TWI714909B - High electron mobility transistor device and manufacturing method thereof - Google Patents

High electron mobility transistor device and manufacturing method thereof Download PDF

Info

Publication number
TWI714909B
TWI714909B TW107140130A TW107140130A TWI714909B TW I714909 B TWI714909 B TW I714909B TW 107140130 A TW107140130 A TW 107140130A TW 107140130 A TW107140130 A TW 107140130A TW I714909 B TWI714909 B TW I714909B
Authority
TW
Taiwan
Prior art keywords
barrier layer
layer
region
mask pattern
opening
Prior art date
Application number
TW107140130A
Other languages
Chinese (zh)
Other versions
TW202018943A (en
Inventor
溫文瑩
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW107140130A priority Critical patent/TWI714909B/en
Priority to CN201910496050.6A priority patent/CN111180505B/en
Publication of TW202018943A publication Critical patent/TW202018943A/en
Application granted granted Critical
Publication of TWI714909B publication Critical patent/TWI714909B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A high electron mobility transistor (HEMT) device and a manufacturing method thereof are provided. The HEMT device includes a first channel layer, a first barrier layer, a second barrier layer, a first gate electrode, a first drain electrode and a first source electrode. The first channel layer is disposed on a substrate. The first barrier layer is disposed on the first channel layer. The second barrier layer is disposed on the first barrier layer. The second barrier layer has a first opening extending to the first barrier layer. The first gate electrode is disposed on the first barrier layer in the first opening. The first drain electrode and the first source electrode are disposed on the second barrier layer at opposite sides of the first opening.

Description

高電子遷移率電晶體元件及其製造方法High electron mobility transistor element and manufacturing method thereof

本發明是有關於一種電晶體元件及其製造方法,且特別是有關於一種高電子遷移率電晶體元件及其製造方法。The present invention relates to a transistor element and a manufacturing method thereof, and particularly relates to a high electron mobility transistor element and a manufacturing method thereof.

高電子遷移率電晶體(high electron mobility transistor,HEMT)是場效電晶體的一種。HEMT包括兩種具有不同能隙的半導體材料,而形成異質接面(hetero junction),且能作為導電通道。由於HEMT具有低阻值、高崩潰電壓以及快速開關切換頻率等優點,故在高功率電子元件之領域中受到廣泛的應用。High electron mobility transistor (HEMT) is a type of field effect transistor. HEMT includes two kinds of semiconductor materials with different energy gaps, which form a heterojunction and can be used as a conductive channel. Since HEMT has the advantages of low resistance, high breakdown voltage and fast switching frequency, it is widely used in the field of high-power electronic components.

HEMT可依據通道的常開或常關而分別歸類為空乏型(depletion mode)或增強型(enhancement mode)HEMT。一般而言,製造增強型HEMT的方法包括在主動區內對異質接面的阻障層進行蝕刻或摻雜。然而,蝕刻可能破壞阻障層,進而影響下伏的通道層內所形成的二維電子氣(two dimensional electron gas,2DEG)。另外,關於進行摻雜,阻障層內的摻質可能因其他高溫製程而向外擴散。因此,目前的增強型HEMT的製程以及可靠度受到限制。HEMTs can be classified as depletion mode or enhancement mode HEMTs according to whether the channel is normally open or normally closed. Generally speaking, the method of manufacturing an enhanced HEMT includes etching or doping the barrier layer of the heterojunction in the active region. However, the etching may damage the barrier layer, thereby affecting the two dimensional electron gas (2DEG) formed in the underlying channel layer. In addition, regarding doping, the dopants in the barrier layer may diffuse outward due to other high-temperature processes. Therefore, the manufacturing process and reliability of the current enhanced HEMT are limited.

本發明提供一種HEMT元件及其製造方法,可提高增強型HEMT的可靠度。The invention provides a HEMT element and a manufacturing method thereof, which can improve the reliability of an enhanced HEMT.

本發明實施例的HEMT元件包括第一通道層、第一阻障層、第二阻障層、第一閘極、第一汲極與第一源極。第一通道層設置於基底上。第一阻障層設置於第一通道層上。第二阻障層設置於第一阻障層上。第二阻障層具有延伸至第一阻障層的第一開口。第一閘極設置於第一開口內的第一阻障層上。第一汲極與第一源極分別設置於第一開口的相對兩側的第二阻障層上。The HEMT device of the embodiment of the present invention includes a first channel layer, a first barrier layer, a second barrier layer, a first gate, a first drain, and a first source. The first channel layer is disposed on the substrate. The first barrier layer is disposed on the first channel layer. The second barrier layer is disposed on the first barrier layer. The second barrier layer has a first opening extending to the first barrier layer. The first gate is disposed on the first barrier layer in the first opening. The first drain and the first source are respectively disposed on the second barrier layer on opposite sides of the first opening.

在一些實施例中,第一阻障層與第二阻障層的材料相同或類似結構(如第一阻障層為AlGaN且第二阻障層為AlN,或第一阻障層為AlN而第二阻障層為AlGaN),且第一阻障層與第二阻障層之間具有介面。In some embodiments, the material of the first barrier layer and the second barrier layer are the same or similar in structure (for example, the first barrier layer is AlGaN and the second barrier layer is AlN, or the first barrier layer is AlN and The second barrier layer is AlGaN), and there is an interface between the first barrier layer and the second barrier layer.

在一些實施例中,HEMT元件具有第一區與第二區。第一通道層、第一阻障層與第二阻障層位於第一區與第二區內。第二阻障層的第一開口位於第一區內。In some embodiments, the HEMT device has a first region and a second region. The first channel layer, the first barrier layer and the second barrier layer are located in the first region and the second region. The first opening of the second barrier layer is located in the first region.

在一些實施例中,HEMT元件更包括第二閘極、第二汲極與第二源極。第二閘極、第二汲極與第二源極設置於第二阻障層上且位於第二區內。第二閘極位於第二汲極與第二源極之間。In some embodiments, the HEMT device further includes a second gate, a second drain, and a second source. The second gate, the second drain and the second source are arranged on the second barrier layer and located in the second region. The second gate is located between the second drain and the second source.

在一些實施例中,第一阻障層與第二阻障層在第一區與第二區之間的介面處不連續。In some embodiments, the first barrier layer and the second barrier layer are discontinuous at the interface between the first region and the second region.

在一些實施例中,HEMT元件更包括第二通道層、第三阻障層以及第四阻障層。第二通道層設置於第二阻障層上且位於第二區內。第三阻障層設置於第二通道層上且位於第二區內。第四阻障層設置於第三阻障層上且位於第二區內。第四阻障層具有延伸至第三阻障層的第二開口。In some embodiments, the HEMT device further includes a second channel layer, a third barrier layer, and a fourth barrier layer. The second channel layer is disposed on the second barrier layer and located in the second region. The third barrier layer is disposed on the second channel layer and located in the second region. The fourth barrier layer is disposed on the third barrier layer and located in the second region. The fourth barrier layer has a second opening extending to the third barrier layer.

在一些實施例中,HEMT元件更包括第二閘極、第二汲極與第二源極。第二閘極設置於第二開口內的第三阻障層上。第二汲極與第二源極分別設置於第二開口的相對兩側的第四阻障層上。In some embodiments, the HEMT device further includes a second gate, a second drain, and a second source. The second gate is arranged on the third barrier layer in the second opening. The second drain and the second source are respectively disposed on the fourth barrier layer on opposite sides of the second opening.

在一些實施例中,HEMT元件更包括重摻雜層。重摻雜層設置於第四阻障層與第二汲極之間,且位於第四阻障層與第二源極之間。In some embodiments, the HEMT device further includes a heavily doped layer. The heavily doped layer is disposed between the fourth barrier layer and the second drain, and between the fourth barrier layer and the second source.

本發明實施例的HEMT元件的製造方法包括:在基底上形成第一通道層;在第一通道層上形成第一阻障層;在第一阻障層上形成第一遮罩圖案;在第一阻障層的被第一遮罩圖案暴露出來的部分上形成第二阻障層;移除第一遮罩圖案,以暴露出第一阻障層的一部分;在第一阻障層的暴露部分上形成第一閘極;以及在第一閘極的相對兩側的第二阻障層上形成第一汲極與第一源極。The manufacturing method of the HEMT element of the embodiment of the present invention includes: forming a first channel layer on a substrate; forming a first barrier layer on the first channel layer; forming a first mask pattern on the first barrier layer; A second barrier layer is formed on the portion of the barrier layer exposed by the first mask pattern; the first mask pattern is removed to expose a part of the first barrier layer; the exposed portion of the first barrier layer A first gate is partially formed; and a first drain and a first source are formed on the second barrier layer on opposite sides of the first gate.

在一些實施例中,HEMT元件具有第一區與第二區。第一通道層、第一阻障層與第二阻障層位於第一區與第二區內,且第一遮罩圖案設置於第一區內。In some embodiments, the HEMT device has a first region and a second region. The first channel layer, the first barrier layer and the second barrier layer are located in the first area and the second area, and the first mask pattern is disposed in the first area.

在一些實施例中,HEMT元件的製造方法更包括:在第二區內的第二阻障層上形成第二閘極、第二汲極與第二源極。第二閘極位於第二汲極與第二源極之間。In some embodiments, the manufacturing method of the HEMT device further includes: forming a second gate, a second drain, and a second source on the second barrier layer in the second region. The second gate is located between the second drain and the second source.

在一些實施例中,HEMT元件的製造方法更包括:在第二區內的第二阻障層上形成第二通道層;在第二通道層上形成第三阻障層;在第三阻障層上形成第二遮罩圖案;在第三阻障層的被第二遮罩圖案暴露出來的部分上形成第四阻障層;以及移除第二遮罩圖案,以暴露出第三阻障層的一部分。In some embodiments, the manufacturing method of the HEMT device further includes: forming a second channel layer on the second barrier layer in the second region; forming a third barrier layer on the second channel layer; and forming a third barrier layer on the third barrier layer. A second mask pattern is formed on the layer; a fourth barrier layer is formed on the portion of the third barrier layer exposed by the second mask pattern; and the second mask pattern is removed to expose the third barrier Part of the layer.

在一些實施例中,HEMT元件的製造方法更包括:在第三阻障層的暴露部分上形成第二閘極;以及在第二閘極的相對兩側的第四阻障層上形成第二汲極與第二源極。In some embodiments, the manufacturing method of the HEMT element further includes: forming a second gate on the exposed portion of the third barrier layer; and forming a second gate on the fourth barrier layer on opposite sides of the second gate. Drain and second source.

在一些實施例中,HEMT元件的製造方法更包括:在第四阻障層上形成重摻雜層。重摻雜層位於第四阻障層與第二汲極之間,且位於第四阻障層與第二源極之間。In some embodiments, the manufacturing method of the HEMT device further includes: forming a heavily doped layer on the fourth barrier layer. The heavily doped layer is located between the fourth barrier layer and the second drain, and between the fourth barrier layer and the second source.

基於上述,本發明實施例包括在第一阻障層上形成具有暴露出第一阻障層的開口的第二阻障層。如此一來,交疊於上述開口的異質接面包括第一阻障層與下伏的第一通道層,而並未包括第二阻障層。第一阻障層的厚度不足以使此異質接面在未經施加偏壓的情況下產生導電通道,故此異質接面可作為增強型(或稱為常關型)HEMT的主動區。此外,本發明實施例藉由使用選擇性磊晶的方法來形成具有開口的第二阻障層,且並未對第一阻障層或第二阻障層進行蝕刻。因此,可避免第一阻障層與第二阻障層受到蝕刻的損壞。再者,本發明實施例可避免對第一阻障層與第二阻障層進行摻雜。因此,可避免摻質因其他高溫製程而四處擴散的問題。換言之,可提高HEMT元件的可靠度。Based on the above, the embodiment of the present invention includes forming a second barrier layer having an opening exposing the first barrier layer on the first barrier layer. In this way, the heterojunction that overlaps the opening includes the first barrier layer and the underlying first channel layer, but does not include the second barrier layer. The thickness of the first barrier layer is not enough to enable the heterojunction to generate a conductive channel without applying a bias voltage. Therefore, the heterojunction can be used as an active area of an enhanced (or normally-off) HEMT. In addition, the embodiment of the present invention uses a selective epitaxy method to form the second barrier layer with openings, and the first barrier layer or the second barrier layer is not etched. Therefore, the first barrier layer and the second barrier layer can be prevented from being damaged by etching. Furthermore, the embodiment of the present invention can avoid doping the first barrier layer and the second barrier layer. Therefore, the problem of dopant diffusion due to other high-temperature processes can be avoided. In other words, the reliability of the HEMT element can be improved.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

圖1是依照本發明的一些實施例的HEMT元件10的製造方法的流程圖。圖2A至圖2I是圖1所示的HEMT元件10的製造方法中各階段的結構之剖視示意圖。在一些實施例中,HEMT元件10(如圖2I所示)的製造方法可包括下列步驟。FIG. 1 is a flowchart of a method of manufacturing a HEMT device 10 according to some embodiments of the present invention. 2A to 2I are schematic cross-sectional views of the structure of each stage in the method of manufacturing the HEMT device 10 shown in FIG. 1. In some embodiments, the manufacturing method of the HEMT device 10 (shown in FIG. 2I) may include the following steps.

請參照圖1與圖2A,進行步驟S100,提供基底100。在一些實施例中,基底100包括半導體基底或半導體上覆絕緣體(semiconductor on insulator,SOI)基底。半導體基底或SOI基底中的半導體材料可包括元素半導體或化合物半導體。舉例而言,元素半導體可包括Si或Ge。化合物半導體可包括SiGe、SiC、SiGeC、III-V族半導體材料或II-VI族半導體材料。III-V族半導體材料可包括GaN、GaP、GaAs、AlN、AlP、AlAs、InN、InP、InAs、GaNP、GaNAs、GaPAs、AlNP、AlNAs、AlPAs、InNP、InNAs、InPAs、GaAlNP、GaAlNAs、GaAlPAs、GaInNP、GaInNAs、GaInPAs、InAlNP、InAlNAs或InAlPAs。II-VI族半導體材料可包括CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe或HgZnSTe。此外,半導體基底可經摻雜為第一導電型或與第一導電型互補的第二導電型。舉例而言,第一導電型可為N型,而第二導電型可為P型。在一些實施例中,基底100可具有第一區R1以及第二區R2。在後續的步驟中,可在第一區R1內形成第一導電型的增強型(enhancement mode)HEMT,且可在第二區R2內形成第一導電型的空乏型(depletion mode)HEMT或第二導電型的HEMT。1 and 2A, step S100 is performed to provide a substrate 100. In some embodiments, the substrate 100 includes a semiconductor substrate or a semiconductor on insulator (SOI) substrate. The semiconductor material in the semiconductor substrate or the SOI substrate may include elemental semiconductors or compound semiconductors. For example, the elemental semiconductor may include Si or Ge. The compound semiconductor may include SiGe, SiC, SiGeC, III-V group semiconductor materials, or II-VI group semiconductor materials. Group III-V semiconductor materials can include GaN, GaP, GaAs, AlN, AlP, AlAs, InN, InP, InAs, GaNP, GaNAS, GaPAs, AlNP, AlNAs, AlPAs, InNP, InNAs, InPAs, GaAlNP, GaAlNAs, GaAlPAs, GaInNP, GaInNAs, GaInPAs, InAlNP, InAlNAs or InAlPAs. Group II-VI semiconductor materials may include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdTe, ZnSe, CdZnSe CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, or HgZnSTe. In addition, the semiconductor substrate may be doped into a first conductivity type or a second conductivity type complementary to the first conductivity type. For example, the first conductivity type may be N type, and the second conductivity type may be P type. In some embodiments, the substrate 100 may have a first region R1 and a second region R2. In the subsequent steps, the first conductivity type enhancement mode HEMT can be formed in the first region R1, and the first conductivity type depletion mode HEMT or the first conductivity type can be formed in the second region R2. Two conductivity type HEMT.

請參照圖1與圖2B,選擇性地進行步驟S102,在基底100上形成緩衝層102。緩衝層102可位於第一區R1與第二區R2內。在一些實施例中,緩衝層102可實質上全面地覆蓋基底100的表面。在一些實施例中,緩衝層102的材料可包括III族氮化物或III-V族化合物半導體材料。舉例而言,緩衝層102的材料可包括InAlGaN、AlGaN、AlInN、InGaN、AlN、GaN或其組合。緩衝層102的形成方法可包括磊晶製程(epitaxial process)。緩衝層102的厚度會影響元件崩潰電壓,其厚度範圍依據元件規格可為800 nm 至10000 nm。藉由設置緩衝層102,可降低由基底100與後續形成於基底100上的第一通道層104(請參照圖2C)之間的晶格常數差異及/或熱膨脹係數差異所造成的應力。1 and 2B, step S102 is selectively performed to form a buffer layer 102 on the substrate 100. The buffer layer 102 may be located in the first region R1 and the second region R2. In some embodiments, the buffer layer 102 may substantially completely cover the surface of the substrate 100. In some embodiments, the material of the buffer layer 102 may include a group III nitride or a group III-V compound semiconductor material. For example, the material of the buffer layer 102 may include InAlGaN, AlGaN, AlInN, InGaN, AlN, GaN, or a combination thereof. The formation method of the buffer layer 102 may include an epitaxial process. The thickness of the buffer layer 102 affects the breakdown voltage of the device, and its thickness can range from 800 nm to 10000 nm depending on the device specification. By providing the buffer layer 102, the stress caused by the difference in lattice constants and/or the difference in thermal expansion coefficient between the substrate 100 and the first channel layer 104 (please refer to FIG. 2C) subsequently formed on the substrate 100 can be reduced.

請參照圖1與圖2C,進行步驟S104,在緩衝層102上形成第一通道層104。第一通道層104位於第一區R1與第二區R2內。在一些實施例中,第一通道層104可實質上全面地覆蓋於緩衝層102上。在不形成緩衝層102的實施例中,第一通道層104可直接形成於基底100上。在一些實施例中,第一通道層104的材料可包括III族氮化物或III-V族化合物半導體材料。舉例而言,第一通道層104的材料包括GaN。第一通道層104的形成方法可包括磊晶製程。第一通道層104的厚度範圍可為800 nm至3000 nm。1 and FIG. 2C, step S104 is performed to form a first channel layer 104 on the buffer layer 102. The first channel layer 104 is located in the first region R1 and the second region R2. In some embodiments, the first channel layer 104 may substantially cover the buffer layer 102 completely. In the embodiment where the buffer layer 102 is not formed, the first channel layer 104 may be directly formed on the substrate 100. In some embodiments, the material of the first channel layer 104 may include a group III nitride or a group III-V compound semiconductor material. For example, the material of the first channel layer 104 includes GaN. The method for forming the first channel layer 104 may include an epitaxial process. The thickness of the first channel layer 104 may range from 800 nm to 3000 nm.

請參照圖1與圖2D,進行步驟S106,在第一通道層104上形成第一阻障層106。第一阻障層106位於第一區R1與第二區R2內。在一些實施例中,第一阻障層106可實質上全面地覆蓋於第一通道層104上。在一些實施例中,第一阻障層106的材料可包括III族氮化物或III-V族化合物半導體材料。舉例而言,第一阻障層106的材料包括III族氮化物或III-V族化合物半導體材料,例如是InAlGaN、AlGaN、AlInN、AlN或其組合。在一些實施例中,第一阻障層106的材料為Alx Ga1-x N,其中x為0至1。在另一些實施例中,第一阻障層106的材料為Iny Alz Ga1-y-z N,其中y為0至1且z為0至1。在一些實施例中,第一阻障層106的形成方法包括磊晶製程。此外,第一阻障層106的厚度小於10 nm,以使第一通道層104的靠近第一阻障層106的區域在此時不形成二維電子氣(two dimensional electron gas,2DEG)。換言之,此時並未在第一通道層104內形成導電通道。舉例而言,第一阻障層106的厚度範圍可為1 nm至10 nm。1 and 2D, step S106 is performed to form a first barrier layer 106 on the first channel layer 104. The first barrier layer 106 is located in the first region R1 and the second region R2. In some embodiments, the first barrier layer 106 may substantially completely cover the first channel layer 104. In some embodiments, the material of the first barrier layer 106 may include a group III nitride or a group III-V compound semiconductor material. For example, the material of the first barrier layer 106 includes III-nitride or III-V compound semiconductor materials, such as InAlGaN, AlGaN, AlInN, AlN, or a combination thereof. In some embodiments, the material of the first barrier layer 106 is Al x Ga 1-x N, where x is 0 to 1. In other embodiments, the material of the first barrier layer 106 is In y Al z Ga 1-yz N, where y is 0 to 1 and z is 0 to 1. In some embodiments, the method for forming the first barrier layer 106 includes an epitaxial process. In addition, the thickness of the first barrier layer 106 is less than 10 nm, so that the region of the first channel layer 104 close to the first barrier layer 106 does not form two dimensional electron gas (2DEG) at this time. In other words, no conductive channels are formed in the first channel layer 104 at this time. For example, the thickness of the first barrier layer 106 may range from 1 nm to 10 nm.

請參照圖1與圖2E,進行步驟S108,在第一阻障層106上形成第一遮罩圖案108。第一遮罩圖案108位於第一區R1內。在一些實施例中,形成第一遮罩圖案108的方法包括在第一阻障層106上以例如是化學氣相沈積製程的方法形成遮罩層(未繪示),接著圖案化此遮罩層而形成第一遮罩圖案108。在一些實施例中,第一遮罩圖案108可為硬遮罩圖案。舉例而言,第一遮罩圖案108的材料可包括氧化矽、氮化矽或其組合。此外,在一些實施例中,第一遮罩圖案108的厚度範圍可為10 nm至500 nm。Please refer to FIG. 1 and FIG. 2E to perform step S108 to form a first mask pattern 108 on the first barrier layer 106. The first mask pattern 108 is located in the first region R1. In some embodiments, the method of forming the first mask pattern 108 includes forming a mask layer (not shown) on the first barrier layer 106 by, for example, a chemical vapor deposition process, and then patterning the mask Layer to form the first mask pattern 108. In some embodiments, the first mask pattern 108 may be a hard mask pattern. For example, the material of the first mask pattern 108 may include silicon oxide, silicon nitride, or a combination thereof. In addition, in some embodiments, the thickness of the first mask pattern 108 may range from 10 nm to 500 nm.

請參照圖1與圖2F,進行步驟S110,在第一阻障層106的被第一遮罩圖案108暴露出來的部分上形成第二阻障層110。第二阻障層110經形成於第一區R1與第二區R2內。在一些實施例中,可藉由磊晶製程形成第二阻障層110。在此些實施例中,僅會在第一阻障層110的暴露出的表面磊晶成長,而不會在第一遮罩圖案108的表面磊晶成長。因此,由磊晶製程形成第二阻障層110的方法又可稱為選擇性磊晶法(selective epitaxial method)。在一些實施例中,起初形成的第二阻障層110之厚度可能會超過第一遮罩圖案108的高度,且可藉由例如是化學機械研磨(chemical mechanical polishing,CMP)或回蝕刻(etching back)的方法薄化第二阻障層110,以使經薄化的第二阻障層110的表面與第一遮罩圖案108的頂面實質上共面。在此些實施例中,經薄化的第二阻障層110的厚度與第一遮罩圖案108的厚度可實質上相同。1 and 2F, step S110 is performed to form a second barrier layer 110 on the portion of the first barrier layer 106 exposed by the first mask pattern 108. The second barrier layer 110 is formed in the first region R1 and the second region R2. In some embodiments, the second barrier layer 110 may be formed by an epitaxial process. In these embodiments, only the exposed surface of the first barrier layer 110 will grow epitaxially, but not the surface of the first mask pattern 108. Therefore, the method of forming the second barrier layer 110 by an epitaxial process can also be referred to as a selective epitaxial method. In some embodiments, the thickness of the initially formed second barrier layer 110 may exceed the height of the first mask pattern 108, and may be performed by, for example, chemical mechanical polishing (CMP) or etching back (etching). The back) method thins the second barrier layer 110 so that the surface of the thinned second barrier layer 110 and the top surface of the first mask pattern 108 are substantially coplanar. In these embodiments, the thickness of the thinned second barrier layer 110 and the thickness of the first mask pattern 108 may be substantially the same.

在一些實施例中,第一阻障層106與第二阻障層110可由相同或結構相似的材料構成。儘管如此,由於第一阻障層106與第二阻障層110並非於同一磊晶製程中形成,故第一阻障層106與第二阻障層110之間仍會存在介面F。在一些實施例中,第二阻障層110與第一阻障層的總厚度可超過15 nm,以使包含第一阻障層106、第二阻障層110與第一通道層104的異質接面(hetero junction)HJ1在未經施加偏壓的情況下即可形成二維電子氣EG。換言之,此異質接面HJ1可作為空乏型(depletion mode)HEMT(亦稱為常開型(normally on)HEMT)的主動區,且此空乏型HEMT屬於第一導電型(例如是N型)。舉例而言,第二阻障層110的厚度範圍為5 nm至20 nm。在一些實施例中,異質接面HJ1不與第一遮罩圖案108交疊。另一方面,與第一遮罩圖案108交疊的異質接面HJ2包含第一阻障層106與第一通道層104,但不包含第二阻障層110。由於第一阻障層106的厚度小於10 nm,故異質接面HJ2未經施加偏壓時不會在其中形成二維電子氣。因此,異質接面HJ2可作為增強型(enhancement mode)HEMT(亦稱為常關型(normally off)HEMT)的主動區,且此增強型HEMT屬於第一導電型(例如是N型)。In some embodiments, the first barrier layer 106 and the second barrier layer 110 may be made of the same or similar materials. Nevertheless, since the first barrier layer 106 and the second barrier layer 110 are not formed in the same epitaxial process, an interface F still exists between the first barrier layer 106 and the second barrier layer 110. In some embodiments, the total thickness of the second barrier layer 110 and the first barrier layer may exceed 15 nm, so that the heterogeneity including the first barrier layer 106, the second barrier layer 110 and the first channel layer 104 The junction (hetero junction) HJ1 can form a two-dimensional electron gas EG without applying a bias voltage. In other words, the heterojunction HJ1 can be used as the active region of a depletion mode HEMT (also known as a normally on HEMT), and the depletion mode HEMT belongs to the first conductivity type (for example, N-type). For example, the thickness of the second barrier layer 110 ranges from 5 nm to 20 nm. In some embodiments, the heterojunction HJ1 does not overlap the first mask pattern 108. On the other hand, the heterojunction HJ2 overlapping the first mask pattern 108 includes the first barrier layer 106 and the first channel layer 104, but does not include the second barrier layer 110. Since the thickness of the first barrier layer 106 is less than 10 nm, no two-dimensional electron gas will be formed in the heterojunction HJ2 without applying a bias voltage. Therefore, the heterojunction HJ2 can be used as an active area of an enhancement mode HEMT (also known as a normally off HEMT), and this enhanced HEMT belongs to the first conductivity type (for example, an N-type).

請參照圖1與圖2G,進行步驟S112,移除第一遮罩圖案108,以暴露出第一阻障層106的一部分。如此一來,第二阻障層110在第一遮罩圖案108原本的位置處不連續,或可視為第二阻障層110具有第一開口P1。第一開口P1位於第一區R1內,且第一開口P1沿堆疊方向延伸至第一阻障層106的頂面,而暴露出第一阻障層106的一部分。此外,第一開口P1的位置即為原本第一遮罩圖案108的位置。由此可知,異質接面HJ1不與第一開口P1交疊,且異質接面HJ2與第一開口P1交疊。1 and 2G, step S112 is performed to remove the first mask pattern 108 to expose a part of the first barrier layer 106. In this way, the second barrier layer 110 is discontinuous at the original position of the first mask pattern 108, or it can be regarded as the second barrier layer 110 having the first opening P1. The first opening P1 is located in the first region R1, and the first opening P1 extends to the top surface of the first barrier layer 106 along the stacking direction, exposing a part of the first barrier layer 106. In addition, the position of the first opening P1 is the original position of the first mask pattern 108. It can be seen that the heterojunction HJ1 does not overlap with the first opening P1, and the heterojunction HJ2 overlaps with the first opening P1.

請參照圖1與圖2H,進行步驟S114,在第一阻障層106的暴露部分上形成第一閘極G1。由上可知,第一閘極G1位於第一開口P1中,且位於第一區R1內。在一些實施例中,第一閘極G1填滿第一開口P1,並延伸至第二阻障層110的表面上。此外,進行步驟S116,形成第一汲極D1與第一源極S1。第一汲極D1與第一源極S1位於第一區R1內,且第一汲極D1與第一源極S1設置於第一閘極G1的相對兩側的第二阻障層110上。換言之,第一汲極D1與第一源極S1位於第一開口P1的相對兩側。需注意的是,第一汲極D1與第一源極S1的位置可相互對調,本發明並不以圖2H所繪示的配置為限。此外,所屬領域中具有通常知識者可調換步驟S114與步驟S116的先後順序,本發明並不以此為限。在一些實施例中,第一閘極G1的材料可包括金屬或金屬氮化物(例如Ta、TaN、Ti、TiN、W、Pd、Ni、Au、Al或其組合)、金屬矽化物(例如WSix)或其他可與第一阻障層106形成蕭特基接觸(schottky contact)的材料。第一汲極D1與第一源極S1的材料可包括金屬(例如Al、Ti、Ni、Au或其合金),或其他可與第二阻障層110形成歐姆接觸(ohmic contact)的材料。形成第一閘極G1、第一汲極D1與第一源極S1的方法可包括化學氣相沈積法、物理氣相沈積法(例如是濺鍍等)或其組合。在一些實施例中,第一閘極G1、第一汲極D1與第一源極S1的厚度可分別為100 nm至3000 nm。至此,已在第一區R1內形成電晶體T1。電晶體T1包括第一通道層104、第一阻障層106、第二阻障層110的位於第一區R1內的部分,且包括第一閘極G1、第一汲極D1與第一源極S1。電晶體T1可為增強型HEMT(或稱為常關型HEMT),且可屬於第一導電型(例如是N型)。此外,異質接面HJ2可作為電晶體T1的主動區。1 and 2H, step S114 is performed to form a first gate electrode G1 on the exposed portion of the first barrier layer 106. It can be seen from the above that the first gate G1 is located in the first opening P1 and in the first region R1. In some embodiments, the first gate G1 fills the first opening P1 and extends to the surface of the second barrier layer 110. In addition, step S116 is performed to form the first drain electrode D1 and the first source electrode S1. The first drain electrode D1 and the first source electrode S1 are located in the first region R1, and the first drain electrode D1 and the first source electrode S1 are disposed on the second barrier layer 110 on opposite sides of the first gate electrode G1. In other words, the first drain electrode D1 and the first source electrode S1 are located on opposite sides of the first opening P1. It should be noted that the positions of the first drain electrode D1 and the first source electrode S1 can be reversed, and the present invention is not limited to the configuration shown in FIG. 2H. In addition, a person with ordinary knowledge in the field can change the sequence of step S114 and step S116, and the present invention is not limited thereto. In some embodiments, the material of the first gate G1 may include metal or metal nitride (such as Ta, TaN, Ti, TiN, W, Pd, Ni, Au, Al or a combination thereof), metal silicide (such as WSix ) Or other materials that can form a schottky contact with the first barrier layer 106. The material of the first drain electrode D1 and the first source electrode S1 may include metal (for example, Al, Ti, Ni, Au or an alloy thereof), or other materials that can form an ohmic contact with the second barrier layer 110. The method of forming the first gate G1, the first drain D1, and the first source S1 may include a chemical vapor deposition method, a physical vapor deposition method (for example, sputtering, etc.), or a combination thereof. In some embodiments, the thickness of the first gate G1, the first drain D1, and the first source S1 may be 100 nm to 3000 nm, respectively. So far, the transistor T1 has been formed in the first region R1. The transistor T1 includes a first channel layer 104, a first barrier layer 106, and a portion of the second barrier layer 110 located in the first region R1, and includes a first gate G1, a first drain D1, and a first source极 S1. The transistor T1 may be an enhanced HEMT (or referred to as a normally-off HEMT), and may belong to the first conductivity type (for example, an N-type). In addition, the heterojunction HJ2 can be used as the active area of the transistor T1.

進行步驟S118,在第二區R2內的第二阻障層110上形成第二閘極G2、第二汲極D2與第二源極S2。第二閘極G2位於第二汲極D2與第二源極S2之間。需注意的是,第二汲極D2與第二源極S2的位置可相互對調,本發明並不以圖2H所繪示的配置為限。此外,所屬領域中具有通常知識者可調換步驟S114、步驟S116與步驟S118的先後順序,本發明並不以此為限。在一些實施例中,第二閘極G2的材料可包括金屬或金屬氮化物(例如Ta、TaN、Ti、TiN、W、Pd、Ni、Au、Al或其組合)、金屬矽化物(例如WSix)或其他可與第二阻障層110形成蕭特基接觸的材料。第二汲極D2與第二源極S2的材料可包括金屬(例如Al、Ti、Ni、Au或其合金),或其他可與第二阻障層110形成歐姆接觸的材料。形成第二閘極G2、第二汲極D2與第二源極S2的方法可包括化學氣相沈積法、物理氣相沈積法(例如是濺鍍等)或其組合。在一些實施例中,第二閘極G2、第二汲極D2與第二源極S2的厚度可分別為100 nm 至3000 nm。至此,已在第二區R2內形成電晶體T2。電晶體T2包括第一通道層104、第一阻障層106、第二阻障層110的位於第二區R2內的部分,且包括第二閘極G2、第二汲極D2與第二源極S2。電晶體T2可為空乏型(或稱為常開型)HEMT,且可屬於第一導電型(例如是N型)。此外,異質接面HJ1的位於第二區R2內的區段可作為電晶體T2的主動區。Step S118 is performed to form a second gate electrode G2, a second drain electrode D2, and a second source electrode S2 on the second barrier layer 110 in the second region R2. The second gate electrode G2 is located between the second drain electrode D2 and the second source electrode S2. It should be noted that the positions of the second drain electrode D2 and the second source electrode S2 can be reversed, and the present invention is not limited to the configuration shown in FIG. 2H. In addition, a person with ordinary knowledge in the field can change the sequence of step S114, step S116, and step S118, and the present invention is not limited thereto. In some embodiments, the material of the second gate G2 may include metal or metal nitride (such as Ta, TaN, Ti, TiN, W, Pd, Ni, Au, Al or a combination thereof), metal silicide (such as WSix ) Or other materials that can form Schottky contact with the second barrier layer 110. The material of the second drain electrode D2 and the second source electrode S2 may include metal (for example, Al, Ti, Ni, Au or alloys thereof), or other materials that can form an ohmic contact with the second barrier layer 110. The method of forming the second gate electrode G2, the second drain electrode D2 and the second source electrode S2 may include a chemical vapor deposition method, a physical vapor deposition method (for example, sputtering, etc.), or a combination thereof. In some embodiments, the thickness of the second gate G2, the second drain D2, and the second source S2 may be 100 nm to 3000 nm, respectively. So far, the transistor T2 has been formed in the second region R2. Transistor T2 includes the first channel layer 104, the first barrier layer 106, the portion of the second barrier layer 110 located in the second region R2, and includes a second gate G2, a second drain D2, and a second source极 S2. The transistor T2 may be a depletion type (or called a normally-on type) HEMT, and may belong to the first conductivity type (for example, an N type). In addition, the section of the heterojunction HJ1 located in the second region R2 can be used as the active region of the transistor T2.

請參照圖1與圖2I,進行步驟S120,移除第一阻障層106與第二阻障層110的位於第一區R1與第二區R2的交界附近的部分。如此一來,可在包括第一阻障層106與第二阻障層110的堆疊結構中形成暴露出第一通道層104的開口P。藉由形成開口P,位於開口P下方的第一通道層104不再形成二維電子氣。因此,可使電晶體T1內的二維電子氣EG與電晶體T2內的二維電子氣EG彼此不相連通。換言之,可使電晶體T1與電晶體T2彼此電性隔離。1 and 2I, step S120 is performed to remove the portions of the first barrier layer 106 and the second barrier layer 110 located near the boundary between the first region R1 and the second region R2. In this way, the opening P exposing the first channel layer 104 can be formed in the stack structure including the first barrier layer 106 and the second barrier layer 110. By forming the opening P, the first channel layer 104 located under the opening P no longer forms two-dimensional electron gas. Therefore, the two-dimensional electron gas EG in the transistor T1 and the two-dimensional electron gas EG in the transistor T2 can be disconnected from each other. In other words, the transistor T1 and the transistor T2 can be electrically isolated from each other.

至此,已完成本發明一些實施例的HEMT元件10的製造。HEMT元件10可包括位於第一區R1內的電晶體T1以及位於第二區R2內的電晶體T2。電晶體T1為增強型HEMT,而電晶體T2為空乏型HEMT。此外,電晶體T1與電晶體T2均屬於第一導電型(例如是N型),且可藉由組合電晶體T1與電晶體T2而形成邏輯閘。舉例而言,邏輯閘例如是反相器(inverter)等。So far, the manufacture of the HEMT device 10 of some embodiments of the present invention has been completed. The HEMT device 10 may include a transistor T1 located in the first region R1 and a transistor T2 located in the second region R2. Transistor T1 is an enhanced HEMT, while transistor T2 is a depleted HEMT. In addition, the transistor T1 and the transistor T2 are both of the first conductivity type (for example, N-type), and a logic gate can be formed by combining the transistor T1 and the transistor T2. For example, the logic gate is, for example, an inverter.

基於上述,本發明實施例包括在第一阻障層上形成具有暴露出第一阻障層的開口的第二阻障層。如此一來,交疊於上述開口的異質接面包括第一阻障層與下伏的第一通道層,而並未包括第二阻障層。第一阻障層的厚度不足以使此異質接面在未經施加偏壓的情況下產生二維電子氣(或稱導電通道),故此異質接面可作為增強型(或稱為常關型)HEMT的主動區。此外,本發明實施例藉由使用選擇性磊晶的方法來形成具有開口的第二阻障層,且並未對第一阻障層或第二阻障層進行蝕刻。因此,可避免第一阻障層與第二阻障層受到蝕刻的損壞。再者,本發明實施例可避免對第一阻障層與第二阻障層進行摻雜。因此,可避免摻質因其他高溫製程而四處擴散的問題。換言之,可提高HEMT元件的可靠度。Based on the above, the embodiment of the present invention includes forming a second barrier layer having an opening exposing the first barrier layer on the first barrier layer. In this way, the heterojunction that overlaps the opening includes the first barrier layer and the underlying first channel layer, but does not include the second barrier layer. The thickness of the first barrier layer is not enough to make the heterojunction produce two-dimensional electron gas (or conductive channel) without applying a bias voltage, so the heterojunction can be used as an enhanced (or normally-closed) ) Active area of HEMT. In addition, the embodiment of the present invention uses a selective epitaxy method to form the second barrier layer with openings, and the first barrier layer or the second barrier layer is not etched. Therefore, the first barrier layer and the second barrier layer can be prevented from being damaged by etching. Furthermore, the embodiment of the present invention can avoid doping the first barrier layer and the second barrier layer. Therefore, the problem of dopant diffusion due to other high-temperature processes can be avoided. In other words, the reliability of the HEMT element can be improved.

圖3是依照本發明的一些實施例的HEMT元件20的製造方法的流程圖。圖4A至圖4L是圖3所示的HEMT元件20的製造方法中各階段的結構之剖視示意圖。圖3與圖4A至圖4L所示的實施例相似於圖1與圖2A至圖2I所示的實施例,以下僅描述兩者的差異處,相同或相似處則不再贅述。此外,相同或相似的元件符號代表相同或相似的構件。FIG. 3 is a flowchart of a method of manufacturing the HEMT device 20 according to some embodiments of the present invention. 4A to 4L are schematic cross-sectional views of the structure of each stage in the manufacturing method of the HEMT device 20 shown in FIG. 3. The embodiments shown in FIGS. 3 and 4A to 4L are similar to the embodiments shown in FIGS. 1 and 2A to 2I. Only the differences between the two will be described below, and the same or similarities will not be repeated. In addition, the same or similar element symbols represent the same or similar components.

請參照圖1、圖3與圖4A,進行如圖1所示的步驟S100至步驟S112。如此一來,可在基底上依序形成緩衝層102、第一通道層104、第一阻障層106以及第二阻障層110。緩衝層102、第一通道層104、第一阻障層106以及第二阻障層110延伸於第一區R1與第二區R2內。圖4A所示的第一區R1位於右側且第二區R2位於左側,但本發明並不以此為限。在一些實施例中,如圖2A至圖2I所示,第一區R1也可位於左側而第二區R2位於右側。第二阻障層110可視為具有暴露出第一阻障層106的第一開口P1,且第一開口P1位於第一區R1內。未與第一開口P1交疊的異質接面HJ1包括第一阻障層106、第二阻障層110與第一通道層104。由於第一阻障層106與第二阻障層110的總厚度大於15 nm,故在未對異質接面HJ1施加偏壓的情況下即可形成二維電子氣EG。另一方面,與第一開口P1交疊的異質接面HJ2包括第一阻障層106與第一通道層104,而並未包括第二阻障層110。由於第一阻障層106的厚度不足(例如是小於10 nm),故在未對異質接面HJ2施加偏壓的情況下不會於異質接面HJ2內的第一通道層104中形成二維電子氣。因此,異質接面HJ2可作為增強型HEMT(例如是圖4L所示的電晶體T1)的主動區,且此增強型HEMT可屬於第一導電型(例如是N型)。Please refer to FIG. 1, FIG. 3, and FIG. 4A, and perform step S100 to step S112 as shown in FIG. In this way, the buffer layer 102, the first channel layer 104, the first barrier layer 106, and the second barrier layer 110 can be sequentially formed on the substrate. The buffer layer 102, the first channel layer 104, the first barrier layer 106, and the second barrier layer 110 extend in the first region R1 and the second region R2. The first area R1 shown in FIG. 4A is located on the right and the second area R2 is located on the left, but the invention is not limited to this. In some embodiments, as shown in FIGS. 2A to 2I, the first region R1 may also be located on the left and the second region R2 may be located on the right. The second barrier layer 110 can be regarded as having a first opening P1 exposing the first barrier layer 106, and the first opening P1 is located in the first region R1. The heterojunction HJ1 that does not overlap the first opening P1 includes a first barrier layer 106, a second barrier layer 110 and a first channel layer 104. Since the total thickness of the first barrier layer 106 and the second barrier layer 110 is greater than 15 nm, the two-dimensional electron gas EG can be formed without applying a bias to the heterojunction HJ1. On the other hand, the heterojunction HJ2 overlapping the first opening P1 includes the first barrier layer 106 and the first channel layer 104, but does not include the second barrier layer 110. Since the thickness of the first barrier layer 106 is insufficient (for example, less than 10 nm), the two-dimensional channel layer 104 in the heterojunction HJ2 will not be formed without biasing the heterojunction HJ2. Electronic gas. Therefore, the heterojunction HJ2 can be used as the active region of the enhanced HEMT (for example, the transistor T1 shown in FIG. 4L), and the enhanced HEMT may belong to the first conductivity type (for example, the N-type).

接下來,將在第二區R2內形成第二導電型(例如是P型)的增強型HEMT。Next, an enhanced HEMT of the second conductivity type (for example, P-type) will be formed in the second region R2.

請參照圖3與圖4B,進行步驟S200,在第一區R1內的第二阻障層110與第一阻障層106上形成遮罩圖案202。在第一區R1內,遮罩圖案202可由第二阻障層110的頂面延伸至第一開口P1中,且可填滿第一開口P1。此外,遮罩圖案202可暴露出第二阻障層110的位於第二區R2內的部分。在一些實施例中,遮罩圖案202的材料包括氧化矽、氮化矽或其組合。此外,遮罩圖案202的厚度範圍可為10 nm至500 nm。在一些實施例中,可藉由例如是化學氣相沈積製程的方法在第二阻障層110與第一阻障層106上形成實質上全面披覆的遮罩層(未繪示)。接著,圖案化此遮罩層以形成遮罩圖案202。3 and 4B, step S200 is performed to form a mask pattern 202 on the second barrier layer 110 and the first barrier layer 106 in the first region R1. In the first region R1, the mask pattern 202 may extend from the top surface of the second barrier layer 110 into the first opening P1, and may fill the first opening P1. In addition, the mask pattern 202 may expose a portion of the second barrier layer 110 located in the second region R2. In some embodiments, the material of the mask pattern 202 includes silicon oxide, silicon nitride, or a combination thereof. In addition, the thickness of the mask pattern 202 may range from 10 nm to 500 nm. In some embodiments, a mask layer (not shown) covering the second barrier layer 110 and the first barrier layer 106 may be formed by a method such as a chemical vapor deposition process. Then, the mask layer is patterned to form a mask pattern 202.

請參照圖3與圖4C,進行步驟S202,在第二區R2內的第二阻障層110上形成第二通道層204。在一些實施例中,可藉由例如是選擇性磊晶的方法在第二阻障層110的暴露部分上形成第二通道層204。換言之,第二通道層204僅會形成由第二阻障層110的暴露部分上磊晶成長,而不會由遮罩圖案202的表面磊晶成長。在一些實施例中,第二通道層204的材料可包括III族氮化物或III-V族化合物半導體材料。舉例而言,第二通道層204的材料包括AlGaN。此外,第二通道層204的厚度範圍可為10 nm至50 nm。3 and 4C, step S202 is performed to form a second channel layer 204 on the second barrier layer 110 in the second region R2. In some embodiments, the second channel layer 204 may be formed on the exposed portion of the second barrier layer 110 by, for example, a selective epitaxial method. In other words, the second channel layer 204 will only be epitaxially grown from the exposed portion of the second barrier layer 110, but not from the surface of the mask pattern 202. In some embodiments, the material of the second channel layer 204 may include a group III nitride or a group III-V compound semiconductor material. For example, the material of the second channel layer 204 includes AlGaN. In addition, the thickness of the second channel layer 204 may range from 10 nm to 50 nm.

請參照圖3與圖4D,進行步驟S204,在第二通道層204上形成第三阻障層206。在一些實施例中,可藉由例如是選擇性磊晶的方式在第二區R2內的第二通道層204上形成第三阻障層206。換言之,第三阻障層206僅會形成由第二通道層204的暴露部分上磊晶成長,而不會由遮罩圖案202的表面磊晶成長。在一實施例中,第三阻障層206的材料包括III族氮化物或III-V族化合物半導體材料。舉例而言,第三阻障層206的材料包括InAlGaN、AlGaN、InGaN、InAlN、GaN或InN或其組合,並摻雜有第二導電型摻質(例如Mg)。在一些實施例中,第三阻障層206的摻雜濃度範圍為1´1017 cm-3 至1´1020 cm-3 。此外,第三阻障層206的厚度可小於20 nm,以使第二通道層204的靠近第三阻障層206的區域在此時不形成二維電洞氣(two dimensional hole gas,2DHG)。換言之,此時並未於第二通道層204內形成導電通道。舉例而言,第三阻障層206的厚度範圍可為5 nm至20 nm。3 and 4D, step S204 is performed to form a third barrier layer 206 on the second channel layer 204. In some embodiments, the third barrier layer 206 may be formed on the second channel layer 204 in the second region R2 by, for example, a selective epitaxial method. In other words, the third barrier layer 206 will only grow epitaxially from the exposed portion of the second channel layer 204, but not from the surface of the mask pattern 202. In an embodiment, the material of the third barrier layer 206 includes a group III nitride or a group III-V compound semiconductor material. For example, the material of the third barrier layer 206 includes InAlGaN, AlGaN, InGaN, InAlN, GaN or InN or a combination thereof, and is doped with second conductivity type dopants (for example, Mg). In some embodiments, the doping concentration of the third barrier layer 206 ranges from 1´10 17 cm -3 to 1´10 20 cm -3 . In addition, the thickness of the third barrier layer 206 may be less than 20 nm, so that the region of the second channel layer 204 close to the third barrier layer 206 does not form two dimensional hole gas (2DHG) at this time . In other words, no conductive channels are formed in the second channel layer 204 at this time. For example, the thickness of the third barrier layer 206 may range from 5 nm to 20 nm.

請參照圖3與圖4E,進行步驟S206,在第三阻障層206上形成第二遮罩圖案208。第二遮罩圖案208位於第二區R2內。在一些實施例中,形成第二遮罩圖案208的方法包括在第三阻障層206上以例如是化學氣相沈積製程的方法形成遮罩層(未繪示),接著圖案化此遮罩層而形成第二遮罩圖案208。在一些實施例中,第二遮罩圖案208可為硬遮罩圖案。舉例而言,第二遮罩圖案208的材料可包括氧化矽、氮化矽或其組合。此外,在一些實施例中,第二遮罩圖案208的厚度範圍可為10 nm至500 nm。Please refer to FIG. 3 and FIG. 4E to perform step S206 to form a second mask pattern 208 on the third barrier layer 206. The second mask pattern 208 is located in the second region R2. In some embodiments, the method of forming the second mask pattern 208 includes forming a mask layer (not shown) on the third barrier layer 206 by, for example, a chemical vapor deposition process, and then patterning the mask Layer to form a second mask pattern 208. In some embodiments, the second mask pattern 208 may be a hard mask pattern. For example, the material of the second mask pattern 208 may include silicon oxide, silicon nitride, or a combination thereof. In addition, in some embodiments, the thickness of the second mask pattern 208 may range from 10 nm to 500 nm.

請參照圖3與圖4F,進行步驟S208,在第三阻障層206的被第二遮罩圖案208暴露出來的部分上形成第四阻障層210。在一些實施例中,可藉由例如是選擇性磊晶的方法在第二區R2內的第三阻障層206上形成第四阻障層210。換言之,第四阻障層210僅會形成由第三阻障層206的暴露部分上磊晶成長,而不會由遮罩圖案202以及第二遮罩圖案208的表面磊晶成長。在一些實施例中,第三阻障層206與第四阻障層210可由相同的材料構成,且可具有實質上相同的摻雜濃度。儘管如此,由於第三阻障層206與第四阻障層210並非於同一磊晶製程中形成,故第三阻障層206與第四阻障層210之間仍會存在介面F1。在一些實施例中,第四阻障層210的高度可低於第二遮罩圖案208的高度。3 and 4F, step S208 is performed to form a fourth barrier layer 210 on the portion of the third barrier layer 206 exposed by the second mask pattern 208. In some embodiments, the fourth barrier layer 210 may be formed on the third barrier layer 206 in the second region R2 by, for example, a selective epitaxial method. In other words, the fourth barrier layer 210 will only form epitaxial growth from the exposed portion of the third barrier layer 206, but not from the surface of the mask pattern 202 and the second mask pattern 208. In some embodiments, the third barrier layer 206 and the fourth barrier layer 210 may be composed of the same material, and may have substantially the same doping concentration. Nevertheless, since the third barrier layer 206 and the fourth barrier layer 210 are not formed in the same epitaxial process, there is still an interface F1 between the third barrier layer 206 and the fourth barrier layer 210. In some embodiments, the height of the fourth barrier layer 210 may be lower than the height of the second mask pattern 208.

在一些實施例中,第四阻障層210與第三阻障層206的總厚度可大於30 nm。舉例而言,第四阻障層210的厚度範圍可為10 nm至70 nm。如此一來,在第二區R2內不與第二遮罩圖案208交疊的異質接面HJ3包含第三阻障層206、第四阻障層210與第二通道層204,且在未經施加偏壓的情況下即可形成二維電洞氣HG。另一方面,在第二區R2內與第二遮罩圖案208交疊的異質接面HJ4包括第三阻障層206與第二通道層204,而不包括第四阻障層210。由於第三阻障層206的厚度小於20 nm,故異質接面HJ4在未經施加偏壓的情況下並不會在第二通道層204中形成二維電洞氣。如此一來,異質接面HJ4可作為增強型HEMT(亦稱為常關型HEMT)的主動區,且此增強型HEMT屬於第二導電型(例如是P型)。In some embodiments, the total thickness of the fourth barrier layer 210 and the third barrier layer 206 may be greater than 30 nm. For example, the thickness of the fourth barrier layer 210 may range from 10 nm to 70 nm. In this way, the heterojunction HJ3 that does not overlap the second mask pattern 208 in the second region R2 includes the third barrier layer 206, the fourth barrier layer 210, and the second channel layer 204, and is not A two-dimensional hole gas HG can be formed when a bias voltage is applied. On the other hand, the heterojunction HJ4 overlapping the second mask pattern 208 in the second region R2 includes the third barrier layer 206 and the second channel layer 204, but does not include the fourth barrier layer 210. Since the thickness of the third barrier layer 206 is less than 20 nm, the heterojunction HJ4 does not form a two-dimensional electric hole in the second channel layer 204 without applying a bias voltage. In this way, the heterojunction HJ4 can be used as an active area of an enhanced HEMT (also known as a normally-off HEMT), and this enhanced HEMT belongs to the second conductivity type (for example, P-type).

請參照圖3與圖4G,進行步驟S210,在第四阻障層210上形成重摻雜層212。在一些實施例中,可藉由選擇性磊晶的方法在第二區R2內的第四阻障層210上形成重摻雜層212。換言之,重摻雜層212僅會形成由第四阻障層210的暴露部分上磊晶成長,而不會由遮罩圖案202以及第二遮罩圖案208的表面磊晶成長。在一些實施例中,重摻雜層212的頂面可實質上齊平於第二遮罩圖案208的頂面。重摻雜層212的材料及摻質可與第三阻障層206及第四阻障層210的材料及摻質相同,惟重摻雜層212的摻質(第二導電型,例如是P型)濃度高於第三阻障層206與第四阻障層210的摻質濃度。在一些實施例中,重摻雜層212的摻質濃度可為第三阻障層206與第四阻障層210的摻質濃度的1倍至100倍。藉由設置重摻雜層212,可降低第四阻障層210與後續形成於其上的電極(例如是圖4K所示的第二汲極D2與第二源極S2)之間的接觸電阻。3 and 4G, step S210 is performed to form a heavily doped layer 212 on the fourth barrier layer 210. In some embodiments, the heavily doped layer 212 may be formed on the fourth barrier layer 210 in the second region R2 by a selective epitaxial method. In other words, the heavily doped layer 212 will only form epitaxial growth from the exposed portion of the fourth barrier layer 210, but not from the surface of the mask pattern 202 and the second mask pattern 208. In some embodiments, the top surface of the heavily doped layer 212 may be substantially flush with the top surface of the second mask pattern 208. The material and dopants of the heavily doped layer 212 can be the same as those of the third barrier layer 206 and the fourth barrier layer 210, except that the dopants of the heavily doped layer 212 (the second conductivity type, for example, P Type) concentration is higher than the dopant concentration of the third barrier layer 206 and the fourth barrier layer 210. In some embodiments, the dopant concentration of the heavily doped layer 212 may be 1 to 100 times the dopant concentration of the third barrier layer 206 and the fourth barrier layer 210. By providing the heavily doped layer 212, the contact resistance between the fourth barrier layer 210 and subsequent electrodes formed thereon (for example, the second drain electrode D2 and the second source electrode S2 shown in FIG. 4K) can be reduced .

請參照圖3與圖4H,進行步驟S212,移除遮罩圖案202與第二遮罩圖案208。如此一來,暴露出第二阻障層110與第一阻障層106位於第一區R1內的一部分,且暴露出第二區R2中第三阻障層206的一部分。第四阻障層210在第二遮罩圖案208原本的位置處不連續,或可視為第四阻障層210在該處具有第二開口P2。換言之,第二開口P2位於第二區R2內,且第二開口P2沿堆疊方向延伸至第三阻障層206的頂面,而暴露出第三阻障層206的一部分。此外,第二開口P2的位置即為原本第二遮罩圖案208的位置。由此可知,異質接面HJ3不與第二開口P2交疊,且異質接面HJ4與第二開口P2交疊。Please refer to FIG. 3 and FIG. 4H to proceed to step S212 to remove the mask pattern 202 and the second mask pattern 208. In this way, a part of the second barrier layer 110 and the first barrier layer 106 in the first region R1 is exposed, and a part of the third barrier layer 206 in the second region R2 is exposed. The fourth barrier layer 210 is discontinuous at the original position of the second mask pattern 208, or it can be regarded as the fourth barrier layer 210 having the second opening P2 there. In other words, the second opening P2 is located in the second region R2, and the second opening P2 extends to the top surface of the third barrier layer 206 along the stacking direction, exposing a part of the third barrier layer 206. In addition, the position of the second opening P2 is the original position of the second mask pattern 208. It can be seen that the heterojunction HJ3 does not overlap the second opening P2, and the heterojunction HJ4 overlaps the second opening P2.

請參照圖3與圖4I,進行步驟S214,形成第一汲極D1與第一源極S1。第一汲極D1與第一源極S1位於第一區R1內,且第一汲極D1與第一源極S1設置於第一開口P1的相對兩側的第二阻障層110上。此外,第一汲極D1與第一源極S1包括能與第阻障層110形成歐姆接觸的導體材料。Please refer to FIG. 3 and FIG. 4I to perform step S214 to form the first drain electrode D1 and the first source electrode S1. The first drain electrode D1 and the first source electrode S1 are located in the first region R1, and the first drain electrode D1 and the first source electrode S1 are disposed on the second barrier layer 110 on opposite sides of the first opening P1. In addition, the first drain electrode D1 and the first source electrode S1 include a conductive material capable of forming an ohmic contact with the second barrier layer 110.

請參照圖3與圖4J,進行步驟S216,形成遮罩圖案214。遮罩圖案214覆蓋第一區R1,而未延伸至第二區R2。在一些實施例中,遮罩圖案214覆蓋第一汲極D1與第一源極S1,且可填滿第一開口P1。在一些實施例中,遮罩圖案214的材料包括氧化矽、氮化矽或其組合。此外,遮罩圖案214的覆蓋區域定義出第一區R1中電晶體T1的區域。在一些實施例中,可藉由例如是化學氣相沈積製程的方法在圖4I所示的結構上形成實質上全面披覆的遮罩層(未繪示)。接著,圖案化此遮罩層以形成遮罩圖案214。Referring to FIG. 3 and FIG. 4J, proceed to step S216 to form a mask pattern 214. The mask pattern 214 covers the first region R1, but does not extend to the second region R2. In some embodiments, the mask pattern 214 covers the first drain electrode D1 and the first source electrode S1, and can fill the first opening P1. In some embodiments, the material of the mask pattern 214 includes silicon oxide, silicon nitride, or a combination thereof. In addition, the coverage area of the mask pattern 214 defines the area of the transistor T1 in the first region R1. In some embodiments, a mask layer (not shown) covering the structure shown in FIG. 4I may be formed by a method such as a chemical vapor deposition process. Then, the mask layer is patterned to form a mask pattern 214.

請參照圖3與圖4K,進行步驟S218,形成第二閘極G2a、第二汲極D2a以及第二源極S2a。第二閘極G2a可設置於第二開口P2中,而電性連接於第三阻障層206。第二汲極D2a與第二源極S2a設置於第二開口P2的相對兩側的第四阻障層210上,且分別電性連接於第四阻障層210。需注意的是,第二汲極D2a與第二源極S2a的位置可相互對調,本發明並不以圖4K所繪示的配置為限。此外,所屬領域中具有通常知識者可依據製程需求調整第二閘極G2a、第二汲極D2a以及第二源極S2a的形成順序,本發明並不以此為限。在一些實施例中,第二閘極G2a的材料可包括金屬或金屬氮化物(例如Ta、TaN、Ti、TiN、W、Pd、Ni、Au、Al或其組合)、金屬矽化物(例如WSix )或其他可與第三阻障層206形成蕭特基接觸的材料。第二汲極D2a與第二源極S2a的材料可包括金屬(例如Al、Ti、Ni、Au或其合金),或其他可與第四阻障層210形成歐姆接觸的材料。形成第二閘極G2a、第二汲極D2a與第二源極S2a的方法可包括化學氣相沈積法、物理氣相沈積法(例如是濺鍍等)或其組合。在一些實施例中,第二閘極G2a、第二汲極D2a與第二源極S2a的厚度可分別為100 nm至3000 nm。3 and 4K, step S218 is performed to form a second gate G2a, a second drain D2a, and a second source S2a. The second gate G2a can be disposed in the second opening P2 and electrically connected to the third barrier layer 206. The second drain electrode D2a and the second source electrode S2a are disposed on the fourth barrier layer 210 on opposite sides of the second opening P2, and are electrically connected to the fourth barrier layer 210, respectively. It should be noted that the positions of the second drain electrode D2a and the second source electrode S2a can be reversed, and the present invention is not limited to the configuration shown in FIG. 4K. In addition, those skilled in the art can adjust the order of forming the second gate G2a, the second drain D2a, and the second source S2a according to the process requirements, and the present invention is not limited thereto. In some embodiments, the material of the second gate electrode G2a may include metal or metal nitride (such as Ta, TaN, Ti, TiN, W, Pd, Ni, Au, Al or a combination thereof), metal silicide (such as WSi x ) or other materials that can form Schottky contact with the third barrier layer 206. The material of the second drain electrode D2a and the second source electrode S2a may include metal (for example, Al, Ti, Ni, Au or an alloy thereof), or other materials that can form an ohmic contact with the fourth barrier layer 210. The method for forming the second gate electrode G2a, the second drain electrode D2a and the second source electrode S2a may include a chemical vapor deposition method, a physical vapor deposition method (for example, sputtering, etc.) or a combination thereof. In some embodiments, the thickness of the second gate G2a, the second drain D2a, and the second source S2a may be 100 nm to 3000 nm, respectively.

至此,已在第二區R2內形成電晶體T2a。電晶體T2a包括第二通道層204、第三阻障層206、第四阻障層210,且包括第二閘極G2a、第二汲極D2a與第二源極S2a。此外,異質接面HJ4可作為電晶體T2a的主動區。未對異質接面HJ4施加偏壓時不會產生二維電洞氣,而在對異質接面HJ4施予適當偏壓的情況下方形成二維電洞氣(亦即導電通道)。由此可知,電晶體T2a可為增強型(或稱為常開型)HEMT,且可屬於第二導電型(例如是P型)。So far, the transistor T2a has been formed in the second region R2. The transistor T2a includes a second channel layer 204, a third barrier layer 206, and a fourth barrier layer 210, and includes a second gate electrode G2a, a second drain electrode D2a, and a second source electrode S2a. In addition, the heterojunction HJ4 can be used as the active area of the transistor T2a. When the heterojunction HJ4 is not biased, no two-dimensional electrical hole gas will be generated, and when the heterojunction HJ4 is appropriately biased, a two-dimensional electrical hole gas (that is, a conductive channel) is formed. It can be seen that the transistor T2a can be an enhanced (or called normally-on) HEMT, and can belong to the second conductivity type (for example, a P-type).

請參照圖3與圖4L,進行步驟S220,移除遮罩圖案214,且形成第一閘極G1。第一閘極G1形成於第一開口P1內,且電性連接於第一阻障層106。在一些實施例中,第一閘極G1填滿第一開口P1,並延伸至第二阻障層110的表面上。第一閘極G1的材料可包括能與第一阻障層形成蕭特基接觸的材料。至此,已在第一區R1內形成電晶體T1。電晶體T1包括第一通道層104、第一阻障層106、第二阻障層110的位於第一區R1內的部分,且包括第一閘極G1、第一汲極D1與第一源極S1。異質接面HJ2可作為電晶體T1的主動區。3 and 4L, step S220 is performed, the mask pattern 214 is removed, and the first gate G1 is formed. The first gate G1 is formed in the first opening P1 and is electrically connected to the first barrier layer 106. In some embodiments, the first gate G1 fills the first opening P1 and extends to the surface of the second barrier layer 110. The material of the first gate electrode G1 may include a material capable of forming Schottky contact with the first barrier layer. So far, the transistor T1 has been formed in the first region R1. The transistor T1 includes a first channel layer 104, a first barrier layer 106, and a portion of the second barrier layer 110 located in the first region R1, and includes a first gate G1, a first drain D1, and a first source极 S1. The heterojunction HJ2 can be used as the active area of the transistor T1.

未對異質接面HJ2施加偏壓時不會產生二維電子氣,而在對異質接面HJ2施予適當偏壓的情況下方形成二維電子氣(亦即導電通道)。電晶體T1可為增強型(或稱為常關型)HEMT,且可屬於第一導電型(例如是N型)。When the heterojunction HJ2 is not biased, no two-dimensional electron gas will be generated, but when the heterojunction HJ2 is appropriately biased, a two-dimensional electron gas (ie, conductive channel) is formed. The transistor T1 may be an enhanced (or normally-off) HEMT, and may belong to the first conductivity type (for example, an N-type).

至此,已完成本發明一些實施例的HEMT元件20的製造。HEMT元件20可包括位於第一區R1內的電晶體T1以及位於第二區R2內的電晶體T2。電晶體T1與電晶體T2均為增強型HEMT,而電晶體T1屬於第一導電型(例如是N型)且電晶體T2屬於第二導電型(例如是P型)。可藉由組合電晶體T1與電晶體T2而形成邏輯閘,例如是反相器等。此外,相似於電晶體T1的製造方法,電晶體T2的製造方法亦可避免對第三阻障層206與第四阻障層210進行蝕刻或摻雜。因此,亦可提高電晶體T2的可靠度。So far, the manufacture of the HEMT device 20 according to some embodiments of the present invention has been completed. The HEMT element 20 may include a transistor T1 located in the first region R1 and a transistor T2 located in the second region R2. Transistor T1 and transistor T2 are both enhanced HEMTs, while transistor T1 belongs to the first conductivity type (for example, N-type) and transistor T2 belongs to the second conductivity type (for example, P-type). A logic gate can be formed by combining the transistor T1 and the transistor T2, such as an inverter. In addition, similar to the manufacturing method of the transistor T1, the manufacturing method of the transistor T2 can also avoid etching or doping the third barrier layer 206 and the fourth barrier layer 210. Therefore, the reliability of the transistor T2 can also be improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention shall be determined by the scope of the attached patent application.

10、20:HEMT元件100:基底102:緩衝層104:第一通道層106:第一阻障層108:第一遮罩圖案110:第二阻障層202、214:遮罩圖案204:第二通道層206:第三阻障層208:第二遮罩圖案210:第四阻障層212:重摻雜層D1:第一汲極D2、D2a:第二汲極EG:二維電子氣F、F1:介面G1:第一閘極G2、G2a:第二閘極HG:二維電洞氣HJ1、HJ2、HJ3、HJ4:異質接面P:開口P1:第一開口P2:第二開口R1:第一區R2:第二區S1:第一源極S2、S2a:第二源極S100、S102、S104、S106、S108、S110、S112、S114、S116、S118、S120、S200、S202、S204、S206、S208、S210、S212、S214、S216、S218、S220:步驟T1、T2、T2a:電晶體10, 20: HEMT element 100: substrate 102: buffer layer 104: first channel layer 106: first barrier layer 108: first mask pattern 110: second barrier layer 202, 214: mask pattern 204: first Two channel layer 206: third barrier layer 208: second mask pattern 210: fourth barrier layer 212: heavily doped layer D1: first drain electrode D2, D2a: second drain electrode EG: two-dimensional electron gas F, F1: interface G1: first gate G2, G2a: second gate HG: two-dimensional electric hole gas HJ1, HJ2, HJ3, HJ4: heterogeneous junction P: opening P1: first opening P2: second opening R1: first zone R2: second zone S1: first source S2, S2a: second source S100, S102, S104, S106, S108, S110, S112, S114, S116, S118, S120, S200, S202, S204, S206, S208, S210, S212, S214, S216, S218, S220: Steps T1, T2, T2a: Transistor

圖1是依照本發明的一些實施例的HEMT元件的製造方法的流程圖。 圖2A至圖2I是圖1所示的HEMT元件的製造方法中各階段的結構之剖視示意圖。 圖3是依照本發明的一些實施例的HEMT元件的製造方法的流程圖。 圖4A至圖4L是圖3所示的HEMT元件的製造方法中各階段的結構之剖視示意圖。FIG. 1 is a flowchart of a method of manufacturing a HEMT device according to some embodiments of the present invention. 2A to 2I are schematic cross-sectional views of the structure of each stage in the manufacturing method of the HEMT device shown in FIG. 1. FIG. 3 is a flowchart of a method of manufacturing a HEMT device according to some embodiments of the present invention. 4A to 4L are schematic cross-sectional views of the structure of each stage in the manufacturing method of the HEMT device shown in FIG. 3.

10:HEMT元件 10: HEMT components

100:基底 100: base

102:緩衝層 102: buffer layer

104:第一通道層 104: The first channel layer

106:第一阻障層 106: first barrier layer

110:第二阻障層 110: second barrier layer

D1:第一汲極 D1: The first drain

D2:第二汲極 D2: second drain

F:介面 F: Interface

G1:第一閘極 G1: first gate

G2:第二閘極 G2: second gate

HJ1、HJ2:異質接面 HJ1, HJ2: heterogeneous junction

P:開口 P: opening

P1:第一開口 P1: First opening

R1:第一區 R1: Zone 1

R2:第二區 R2: Zone 2

S1:第一源極 S1: first source

S2:第二源極 S2: second source

T1、T2:電晶體 T1, T2: Transistor

Claims (10)

一種高電子遷移率電晶體元件,包括:第一通道層,設置於基底上;第一阻障層,設置於所述第一通道層上;第二阻障層,設置於所述第一阻障層上,其中所述第二阻障層具有延伸至所述第一阻障層的第一開口,其中所述高電子遷移率電晶體元件具有第一區與第二區,所述第一通道層、所述第一阻障層與所述第二阻障層位於所述第一區與所述第二區內,所述第二阻障層的所述第一開口位於所述第一區內且所述第一開口的底面上不具有所述第一阻障層;第二通道層,設置於所述第二阻障層上且位於所述第二區內;第三阻障層,設置於所述第二通道層上且位於所述第二區內;第四阻障層,設置於所述第三阻障層上且位於所述第二區內,其中所述第四阻障層具有延伸至所述第三阻障層的第二開口;第一閘極,設置於所述第一開口內的所述第一阻障層上且填滿所述第一開口並接觸到所述第二阻障層的頂面;以及第一汲極與第一源極,分別設置於所述第一開口的相對兩側的所述第二阻障層上。 A high electron mobility transistor element, comprising: a first channel layer arranged on a substrate; a first barrier layer arranged on the first channel layer; a second barrier layer arranged on the first barrier On the barrier layer, wherein the second barrier layer has a first opening extending to the first barrier layer, wherein the high electron mobility transistor has a first region and a second region, the first The channel layer, the first barrier layer and the second barrier layer are located in the first area and the second area, and the first opening of the second barrier layer is located in the first area. Area and the bottom surface of the first opening does not have the first barrier layer; the second channel layer is disposed on the second barrier layer and is located in the second area; the third barrier layer , Disposed on the second channel layer and located in the second region; a fourth barrier layer, disposed on the third barrier layer and located in the second region, wherein the fourth barrier The barrier layer has a second opening extending to the third barrier layer; a first gate is disposed on the first barrier layer in the first opening and fills the first opening and contacts The top surface of the second barrier layer; and the first drain and the first source are respectively disposed on the second barrier layer on opposite sides of the first opening. 如申請專利範圍第1項所述的高電子遷移率電晶體元件,其中所述第一阻障層與所述第二阻障層的材料相同且所述第一阻障層與所述第二阻障層之間具有介面。 The high electron mobility transistor device described in the first item of the patent application, wherein the first barrier layer and the second barrier layer are made of the same material, and the first barrier layer and the second barrier layer There is an interface between the barrier layers. 如申請專利範圍第1項所述的高電子遷移率電晶體元件,更包括:第二閘極、第二汲極與第二源極,設置於所述第二阻障層上且位於所述第二區內,其中所述第二閘極位於所述第二汲極與所述第二源極之間。 The high electron mobility transistor device as described in item 1 of the scope of patent application further includes: a second gate electrode, a second drain electrode and a second source electrode, which are arranged on the second barrier layer and located on the In the second region, the second gate is located between the second drain and the second source. 如申請專利範圍第1項所述的高電子遷移率電晶體元件,其中所述第一阻障層與所述第二阻障層在所述第一區與所述第二區之間的介面處不連續。 The high electron mobility transistor device described in claim 1, wherein the interface between the first barrier layer and the second barrier layer is between the first region and the second region The place is not continuous. 如申請專利範圍第1項所述的高電子遷移率電晶體元件,更包括:第二閘極,設置於所述第二開口內的所述第三阻障層上;以及第二汲極與第二源極,分別設置於所述第二開口的相對兩側的所述第四阻障層上。 The high electron mobility transistor device described in the first item of the scope of patent application further includes: a second gate electrode disposed on the third barrier layer in the second opening; and a second drain electrode and The second source electrodes are respectively disposed on the fourth barrier layer on opposite sides of the second opening. 如申請專利範圍第5項所述的高電子遷移率電晶體元件,更包括重摻雜層,設置於所述第四阻障層與所述第二汲極之間,且位於所述第四阻障層與所述第二源極之間。 The high electron mobility transistor device described in item 5 of the scope of the patent application further includes a heavily doped layer, which is disposed between the fourth barrier layer and the second drain and is located in the fourth Between the barrier layer and the second source. 一種高電子遷移率電晶體元件的製造方法,包括:在基底上形成第一通道層;在所述第一通道層上形成第一阻障層;在所述第一阻障層上形成第一遮罩圖案;在所述第一阻障層的被所述第一遮罩圖案暴露出來的部分上 直接磊晶形成第二阻障層且所述第一遮罩圖案的表面上不形成所述第二阻障層;移除所述第一遮罩圖案,以暴露出所述第一阻障層的一部分且形成第一開口;在所述第一阻障層的暴露部分上形成第一閘極且所述第一閘極填滿所述第一開口並接觸到所述第二阻障層的頂面;在所述第一閘極的相對兩側的所述第二阻障層上形成第一汲極與第一源極;其中所述高電子遷移率電晶體元件具有第一區與第二區,所述第一通道層、所述第一阻障層與所述第二阻障層位於所述第一區與所述第二區內,且所述第一遮罩圖案設置於所述第一區內;在所述第二區內的所述第二阻障層上形成第二通道層;在所述第二通道層上形成第三阻障層;在所述第三阻障層上形成第二遮罩圖案;在所述第三阻障層的被所述第二遮罩圖案暴露出來的部分上形成第四阻障層;以及移除所述第二遮罩圖案,以暴露出所述第三阻障層的一部分。 A method for manufacturing a high electron mobility transistor element includes: forming a first channel layer on a substrate; forming a first barrier layer on the first channel layer; forming a first barrier layer on the first barrier layer Mask pattern; on the portion of the first barrier layer exposed by the first mask pattern Direct epitaxial formation of the second barrier layer without forming the second barrier layer on the surface of the first mask pattern; removing the first mask pattern to expose the first barrier layer A first gate is formed on the exposed part of the first barrier layer and the first gate fills the first opening and contacts the second barrier layer Top surface; forming a first drain and a first source on the second barrier layer on opposite sides of the first gate; wherein the high electron mobility transistor has a first region and a first region In the second area, the first channel layer, the first barrier layer, and the second barrier layer are located in the first area and the second area, and the first mask pattern is disposed in the In the first region; forming a second channel layer on the second barrier layer in the second region; forming a third barrier layer on the second channel layer; in the third barrier layer Forming a second mask pattern on the layer; forming a fourth barrier layer on the portion of the third barrier layer exposed by the second mask pattern; and removing the second mask pattern to A part of the third barrier layer is exposed. 如申請專利範圍第7項所述的高電子遷移率電晶體元件的製造方法,更包括:在所述第二區內的所述第二阻障層上形成第二閘極、第二汲極與第二源極,其中所述第二閘極位於所述第二汲極與所述第二源極之間。 The method for manufacturing a high electron mobility transistor device as described in item 7 of the scope of the patent application further includes: forming a second gate electrode and a second drain electrode on the second barrier layer in the second region And a second source, wherein the second gate is located between the second drain and the second source. 如申請專利範圍第7項所述的高電子遷移率電晶體元件的製造方法,更包括:在所述第三阻障層的暴露部分上形成第二閘極;以及在所述第二閘極的相對兩側的所述第四阻障層上形成第二汲極與第二源極。 The method for manufacturing a high electron mobility transistor device as described in the scope of patent application, further includes: forming a second gate electrode on the exposed portion of the third barrier layer; and forming a second gate electrode on the second gate electrode A second drain and a second source are formed on the fourth barrier layer on opposite sides of the 如申請專利範圍第9項所述的高電子遷移率電晶體元件的製造方法,更包括在所述第四阻障層上形成重摻雜層,其中所述重摻雜層位於所述第四阻障層與所述第二汲極之間,且位於所述第四阻障層與所述第二源極之間。 As described in item 9 of the scope of patent application, the method for manufacturing a high electron mobility transistor element further includes forming a heavily doped layer on the fourth barrier layer, wherein the heavily doped layer is located on the fourth barrier layer. Between the barrier layer and the second drain, and between the fourth barrier layer and the second source.
TW107140130A 2018-11-13 2018-11-13 High electron mobility transistor device and manufacturing method thereof TWI714909B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107140130A TWI714909B (en) 2018-11-13 2018-11-13 High electron mobility transistor device and manufacturing method thereof
CN201910496050.6A CN111180505B (en) 2018-11-13 2019-06-10 High electron mobility transistor element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107140130A TWI714909B (en) 2018-11-13 2018-11-13 High electron mobility transistor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW202018943A TW202018943A (en) 2020-05-16
TWI714909B true TWI714909B (en) 2021-01-01

Family

ID=70649930

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140130A TWI714909B (en) 2018-11-13 2018-11-13 High electron mobility transistor device and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN111180505B (en)
TW (1) TWI714909B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11522077B2 (en) 2020-05-27 2022-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Integration of p-channel and n-channel E-FET III-V devices with optimization of device performance
WO2022000362A1 (en) * 2020-07-01 2022-01-06 Innoscience (Zhuhai) Technology Co., Ltd. Semiconductor device and fabrication method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201301400A (en) * 2011-06-29 2013-01-01 Ind Tech Res Inst Transistor device and method for fabricating the same
US20140264380A1 (en) * 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982204B2 (en) * 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US7432142B2 (en) * 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US8796097B2 (en) * 2012-04-26 2014-08-05 University Of South Carolina Selectively area regrown III-nitride high electron mobility transistor
US8912573B2 (en) * 2013-02-26 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device containing HEMT and MISFET and method of forming the same
JP2016174054A (en) * 2015-03-16 2016-09-29 株式会社東芝 Semiconductor device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201301400A (en) * 2011-06-29 2013-01-01 Ind Tech Res Inst Transistor device and method for fabricating the same
US20140264380A1 (en) * 2013-03-15 2014-09-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Complementary Field Effect Transistors Using Gallium Polar and Nitrogen Polar III-Nitride Material

Also Published As

Publication number Publication date
CN111180505B (en) 2023-09-01
CN111180505A (en) 2020-05-19
TW202018943A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
US10833159B1 (en) Semiconductor device and method for manufacturing the same
US7229903B2 (en) Recessed semiconductor device
US10784278B2 (en) Memory device and manufacturing method thereof
CN111883588A (en) Sidewall passivation for HEMT devices
WO2023283954A1 (en) Nitride-based semiconductor device and method for manufacturing the same
US20150034904A1 (en) Semiconductor device and method of manufacturing semiconductor device
TWI714909B (en) High electron mobility transistor device and manufacturing method thereof
CN111146275B (en) High electron mobility transistor element and method of manufacturing the same
TW202114227A (en) Ohmic contacts with direct access pathways to two-dimensional electron sheets
US20240038887A1 (en) Semiconductor device and method for manufacturing the same
CN114080691B (en) Nitride-based semiconductor device and method for manufacturing the same
US20240006498A1 (en) Field effect transistor device
TW202230799A (en) High electron mobility transistor and fabrication method thereof
US11856779B2 (en) Semiconductor device, memory array and method of forming the same
WO2023283955A1 (en) Nitride-based semiconductor device and method for manufacturing thereof same
TWI775648B (en) Semiconductor device and method for manufacturing the same
TWI832491B (en) Semiconductor structure and method thereof
TW202316671A (en) High electron mobility transistor device
US9318592B2 (en) Active area shaping of III-nitride devices utilizing a source-side field plate and a wider drain-side field plate
EP4078681A1 (en) Hemt transistor
US20240243187A1 (en) Semiconductor device and method of forming the same
TWI760412B (en) Memory device and manufacturing method thereof
TWI828456B (en) Overlay mark and method of forming the same
WO2024103198A1 (en) Nitride-based semiconductor device and method for manufacturing the same
WO2024103199A1 (en) Nitride-based semiconductor device and method for manufacturing the same