US20150166685A1 - Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same - Google Patents
Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same Download PDFInfo
- Publication number
- US20150166685A1 US20150166685A1 US14/574,869 US201414574869A US2015166685A1 US 20150166685 A1 US20150166685 A1 US 20150166685A1 US 201414574869 A US201414574869 A US 201414574869A US 2015166685 A1 US2015166685 A1 US 2015166685A1
- Authority
- US
- United States
- Prior art keywords
- hyaluronic acid
- salt
- low
- molecular
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 title claims abstract description 190
- 229920002674 hyaluronan Polymers 0.000 title claims abstract description 180
- 229960003160 hyaluronic acid Drugs 0.000 title claims abstract description 180
- 150000003839 salts Chemical class 0.000 title claims abstract description 137
- 239000000203 mixture Substances 0.000 title claims description 37
- 235000013305 food Nutrition 0.000 title claims description 31
- 239000002537 cosmetic Substances 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000002360 preparation method Methods 0.000 title description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 103
- 230000002378 acidificating effect Effects 0.000 claims abstract description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 100
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 50
- 238000010438 heat treatment Methods 0.000 claims description 31
- 239000007864 aqueous solution Substances 0.000 claims description 25
- 238000001035 drying Methods 0.000 claims description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000002609 medium Substances 0.000 description 50
- 239000002994 raw material Substances 0.000 description 46
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 34
- 238000000034 method Methods 0.000 description 22
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 20
- 239000000843 powder Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 16
- 238000003756 stirring Methods 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000002244 precipitate Substances 0.000 description 14
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 13
- 239000003729 cation exchange resin Substances 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- 239000000523 sample Substances 0.000 description 11
- 229920002385 Sodium hyaluronate Polymers 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 229940010747 sodium hyaluronate Drugs 0.000 description 9
- YWIVKILSMZOHHF-QJZPQSOGSA-N sodium;(2s,3s,4s,5r,6r)-6-[(2s,3r,4r,5s,6r)-3-acetamido-2-[(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5s,6r)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2- Chemical compound [Na+].CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 YWIVKILSMZOHHF-QJZPQSOGSA-N 0.000 description 9
- 238000000746 purification Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 241000561734 Celosia cristata Species 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 210000001520 comb Anatomy 0.000 description 6
- 238000010908 decantation Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000006210 lotion Substances 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 235000013361 beverage Nutrition 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000002612 dispersion medium Substances 0.000 description 4
- 230000001747 exhibiting effect Effects 0.000 description 4
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 235000006040 Prunus persica var persica Nutrition 0.000 description 3
- 238000004042 decolorization Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 235000015110 jellies Nutrition 0.000 description 3
- 239000008274 jelly Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000002087 whitening effect Effects 0.000 description 3
- 229940058015 1,3-butylene glycol Drugs 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 244000144730 Amygdalus persica Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 241000194017 Streptococcus Species 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 2
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- -1 mascara Substances 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000012264 purified product Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000230 xanthan gum Substances 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- 235000010493 xanthan gum Nutrition 0.000 description 2
- 229940082509 xanthan gum Drugs 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical class CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- COPFWAGBXIWZNK-UHFFFAOYSA-N 2,3-bis(6-methylheptanoyloxy)propyl 6-methylheptanoate Chemical compound CC(C)CCCCC(=O)OCC(OC(=O)CCCCC(C)C)COC(=O)CCCCC(C)C COPFWAGBXIWZNK-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 240000005809 Prunus persica Species 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 239000008294 cold cream Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 235000021185 dessert Nutrition 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229940078752 magnesium ascorbyl phosphate Drugs 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000010746 mayonnaise Nutrition 0.000 description 1
- 239000008268 mayonnaise Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000013944 peach juice Nutrition 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 229940034610 toothpaste Drugs 0.000 description 1
- HTJNEBVCZXHBNJ-XCTPRCOBSA-H trimagnesium;(2r)-2-[(1s)-1,2-dihydroxyethyl]-3,4-dihydroxy-2h-furan-5-one;diphosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.OC[C@H](O)[C@H]1OC(=O)C(O)=C1O HTJNEBVCZXHBNJ-XCTPRCOBSA-H 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0024—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
- C08B37/0027—2-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
- C08B37/003—Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0063—Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
- C08B37/0072—Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
-
- A23L1/30—
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/275—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of animal origin, e.g. chitin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/735—Mucopolysaccharides, e.g. hyaluronic acid; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/02—Preparations for care of the skin for chemically bleaching or whitening the skin
Definitions
- the present invention relates to hyaluronic acid and/or its salt of which the molecular weight has been reduced without impairing the color tone, a method for producing the same, and a cosmetic and a food composition containing the same.
- Hyaluronic acid is a mucopolysaccharide which exists in a living body (particularly subcutaneous tissue).
- Hyaluronic acid or its salt has been widely used as a raw material for cosmetics due to high moisture retention properties. It has been confirmed that oral administration of hyaluronic acid or its salt compensates for a decrease in hyaluronic acid content of a living body to improve moisture retention, elasticity, and flexibility of the skin. Therefore, hyaluronic acid and its salt are added to various types of food.
- hyaluronic acid is a polysaccharide having an extremely high molecular weight and a high viscosity. Therefore, when hyaluronic acid is added in an amount exceeding a specific amount, preparation may become difficult due to high viscosity, or the viscosity of the resulting cosmetics or food may be affected, whereby the feel during use may deteriorate or the texture may be impaired.
- JP-A-63-57602 discloses a method of decomposing hyaluronic acid by treatment with an alkali or an acid to reduce the molecular weight of the hyaluronic acid.
- this method requires that the alkali or acid treatment conditions be made severe in order to reduce the molecular weight, it is difficult to obtain a low-molecular-weight hyaluronic acid.
- hyaluronic acid browns under strongly acidic or strongly basic conditions.
- brown hyaluronic acid is not suitable as a raw material for cosmetics or food, purification for decolorization may be necessary, or it may be difficult to decolorize the hyaluronic acid by purification to such an extent that the hyaluronic acid can be used as the raw material for cosmetics or food.
- An object of the invention is to provide a low-molecular-weight hyaluronic acid and/or its salt which is stably produced without causing browning, a method for producing the same, and a cosmetic and a food composition containing the same.
- the inventors of the invention have conducted extensive studies on the method of reducing the molecular weight of hyaluronic acid and/or its salt.
- the molecular weight of hyaluronic acid and/or its salt can be reduced to 10,000 or less, for example, without causing the resulting product to brown by dispersing hyaluronic acid and/or its salt in an acidic water-containing medium, whereby a low-molecular-weight hyaluronic acid can be stably obtained. This finding has led to the completion of the invention.
- a low-molecular-weight hyaluronic acid and/or its salt according to the invention is obtained by dispersing hyaluronic acid or its salt in an organic solvent containing an acid and water.
- the hyaluronic acid and/or its salt may be dispersed with heating.
- the expression “dispersed with heating” includes “dispersing the hyaluronic acid or its salt by adding the hyaluronic acid or its salt to the organic solvent containing an acid and water with heating” and “maintaining a state in which the hyaluronic acid or its salt is dispersed in the organic solvent containing an acid and water with heating for a specific period of time”.
- a low-molecular-weight hyaluronic acid and/or its salt according to the invention is obtained by dispersing hyaluronic acid and/or its salt in an acidic water-containing medium, and heating and drying a residue obtained by removing the water-containing medium.
- the water-containing medium may have a pH of 2 or less.
- a medium used for the water-containing medium may be at least one medium selected from ethanol, methanol, and acetone.
- a 1 wt % aqueous solution of the low-molecular-weight hyaluronic acid and/or its salt may have a kinematic viscosity of 10 mm 2 /s or less.
- a 1 wt % aqueous solution of the low-molecular-weight hyaluronic acid and/or its salt may have a kinematic viscosity of 3 mm 2 /s or less.
- a 1 wt % aqueous solution of the low-molecular-weight hyaluronic acid and/or its salt may have a kinematic viscosity of 2 mm 2 /s or less.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention may have an L value indicating lightness of 90 or more and a b value indicating hue of 5 or less.
- a method for producing a low-molecular-weight hyaluronic acid and/or its salt according to the invention comprises dispersing hyaluronic acid and/or its salt in an acidic water-containing medium.
- a cosmetic according to the invention comprises the low-molecular-weight hyaluronic acid and/or its salt according to the invention.
- a food composition according to the invention comprises the low-molecular-weight hyaluronic acid and/or its salt according to the invention.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention can be stably produced without causing browning even if the molecular weight is reduced to 10,000 or less, for example. Therefore, the low-molecular-weight hyaluronic acid and/or its salt according to the invention is useful as a raw material for cosmetics, food, and medicine.
- the color tone is not impaired even if a large amount of low-molecular-weight hyaluronic acid and/or its salt is added, whereby cosmetics exhibiting an excellent feel during use can be obtained.
- the food when using the low-molecular-weight hyaluronic acid and/or its salt according to the invention as a raw material for food, the food can be prepared without impairing the color tone, flavor, and texture of the food.
- a low-molecular-weight hyaluronic acid and/or its salt according to the invention is obtained by dispersing hyaluronic acid and/or its salt in an acidic water-containing medium.
- hyaluronic acid used in the invention refers to a polysaccharide including a repeating unit made up of glucuronic acid and N-acetylglucosamine.
- the hyaluronic acid salt is not particularly limited.
- the hyaluronic acid salt is preferably a pharmaceutically acceptable salt.
- examples of the hyaluronic acid salt include a sodium salt, a potassium salt, a calcium salt, a zinc salt, a magnesium salt, an ammonium salt, and the like.
- Hyaluronic acid and its salt as the raw material for the low-molecular-weight hyaluronic acid and/or its salt according to the invention are generally obtained by extraction (and further purification, if necessary) from a biological tissue such as a cockscomb, an umbilical cord, an eyeball, skin, or cartilage, or a culture obtained by culturing a hyaluronic acid-producing microorganism such as a Streptococcus microorganism.
- a biological tissue such as a cockscomb, an umbilical cord, an eyeball, skin, or cartilage
- a culture obtained by culturing a hyaluronic acid-producing microorganism such as a Streptococcus microorganism.
- the raw material hyaluronic acid and its salt used in the invention the above crude extract or purified product may be used. It is preferable to use a purified product with a purity of hyaluronic acid and/or its salt of 90% or more.
- a purified product with a purity of hyaluronic acid and/or its salt of 90% or more.
- the raw material hyaluronic acid and its salt rarely cause a change in color tone or flavor during storage. Therefore, stable cosmetics or food is obtained.
- low-molecular-weight hyaluronic acid and/or its salt refers to a product having a molecular weight lower than that of the raw material hyaluronic acid and its salt.
- the molecular weight of hyaluronic acid and/or its salt extracted from a cockscomb is usually 2,000,000 to 8,000,000.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention has a molecular weight lower than that of the raw material.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention when using the low-molecular-weight hyaluronic acid and/or its salt according to the invention for cosmetics, a food composition, a medicine, or the like, it is preferable that the low-molecular-weight hyaluronic acid and/or its salt according to the invention exhibit a high degree of lightness (brightness) and a low degree of yellowness so that the color of the resulting product is not affected.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention may have an L value indicating the lightness (hereinafter may be simply called “L value”) of 90 or more and a b value indicating the hue (hereinafter may be simply called “b value”) of 5 or less.
- L value indicating the lightness
- b value indicating the hue
- the L value and the b value are preferably 92 or more and 4 or less, and more preferably 93 or more and 3.5 or less, respectively.
- the L value is a value specifying the lightness of a substance and is indicated by a value between 0 and 100.
- An L value of 100 indicates the brightest state (completely white), and an L value of 0 indicates the darkest state (completely black).
- the b value is a value specifying the hue of a substance.
- the larger the b value the higher the degree of yellowness.
- the smaller the b value the higher the degree of blueness.
- the L value and the b value may be indicated by Lab chromaticity coordinates according to a color difference indication method defined in JIS Z8730.
- the L value and the b value may be measured using a commercially-available color difference meter.
- the L value and the b value of solid low-molecular-weight hyaluronic acid and/or its salt are measured.
- the L value and the b value of the low-molecular-weight hyaluronic acid and/or its salt respectively refer to the L value and the b value of unpurified low-molecular-weight hyaluronic acid and/or its salt according to the invention obtained by a production method according to the invention described later.
- the L value and the b value of the low-molecular-weight hyaluronic acid and/or its salt in the invention respectively refer to the L value and the b value of low-molecular-weight hyaluronic acid and/or its salt in a state in which the low-molecular-weight hyaluronic acid and/or its salt is not subjected to purification for decolorization.
- the degree of coloration of the low-molecular-weight hyaluronic acid and/or its salt according to the invention refers to the L value and the b value of the low-molecular-weight hyaluronic acid and/or its salt in a state in which the low-molecular-weight hyaluronic acid and/or its salt is not subjected to purification other than washing using a medium in order to remove the acidic water-containing medium used.
- the L value and the b value of the low-molecular-weight hyaluronic acid according to the invention may be measured using a color difference meter (“COLOR AND COLOR DIFFERENCE METER MODEL 1001 DP” manufactured by Nippon Denshoku Industries Co., Ltd.) in a state in which a 10-diameter lens is installed in the color difference meter and a glass cell is charged with 1 g or more of a measurement sample.
- a color difference meter (“COLOR AND COLOR DIFFERENCE METER MODEL 1001 DP” manufactured by Nippon Denshoku Industries Co., Ltd.) in a state in which a 10-diameter lens is installed in the color difference meter and a glass cell is charged with 1 g or more of a measurement sample.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention have an L value and a b value measured using the color difference meter of 90 or more and 5 or less, respectively, the low-molecular-weight hyaluronic acid and/or its salt can be used as a raw material for cosmetics, food, and medicine without requiring further purification.
- the method of converting the low-molecular-weight hyaluronic acid according to the present invention to the low-molecular-weight hyaluronic acid salt and the method of converting the low-molecular-weight hyaluronic acid salt according to the present invention to the low-molecular-weight hyaluronic acid are not particularly limited.
- the low-molecular-weight hyaluronic acid and the low-molecular-weight hyaluronic acid salt may be converted using a known method.
- a method of treating the low-molecular-weight hyaluronic acid using an alkaline aqueous solution e.g., aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide, or the like
- an alkaline aqueous solution e.g., aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide, or the like
- a method of treating the low-molecular-weight hyaluronic acid salt using an acidic aqueous solution e.g., aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or the like
- an acidic aqueous solution e.g., aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or the like
- the molecular weight of the low-molecular-weight hyaluronic acid and/or its salt is preferably 1,000,000 or less, more preferably 100,000 or less, still more preferably 20,000 or less, and most preferably 10,000 or less in order to achieve the objective property effects.
- the method of measuring the molecular weight of the low-molecular-weight hyaluronic acid and/or its salt according to the invention is not particularly limited.
- a method of calculating the limiting viscosity from the kinematic viscosity and converting the limiting viscosity into the molecular weight a simple measuring method using liquid chromatography, and the like can be given.
- the molecular weight of the low-molecular-weight hyaluronic acid and/or its salt is measured using the method of calculating the limiting viscosity from the kinematic viscosity and converting the limiting viscosity into the molecular weight.
- the kinematic viscosity is measured using an Ubbelohde viscometer described later, the limiting viscosity is calculated from the kinematic viscosity, and the limiting viscosity is converted into the molecular weight.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention preferably has a kinematic viscosity in a 1 mass % aqueous solution of 10 mm 2 /s or less, more preferably 3 mm 2 /s or less, and still more preferably 2 mm 2 /s or less.
- the low-molecular-weight hyaluronic acid and/or its salt according to the invention has a kinematic viscosity in a 1 mass % aqueous solution of more than 10 mm 2 /s, preparation may become difficult due to too high a viscosity when adding the low-molecular-weight hyaluronic acid and/or its salt according to the invention in an amount exceeding a specific amount, or the viscosity of the resulting cosmetics or food may be affected, whereby the feel during use may deteriorate or the texture may be impaired.
- the kinematic viscosity of the low-molecular-weight hyaluronic acid and/or its salt according to the invention may be measured using an Ubbelohde viscometer (manufactured by Sibata Scientific Technology Ltd.). In this case, an Ubbelohde viscometer is selected which has a coefficient so that the falling time is 200 to 1000 seconds. The kinematic viscosity is measured in a thermostat bath at 30° C. while maintaining a constant temperature.
- the kinematic viscosity (mm 2 /s) can be calculated from the product of the falling time (s) of the aqueous solution measured using the Ubbelohde viscometer and the coefficient of the Ubbelohde viscometer.
- the molecular weight of the sample can be calculated from the limiting viscosity of the sample.
- a number of sample solutions are prepared, and the specific viscosity and the reduced viscosity are calculated from the falling time (s) of the sample solution and the falling time (s) of the solvent in the Ubbelohde viscometer according to the following expressions (1) and (2).
- a calibration curve for each sample solution is created by plotting the reduced viscosity along the vertical axis and the sample concentration (dried product) along the horizontal axis, and the limiting viscosity of the sample is determined by extrapolating the sample concentration to zero.
- the molecular weight M of the sample can be calculated from the limiting viscosity of the 20 sample according to the following expression (3).
- a method for producing low-molecular-weight hyaluronic acid and/or its salt according to the invention includes dispersing hyaluronic acid and/or its salt in an acidic water-containing medium.
- the hyaluronic acid and/or its salt may be dispersed by adding powdered raw material hyaluronic acid and/or its salt to the acidic water-containing medium and stirring the mixture.
- the powdered hyaluronic acid and/or its salt is dispersed in the water-containing medium while being dissolved in the water-containing medium to only a small extent. Therefore, the powder precipitates when stirring is stopped.
- a degree of reducing the molecular weight of the hyaluronic acid and/or its salt may be adjusted by adjusting the stirring speed and the stirring time.
- the period of time in which the hyaluronic acid and/or its salt is dispersed in the water-containing medium may be appropriately determined depending on the pH and the temperature of the water-containing medium.
- the method for producing low-molecular-weight hyaluronic acid and/or its salt according to the invention includes dispersing the raw material hyaluronic acid and/or its salt in the water-containing medium, low-molecular-weight hyaluronic acid and/or its salt showing only a small degree of browning can be stably obtained. This makes purification for decolorization unnecessary, whereby a labor saving production process can be achieved.
- the hyaluronic acid and/or its salt may be dispersed with heating.
- the dispersion medium obtained by adding the powdered raw material hyaluronic acid and/or its salt to the acidic water-containing medium with stirring may be heated.
- the acidic water-containing medium may be heated in advance, and the raw material hyaluronic acid and/or its salt may be added to the acidic water-containing medium while maintaining the temperature.
- the heating temperature of the acidic water-containing medium is preferably 30 to 70° C. If the acidic water-containing medium is heated in this temperature range, the molecular weight of the hyaluronic acid and/or its salt can be stably reduced to a desired value by heating within one hour.
- the molecular weight of the raw material hyaluronic acid and/or its salt can also be reduced by dispersing the raw material hyaluronic acid and/or its salt at room temperature (less than 30° C.) without heating the acidic water-containing medium. In this case, a very long time may be required compared with the case of dispersing the raw material hyaluronic acid and/or its salt with heating. It is also possible to increase the heating temperature to more than 70° C.
- the method for producing low-molecular-weight hyaluronic acid and/or its salt according to the invention may include heating and drying the residue obtained by removing the water-containing medium after dispersing the hyaluronic acid and/or its salt in the acidic water-containing medium.
- the residue obtained by removing the water-containing medium from the hyaluronic acid and/or its salt of which the molecular weight has been reduced by dispersion is heated and dried.
- the water-containing medium may be removed by a physical means such as filtration using a strainer or centrifugation, or by evaporation using a rotary evaporator, for example. It is preferable to remove the remaining water-containing medium and water from the residue using a heating cabinet, a hot blast dryer, or the like.
- the heating and drying temperature and time are not particularly limited.
- the heating and drying temperature is preferably 60 to 95° C., more preferably 70 to 90° C., and still more preferably 70 to 80° C. If the heating and drying temperature is less than 60° C., the drying efficiency may decrease. If the heating and drying temperature exceeds 95° C., browning may occur.
- the heating and drying time is preferably 6 to 48 hours or more, and more preferably 12 to 36 hours. If the heating and drying time is less than 6 hours, the drying efficiency may decrease. If the heating and drying time exceeds 48 hours, browning may occur.
- the molecular weight reduction efficiency can be improved.
- a low-molecular-weight hyaluronic acid salt with a molecular weight of 100,000 and low-molecular-weight hyaluronic acid with a molecular weight of 20,000 or less can be easily obtained by heating and drying.
- water-containing medium refers to a water-containing dispersion medium for hyaluronic acid and/or its salt.
- Hyaluronic acid and/or its salt preferably has a low solubility in the medium which may be used for the water-containing medium.
- the medium which may be used for the water-containing medium is not particularly limited.
- a medium is preferred which is liquid, is soluble in water, and can be used in the production of cosmetics or food.
- Examples of the medium which may be used for the water-containing medium include alcohol media (e.g., methanol, ethanol, n-propanol, and 2-propanol), ketone media (e.g., acetone and methyl ethyl ketone), tetrahydrofuran, acetonitrile, and the like. These media may be used either individually or in combination of two or more.
- the medium is preferably at least one medium selected from ethanol, methanol, and acetone due to a low boiling point and low cost.
- the water content of the water-containing medium is not particularly limited. If the water content is too high, hyaluronic acid and/or its salt cannot maintain a dispersion state and may be dissolved in the water-containing medium, whereby yield may decrease. Therefore, the content of water with respect to the total amount of the water-containing medium is preferably 40 vol % or less, and more preferably 30 vol % or less.
- an acid or an acidic cation-exchange resin may be used to acidify the water-containing medium, for example.
- the acid is not particularly limited.
- An acid is preferred which can be used in the production of cosmetics or food.
- the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as citric acid, ascorbic acid, acetic acid, and glacial acetic acid.
- the amount of acid to be added is not particularly limited. If the amount of acid is too small, a reduction in the molecular weight of hyaluronic acid and/or its salt may not sufficiently progress, whereby the production efficiency may decrease.
- the amount of acid is too large, a reduction in the molecular weight of hyaluronic acid and/or its salt may be promoted, whereby it may be difficult to stably adjust the molecular weight to a desired value.
- the content of hydrochloric acid is preferably 0.2% or more and 4% or less.
- sulfuric acid is preferably 0.1% or more and 3% or less.
- the acidic cation-exchange resin is not particularly limited.
- the acidic cation-exchange resin include a strongly acidic cation-exchange resin (Diaion SK1B and Dowex 50W), a weakly acidic cation-exchange resin (Duolite C-464), and the like. Of these, the strongly acidic cation-exchange resin is preferred.
- the molecular weight of the raw material hyaluronic acid and/or its salt can be reduced by securing the acidic cation-exchange resin in a container, placing the water-containing medium and the raw material hyaluronic acid and/or its salt in the container, dispersing the raw material hyaluronic acid and/or its salt, and causing the raw material hyaluronic acid and/or its salt to contact the acidic cation-exchange resin by stirring the dispersion medium.
- the acidic cation-exchange resin may be secured so that the acidic cation-exchange resin does not flow into the dispersion medium.
- the acidic cation-exchange resin and the resulting low-molecular-weight hyaluronic acid and/or its salt can be easily separated after the reaction by securing the acidic cation-exchange resin.
- the pH of the water-containing medium is preferably 2 or less, and more preferably 1 or less. If the pH of the water-containing medium exceeds 2, it takes time to reduce the molecular weight of the raw material hyaluronic acid and/or its salt, whereby the efficiency decreases.
- the form of cosmetics including the low-molecular-weight hyaluronic acid and/or its salt according to the invention is not particularly limited.
- Examples of the form of the cosmetics include a skin cleansing preparation, toilet lotion, vanishing cream, cold cream, milky lotion, a pack, foundation, rouge, lipstick, nail cosmetics such as nail treatment, eye cosmetics such as mascara, shampoo, rinse, a hair treatment agent, shaving lotion, toothpaste, and the like.
- the form of a food composition including the low-molecular-weight hyaluronic acid and/or its salt according to the invention is not particularly limited.
- Examples of the form of the food composition include general food such as staple food such as rice products and bread, dishes other than staple food such as retort (canned) food, frozen food, daily dishes, and dry food, seasoning such as mayonnaise, beverages, cake, dessert, and liquid, gelled, or soft-capsuled supplements, and general foods for specified health use for which use of health claims is allowed.
- a sodium hyaluronate (hereinafter also called “HANa”) fine powder extracted from a cockscomb and purified was provided as the raw material.
- the average molecular weight and the purity of the raw material HANa were respectively about 2,100,000 and 97%.
- a tank (volume: 300 liters) equipped with a stirrer and a jacket was charged with 110 liters of 73% water-containing ethanol (acidic water-containing medium) containing 2% of hydrochloric acid.
- the water-containing ethanol was heated to 50° C. with stirring.
- 73% water-containing ethanol contains 73% (W/W) of ethanol and 27% (W/W) of water
- 73% water-containing ethanol containing 2% of hydrochloric acid contains 2% (W/W) of hydrochloric acid and 98% (W/W) of 73% water-containing ethanol.
- 6 kg of the raw material HANa fine powder was added to the tank with stirring. The mixture was stirred so that the raw material HANa fine powder was dispersed while heating the mixture so that the temperature of the hydrochloric acid-and-water-containing ethanol was maintained at 50° C.
- the water-containing ethanol was then removed by decantation to obtain a residue. After further removing the water-containing ethanol by subjecting the residue to centrifugation, the solvent was removed at room temperature for six hours using a vacuum dryer.
- Example 1 the HANa fine powder used in Example 1 was provided as the raw material.
- a tank (volume: 300 liters) equipped with a stirrer and a jacket was charged with 110 liters of 80% water-containing acetone (acidic water-containing medium) containing 0.5% of sulfuric acid.
- the water-containing acetone was heated to 60° C. with stirring.
- 80% water-containing acetone contains 80% (W/W) of acetone and 20% (W/W) of water
- 80% water-containing acetone containing 0.5% of sulfuric acid contains 0.5% (W/W) of sulfuric acid and 99.5% (W/W) of 80% water-containing acetone.
- 6 kg of the raw material HANa fine powder was added to the tank with stirring. The mixture was stirred so that the raw material HANa fine powder was dispersed while heating the mixture so that the temperature of the sulfuric acid-and-water-containing acetone was maintained at 60° C.
- the water-containing acetone was then removed by decantation to obtain a residue. After further removing the water-containing acetone by subjecting the residue to centrifugation, the solvent was removed at room temperature for six hours using a vacuum dryer.
- the low-molecular-weight hyaluronic acid fine powder with a molecular weight of 26,000 obtained in Example 1 was heated and dried at 80° C. for 24 hours to obtain a fine white low-molecular-weight hyaluronic acid powder with a reduced molecular weight.
- the kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight hyaluronic acid measured using an Ubbelohde viscometer was 1.1 mm 2 /s.
- the molecular weight converted from the limiting viscosity was 6,000, the L value was 93.9, and the b value was 3.2.
- a raw material hyaluronic acid (hereinafter also called “HA”) fine powder was provided as the raw material which was extracted from a hyaluronic acid-containing fermented product obtained by culturing a hyaluronic acid-producing Streptococcus microorganism and then purified.
- the average molecular weight and the purity of the raw material HA were respectively about 1,600,000 and 97%.
- a tank (volume: 300 liters) equipped with a stirrer was charged with 110 liters of 78% water-containing ethanol (acidic water-containing medium) containing 1% of hydrochloric acid.
- the water-containing ethanol was heated to 40° C. with stirring. Note that 78% water-containing ethanol contains 78% (W/W) of ethanol and 22% (W/W) of water, and 78% water-containing ethanol containing 1% of hydrochloric acid contains 1% (W/W) of hydrochloric acid and 99% (W/W) of 78% water-containing ethanol.
- 6 kg of the raw material HA fine powder was added to the tank with stirring. The mixture was stirred so that the raw material HA powder was dispersed while controlling the temperature so that the temperature of the hydrochloric acid-and-water-containing ethanol did not become less than 30° C.
- the water-containing ethanol was then removed by decantation to obtain a residue. After further removing the water-containing ethanol by subjecting the residue to centrifugation, the resulting product was dissolved in 100 liters of water in the tank to prepare an aqueous solution.
- the pH of the aqueous solution was adjusted to 6.5 by adding a 20% sodium hydroxide solution to the aqueous solution with stirring. The aqueous solution was then spray-dried using a spray dryer.
- the low-molecular-weight sodium hyaluronate fine powder with a molecular weight of 140,000 obtained in Example 4 was heated and dried at 80° C. for 24 hours to obtain a fine white low-molecular-weight sodium hyaluronate powder with a reduced molecular weight.
- the kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight sodium hyaluronate measured using an Ubbelohde viscometer was 8.7 mm 2 /s.
- the molecular weight converted from the limiting viscosity was 41,000, the L value was 94.1, and the b value was 2.2.
- a raw material was used which was prepared by immersing 200 kg of cockscombs in hot water at 80° C. for 20 minutes, finely grinding the cockscombs using a grinder, adding 500 liters of water to the resulting product, and forming a paste using a homogenizer.
- a tank (volume: 1000 liters) equipped with a stirrer and a jacket was charged with the raw material.
- a 20% sodium hydroxide solution was added to the raw material so that the final sodium hydroxide concentration was 0.15 N.
- the solution was heated to 60° C. and maintained at 60° C. for two hours.
- the insoluble solid was removed from the solution by enzyme treatment and activated carbon treatment to obtain a filtrate.
- a cetylpyridinium chloride (CPC) solution was added to the filtrate so that a complex with hyaluronic acid was formed to obtain a precipitate.
- CPC cetylpyridinium chloride
- Low-molecular-weight sodium hyaluronate was obtained in the same manner as in Comparative Example 1 except for adjusting the final sodium hydroxide concentration to 0.1 N.
- the resulting low-molecular-weight sodium hyaluronate was dissolved in a 2% sodium chloride aqueous solution.
- a whitening essence was prepared respectively containing the low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 according to the following formulation (internal volume: 50 mL/contained in a capped transparent glass bottle).
- a milky lotion (emollient milk) was prepared respectively containing the low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 according to the following formulation (internal volume: 150 mL/contained in a capped transparent glass bottle).
- a white peach jelly beverage contained in a spout pouch was prepared respectively containing the low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 according to the following formulation (internal volume: 150 g/contained in transparent spout pouch).
- Xanthan gum 1.00% Carrageenan 0.50% Low-molecular-weight hyaluronic acid (Na)* 1 0.20% Dextrin alcohol 3.00% Sucralose 0.02% 4x concentrated white peach juice 5.00% Citric acid 0.60% Sodium citrate 0.20% L-Ascorbic acid 0.10% Peach essence 0.20% Water Balance * 1 Low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- General Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Dermatology (AREA)
- Mycology (AREA)
- Zoology (AREA)
- Dispersion Chemistry (AREA)
- Cosmetics (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A low-molecular-weight hyaluronic acid and/or its salt is obtained by dispersing hyaluronic acid and/or its salt in an acidic water-containing medium.
Description
- This application is a divisional of U.S. patent application Ser. No. 11/909,267 filed on Dec. 23, 2008, which is a National Phase of PCT/JP 2006/305356 filed Mar. 17, 2006 which claims the benefit of Japanese Patent Application No. 2005-081571 filed Mar. 22, 2005. The disclosures of the above applications are expressly incorporated herein by reference.
- The present invention relates to hyaluronic acid and/or its salt of which the molecular weight has been reduced without impairing the color tone, a method for producing the same, and a cosmetic and a food composition containing the same.
- Hyaluronic acid is a mucopolysaccharide which exists in a living body (particularly subcutaneous tissue). Hyaluronic acid or its salt has been widely used as a raw material for cosmetics due to high moisture retention properties. It has been confirmed that oral administration of hyaluronic acid or its salt compensates for a decrease in hyaluronic acid content of a living body to improve moisture retention, elasticity, and flexibility of the skin. Therefore, hyaluronic acid and its salt are added to various types of food.
- However, hyaluronic acid is a polysaccharide having an extremely high molecular weight and a high viscosity. Therefore, when hyaluronic acid is added in an amount exceeding a specific amount, preparation may become difficult due to high viscosity, or the viscosity of the resulting cosmetics or food may be affected, whereby the feel during use may deteriorate or the texture may be impaired.
- In order to reduce the viscosity of hyaluronic acid while maintaining its functions, a method has been developed which reduces the molecular weight of the hyaluronic acid (JP-A-63-57602). This application discloses a method of decomposing hyaluronic acid by treatment with an alkali or an acid to reduce the molecular weight of the hyaluronic acid. However, since this method requires that the alkali or acid treatment conditions be made severe in order to reduce the molecular weight, it is difficult to obtain a low-molecular-weight hyaluronic acid. According to this method, hyaluronic acid browns under strongly acidic or strongly basic conditions. Since brown hyaluronic acid is not suitable as a raw material for cosmetics or food, purification for decolorization may be necessary, or it may be difficult to decolorize the hyaluronic acid by purification to such an extent that the hyaluronic acid can be used as the raw material for cosmetics or food.
- An object of the invention is to provide a low-molecular-weight hyaluronic acid and/or its salt which is stably produced without causing browning, a method for producing the same, and a cosmetic and a food composition containing the same.
- In order to achieve the above object, the inventors of the invention have conducted extensive studies on the method of reducing the molecular weight of hyaluronic acid and/or its salt. As a result, the inventors have found that the molecular weight of hyaluronic acid and/or its salt can be reduced to 10,000 or less, for example, without causing the resulting product to brown by dispersing hyaluronic acid and/or its salt in an acidic water-containing medium, whereby a low-molecular-weight hyaluronic acid can be stably obtained. This finding has led to the completion of the invention.
- A low-molecular-weight hyaluronic acid and/or its salt according to the invention is obtained by dispersing hyaluronic acid or its salt in an organic solvent containing an acid and water.
- In the low-molecular-weight hyaluronic acid and/or its salt according to the invention, the hyaluronic acid and/or its salt may be dispersed with heating. The expression “dispersed with heating” includes “dispersing the hyaluronic acid or its salt by adding the hyaluronic acid or its salt to the organic solvent containing an acid and water with heating” and “maintaining a state in which the hyaluronic acid or its salt is dispersed in the organic solvent containing an acid and water with heating for a specific period of time”.
- A low-molecular-weight hyaluronic acid and/or its salt according to the invention is obtained by dispersing hyaluronic acid and/or its salt in an acidic water-containing medium, and heating and drying a residue obtained by removing the water-containing medium.
- In the low-molecular-weight hyaluronic acid and/or its salt according to the invention, the water-containing medium may have a pH of 2 or less.
- In the low-molecular-weight hyaluronic acid and/or its salt according to the invention, a medium used for the water-containing medium may be at least one medium selected from ethanol, methanol, and acetone.
- In the low-molecular-weight hyaluronic acid and/or its salt according to the invention, a 1 wt % aqueous solution of the low-molecular-weight hyaluronic acid and/or its salt may have a kinematic viscosity of 10 mm2/s or less.
- In the low-molecular-weight hyaluronic acid and/or its salt according to the invention, a 1 wt % aqueous solution of the low-molecular-weight hyaluronic acid and/or its salt may have a kinematic viscosity of 3 mm2/s or less.
- In the low-molecular-weight hyaluronic acid and/or its salt according to the invention, a 1 wt % aqueous solution of the low-molecular-weight hyaluronic acid and/or its salt may have a kinematic viscosity of 2 mm2/s or less.
- The low-molecular-weight hyaluronic acid and/or its salt according to the invention may have an L value indicating lightness of 90 or more and a b value indicating hue of 5 or less.
- A method for producing a low-molecular-weight hyaluronic acid and/or its salt according to the invention comprises dispersing hyaluronic acid and/or its salt in an acidic water-containing medium.
- A cosmetic according to the invention comprises the low-molecular-weight hyaluronic acid and/or its salt according to the invention.
- A food composition according to the invention comprises the low-molecular-weight hyaluronic acid and/or its salt according to the invention.
- The low-molecular-weight hyaluronic acid and/or its salt according to the invention can be stably produced without causing browning even if the molecular weight is reduced to 10,000 or less, for example. Therefore, the low-molecular-weight hyaluronic acid and/or its salt according to the invention is useful as a raw material for cosmetics, food, and medicine.
- For example, when using the low-molecular-weight hyaluronic acid and/or its salt according to the invention as a raw material for cosmetics, the color tone is not impaired even if a large amount of low-molecular-weight hyaluronic acid and/or its salt is added, whereby cosmetics exhibiting an excellent feel during use can be obtained. For example, when using the low-molecular-weight hyaluronic acid and/or its salt according to the invention as a raw material for food, the food can be prepared without impairing the color tone, flavor, and texture of the food.
- The invention is described below. In the invention, “%” refers to “mass %”.
- A low-molecular-weight hyaluronic acid and/or its salt according to the invention is obtained by dispersing hyaluronic acid and/or its salt in an acidic water-containing medium.
- The term “hyaluronic acid” used in the invention refers to a polysaccharide including a repeating unit made up of glucuronic acid and N-acetylglucosamine. The hyaluronic acid salt is not particularly limited. The hyaluronic acid salt is preferably a pharmaceutically acceptable salt. Examples of the hyaluronic acid salt include a sodium salt, a potassium salt, a calcium salt, a zinc salt, a magnesium salt, an ammonium salt, and the like.
- Hyaluronic acid and its salt (hereinafter also called “raw material hyaluronic acid and its salt”) as the raw material for the low-molecular-weight hyaluronic acid and/or its salt according to the invention are generally obtained by extraction (and further purification, if necessary) from a biological tissue such as a cockscomb, an umbilical cord, an eyeball, skin, or cartilage, or a culture obtained by culturing a hyaluronic acid-producing microorganism such as a Streptococcus microorganism.
- As the raw material hyaluronic acid and its salt used in the invention, the above crude extract or purified product may be used. It is preferable to use a purified product with a purity of hyaluronic acid and/or its salt of 90% or more. When using a raw material hyaluronic acid and its salt with a purity of 90% or more as the raw material for cosmetics or food, the raw material hyaluronic acid and its salt rarely cause a change in color tone or flavor during storage. Therefore, stable cosmetics or food is obtained.
- The term “low-molecular-weight hyaluronic acid and/or its salt” according to the invention refers to a product having a molecular weight lower than that of the raw material hyaluronic acid and its salt. For example, the molecular weight of hyaluronic acid and/or its salt extracted from a cockscomb is usually 2,000,000 to 8,000,000. When using hyaluronic acid and/or its salt extracted from a cockscomb as the raw material, the low-molecular-weight hyaluronic acid and/or its salt according to the invention has a molecular weight lower than that of the raw material.
- For example, when using the low-molecular-weight hyaluronic acid and/or its salt according to the invention for cosmetics, a food composition, a medicine, or the like, it is preferable that the low-molecular-weight hyaluronic acid and/or its salt according to the invention exhibit a high degree of lightness (brightness) and a low degree of yellowness so that the color of the resulting product is not affected.
- The low-molecular-weight hyaluronic acid and/or its salt according to the invention may have an L value indicating the lightness (hereinafter may be simply called “L value”) of 90 or more and a b value indicating the hue (hereinafter may be simply called “b value”) of 5 or less. The L value and the b value are preferably 92 or more and 4 or less, and more preferably 93 or more and 3.5 or less, respectively.
- The L value is a value specifying the lightness of a substance and is indicated by a value between 0 and 100. An L value of 100 indicates the brightest state (completely white), and an L value of 0 indicates the darkest state (completely black).
- The b value is a value specifying the hue of a substance. The larger the b value, the higher the degree of yellowness. The smaller the b value, the higher the degree of blueness.
- The L value and the b value may be indicated by Lab chromaticity coordinates according to a color difference indication method defined in JIS Z8730. The L value and the b value may be measured using a commercially-available color difference meter. In the invention, the L value and the b value of solid low-molecular-weight hyaluronic acid and/or its salt are measured.
- In the invention, the L value and the b value of the low-molecular-weight hyaluronic acid and/or its salt respectively refer to the L value and the b value of unpurified low-molecular-weight hyaluronic acid and/or its salt according to the invention obtained by a production method according to the invention described later. Specifically, the L value and the b value of the low-molecular-weight hyaluronic acid and/or its salt in the invention respectively refer to the L value and the b value of low-molecular-weight hyaluronic acid and/or its salt in a state in which the low-molecular-weight hyaluronic acid and/or its salt is not subjected to purification for decolorization. In the examples described later, the degree of coloration of the low-molecular-weight hyaluronic acid and/or its salt according to the invention refers to the L value and the b value of the low-molecular-weight hyaluronic acid and/or its salt in a state in which the low-molecular-weight hyaluronic acid and/or its salt is not subjected to purification other than washing using a medium in order to remove the acidic water-containing medium used.
- The L value and the b value of the low-molecular-weight hyaluronic acid according to the invention may be measured using a color difference meter (“COLOR AND COLOR DIFFERENCE METER MODEL 1001 DP” manufactured by Nippon Denshoku Industries Co., Ltd.) in a state in which a 10-diameter lens is installed in the color difference meter and a glass cell is charged with 1 g or more of a measurement sample.
- Since the low-molecular-weight hyaluronic acid and/or its salt according to the invention have an L value and a b value measured using the color difference meter of 90 or more and 5 or less, respectively, the low-molecular-weight hyaluronic acid and/or its salt can be used as a raw material for cosmetics, food, and medicine without requiring further purification.
- The method of converting the low-molecular-weight hyaluronic acid according to the present invention to the low-molecular-weight hyaluronic acid salt and the method of converting the low-molecular-weight hyaluronic acid salt according to the present invention to the low-molecular-weight hyaluronic acid are not particularly limited. The low-molecular-weight hyaluronic acid and the low-molecular-weight hyaluronic acid salt may be converted using a known method.
- As an example of the method of converting the low-molecular-weight hyaluronic acid according to the present invention to the low-molecular-weight hyaluronic acid salt, a method of treating the low-molecular-weight hyaluronic acid using an alkaline aqueous solution (e.g., aqueous solution of sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide, or the like) can be given. As examples of the method of converting the low-molecular-weight hyaluronic acid salt according to the present invention to the low-molecular-weight hyaluronic acid, a method of treating the low-molecular-weight hyaluronic acid salt using an acidic aqueous solution (e.g., aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or the like) and a method using an acidic cation-exchange resin can be given.
- When adding the low-molecular-weight hyaluronic acid and/or its salt according to the invention to cosmetics or food, the molecular weight of the low-molecular-weight hyaluronic acid and/or its salt is preferably 1,000,000 or less, more preferably 100,000 or less, still more preferably 20,000 or less, and most preferably 10,000 or less in order to achieve the objective property effects.
- The method of measuring the molecular weight of the low-molecular-weight hyaluronic acid and/or its salt according to the invention is not particularly limited. For example, a method of calculating the limiting viscosity from the kinematic viscosity and converting the limiting viscosity into the molecular weight, a simple measuring method using liquid chromatography, and the like can be given.
- In the invention, the molecular weight of the low-molecular-weight hyaluronic acid and/or its salt is measured using the method of calculating the limiting viscosity from the kinematic viscosity and converting the limiting viscosity into the molecular weight. In this method, the kinematic viscosity is measured using an Ubbelohde viscometer described later, the limiting viscosity is calculated from the kinematic viscosity, and the limiting viscosity is converted into the molecular weight.
- The low-molecular-weight hyaluronic acid and/or its salt according to the invention preferably has a kinematic viscosity in a 1 mass % aqueous solution of 10 mm2/s or less, more preferably 3 mm2/s or less, and still more preferably 2 mm2/s or less. If the low-molecular-weight hyaluronic acid and/or its salt according to the invention has a kinematic viscosity in a 1 mass % aqueous solution of more than 10 mm2/s, preparation may become difficult due to too high a viscosity when adding the low-molecular-weight hyaluronic acid and/or its salt according to the invention in an amount exceeding a specific amount, or the viscosity of the resulting cosmetics or food may be affected, whereby the feel during use may deteriorate or the texture may be impaired.
- The method of measuring the kinematic viscosity used as the index when calculating the molecular weight of the low-molecular-weight hyaluronic acid and/or its salt according to the invention is described below.
- The kinematic viscosity of the low-molecular-weight hyaluronic acid and/or its salt according to the invention may be measured using an Ubbelohde viscometer (manufactured by Sibata Scientific Technology Ltd.). In this case, an Ubbelohde viscometer is selected which has a coefficient so that the falling time is 200 to 1000 seconds. The kinematic viscosity is measured in a thermostat bath at 30° C. while maintaining a constant temperature.
- The kinematic viscosity (mm2/s) can be calculated from the product of the falling time (s) of the aqueous solution measured using the Ubbelohde viscometer and the coefficient of the Ubbelohde viscometer.
- In the invention, the molecular weight of the sample can be calculated from the limiting viscosity of the sample. In general, when calculating the limiting viscosity of the sample, a number of sample solutions are prepared, and the specific viscosity and the reduced viscosity are calculated from the falling time (s) of the sample solution and the falling time (s) of the solvent in the Ubbelohde viscometer according to the following expressions (1) and (2).
-
Specific viscosity=falling time (s) of sample solution/falling time (s) of solvent−1 (1) -
Reduced viscosity=specific viscosity/sample concentration (dried product) (g/100 mL) (2) - A calibration curve for each sample solution is created by plotting the reduced viscosity along the vertical axis and the sample concentration (dried product) along the horizontal axis, and the limiting viscosity of the sample is determined by extrapolating the sample concentration to zero. When the sample is hyaluronic acid and/or its salt, the molecular weight M of the sample can be calculated from the limiting viscosity of the 20 sample according to the following expression (3).
-
Limiting viscosity(CM3/g)=k′M alpha (3) - wherein k′=0.036, and alpha=0.78.
- A method for producing low-molecular-weight hyaluronic acid and/or its salt according to the invention includes dispersing hyaluronic acid and/or its salt in an acidic water-containing medium. For example, the hyaluronic acid and/or its salt may be dispersed by adding powdered raw material hyaluronic acid and/or its salt to the acidic water-containing medium and stirring the mixture. The powdered hyaluronic acid and/or its salt is dispersed in the water-containing medium while being dissolved in the water-containing medium to only a small extent. Therefore, the powder precipitates when stirring is stopped.
- A degree of reducing the molecular weight of the hyaluronic acid and/or its salt may be adjusted by adjusting the stirring speed and the stirring time. The period of time in which the hyaluronic acid and/or its salt is dispersed in the water-containing medium may be appropriately determined depending on the pH and the temperature of the water-containing medium.
- Since the method for producing low-molecular-weight hyaluronic acid and/or its salt according to the invention includes dispersing the raw material hyaluronic acid and/or its salt in the water-containing medium, low-molecular-weight hyaluronic acid and/or its salt showing only a small degree of browning can be stably obtained. This makes purification for decolorization unnecessary, whereby a labor saving production process can be achieved.
- In the method for producing low-molecular-weight hyaluronic acid and/or its salt according to the invention, the hyaluronic acid and/or its salt may be dispersed with heating. Specifically, the dispersion medium obtained by adding the powdered raw material hyaluronic acid and/or its salt to the acidic water-containing medium with stirring may be heated. Or, the acidic water-containing medium may be heated in advance, and the raw material hyaluronic acid and/or its salt may be added to the acidic water-containing medium while maintaining the temperature.
- The heating temperature of the acidic water-containing medium is preferably 30 to 70° C. If the acidic water-containing medium is heated in this temperature range, the molecular weight of the hyaluronic acid and/or its salt can be stably reduced to a desired value by heating within one hour. The molecular weight of the raw material hyaluronic acid and/or its salt can also be reduced by dispersing the raw material hyaluronic acid and/or its salt at room temperature (less than 30° C.) without heating the acidic water-containing medium. In this case, a very long time may be required compared with the case of dispersing the raw material hyaluronic acid and/or its salt with heating. It is also possible to increase the heating temperature to more than 70° C. when dispersing the raw material hyaluronic acid and/or its salt. In this case, a reduction in molecular weight may progress to a large extent when the raw material hyaluronic acid and/or its salt is heated for a long period of time, whereby it may be difficult to stably adjust the molecular weight to a desired value.
- The method for producing low-molecular-weight hyaluronic acid and/or its salt according to the invention may include heating and drying the residue obtained by removing the water-containing medium after dispersing the hyaluronic acid and/or its salt in the acidic water-containing medium.
- For example, the residue obtained by removing the water-containing medium from the hyaluronic acid and/or its salt of which the molecular weight has been reduced by dispersion is heated and dried. The water-containing medium may be removed by a physical means such as filtration using a strainer or centrifugation, or by evaporation using a rotary evaporator, for example. It is preferable to remove the remaining water-containing medium and water from the residue using a heating cabinet, a hot blast dryer, or the like.
- The heating and drying temperature and time are not particularly limited. The heating and drying temperature is preferably 60 to 95° C., more preferably 70 to 90° C., and still more preferably 70 to 80° C. If the heating and drying temperature is less than 60° C., the drying efficiency may decrease. If the heating and drying temperature exceeds 95° C., browning may occur. The heating and drying time is preferably 6 to 48 hours or more, and more preferably 12 to 36 hours. If the heating and drying time is less than 6 hours, the drying efficiency may decrease. If the heating and drying time exceeds 48 hours, browning may occur.
- Since the molecular weight of the hyaluronic acid and/or its salt of which the molecular weight has been reduced by dispersion can be further reduced by heating and drying, the molecular weight reduction efficiency can be improved. A low-molecular-weight hyaluronic acid salt with a molecular weight of 100,000 and low-molecular-weight hyaluronic acid with a molecular weight of 20,000 or less can be easily obtained by heating and drying.
- In the production method according to the invention, the term “water-containing medium” refers to a water-containing dispersion medium for hyaluronic acid and/or its salt. Hyaluronic acid and/or its salt preferably has a low solubility in the medium which may be used for the water-containing medium. The medium which may be used for the water-containing medium is not particularly limited. For example, a medium is preferred which is liquid, is soluble in water, and can be used in the production of cosmetics or food.
- Examples of the medium which may be used for the water-containing medium include alcohol media (e.g., methanol, ethanol, n-propanol, and 2-propanol), ketone media (e.g., acetone and methyl ethyl ketone), tetrahydrofuran, acetonitrile, and the like. These media may be used either individually or in combination of two or more. The medium is preferably at least one medium selected from ethanol, methanol, and acetone due to a low boiling point and low cost.
- The water content of the water-containing medium is not particularly limited. If the water content is too high, hyaluronic acid and/or its salt cannot maintain a dispersion state and may be dissolved in the water-containing medium, whereby yield may decrease. Therefore, the content of water with respect to the total amount of the water-containing medium is preferably 40 vol % or less, and more preferably 30 vol % or less.
- In the production method according to the invention, an acid or an acidic cation-exchange resin may be used to acidify the water-containing medium, for example.
- The acid is not particularly limited. An acid is preferred which can be used in the production of cosmetics or food. Examples of the acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and organic acids such as citric acid, ascorbic acid, acetic acid, and glacial acetic acid. The amount of acid to be added is not particularly limited. If the amount of acid is too small, a reduction in the molecular weight of hyaluronic acid and/or its salt may not sufficiently progress, whereby the production efficiency may decrease. If the amount of acid is too large, a reduction in the molecular weight of hyaluronic acid and/or its salt may be promoted, whereby it may be difficult to stably adjust the molecular weight to a desired value. For example, when using hydrochloric acid as the acid, the content of hydrochloric acid is preferably 0.2% or more and 4% or less. When using sulfuric acid as the acid, the content of sulfuric acid is preferably 0.1% or more and 3% or less.
- The acidic cation-exchange resin is not particularly limited. Examples of the acidic cation-exchange resin include a strongly acidic cation-exchange resin (Diaion SK1B and Dowex 50W), a weakly acidic cation-exchange resin (Duolite C-464), and the like. Of these, the strongly acidic cation-exchange resin is preferred. For example, the molecular weight of the raw material hyaluronic acid and/or its salt can be reduced by securing the acidic cation-exchange resin in a container, placing the water-containing medium and the raw material hyaluronic acid and/or its salt in the container, dispersing the raw material hyaluronic acid and/or its salt, and causing the raw material hyaluronic acid and/or its salt to contact the acidic cation-exchange resin by stirring the dispersion medium. In this case, the acidic cation-exchange resin may be secured so that the acidic cation-exchange resin does not flow into the dispersion medium. The acidic cation-exchange resin and the resulting low-molecular-weight hyaluronic acid and/or its salt can be easily separated after the reaction by securing the acidic cation-exchange resin.
- In the production method according to the invention, the pH of the water-containing medium is preferably 2 or less, and more preferably 1 or less. If the pH of the water-containing medium exceeds 2, it takes time to reduce the molecular weight of the raw material hyaluronic acid and/or its salt, whereby the efficiency decreases.
- The form of cosmetics including the low-molecular-weight hyaluronic acid and/or its salt according to the invention is not particularly limited. Examples of the form of the cosmetics include a skin cleansing preparation, toilet lotion, vanishing cream, cold cream, milky lotion, a pack, foundation, rouge, lipstick, nail cosmetics such as nail treatment, eye cosmetics such as mascara, shampoo, rinse, a hair treatment agent, shaving lotion, toothpaste, and the like.
- The form of a food composition including the low-molecular-weight hyaluronic acid and/or its salt according to the invention is not particularly limited. Examples of the form of the food composition include general food such as staple food such as rice products and bread, dishes other than staple food such as retort (canned) food, frozen food, daily dishes, and dry food, seasoning such as mayonnaise, beverages, cake, dessert, and liquid, gelled, or soft-capsuled supplements, and general foods for specified health use for which use of health claims is allowed.
- The invention is described below in more detail by way of examples, comparative examples, and experimental examples. Note that the invention is not limited to these examples. Measurement of kinematic viscosity, calculation of limiting viscosity, and measurement of the L value and the b value were conducted using the above-described methods.
- In this example, a sodium hyaluronate (hereinafter also called “HANa”) fine powder extracted from a cockscomb and purified was provided as the raw material. The average molecular weight and the purity of the raw material HANa were respectively about 2,100,000 and 97%.
- A tank (volume: 300 liters) equipped with a stirrer and a jacket was charged with 110 liters of 73% water-containing ethanol (acidic water-containing medium) containing 2% of hydrochloric acid. The water-containing ethanol was heated to 50° C. with stirring. Note that 73% water-containing ethanol contains 73% (W/W) of ethanol and 27% (W/W) of water, and 73% water-containing ethanol containing 2% of hydrochloric acid contains 2% (W/W) of hydrochloric acid and 98% (W/W) of 73% water-containing ethanol. After the temperature reached 50° C., 6 kg of the raw material HANa fine powder was added to the tank with stirring. The mixture was stirred so that the raw material HANa fine powder was dispersed while heating the mixture so that the temperature of the hydrochloric acid-and-water-containing ethanol was maintained at 50° C.
- After 15 minutes of stirring, the mixture was allowed to stand. The supernatant hydrochloric acid-and-water-containing ethanol was then removed by decantation to obtain a precipitate. After the addition of 110 liters of 73% water-containing ethanol containing 2% of hydrochloric acid, which was heated to 50° C. in advance, to the resulting precipitate, the mixture was stirred for 15 minutes while heating the mixture at 50° C. This operation was carried out three times in total.
- After the addition of 110 liters of 73% water-containing ethanol to the precipitate obtained after removing the hydrochloric acid-and-water-containing ethanol, the mixture was stirred for 15 minutes in order to remove the hydrochloric acid. This operation was repeated until the hydrochloric acid was completely removed.
- The water-containing ethanol was then removed by decantation to obtain a residue. After further removing the water-containing ethanol by subjecting the residue to centrifugation, the solvent was removed at room temperature for six hours using a vacuum dryer.
- 5.5 kg (yield: about 92%) of low-molecular-weight hyaluronic acid was thus obtained as a fine white powder. The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight hyaluronic acid measured using an Ubbelohde viscometer was 2.6 mm2/s. The molecular weight converted from the limiting viscosity was 35,000, the L value was 94.3, and the b value was 1.9.
- In this example, the HANa fine powder used in Example 1 was provided as the raw material.
- A tank (volume: 300 liters) equipped with a stirrer and a jacket was charged with 110 liters of 80% water-containing acetone (acidic water-containing medium) containing 0.5% of sulfuric acid. The water-containing acetone was heated to 60° C. with stirring. Note that 80% water-containing acetone contains 80% (W/W) of acetone and 20% (W/W) of water, and 80% water-containing acetone containing 0.5% of sulfuric acid contains 0.5% (W/W) of sulfuric acid and 99.5% (W/W) of 80% water-containing acetone. After the temperature reached 60° C., 6 kg of the raw material HANa fine powder was added to the tank with stirring. The mixture was stirred so that the raw material HANa fine powder was dispersed while heating the mixture so that the temperature of the sulfuric acid-and-water-containing acetone was maintained at 60° C.
- After 15 minutes of stirring, the mixture was allowed to stand. The supernatant sulfuric acid-and-water-containing acetone was then removed by decantation to obtain a precipitate. After the addition of 110 liters of 80% water-containing acetone containing 0.5% of sulfuric acid, which was heated to 60° C. in advance, to the resulting precipitate, the mixture was stirred for 15 minutes while heating the mixture at 60° C. This operation was carried out three times in total.
- After the addition of 110 liters of 80% water-containing acetone to the precipitate obtained after removing the sulfuric acid-and-water-containing acetone, the mixture was stirred for 15 minutes in order to remove the sulfuric acid. This operation was repeated until the sulfuric acid was completely removed.
- The water-containing acetone was then removed by decantation to obtain a residue. After further removing the water-containing acetone by subjecting the residue to centrifugation, the solvent was removed at room temperature for six hours using a vacuum dryer.
- 5.3 kg (yield: about 88%) of low-molecular-weight hyaluronic acid was thus obtained as a fine white powder. The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight hyaluronic acid measured using an Ubbelohde viscometer was 1.5 mm2/s. The molecular weight converted from the limiting viscosity was 9,000, the L value was 94.0, and the b value was 2.9.
- The low-molecular-weight hyaluronic acid fine powder with a molecular weight of 26,000 obtained in Example 1 was heated and dried at 80° C. for 24 hours to obtain a fine white low-molecular-weight hyaluronic acid powder with a reduced molecular weight.
- The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight hyaluronic acid measured using an Ubbelohde viscometer was 1.1 mm2/s. The molecular weight converted from the limiting viscosity was 6,000, the L value was 93.9, and the b value was 3.2.
- In this example, a raw material hyaluronic acid (hereinafter also called “HA”) fine powder was provided as the raw material which was extracted from a hyaluronic acid-containing fermented product obtained by culturing a hyaluronic acid-producing Streptococcus microorganism and then purified. The average molecular weight and the purity of the raw material HA were respectively about 1,600,000 and 97%.
- A tank (volume: 300 liters) equipped with a stirrer was charged with 110 liters of 78% water-containing ethanol (acidic water-containing medium) containing 1% of hydrochloric acid. The water-containing ethanol was heated to 40° C. with stirring. Note that 78% water-containing ethanol contains 78% (W/W) of ethanol and 22% (W/W) of water, and 78% water-containing ethanol containing 1% of hydrochloric acid contains 1% (W/W) of hydrochloric acid and 99% (W/W) of 78% water-containing ethanol. After the temperature reached 40° C., 6 kg of the raw material HA fine powder was added to the tank with stirring. The mixture was stirred so that the raw material HA powder was dispersed while controlling the temperature so that the temperature of the hydrochloric acid-and-water-containing ethanol did not become less than 30° C.
- After 15 minutes of stirring, the mixture was allowed to stand. The supernatant hydrochloric acid-and-water-containing ethanol was then removed by decantation to obtain a precipitate. After the addition of 110 liters of 78% water-containing ethanol containing 0.1% of hydrochloric acid, which was heated to 40° C. in advance, to the resulting precipitate, the mixture was stirred for 15 minutes while heating the mixture at 40° C. This operation was carried out twice in total.
- After the addition of 110 liters of 78% water-containing ethanol to the precipitate obtained after removing the hydrochloric acid-and-water-containing ethanol, the mixture was stirred for 15 minutes in order to remove the hydrochloric acid. This operation was repeated until the hydrochloric acid was completely removed.
- The water-containing ethanol was then removed by decantation to obtain a residue. After further removing the water-containing ethanol by subjecting the residue to centrifugation, the resulting product was dissolved in 100 liters of water in the tank to prepare an aqueous solution. The pH of the aqueous solution was adjusted to 6.5 by adding a 20% sodium hydroxide solution to the aqueous solution with stirring. The aqueous solution was then spray-dried using a spray dryer.
- 4.6 kg (yield: about 77%) of low-molecular-weight sodium hyaluronate was thus obtained as a fine white powder. The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight sodium hyaluronate measured using an Ubbelohde viscometer was 21 mm2/s. The molecular weight converted from the limiting viscosity was 140,000, the L value was 95.0, and the b value was 1.8.
- The low-molecular-weight sodium hyaluronate fine powder with a molecular weight of 140,000 obtained in Example 4 was heated and dried at 80° C. for 24 hours to obtain a fine white low-molecular-weight sodium hyaluronate powder with a reduced molecular weight.
- The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight sodium hyaluronate measured using an Ubbelohde viscometer was 8.7 mm2/s. The molecular weight converted from the limiting viscosity was 41,000, the L value was 94.1, and the b value was 2.2.
- In this comparative example, a raw material was used which was prepared by immersing 200 kg of cockscombs in hot water at 80° C. for 20 minutes, finely grinding the cockscombs using a grinder, adding 500 liters of water to the resulting product, and forming a paste using a homogenizer.
- A tank (volume: 1000 liters) equipped with a stirrer and a jacket was charged with the raw material. A 20% sodium hydroxide solution was added to the raw material so that the final sodium hydroxide concentration was 0.15 N. The solution was heated to 60° C. and maintained at 60° C. for two hours. The insoluble solid was removed from the solution by enzyme treatment and activated carbon treatment to obtain a filtrate. A cetylpyridinium chloride (CPC) solution was added to the filtrate so that a complex with hyaluronic acid was formed to obtain a precipitate.
- After purifying the precipitate using ethanol, the solvent was removed at room temperature for six hours using a vacuum dryer.
- 2.0 kg (yield: about 1.0%) of low-molecular-weight sodium hyaluronate was thus obtained as a fine dark brown powder. The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight hyaluronic acid measured using an Ubbelohde viscometer was 21 mm2/s. The molecular weight converted from the limiting viscosity was 140,000, the L value was 88.8, and the b value was 7.3.
- Low-molecular-weight sodium hyaluronate was obtained in the same manner as in Comparative Example 1 except for adjusting the final sodium hydroxide concentration to 0.1 N. The resulting low-molecular-weight sodium hyaluronate was dissolved in a 2% sodium chloride aqueous solution. After adjusting the pH of the hyaluronic acid-containing 2% sodium chloride aqueous solution to 2.5 by adding 4N hydrochloric acid, the mixture was heated at 95° C. for 120 minutes. After cooling the solution, ethanol was added to the solution to obtain a precipitate. After purifying the precipitate using ethanol, the solvent was removed at room temperature for six hours using a vacuum dryer.
- 0.9 kg (yield: about 0.5%) of low-molecular-weight hyaluronic acid was thus obtained as a fine dark brown powder. The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight hyaluronic acid measured using an Ubbelohde viscometer was 2.8 mm2/s. The molecular weight converted from the limiting viscosity was 38,000, the L value was 87.2, and the b value was 5.6.
- 1.0 kg (yield: about 0.5%) of low-molecular-weight hyaluronic acid was obtained as a fine dark brown powder in the same manner as in Comparative Example 2 except for changing the heating time under the alkaline conditions to 150 minutes. The kinematic viscosity of a 1% aqueous solution of the resulting low-molecular-weight hyaluronic acid measured using an Ubbelohde viscometer was 1.6 mm2/s. The molecular weight converted from the limiting viscosity was 10,000, the L value was 87.0, and the b value was 6.5.
- As cosmetic formulation experimental examples, a whitening essence was prepared respectively containing the low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 according to the following formulation (internal volume: 50 mL/contained in a capped transparent glass bottle).
-
-
Magnesium ascorbyl phosphate 3.00% Glycerol 8.00% 1,3-Butylene glycol 2.00% Hydrogenated lecithin 0.05% Low-molecular-weight hyaluronic acid (Na)*1 0.50% Hydroxyethylcellulose 0.06% PEG-50 hydrogenated castor oil 0.50% Sodium citrate Proper quantity Methylparaben 0.21% Phenoxyethanol 0.08% EDTA-4Na 0.10% Tocopherol 0.05% Water Balance *1Low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 - In the experimental examples using the low-molecular-weight HA or HANa obtained in Examples 1 to 5, a transparent and colorless whitening essence exhibiting an excellent feel during use was obtained. In the experimental examples using the HA or HANa obtained in Comparative Examples 1 to 3, the resulting product was brown and was not suitable as a whitening essence.
- As cosmetic formulation Experimental examples, a milky lotion (emollient milk) was prepared respectively containing the low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 according to the following formulation (internal volume: 150 mL/contained in a capped transparent glass bottle).
-
-
Stearic acid 0.50% Cetostearyl alcohol 0.50% Lanolin 0.80% Glycerol triisooctanoate 4.00% Olive oil 4.00% Low-molecular-weight hyaluronic acid (Na)*1 1.00% Polyoxyethylene (60) sorbitol tetraoleate 0.50% Polyoxyethylene (20) sorbitan monostearate 1.00% Glycerol monostearate 0.50% 1,3-Butylene glycol 6.00% Xanthan gum 0.14% Methylparaben Proper quantity Water Balance *1Low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 - In the experimental examples using the low-molecular-weight HA or HANa obtained in Examples 1 to 5, a white milky lotion (emollient milk) exhibiting an excellent feel during use was obtained. In the experimental examples using the HA or HANa obtained in Comparative Examples 1 to 3, the resulting product was brown and was not suitable as a milky lotion.
- As food formulation experimental examples, a white peach jelly beverage contained in a spout pouch was prepared respectively containing the low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 according to the following formulation (internal volume: 150 g/contained in transparent spout pouch).
-
-
Xanthan gum 1.00% Carrageenan 0.50% Low-molecular-weight hyaluronic acid (Na)*1 0.20% Dextrin alcohol 3.00% Sucralose 0.02% 4x concentrated white peach juice 5.00% Citric acid 0.60% Sodium citrate 0.20% L-Ascorbic acid 0.10% Peach essence 0.20% Water Balance *1Low-molecular-weight HA or HANa obtained in Examples 1 to 5 and Comparative Examples 1 to 3 - In the experimental examples using the low-molecular-weight HA or HANa obtained in Examples 1 to 5, a white peach jelly beverage contained in a spout pouch exhibiting an excellent flavor and texture was obtained. In the experimental examples using the HA or HANa obtained in Comparative Examples 1 to 3, the resulting beverage was brown and was not suitable as a jelly beverage.
Claims (17)
1-12. (canceled)
13. A low-molecular-weight hyaluronic acid or its salt having a molecular weight of 100,000 or less, having a L value indicating lightness of 90 or more, and a b value indicating hue of 5 or less.
14. The low molecular weight hyaluronic acid or its salt according to claim 13 , wherein a 1% aqueous solution of the low molecular-weight hyaluronic acid or its salt has a kinematic viscosity of 10 mm2/s or less.
15. The low molecular weight hyaluronic acid or its salt according to claim 13 , wherein the molecular weight is in the range of 20,000 or less.
16. The low molecular weight hyaluronic acid or its salt according to claim 13 , wherein the molecular weight is in the range of 10,000 or less.
17. The low molecular weight hyaluronic acid or its salt according to claim 13 , wherein the molecular weight is in the range of 20,000 to 100,000.
18. The low molecular weight hyaluronic acid or its salt according to claim 13 , wherein the molecular weight is in the range of 20,000 to 41,000.
19. The low molecular weight hyaluronic acid or its salt according to claim 13 , wherein the low molecular weight hyaluronic acid or its salt is powdery.
20. The low molecular weight hyaluronic acid or its salt according to claim 13 , wherein the low molecular weight hyaluronic acid or its salt is obtained by heating and drying.
21. A method for producing low-molecular-weight hyaluronic acid or its salt having a molecular weight of 100,000 or less, having a L value indicating lightness of 90 or more, and a b value indicating hue of 5 or less, comprising dispersing hyaluronic acid or its salt in an acidic water-containing medium.
22. The method for producing the low molecular weight hyaluronic acid or its salt according to claim 21 , wherein the acidic water-containing medium has a pH or 2 or less.
23. The method for producing the low molecular weight hyaluronic acid or its salt according to claim 21 , wherein the temperature of the acidic water-containing medium is 30 to 70° C.
24. The method for producing the low molecular weight hyaluronic acid or its salt according to claim 21 , wherein the water-containing medium contains at least one medium selected from the group consisting of ethanol, methanol, and acetone.
25. The method for producing low-molecular-weight hyaluronic acid or its salt according to claim 21 , further comprising removing the water-containing medium, and heating and drying a residue obtained after removing the water-containing medium.
26. The method for producing low-molecular-weight hyaluronic acid or its salt according to claim 21 , wherein the content of water with respect to the total amount of the water-containing medium is 40 vol % or less.
27. A cosmetic comprising the low-molecular-weight hyaluronic acid or its salt according to claim 13 .
28. A food composition comprising the low-molecular-weight hyaluronic acid or its salt according to claim 13 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/574,869 US20150166685A1 (en) | 2005-03-22 | 2014-12-18 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005081571A JP4576583B2 (en) | 2005-03-22 | 2005-03-22 | Hyaluronic acid or a salt thereof, method for producing the same, and cosmetics and food compositions containing the same |
JP2005-081571 | 2005-03-22 | ||
PCT/JP2006/305356 WO2006101030A1 (en) | 2005-03-22 | 2006-03-17 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
US90926708A | 2008-12-23 | 2008-12-23 | |
US14/574,869 US20150166685A1 (en) | 2005-03-22 | 2014-12-18 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/305356 Division WO2006101030A1 (en) | 2005-03-22 | 2006-03-17 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
US11/909,267 Division US8933054B2 (en) | 2005-03-22 | 2006-03-17 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150166685A1 true US20150166685A1 (en) | 2015-06-18 |
Family
ID=37023691
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/909,267 Active 2031-04-08 US8933054B2 (en) | 2005-03-22 | 2006-03-17 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
US14/574,869 Abandoned US20150166685A1 (en) | 2005-03-22 | 2014-12-18 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/909,267 Active 2031-04-08 US8933054B2 (en) | 2005-03-22 | 2006-03-17 | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same |
Country Status (6)
Country | Link |
---|---|
US (2) | US8933054B2 (en) |
EP (2) | EP1865002B1 (en) |
JP (1) | JP4576583B2 (en) |
KR (3) | KR20140063898A (en) |
CN (2) | CN101146830B (en) |
WO (1) | WO2006101030A1 (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2850282B1 (en) | 2003-01-27 | 2007-04-06 | Jerome Asius | INJECTABLE IMPLANT BASED ON CERAMIC FOR THE FILLING OF WRINKLES, CUTANEOUS DEPRESSIONS AND SCARS, AND ITS PREPARATION |
JP4576583B2 (en) * | 2005-03-22 | 2010-11-10 | キユーピー株式会社 | Hyaluronic acid or a salt thereof, method for producing the same, and cosmetics and food compositions containing the same |
KR100665916B1 (en) * | 2005-06-27 | 2007-01-10 | 주식회사 바이오랜드 | A method for preparing low molecular weight polysaccharide and the salt thereof |
JP4982718B2 (en) * | 2005-08-31 | 2012-07-25 | 株式会社林原 | Composition for oral intake for beautiful skin |
JP5289936B2 (en) * | 2006-02-24 | 2013-09-11 | キユーピー株式会社 | Novel low molecular weight hyaluronic acid and / or salt thereof, and cosmetics, pharmaceutical compositions and food compositions using the same |
JP4712746B2 (en) * | 2006-09-15 | 2011-06-29 | キユーピー株式会社 | Acidic beverage |
JP4764380B2 (en) * | 2007-02-13 | 2011-08-31 | キユーピー株式会社 | Fermented milk |
JP2008285421A (en) * | 2007-05-15 | 2008-11-27 | Q P Corp | Hair modification penetrant and cosmetic for hair using the same |
FR2919185B1 (en) * | 2007-07-23 | 2010-09-10 | Ard Sa | USE OF HYALURONIC ACID FOR THE PREPARATION OF COMPOSITIONS INTENDED TO IMPROVE THE CONDITION OF MUCOUS MEMBRANES |
JP2009155486A (en) * | 2007-12-27 | 2009-07-16 | Kikkoman Corp | Depolymerized hyaluronic acid and production method thereof |
WO2009083265A2 (en) * | 2007-12-28 | 2009-07-09 | Bayer Cropscience Ag | Use of hyaluronan in bakery products |
JP2009183212A (en) * | 2008-02-06 | 2009-08-20 | Q P Corp | Acidic beverage |
CN101507733B (en) * | 2009-04-02 | 2011-03-30 | 北京中生奥普寡肽技术研究所 | Nano micromolecule hyaluronic acid and preparation method thereof |
JP5130264B2 (en) * | 2009-07-31 | 2013-01-30 | キユーピー株式会社 | Method for producing hyaluronic acid and / or salt thereof |
KR101132114B1 (en) * | 2009-09-15 | 2012-04-05 | 일동제약주식회사 | Method of molecular weight control of hyaluronic acid |
TWI510501B (en) | 2009-12-08 | 2015-12-01 | Kewpie Corp | Method for manufacturing purified hyaluronic acid group |
JP5852560B2 (en) * | 2010-04-14 | 2016-02-03 | キユーピー株式会社 | Method for producing metal hyaluronate, method for producing cosmetics containing metal hyaluronate, zinc hyaluronate and method for producing the same |
JP5587049B2 (en) * | 2010-06-21 | 2014-09-10 | 株式会社 糖質科学研究所 | Method for producing low molecular weight hyaluronic acid |
ES2390063B1 (en) * | 2011-04-13 | 2014-04-11 | Bioibérica, S.A. | GLYCOSAMINOGLYCANS WITH VERY LOW METHANOL CONTENT. |
CN102516410A (en) * | 2011-11-30 | 2012-06-27 | 上海景峰制药有限公司 | Method for preparing sodium hyaluronate with different molecular weights |
BR112014019795A8 (en) * | 2012-02-17 | 2017-07-11 | Kimflexor S L | PARTIALLY DEPOLYMERIZED GLYCOSAMINOGLYCAN METALLIC SALT, ITS PREPARATION PROCESS, ITS USES AND PHARMACEUTICAL OR COSMETIC COMPOSITION |
CN102850467A (en) * | 2012-08-29 | 2013-01-02 | 山东众山生物科技有限公司 | Preparation method of low-molecular-weight hyaluronic acid |
CN102898545B (en) * | 2012-11-15 | 2015-06-10 | 山东众山生物科技有限公司 | Method for reducing viscosity of hyaluronic acid |
JP6348776B2 (en) * | 2013-06-04 | 2018-06-27 | キッコーマンバイオケミファ株式会社 | Skin quality improving oral composition, food and oral medicine |
KR102268945B1 (en) | 2013-10-08 | 2021-06-23 | 큐피가부시키가이샤 | Carboxymethyl-group-containing modified hyaluronic acid and/or salt thereof and/or production method for carboxymethyl-group-containing modified hyaluronic acid and/or salt thereof |
CN103666975B (en) * | 2013-12-24 | 2015-02-04 | 山西杏花村汾酒厂股份有限公司 | Compound wine and preparation method thereof |
EP3103815B1 (en) * | 2014-01-14 | 2018-12-19 | Kewpie Corporation | Hyaluronic acid and/or salt thereof, method for producing same, and food, cosmetic, and pharmaceutical containing said hyaluronic acid and/or salt thereof |
EP2910255A1 (en) | 2014-02-19 | 2015-08-26 | MedSkin Solutions Dr. Suwelack AG | Methods for the production of biopolymers with defined average molecular weight |
JP6543046B2 (en) * | 2014-03-10 | 2019-07-10 | キユーピー株式会社 | Collagen peptide-containing powdered food |
FR3027221B1 (en) * | 2014-10-17 | 2018-01-19 | Oreal | COSMETIC AQUEOUS GEL |
CN104666112B (en) * | 2015-02-09 | 2017-09-15 | 惠觅宙 | A kind of bioactivity hyaluronic acid toothpaste |
JP6599673B2 (en) * | 2015-07-17 | 2019-10-30 | キユーピー株式会社 | Hyaluronic acid and / or salt thereof, and foods, cosmetics, and pharmaceuticals containing the hyaluronic acid and / or salt thereof |
KR101858733B1 (en) * | 2016-12-19 | 2018-06-28 | 일동제약(주) | Method for preparing super low molecular weight of hyaluronic acid |
CN110431155A (en) * | 2017-04-07 | 2019-11-08 | 优瑞有限公司 | The preparation method of low-molecular-weight hyaluronic acid |
CN108308601A (en) * | 2018-01-24 | 2018-07-24 | 江苏神华药业有限公司 | A kind of hyaluronic acid ferment drink and preparation method thereof |
CN109580428A (en) * | 2018-12-26 | 2019-04-05 | 华熙福瑞达生物医药有限公司 | A kind of method of hyaluronan molecule amount in simplicity Accurate Determining solution |
IT202000008299A1 (en) * | 2020-04-17 | 2021-10-17 | Glycores 2000 Srl | Liquid ophthalmic composition comprising linear low molecular weight hyaluronic acid |
CN112120205A (en) * | 2020-09-25 | 2020-12-25 | 山东华熙海御生物医药有限公司 | Soy sauce and its powder, their preparation method and application |
CN112646055A (en) * | 2020-11-13 | 2021-04-13 | 沧州硕金生物科技有限公司 | Preparation method of low-molecular-weight hyaluronic acid |
CN116948054A (en) * | 2022-04-20 | 2023-10-27 | 华熙生物科技股份有限公司 | Preparation method and application of zinc hyaluronate |
WO2024116893A1 (en) * | 2022-12-01 | 2024-06-06 | 株式会社 資生堂 | Composition |
KR20240115190A (en) | 2023-01-18 | 2024-07-25 | (주)화이바이오메드 | high-purity low molecular weight hyaluronic acid and/or salt thereof, and method for producing same |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US618035A (en) * | 1899-01-17 | Cash-recorder | ||
US2249315A (en) * | 1940-11-08 | 1941-07-15 | Costas N Laskaris | Hair curler |
JPS5837001A (en) | 1981-08-27 | 1983-03-04 | Green Cross Corp:The | Production of hyaluronic acid |
JPS62292710A (en) | 1986-06-12 | 1987-12-19 | Lion Corp | Skin cosmetic |
JPS6357602A (en) * | 1986-08-29 | 1988-03-12 | Q P Corp | Production of low-molecular hyaluronic acid |
JPS63150210A (en) * | 1986-12-15 | 1988-06-22 | Kanebo Ltd | Hair-tonic cosmetic |
JPS63150209A (en) * | 1986-12-15 | 1988-06-22 | Kanebo Ltd | Skin cosmetic |
JP2631469B2 (en) | 1987-04-30 | 1997-07-16 | 日本化薬株式会社 | Purification method of hyaluronic acid |
JP2549119B2 (en) * | 1987-05-30 | 1996-10-30 | 三省製薬株式会社 | Topical |
JP2587268B2 (en) * | 1988-04-18 | 1997-03-05 | チッソ株式会社 | Method for producing low-viscosity hyaluronic acid or salt thereof |
JPH04505774A (en) * | 1989-09-12 | 1992-10-08 | 株式会社資生堂 | Method for producing low molecular weight hyaluronic acid |
CA2041640A1 (en) | 1989-09-12 | 1991-03-13 | Hidemichi Akasaka | Process of production of low-molecular weight hyaluronic acid |
JP2786690B2 (en) | 1989-09-26 | 1998-08-13 | 津田駒工業株式会社 | Loom hanging method |
JPH0630605B2 (en) | 1990-10-23 | 1994-04-27 | チッソ株式会社 | Method for producing sodium hyaluronate aqueous solution |
JP2787254B2 (en) | 1991-10-21 | 1998-08-13 | アダプトゲン製薬株式会社 | Food and method for producing the food |
JP3113056B2 (en) * | 1992-03-13 | 2000-11-27 | 鐘紡株式会社 | Hair restoration |
IT1264530B (en) | 1992-07-31 | 1996-10-02 | Crinos Industria Farmaco | USE OF POLYSACCHARIDES IN ATROPHIC DEGENERATIVE NEUROPATHIES |
JPH06157604A (en) | 1992-11-26 | 1994-06-07 | Fushimi Seiyakushiyo:Kk | Method for decreasing molecular weight of high-molecular polysaccharide |
IT1282219B1 (en) * | 1995-12-20 | 1998-03-16 | Fidia Advanced Biopolymers Srl | COMBINED CHEMICAL-PHYSICAL PROCESS FOR THE PREPARATION OF LOW MOLECULAR WEIGHT HYALURONIC ACID FRACTIONS CHARACTERIZED BY LOW |
JP3534934B2 (en) * | 1996-02-02 | 2004-06-07 | カネボウ株式会社 | Skin cosmetics |
JPH10195107A (en) | 1997-01-10 | 1998-07-28 | Shiseido Co Ltd | Sulfated oligohyaluronic acid |
US6018035A (en) * | 1997-07-21 | 2000-01-25 | Baxter International Inc. | Reagents for isotropic size enhancement of a peptide, protein, nucleotide or other substrate |
JP4151092B2 (en) * | 1997-10-22 | 2008-09-17 | チッソ株式会社 | Method for producing oligohyaluronic acid or a salt thereof |
JP2000095660A (en) | 1998-09-22 | 2000-04-04 | Q P Corp | Skin lotion |
JP4097335B2 (en) * | 1998-09-30 | 2008-06-11 | 生化学工業株式会社 | Food additive |
JP2001081103A (en) * | 1999-09-13 | 2001-03-27 | Denki Kagaku Kogyo Kk | Hyaluronic acid-bound medicinal agent |
KR100620291B1 (en) * | 2000-02-03 | 2006-09-13 | 덴끼 가가꾸 고교 가부시키가이샤 | Hyaluronic acid gel, process for producing the same, and medical material containing the same |
JP4587148B2 (en) * | 2000-03-24 | 2010-11-24 | 生化学工業株式会社 | Smooth muscle cell proliferation promoter |
CA2414211C (en) | 2000-07-07 | 2011-08-02 | Seikagaku Corporation | Hyaluronic acid oligosaccharide fractions and drugs containing the same |
KR100369517B1 (en) | 2000-08-29 | 2003-01-29 | 김공수 | Method for preparing a low molecular weight polysaccharides and oligosaccharides |
JP2002145750A (en) * | 2000-11-01 | 2002-05-22 | Fancl Corp | Cosmetic |
JP4234439B2 (en) * | 2001-03-15 | 2009-03-04 | 生化学工業株式会社 | IL-12 expression regulator |
US20020192205A1 (en) * | 2001-05-11 | 2002-12-19 | Francis Michon | Immunogenic compositions of low molecular weight hyaluronic acid and methods to prevent, treat and diagnose infections and diseases caused by group A and group C streptococci |
JP2004043645A (en) * | 2002-07-11 | 2004-02-12 | Seikagaku Kogyo Co Ltd | Method for producing oligomerized saccharide |
US7511026B2 (en) | 2003-03-25 | 2009-03-31 | Seikagaku Corporation | Therapeutic agent for nerve damage |
JP3596777B1 (en) * | 2003-04-23 | 2004-12-02 | アダプトゲン製薬株式会社 | Health foods and oral antitumor agents |
JP2005110675A (en) * | 2003-09-16 | 2005-04-28 | Meiji Univ | Method for producing low-molecular polysaccharide and/or oligosaccharide, and functional low-molecular polysaccharide and/or oligosaccharide |
CN1563108A (en) | 2004-04-13 | 2005-01-12 | 阮春学 | Method for preparing transparent calcium hyaIuronate in low molecular weight |
CN1563109A (en) | 2004-04-13 | 2005-01-12 | 阮春学 | Method for preparing hyaluronic acid |
US7956180B2 (en) * | 2004-05-27 | 2011-06-07 | Novozymes A/S | Dried and agglomerated hyaluronic acid product |
JP4528898B2 (en) | 2004-07-26 | 2010-08-25 | 独立行政法人科学技術振興機構 | Chemokine receptor CCR10 expression inducer |
JP4576583B2 (en) | 2005-03-22 | 2010-11-10 | キユーピー株式会社 | Hyaluronic acid or a salt thereof, method for producing the same, and cosmetics and food compositions containing the same |
JP3767627B1 (en) | 2005-03-25 | 2006-04-19 | 眞 八藤 | Method for producing low molecular weight hyaluronic acid |
US7879818B2 (en) * | 2005-12-23 | 2011-02-01 | Janos Borbely | Hyaluronic acid-based cross-linked nanoparticles |
JP5289936B2 (en) * | 2006-02-24 | 2013-09-11 | キユーピー株式会社 | Novel low molecular weight hyaluronic acid and / or salt thereof, and cosmetics, pharmaceutical compositions and food compositions using the same |
-
2005
- 2005-03-22 JP JP2005081571A patent/JP4576583B2/en active Active
-
2006
- 2006-03-17 KR KR1020147011796A patent/KR20140063898A/en not_active Application Discontinuation
- 2006-03-17 CN CN2006800089979A patent/CN101146830B/en active Active
- 2006-03-17 WO PCT/JP2006/305356 patent/WO2006101030A1/en active Application Filing
- 2006-03-17 EP EP06729346A patent/EP1865002B1/en active Active
- 2006-03-17 EP EP12001414.7A patent/EP2463309B1/en not_active Not-in-force
- 2006-03-17 US US11/909,267 patent/US8933054B2/en active Active
- 2006-03-17 KR KR1020077024107A patent/KR20080002848A/en not_active Application Discontinuation
- 2006-03-17 KR KR1020117021857A patent/KR101420485B1/en active IP Right Grant
- 2006-03-17 CN CN2011100081109A patent/CN102174122B/en active Active
-
2014
- 2014-12-18 US US14/574,869 patent/US20150166685A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP4576583B2 (en) | 2010-11-10 |
US8933054B2 (en) | 2015-01-13 |
CN101146830B (en) | 2011-11-16 |
CN101146830A (en) | 2008-03-19 |
US20090215719A1 (en) | 2009-08-27 |
CN102174122B (en) | 2013-08-07 |
KR20080002848A (en) | 2008-01-04 |
KR20110108425A (en) | 2011-10-05 |
EP2463309A1 (en) | 2012-06-13 |
KR20140063898A (en) | 2014-05-27 |
WO2006101030A1 (en) | 2006-09-28 |
KR101420485B1 (en) | 2014-07-16 |
EP1865002B1 (en) | 2012-05-16 |
CN102174122A (en) | 2011-09-07 |
EP1865002A4 (en) | 2011-03-30 |
EP2463309B1 (en) | 2013-06-12 |
JP2006265287A (en) | 2006-10-05 |
EP1865002A1 (en) | 2007-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8933054B2 (en) | Low molecular weight hyaluronic acid and/or salt thereof, method for producing same, and cosmetic preparation and food composition containing same | |
US8367818B2 (en) | Low molecular weight hyaluronic acid and/or salt thereof, and cosmetic preparation, pharmaceutical composition, and food composition each using same | |
JP5066342B2 (en) | Novel hyaluronic acid and / or salt thereof, and cosmetics, pharmaceutical compositions, food compositions, and cosmetic kits using the same | |
KR101413784B1 (en) | Preparation method of low molecular weight sodium hyaluronate | |
BRPI0720297A2 (en) | HIGH PERFORMANCE CLARIFIED GELANA GUM | |
JP2006094853A (en) | Fermented product obtained from garlic | |
KR101450983B1 (en) | Method for manufacturing purified hyaluronic acids | |
JP5130264B2 (en) | Method for producing hyaluronic acid and / or salt thereof | |
JP2009051877A (en) | New hyaluronic acid and/or salt thereof, food composition and oral medicinal composition using the same, and oral skin ameliorating agent or oral skin water content-increasing agent comprising the hyaluronic acid and/or the salt thereof as active ingredient | |
JP4712746B2 (en) | Acidic beverage | |
JP2006089407A (en) | Fermented product obtained from kiwi | |
JP2010189333A (en) | POWDER COMPOSITION, TABLET, METHOD FOR PREVENTING BROWNING OF gamma-AMINOBUTYRIC ACID AND BROWNING INHIBITOR | |
KR101858733B1 (en) | Method for preparing super low molecular weight of hyaluronic acid | |
JP5723919B2 (en) | Method for producing novel hyaluronic acid and / or salt thereof, and food composition, oral skin improving agent or oral skin water content increasing agent containing hyaluronic acid and / or salt thereof | |
JP2006076927A (en) | Fermented material obtained from mango | |
JPH10237105A (en) | Polysaccharide, its production, and cosmetic formulated therewith | |
JP2006094828A (en) | Aureobasidium culture product | |
JP2012240993A (en) | Skin elasticity improver | |
JP4764380B2 (en) | Fermented milk | |
JP3075438B2 (en) | Novel acylated kefiran, its use and production method | |
JP5610339B2 (en) | α-Glucosidase inhibitor and method for producing saccharide | |
JPH08283306A (en) | Water-soluble partially deacetylated chitin and its production | |
KR20230091024A (en) | Novel Lactobacillus fructivorans strain and use thereof | |
KR20230091023A (en) | Novel Saccharomyces cerevisiae strain and use thereof | |
JP2021036841A (en) | Improved method for producing hyaluronic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |