.0 microns into the source or drain access region. The thickness of the III-Nitride epitaxial channel layer is selected so that a 2DEG is formed but not so thick that a 2DHG can be formed within the III-Nitride epitaxial channel layer. The III-Nitride epitaxial channel layer will typically consist of a GaN epitaxial layer and have a thickness of approximately 20 nm. The III-Nitride FET can incorporate an insulating dielectric beneath the gate to reduce the gate leakage current and allow applying a bias between the gate and source without leakage
- There are other approaches for implementing normally-off Inverted N-channel and P-Channel III-Nitride Field Effect Transistors that are known to those skilled in the art. This disclosure describes a device structure in which a Inverted P-channel III-Nitride Field Effect Transistors (FET) are implemented (fabricated) in first regions on a gallium-polar (gallium-face) III-Nitride first material and an Inverted N-channel III-Nitride Field Effect Transistors are implemented in second regions on a nitrogen-polar III-Nitride second material with both III-nitride first material and second material grown epitaxially on a substrate.
- Examples of the types of III-Nitride Field Effect Transistors include High Electron Mobility Transistor (HEMT), a HIGFET, a MOSHEMT, a MOSFET, etc.
-
-
- 1. Grow III-nitride epitaxial layers on a substrate in such a manner that the nitrogen-polar (001) face is the dominant face for growth of III-Nitride material. Typically substrates that can be used for the preferred III-nitride nitrogen polar growth are sapphire, carbon face SiC, GaN nitrogen polar.
- 2. Deposit an oxide on a substrate.
- 3. Use photolithography define an openings in the oxide to the substrate.
- 4. Selectively epitaxially grow the gallium-polar III-Nitride first material including epitaxial layers such as GaN buffer layer, AlGaN back barrier, channel layer, spacer layer, barrier layer, cap layer, carrier enhancement epitaxial layer for the source drain access region, etc that are known to those skilled in the art using the oxide opening to selectively grow the epitaxial layers using MOCVD.
- 5. Deposit an oxide material on the substrate such that the oxide protects the first nitrogen-polar III-Nitride from additional epitaxial growth.
- 6. Use photolithography to define openings in a oxide to the substrate.
- 7. Selectively epitaxially grow an AlN nucleation layer/polarity inversion layer.
- 8. Selectively epitaxially grow gallium-polar III-Nitride second material including epitaxial layers such as GaN buffer layer, AlGaN back barrier, channel layer, spacer layer, barrier layer, cap layer, carrier enhancement epitaxial layer for the source drain access region, etc that are known to those skilled in the art using the oxide opening to selectively grow the epitaxial layers using MOCVD.
- 9. Deposit dielectric and planarize the dielectric to reduce the topography at the edge of the first and second nitrogen-polar III-Nitride material to facilitate photolithography operation.
- 10. Fabricate a normally-off inverted P-channel III-Nitride Field Effect transistor in the nitrogen-polar III-Nitride first material using procedures known to those skilled in the art.
- 11. Fabricate a normally-off inverted N-channel III-Nitride Field Effect transistor in the gallium-polar III-Nitride second material using procedures known to those skilled in the art.
- III-Nitride Complementary Field Effect Technology will enable “CMOS like” circuit technology that will have high frequency capability and high voltage operation capability.
- The mobility of electrons in 2DEG can be as high as 2000 V/cm-s and the mobility of holes in a 2DHG can be as high as approximately 500 V/cm-s.
- These mobility values are significantly higher then the mobility for electrons and holes in silicon MOS structures.
- High voltage III-Nitride complementary circuit is possible because of the factor of ten high break down field for GaN than for silicon.
- A complementary circuit technology is also advantage for power integrated circuits (PIC) because a the availability of a P-channel upper level transistor in a half-bridge can be driven with a single gate driver compared to a required two-gate drivers if the P-channel transistor is not available.
- The above examples are merely illustrative of several possible embodiments of various aspects of the present disclosure, wherein equivalent alterations and/or modifications will occur to others skilled in the art upon reading and understanding this specification and the annexed drawings. In addition, although a particular feature of the disclosure may have been illustrated and/or described with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Also, to the extent that the terms “including”, “includes”, “having”, “has”, “with”, or variants thereof are used in the detailed description and/or in the claims, such terms are intended to be inclusive in a manner similar to the term “comprising”.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/666,494 US9105499B1 (en) | 2013-03-15 | 2015-03-24 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361787280P | 2013-03-15 | 2013-03-15 | |
US201361787783P | 2013-03-15 | 2013-03-15 | |
US201361789160P | 2013-03-15 | 2013-03-15 | |
US201361790591P | 2013-03-15 | 2013-03-15 | |
US14/170,161 US9018056B2 (en) | 2013-03-15 | 2014-01-31 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
US14/578,146 US9111786B1 (en) | 2013-03-15 | 2014-12-19 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
US14/666,494 US9105499B1 (en) | 2013-03-15 | 2015-03-24 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/170,161 Continuation US9018056B2 (en) | 2013-03-15 | 2014-01-31 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150221649A1 true US20150221649A1 (en) | 2015-08-06 |
US9105499B1 US9105499B1 (en) | 2015-08-11 |
Family
ID=51523612
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/170,161 Active US9018056B2 (en) | 2013-03-15 | 2014-01-31 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
US14/169,334 Active US9006791B2 (en) | 2013-03-15 | 2014-01-31 | III-nitride P-channel field effect transistor with hole carriers in the channel |
US14/265,214 Active 2034-04-13 US9275998B2 (en) | 2013-03-15 | 2014-04-29 | Inverted P-channel III-nitride field effect tansistor with Hole Carriers in the channel |
US14/578,146 Active US9111786B1 (en) | 2013-03-15 | 2014-12-19 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
US14/617,510 Active US9196614B2 (en) | 2013-03-15 | 2015-02-09 | Inverted III-nitride P-channel field effect transistor with hole carriers in the channel |
US14/666,494 Active US9105499B1 (en) | 2013-03-15 | 2015-03-24 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/170,161 Active US9018056B2 (en) | 2013-03-15 | 2014-01-31 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
US14/169,334 Active US9006791B2 (en) | 2013-03-15 | 2014-01-31 | III-nitride P-channel field effect transistor with hole carriers in the channel |
US14/265,214 Active 2034-04-13 US9275998B2 (en) | 2013-03-15 | 2014-04-29 | Inverted P-channel III-nitride field effect tansistor with Hole Carriers in the channel |
US14/578,146 Active US9111786B1 (en) | 2013-03-15 | 2014-12-19 | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material |
US14/617,510 Active US9196614B2 (en) | 2013-03-15 | 2015-02-09 | Inverted III-nitride P-channel field effect transistor with hole carriers in the channel |
Country Status (1)
Country | Link |
---|---|
US (6) | US9018056B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9559012B1 (en) * | 2013-09-30 | 2017-01-31 | Hrl Laboratories, Llc | Gallium nitride complementary transistors |
EP3298629A4 (en) * | 2015-10-09 | 2019-01-09 | HRL Laboratories, LLC | GaN-ON-SAPPHIRE MONOLITHICALLY INTEGRATED POWER CONVERTER |
US10199477B2 (en) * | 2013-08-12 | 2019-02-05 | Nxp Usa, Inc. | Complementary gallium nitride integrated circuits |
CN109727862A (en) * | 2018-12-30 | 2019-05-07 | 苏州汉骅半导体有限公司 | Semiconductor devices and its manufacturing method |
US10411098B2 (en) | 2017-07-28 | 2019-09-10 | Nuvoton Technology Corporation | Semiconductor device and manufacturing method thereof |
US11081346B2 (en) | 2014-11-18 | 2021-08-03 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Semiconductor structure having a group iii-v semiconductor layer comprising a hexagonal mesh crystalline structure |
Families Citing this family (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014053418A (en) * | 2012-09-06 | 2014-03-20 | Fujitsu Ltd | Semiconductor device |
JP6083548B2 (en) * | 2013-04-23 | 2017-02-22 | パナソニックIpマネジメント株式会社 | Nitride semiconductor device |
JP6111821B2 (en) * | 2013-04-25 | 2017-04-12 | 三菱電機株式会社 | Field effect transistor |
US10312360B2 (en) | 2013-06-18 | 2019-06-04 | Stephen P. Barlow | Method for producing trench high electron mobility devices |
US20150079738A1 (en) * | 2013-06-18 | 2015-03-19 | Stephen P. Barlow | Method for producing trench high electron mobility devices |
WO2015015973A1 (en) * | 2013-07-31 | 2015-02-05 | 富士電機株式会社 | Method for manufacturing semiconductor device, and semiconductor device |
US9978844B2 (en) * | 2013-08-01 | 2018-05-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | HEMT-compatible lateral rectifier structure |
JP6179266B2 (en) * | 2013-08-12 | 2017-08-16 | 富士通株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US20160225913A1 (en) * | 2013-08-30 | 2016-08-04 | Japan Science And Technology Agency | Ingaaln-based semiconductor device |
JP6135487B2 (en) * | 2013-12-09 | 2017-05-31 | 富士通株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US9231064B1 (en) * | 2014-08-12 | 2016-01-05 | Raytheon Company | Double heterojunction group III-nitride structures |
JP2016058546A (en) * | 2014-09-09 | 2016-04-21 | 株式会社東芝 | Semiconductor device |
JP2017533574A (en) | 2014-09-18 | 2017-11-09 | インテル・コーポレーション | Wurtzite heteroepitaxial structure with inclined sidewall cut surface for defect propagation control in silicon CMOS compatible semiconductor devices |
WO2016048328A1 (en) | 2014-09-25 | 2016-03-31 | Intel Corporation | Iii-n epitaxial device structures on free standing silicon mesas |
CN104465746B (en) * | 2014-09-28 | 2018-08-10 | 苏州能讯高能半导体有限公司 | A kind of HEMT device and its manufacturing method |
US10243069B2 (en) | 2014-10-30 | 2019-03-26 | Intel Corporation | Gallium nitride transistor having a source/drain structure including a single-crystal portion abutting a 2D electron gas |
CN104362181B (en) * | 2014-11-03 | 2017-07-04 | 苏州捷芯威半导体有限公司 | A kind of GaN heterojunction diodes device and preparation method thereof |
KR102266615B1 (en) | 2014-11-17 | 2021-06-21 | 삼성전자주식회사 | Semiconductor device having field effect transistors and methods of forming the same |
WO2016080961A1 (en) * | 2014-11-18 | 2016-05-26 | Intel Corporation | Cmos circuits using n-channel and p-channel gallium nitride transistors |
KR102309482B1 (en) | 2014-12-18 | 2021-10-07 | 인텔 코포레이션 | N-channel gallium nitride transistors |
JP6447166B2 (en) * | 2015-01-22 | 2019-01-09 | 富士通株式会社 | Compound semiconductor device and manufacturing method thereof |
US9536984B2 (en) | 2015-04-10 | 2017-01-03 | Cambridge Electronics, Inc. | Semiconductor structure with a spacer layer |
US9614069B1 (en) | 2015-04-10 | 2017-04-04 | Cambridge Electronics, Inc. | III-Nitride semiconductors with recess regions and methods of manufacture |
US9502435B2 (en) * | 2015-04-27 | 2016-11-22 | International Business Machines Corporation | Hybrid high electron mobility transistor and active matrix structure |
KR102504576B1 (en) | 2015-05-19 | 2023-02-28 | 인텔 코포레이션 | Semiconductor devices with raised doped crystalline structures |
US10217819B2 (en) * | 2015-05-20 | 2019-02-26 | Samsung Electronics Co., Ltd. | Semiconductor device including metal-2 dimensional material-semiconductor contact |
EP3314659A4 (en) | 2015-06-26 | 2019-01-23 | INTEL Corporation | Heteroepitaxial structures with high temperature stable substrate interface material |
US9577048B1 (en) * | 2015-09-24 | 2017-02-21 | Epistar Corporation | Heterostructure field-effect transistor |
US20170092747A1 (en) * | 2015-09-30 | 2017-03-30 | Sumitomo Electric Industries, Ltd. | Hemt having heavily doped n-type regions and process of forming the same |
JP6792135B2 (en) * | 2015-10-30 | 2020-11-25 | 富士通株式会社 | Compound semiconductor device and its manufacturing method |
WO2017077806A1 (en) * | 2015-11-02 | 2017-05-11 | 日本碍子株式会社 | Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements |
ITUB20155862A1 (en) * | 2015-11-24 | 2017-05-24 | St Microelectronics Srl | NORMALLY OFF TYPE TRANSISTOR WITH REDUCED RESISTANCE IN THE STATE ON AND RELATIVE MANUFACTURING METHOD |
US9966435B2 (en) * | 2015-12-09 | 2018-05-08 | Qualcomm Incorporated | Body tied intrinsic FET |
WO2017099797A1 (en) * | 2015-12-11 | 2017-06-15 | Intel Corporation | Co-planar p-channel and n-channel gallium nitride-based transistors on silicon and techniques for forming same |
KR102402771B1 (en) | 2015-12-11 | 2022-05-26 | 삼성전자주식회사 | Semiconductor device and method for fabricating the same |
US10658471B2 (en) | 2015-12-24 | 2020-05-19 | Intel Corporation | Transition metal dichalcogenides (TMDCS) over III-nitride heteroepitaxial layers |
CN105514156A (en) * | 2016-01-13 | 2016-04-20 | 中国科学院上海技术物理研究所 | GaN-based p-type FET (Field Effect Transistor) with heterojunction structure and preparation method thereof |
US9761672B1 (en) * | 2016-03-01 | 2017-09-12 | Infineon Technologies Americas Corp. | Semiconductor component including aluminum silicon nitride layers |
US10615280B2 (en) | 2016-03-22 | 2020-04-07 | Intel Corporation | Reduced punchthrough breakdown in gallium-nitride transistors |
US10600787B2 (en) | 2016-03-28 | 2020-03-24 | Intel Corporation | Silicon PMOS with gallium nitride NMOS for voltage regulation |
US11588096B2 (en) | 2016-04-11 | 2023-02-21 | The Regents Of The University Of California | Method to achieve active p-type layer/layers in III-nitrtde epitaxial or device structures having buried p-type layers |
CN107331663B (en) * | 2016-04-29 | 2021-09-28 | 上海芯晨科技有限公司 | III-group nitride and silicon heterogeneous integrated substrate and manufacturing method thereof |
US9673311B1 (en) * | 2016-06-14 | 2017-06-06 | Semiconductor Components Industries, Llc | Electronic device including a multiple channel HEMT |
JP7028547B2 (en) | 2016-06-20 | 2022-03-02 | 株式会社アドバンテスト | Manufacturing method of compound semiconductor device |
JP6712190B2 (en) * | 2016-06-20 | 2020-06-17 | 株式会社アドバンテスト | Epi substrate |
US10354879B2 (en) * | 2016-06-24 | 2019-07-16 | Cree, Inc. | Depletion mode semiconductor devices including current dependent resistance |
US11430882B2 (en) | 2016-06-24 | 2022-08-30 | Wolfspeed, Inc. | Gallium nitride high-electron mobility transistors with p-type layers and process for making the same |
US10840334B2 (en) * | 2016-06-24 | 2020-11-17 | Cree, Inc. | Gallium nitride high-electron mobility transistors with deep implanted p-type layers in silicon carbide substrates for power switching and radio frequency applications and process for making the same |
US10892356B2 (en) | 2016-06-24 | 2021-01-12 | Cree, Inc. | Group III-nitride high-electron mobility transistors with buried p-type layers and process for making the same |
US10170611B1 (en) * | 2016-06-24 | 2019-01-01 | Hrl Laboratories, Llc | T-gate field effect transistor with non-linear channel layer and/or gate foot face |
WO2018004607A1 (en) * | 2016-06-30 | 2018-01-04 | Intel Corporation | Co-integration of gan and self-aligned thin body group iv transistors |
WO2018004654A1 (en) * | 2016-07-01 | 2018-01-04 | Intel Corporation | Group iii-n transistors including source to channel heterostructure design |
JP6685870B2 (en) | 2016-09-15 | 2020-04-22 | 株式会社東芝 | Semiconductor device |
US10211328B2 (en) * | 2016-09-20 | 2019-02-19 | Board Of Trustees Of The University Of Illinois | Normally-off cubic phase GaN (c-GaN) HEMT having a gate electrode dielectrically insulated from a c-AlGaN capping layer |
US10770575B2 (en) * | 2016-09-30 | 2020-09-08 | Intel Corporation | Vertical group III-N devices and their methods of fabrication |
JP6711233B2 (en) * | 2016-10-13 | 2020-06-17 | 富士通株式会社 | Compound semiconductor device and method of manufacturing compound semiconductor device |
US10741682B2 (en) * | 2016-11-17 | 2020-08-11 | Semiconductor Components Industries, Llc | High-electron-mobility transistor (HEMT) semiconductor devices with reduced dynamic resistance |
US10411125B2 (en) * | 2016-11-23 | 2019-09-10 | Mitsubishi Electric Research Laboratories, Inc. | Semiconductor device having high linearity-transconductance |
US10418475B2 (en) * | 2016-11-28 | 2019-09-17 | Arizona Board Of Regents On Behalf Of Arizona State University | Diamond based current aperture vertical transistor and methods of making and using the same |
US9780181B1 (en) * | 2016-12-07 | 2017-10-03 | Mitsubishi Electric Research Laboratories, Inc. | Semiconductor device with multi-function P-type diamond gate |
US10388753B1 (en) | 2017-03-31 | 2019-08-20 | National Technology & Engineering Solutions Of Sandia, Llc | Regrowth method for fabricating wide-bandgap transistors, and devices made thereby |
US11309412B1 (en) * | 2017-05-17 | 2022-04-19 | Northrop Grumman Systems Corporation | Shifting the pinch-off voltage of an InP high electron mobility transistor with a metal ring |
CN107346785B (en) * | 2017-05-22 | 2019-11-26 | 中国电子科技集团公司第五十五研究所 | A kind of N polarity AlGaN/GaN high electron mobility field-effect tube |
JP6974049B2 (en) * | 2017-06-28 | 2021-12-01 | ルネサスエレクトロニクス株式会社 | Semiconductor devices and methods for manufacturing semiconductor devices |
TWI662707B (en) * | 2017-07-14 | 2019-06-11 | 晶元光電股份有限公司 | Semiconductor power device and manufacturing method thereof |
TWI646228B (en) | 2017-08-10 | 2019-01-01 | 新唐科技股份有限公司 | Semiconductor substrate and method of manufacturing same |
EP3673513A4 (en) * | 2017-08-25 | 2021-04-07 | HRL Laboratories, LLC | Digital alloy based back barrier for p-channel nitride transistors |
WO2019037116A1 (en) * | 2017-08-25 | 2019-02-28 | 苏州晶湛半导体有限公司 | P-type semiconductor manufacturing method, enhancement-type device and manufacturing method therefor |
US11646357B2 (en) * | 2017-08-25 | 2023-05-09 | Enkris Semiconductor, Inc. | Method for preparing a p-type semiconductor structure, enhancement mode device and method for manufacturing the same |
TWI658588B (en) * | 2017-09-08 | 2019-05-01 | 世界先進積體電路股份有限公司 | High hole mobility transistor |
CN109524460B (en) * | 2017-09-19 | 2022-05-17 | 世界先进积体电路股份有限公司 | High hole mobility transistor |
WO2019066916A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Complementary group iii-nitride transistors with complementary polarization junctions |
WO2019066908A1 (en) | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride polarization junction diodes |
WO2019066955A1 (en) * | 2017-09-29 | 2019-04-04 | Intel Corporation | Multi-step lateral epitaxial overgrowth for low defect density iii-n films |
WO2019066921A1 (en) | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride light emitting devices including a polarization junction |
WO2019066953A1 (en) | 2017-09-29 | 2019-04-04 | Intel Corporation | Group iii-nitride (iii-n) devices with reduced contact resistance and their methods of fabrication |
US11295992B2 (en) | 2017-09-29 | 2022-04-05 | Intel Corporation | Tunnel polarization junction III-N transistors |
US10325990B2 (en) * | 2017-10-03 | 2019-06-18 | Vanguard International Semiconductor Corporation | High electron mobility transistor devices and method for fabricating the same |
US10256332B1 (en) | 2017-10-27 | 2019-04-09 | Vanguard International Semiconductor Corporation | High hole mobility transistor |
US10892159B2 (en) | 2017-11-20 | 2021-01-12 | Saphlux, Inc. | Semipolar or nonpolar group III-nitride substrates |
US10103239B1 (en) * | 2017-12-28 | 2018-10-16 | Vanguard International Semiconductor Corporation | High electron mobility transistor structure |
US10403718B2 (en) * | 2017-12-28 | 2019-09-03 | Nxp Usa, Inc. | Semiconductor devices with regrown contacts and methods of fabrication |
US10355085B1 (en) | 2017-12-28 | 2019-07-16 | Nxp Usa, Inc. | Semiconductor devices with regrown contacts and methods of fabrication |
CN108346687B (en) * | 2018-01-03 | 2021-02-09 | 东南大学 | Gallium nitride-based high electron mobility transistor |
CN111344869A (en) | 2018-01-05 | 2020-06-26 | 英特尔公司 | Transistor structure with multiple threshold voltage channel materials |
US10516023B2 (en) * | 2018-03-06 | 2019-12-24 | Infineon Technologies Austria Ag | High electron mobility transistor with deep charge carrier gas contact structure |
TWI686951B (en) * | 2018-04-03 | 2020-03-01 | 世界先進積體電路股份有限公司 | Semiconductor devices and methods for fabricating the same |
FR3080710B1 (en) * | 2018-04-25 | 2021-12-24 | Commissariat Energie Atomique | TRANSISTOR HEMT AND METHODS OF MANUFACTURING PROMOTING REDUCED GRID LENGTH AND LEAKAGE |
US10868128B2 (en) * | 2018-06-29 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Ohmic contact structure, semiconductor device including an ohmic contact structure, and method for forming the same |
CN108987280B (en) * | 2018-07-18 | 2021-06-18 | 广东省半导体产业技术研究院 | Semiconductor device and method for manufacturing the same |
US10516043B1 (en) | 2018-07-19 | 2019-12-24 | Cree, Inc. | Monolithic microwave integrated circuits having both enhancement-mode and depletion mode transistors |
US11158709B2 (en) * | 2018-07-20 | 2021-10-26 | Cornell University | Polarization-induced 2D hole gases for high-voltage p-channel transistors |
CN109087948A (en) * | 2018-09-03 | 2018-12-25 | 深圳市科创数字显示技术有限公司 | A kind of groove type MOS-HEMT |
US11581402B2 (en) * | 2018-09-05 | 2023-02-14 | Board Of Regents, The University Of Texas System | Lateral semiconductor device and method of manufacture |
CN109216442A (en) * | 2018-09-11 | 2019-01-15 | 苏州汉骅半导体有限公司 | Semiconductor structure manufacturing method |
CN109300787B (en) * | 2018-09-21 | 2019-07-12 | 苏州汉骅半导体有限公司 | The method for recycling carbon face polarity silicon carbide substrates |
CN109243978B (en) * | 2018-09-21 | 2019-05-24 | 苏州汉骅半导体有限公司 | Nitrogen face polar epitaxy of gallium nitride structure making process |
US11522080B2 (en) * | 2018-11-07 | 2022-12-06 | Cornell University | High-voltage p-channel FET based on III-nitride heterostructures |
TWI714909B (en) * | 2018-11-13 | 2021-01-01 | 新唐科技股份有限公司 | High electron mobility transistor device and manufacturing method thereof |
US10964803B2 (en) | 2018-11-19 | 2021-03-30 | Texas Instruments Incorporated | Gallium nitride transistor with a doped region |
US11610971B2 (en) * | 2018-12-17 | 2023-03-21 | Intel Corporation | Cap layer on a polarization layer to preserve channel sheet resistance |
US20200219871A1 (en) * | 2019-01-07 | 2020-07-09 | Semiconductor Components Industries, Llc | Electronic Device Including a HEMT Including a Buried Region |
CN109728087B (en) * | 2019-01-08 | 2020-09-08 | 西安电子科技大学 | Method for preparing low-ohmic contact GaN-based HEMT based on nanosphere mask |
US10636875B1 (en) * | 2019-01-21 | 2020-04-28 | Northrop Grumman Systems Corporation | Localized tunneling enhancement for semiconductor devices |
US11670637B2 (en) * | 2019-02-19 | 2023-06-06 | Intel Corporation | Logic circuit with indium nitride quantum well |
CN109950150B (en) * | 2019-03-07 | 2020-08-14 | 苏州汉骅半导体有限公司 | Semiconductor structure and manufacturing method thereof |
CN113892186B (en) | 2019-03-26 | 2024-05-03 | 苏州晶湛半导体有限公司 | Semiconductor structure and manufacturing method thereof |
CN110047910B (en) * | 2019-03-27 | 2020-07-31 | 东南大学 | Heterojunction semiconductor device with high voltage endurance capability |
CN109962100B (en) * | 2019-04-03 | 2022-07-05 | 中国科学院微电子研究所 | P-type channel GaN-based structure and electronic device |
CN110224019B (en) * | 2019-04-12 | 2023-12-01 | 广东致能科技有限公司 | Semiconductor device and manufacturing method thereof |
JP7448314B2 (en) * | 2019-04-19 | 2024-03-12 | 株式会社東芝 | semiconductor equipment |
JP7426786B2 (en) | 2019-05-30 | 2024-02-02 | ローム株式会社 | nitride semiconductor device |
CN112216736B (en) * | 2019-07-10 | 2024-04-30 | 联华电子股份有限公司 | High electron mobility transistor and method for fabricating the same |
CN112447834A (en) * | 2019-08-30 | 2021-03-05 | 广东致能科技有限公司 | Semiconductor device and method for manufacturing the same |
CN112447837A (en) * | 2019-08-30 | 2021-03-05 | 广东致能科技有限公司 | High-voltage-resistant high-electron-mobility transistor |
CN110634867B (en) * | 2019-09-10 | 2023-08-18 | 英诺赛科(珠海)科技有限公司 | Semiconductor device and method for manufacturing the same |
CN112490278B (en) * | 2019-09-12 | 2023-10-31 | 联华电子股份有限公司 | Semiconductor epitaxial structure with reduced defects |
CN112490243B (en) * | 2019-09-12 | 2023-09-12 | 联华电子股份有限公司 | Three-dimensional semiconductor structure and manufacturing method thereof |
CN110676316B (en) * | 2019-09-20 | 2023-04-11 | 中国电子科技集团公司第十三研究所 | Enhancement mode field effect transistor |
US11349023B2 (en) * | 2019-10-01 | 2022-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integration of p-channel and n-channel E-FET III-V devices without parasitic channels |
US11569182B2 (en) | 2019-10-22 | 2023-01-31 | Analog Devices, Inc. | Aluminum-based gallium nitride integrated circuits |
CN110911484B (en) * | 2019-11-22 | 2021-02-19 | 华南理工大学 | Enhanced GaN HEMT device prepared by wet etching assisted doping and preparation method |
JP2021086852A (en) * | 2019-11-25 | 2021-06-03 | 住友電気工業株式会社 | Method for manufacturing semiconductor device and semiconductor device |
CN113140628B (en) * | 2020-01-17 | 2023-09-29 | 广东致能科技有限公司 | Semiconductor device and manufacturing method thereof |
CN111370362B (en) * | 2020-03-16 | 2022-07-12 | 林和 | Intelligent multi-dimensional multifunctional sensing and information processing integrated circuit |
JP7298779B2 (en) * | 2020-04-23 | 2023-06-27 | 日本電信電話株式会社 | Semiconductor device and its manufacturing method |
CN113571516B (en) * | 2020-04-29 | 2024-02-06 | 广东致能科技有限公司 | III-nitride semiconductor integrated circuit structure, manufacturing method and application thereof |
CN111900203B (en) * | 2020-06-30 | 2022-08-16 | 中国电子科技集团公司第五十五研究所 | GaN-based high-hole mobility transistor and preparation method thereof |
TWI794650B (en) * | 2020-09-24 | 2023-03-01 | 世界先進積體電路股份有限公司 | High-voltage semiconductor structure |
US11552188B2 (en) | 2020-11-24 | 2023-01-10 | Vanguard International Semiconductor Corporation | High-voltage semiconductor structure |
CN112909077B (en) * | 2021-02-07 | 2022-03-29 | 电子科技大学 | Double-heterojunction polarization-enhanced quasi-longitudinal GaN HEMT device |
CN113035934B (en) * | 2021-03-12 | 2022-07-05 | 浙江集迈科微电子有限公司 | GaN-based HEMT device and preparation method thereof |
US11929428B2 (en) | 2021-05-17 | 2024-03-12 | Wolfspeed, Inc. | Circuits and group III-nitride high-electron mobility transistors with buried p-type layers improving overload recovery and process for implementing the same |
CN115394648A (en) * | 2021-05-25 | 2022-11-25 | 联华电子股份有限公司 | Nitride semiconductor element and method for manufacturing the same |
CN113394096B (en) * | 2021-06-16 | 2022-05-31 | 中国科学院宁波材料技术与工程研究所 | HEMT device and self-isolation method and manufacturing method thereof |
WO2023276575A1 (en) * | 2021-06-29 | 2023-01-05 | 株式会社ジャパンディスプレイ | Semiconductor device |
CN114503281B (en) * | 2021-08-02 | 2023-07-14 | 英诺赛科(苏州)科技有限公司 | Semiconductor device and method for manufacturing the same |
US20240030327A1 (en) * | 2021-08-13 | 2024-01-25 | Innoscience (Suzhou) Technology Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN113838931A (en) * | 2021-08-23 | 2021-12-24 | 华灿光电(浙江)有限公司 | High electron mobility transistor chip and preparation method thereof |
US11967642B2 (en) * | 2021-09-03 | 2024-04-23 | Vanguard International Semiconductor Corporation | Semiconductor structure, high electron mobility transistor and fabrication method thereof |
US20230078017A1 (en) * | 2021-09-16 | 2023-03-16 | Wolfspeed, Inc. | Semiconductor device incorporating a substrate recess |
TWI785864B (en) * | 2021-10-27 | 2022-12-01 | 財團法人工業技術研究院 | Semiconductor substrate and transistor |
US20230238308A1 (en) * | 2022-01-27 | 2023-07-27 | Vanguard International Semiconductor Corporation | Semiconductor structure and manufacturing method of the same |
FR3136111A1 (en) * | 2022-05-30 | 2023-12-01 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | ELECTRONIC COMPONENT BASED ON GALIUM NITRIDE DOPE P |
CN117790534A (en) * | 2022-11-14 | 2024-03-29 | 北京大学 | High-stability GaN device and GaN bridge type integrated circuit |
CN117727782B (en) * | 2024-02-05 | 2024-05-14 | 江西兆驰半导体有限公司 | Epitaxial structure of high electron mobility transistor and preparation method thereof |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4732870A (en) * | 1984-06-18 | 1988-03-22 | Fujitsu Limited | Method of making complementary field effect transistors |
US5479033A (en) * | 1994-05-27 | 1995-12-26 | Sandia Corporation | Complementary junction heterostructure field-effect transistor |
US6555839B2 (en) * | 2000-05-26 | 2003-04-29 | Amberwave Systems Corporation | Buried channel strained silicon FET using a supply layer created through ion implantation |
US20050133816A1 (en) * | 2003-12-19 | 2005-06-23 | Zhaoyang Fan | III-nitride quantum-well field effect transistors |
US20070138565A1 (en) * | 2005-12-15 | 2007-06-21 | Intel Corporation | Extreme high mobility CMOS logic |
US20090267078A1 (en) * | 2008-04-23 | 2009-10-29 | Transphorm Inc. | Enhancement Mode III-N HEMTs |
US20100327322A1 (en) * | 2009-06-25 | 2010-12-30 | Kub Francis J | Transistor with Enhanced Channel Charge Inducing Material Layer and Threshold Voltage Control |
US20120068189A1 (en) * | 2010-09-17 | 2012-03-22 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Method for Vertical and Lateral Control of III-N Polarity |
US20130307027A1 (en) * | 2012-04-12 | 2013-11-21 | Jing Lu | Method for heteroepitaxial growth of high channel conductivity and high breakdown voltage nitrogen polar high electron mobility transistors |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1179071A (en) * | 1981-06-17 | 1984-12-04 | Tadashi Fukuzawa | Semiconductor device |
US6849882B2 (en) * | 2001-05-11 | 2005-02-01 | Cree Inc. | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
JP2005527102A (en) * | 2001-07-24 | 2005-09-08 | クリー インコーポレイテッド | High electron mobility transistor and manufacturing method thereof |
US7034362B2 (en) * | 2003-10-17 | 2006-04-25 | International Business Machines Corporation | Double silicon-on-insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) structures |
US7548112B2 (en) * | 2005-07-21 | 2009-06-16 | Cree, Inc. | Switch mode power amplifier using MIS-HEMT with field plate extension |
US7338826B2 (en) * | 2005-12-09 | 2008-03-04 | The United States Of America As Represented By The Secretary Of The Navy | Silicon nitride passivation with ammonia plasma pretreatment for improving reliability of AlGaN/GaN HEMTs |
US8120066B2 (en) * | 2006-10-04 | 2012-02-21 | Selex Sistemi Integrati S.P.A. | Single voltage supply pseudomorphic high electron mobility transistor (PHEMT) power device and process for manufacturing the same |
TWI512831B (en) * | 2007-06-01 | 2015-12-11 | Univ California | P-gan/algan/aln/gan enhancement-mode field effect transistor |
US20090072269A1 (en) * | 2007-09-17 | 2009-03-19 | Chang Soo Suh | Gallium nitride diodes and integrated components |
US7985986B2 (en) * | 2008-07-31 | 2011-07-26 | Cree, Inc. | Normally-off semiconductor devices |
US8445941B2 (en) * | 2009-05-26 | 2013-05-21 | Bae Systems Information And Electronic Systems Integration Inc. | Asymmetrically recessed high-power and high-gain ultra-short gate HEMT device |
JP5678485B2 (en) * | 2009-08-03 | 2015-03-04 | ソニー株式会社 | Semiconductor device |
US8901536B2 (en) | 2010-09-21 | 2014-12-02 | The United States Of America, As Represented By The Secretary Of The Navy | Transistor having graphene base |
US20120141799A1 (en) | 2010-12-03 | 2012-06-07 | Francis Kub | Film on Graphene on a Substrate and Method and Devices Therefor |
GB201021112D0 (en) | 2010-12-13 | 2011-01-26 | Ntnu Technology Transfer As | Nanowires |
US9443941B2 (en) * | 2012-06-04 | 2016-09-13 | Infineon Technologies Austria Ag | Compound semiconductor transistor with self aligned gate |
-
2014
- 2014-01-31 US US14/170,161 patent/US9018056B2/en active Active
- 2014-01-31 US US14/169,334 patent/US9006791B2/en active Active
- 2014-04-29 US US14/265,214 patent/US9275998B2/en active Active
- 2014-12-19 US US14/578,146 patent/US9111786B1/en active Active
-
2015
- 2015-02-09 US US14/617,510 patent/US9196614B2/en active Active
- 2015-03-24 US US14/666,494 patent/US9105499B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4732870A (en) * | 1984-06-18 | 1988-03-22 | Fujitsu Limited | Method of making complementary field effect transistors |
US5479033A (en) * | 1994-05-27 | 1995-12-26 | Sandia Corporation | Complementary junction heterostructure field-effect transistor |
US6555839B2 (en) * | 2000-05-26 | 2003-04-29 | Amberwave Systems Corporation | Buried channel strained silicon FET using a supply layer created through ion implantation |
US20050133816A1 (en) * | 2003-12-19 | 2005-06-23 | Zhaoyang Fan | III-nitride quantum-well field effect transistors |
US20070138565A1 (en) * | 2005-12-15 | 2007-06-21 | Intel Corporation | Extreme high mobility CMOS logic |
US20090267078A1 (en) * | 2008-04-23 | 2009-10-29 | Transphorm Inc. | Enhancement Mode III-N HEMTs |
US20100327322A1 (en) * | 2009-06-25 | 2010-12-30 | Kub Francis J | Transistor with Enhanced Channel Charge Inducing Material Layer and Threshold Voltage Control |
US20120068189A1 (en) * | 2010-09-17 | 2012-03-22 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Method for Vertical and Lateral Control of III-N Polarity |
US20130307027A1 (en) * | 2012-04-12 | 2013-11-21 | Jing Lu | Method for heteroepitaxial growth of high channel conductivity and high breakdown voltage nitrogen polar high electron mobility transistors |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10199477B2 (en) * | 2013-08-12 | 2019-02-05 | Nxp Usa, Inc. | Complementary gallium nitride integrated circuits |
US9559012B1 (en) * | 2013-09-30 | 2017-01-31 | Hrl Laboratories, Llc | Gallium nitride complementary transistors |
CN107851612A (en) * | 2013-09-30 | 2018-03-27 | 赫尔实验室有限公司 | Group III-nitride complementary transistor |
US11081346B2 (en) | 2014-11-18 | 2021-08-03 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Semiconductor structure having a group iii-v semiconductor layer comprising a hexagonal mesh crystalline structure |
EP3298629A4 (en) * | 2015-10-09 | 2019-01-09 | HRL Laboratories, LLC | GaN-ON-SAPPHIRE MONOLITHICALLY INTEGRATED POWER CONVERTER |
US10659032B2 (en) | 2015-10-09 | 2020-05-19 | Hrl Laboratories, Llc | GaN-on-sapphire monolithically integrated power converter |
US10411098B2 (en) | 2017-07-28 | 2019-09-10 | Nuvoton Technology Corporation | Semiconductor device and manufacturing method thereof |
CN109727862A (en) * | 2018-12-30 | 2019-05-07 | 苏州汉骅半导体有限公司 | Semiconductor devices and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
US9006791B2 (en) | 2015-04-14 |
US9196614B2 (en) | 2015-11-24 |
US9105499B1 (en) | 2015-08-11 |
US20150221760A1 (en) | 2015-08-06 |
US20140264380A1 (en) | 2014-09-18 |
US20150221727A1 (en) | 2015-08-06 |
US9275998B2 (en) | 2016-03-01 |
US9018056B2 (en) | 2015-04-28 |
US20140264379A1 (en) | 2014-09-18 |
US20150221647A1 (en) | 2015-08-06 |
US9111786B1 (en) | 2015-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9105499B1 (en) | Complementary field effect transistors using gallium polar and nitrogen polar III-nitride material | |
US10084047B2 (en) | Group III-V device structure with variable impurity concentration | |
US10367087B2 (en) | Transistor structure including a scandium gallium nitride back-barrier layer | |
US10043896B2 (en) | III-Nitride transistor including a III-N depleting layer | |
US9343562B2 (en) | Dual-gated group III-V merged transistor | |
US7948011B2 (en) | N-polar aluminum gallium nitride/gallium nitride enhancement-mode field effect transistor | |
US9053964B2 (en) | Semiconductor devices including a first and second HFET and methods of manufacturing the same | |
US20180026099A1 (en) | Semiconductor device and method of manufacturing the semiconductor device | |
US20120305987A1 (en) | Lateral trench mesfet | |
US20080308813A1 (en) | High breakdown enhancement mode gallium nitride based high electron mobility transistors with integrated slant field plate | |
US20100219452A1 (en) | GaN HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) STRUCTURES | |
WO2009116223A1 (en) | Semiconductor device | |
US20040041169A1 (en) | GaN-type enhancement MOSFET using hetero structure | |
WO2009132039A2 (en) | Enhancement mode iii-n hemts | |
JP2008153330A (en) | Nitride semiconductor high electron mobility transistor | |
US20120274402A1 (en) | High electron mobility transistor | |
US8637924B2 (en) | Lateral trench MESFET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUB, FRANCIS J;ANDERSON, TRAVIS J;MASTRO, MICHAEL A;AND OTHERS;SIGNING DATES FROM 20140124 TO 20140128;REEL/FRAME:035262/0958 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1555); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |