US20150118300A1 - Immediate Release Abuse-Deterrent Granulated Dosage Forms - Google Patents
Immediate Release Abuse-Deterrent Granulated Dosage Forms Download PDFInfo
- Publication number
- US20150118300A1 US20150118300A1 US14/333,986 US201414333986A US2015118300A1 US 20150118300 A1 US20150118300 A1 US 20150118300A1 US 201414333986 A US201414333986 A US 201414333986A US 2015118300 A1 US2015118300 A1 US 2015118300A1
- Authority
- US
- United States
- Prior art keywords
- dosage form
- immediate release
- core
- abuse deterrent
- form according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002552 dosage form Substances 0.000 title claims abstract description 308
- 239000012729 immediate-release (IR) formulation Substances 0.000 title claims abstract description 114
- 239000008186 active pharmaceutical agent Substances 0.000 claims abstract description 222
- 229920000642 polymer Polymers 0.000 claims abstract description 183
- 239000011258 core-shell material Substances 0.000 claims abstract description 105
- 239000003814 drug Substances 0.000 claims abstract description 37
- 229940079593 drug Drugs 0.000 claims abstract description 36
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 146
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 146
- 239000002245 particle Substances 0.000 claims description 137
- 229920002125 Sokalan® Polymers 0.000 claims description 127
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 111
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 111
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 109
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 108
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 108
- 229960000913 crospovidone Drugs 0.000 claims description 100
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 claims description 100
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 claims description 100
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 92
- 239000001856 Ethyl cellulose Substances 0.000 claims description 72
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 72
- 229920001249 ethyl cellulose Polymers 0.000 claims description 72
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 71
- 238000000034 method Methods 0.000 claims description 70
- -1 poly(acrylic acid) Polymers 0.000 claims description 64
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N 1-behenoylglycerol Chemical group CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 claims description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 53
- 229940049654 glyceryl behenate Drugs 0.000 claims description 51
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 47
- 239000011230 binding agent Substances 0.000 claims description 47
- 239000001993 wax Substances 0.000 claims description 47
- YQEZLKZALYSWHR-ZDUSSCGKSA-N (S)-ketamine Chemical compound C=1C=CC=C(Cl)C=1[C@@]1(NC)CCCCC1=O YQEZLKZALYSWHR-ZDUSSCGKSA-N 0.000 claims description 38
- 229960000450 esketamine Drugs 0.000 claims description 38
- 229960001631 carbomer Drugs 0.000 claims description 37
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 claims description 32
- 229960002085 oxycodone Drugs 0.000 claims description 32
- 108010010803 Gelatin Proteins 0.000 claims description 31
- 239000008273 gelatin Substances 0.000 claims description 31
- 229920000159 gelatin Polymers 0.000 claims description 31
- 235000019322 gelatine Nutrition 0.000 claims description 31
- 235000011852 gelatine desserts Nutrition 0.000 claims description 31
- 239000011159 matrix material Substances 0.000 claims description 29
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 claims description 23
- 239000007884 disintegrant Substances 0.000 claims description 23
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 claims description 23
- 229920002472 Starch Polymers 0.000 claims description 21
- 229960004823 armodafinil Drugs 0.000 claims description 21
- YFGHCGITMMYXAQ-LJQANCHMSA-N armodafinil Chemical compound C=1C=CC=CC=1C([S@](=O)CC(=O)N)C1=CC=CC=C1 YFGHCGITMMYXAQ-LJQANCHMSA-N 0.000 claims description 21
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 claims description 21
- 229960000240 hydrocodone Drugs 0.000 claims description 21
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 20
- 229960003529 diazepam Drugs 0.000 claims description 19
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 claims description 19
- 235000019698 starch Nutrition 0.000 claims description 19
- KWTSXDURSIMDCE-QMMMGPOBSA-N (S)-amphetamine Chemical compound C[C@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-QMMMGPOBSA-N 0.000 claims description 16
- 239000008107 starch Substances 0.000 claims description 15
- 229940032147 starch Drugs 0.000 claims description 15
- 239000002775 capsule Substances 0.000 claims description 14
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 13
- 229920002678 cellulose Polymers 0.000 claims description 13
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 13
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 12
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 12
- 235000000346 sugar Nutrition 0.000 claims description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 11
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 11
- 229920000609 methyl cellulose Polymers 0.000 claims description 11
- 235000010981 methylcellulose Nutrition 0.000 claims description 11
- 239000001923 methylcellulose Substances 0.000 claims description 11
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 claims description 11
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 11
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 10
- 239000000499 gel Substances 0.000 claims description 10
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 10
- 235000010980 cellulose Nutrition 0.000 claims description 9
- 230000004799 sedative–hypnotic effect Effects 0.000 claims description 9
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 9
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 9
- 229920002261 Corn starch Polymers 0.000 claims description 8
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 229940025084 amphetamine Drugs 0.000 claims description 8
- 239000002249 anxiolytic agent Substances 0.000 claims description 8
- 239000001913 cellulose Substances 0.000 claims description 8
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 8
- 229960004431 quetiapine Drugs 0.000 claims description 8
- URKOMYMAXPYINW-UHFFFAOYSA-N quetiapine Chemical compound C1CN(CCOCCO)CCN1C1=NC2=CC=CC=C2SC2=CC=CC=C12 URKOMYMAXPYINW-UHFFFAOYSA-N 0.000 claims description 8
- 229920000881 Modified starch Polymers 0.000 claims description 7
- 230000000949 anxiolytic effect Effects 0.000 claims description 7
- 239000007891 compressed tablet Substances 0.000 claims description 7
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 7
- 239000000194 fatty acid Substances 0.000 claims description 7
- 229930195729 fatty acid Natural products 0.000 claims description 7
- 229920003063 hydroxymethyl cellulose Polymers 0.000 claims description 7
- 229940031574 hydroxymethyl cellulose Drugs 0.000 claims description 7
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 7
- 239000002085 irritant Substances 0.000 claims description 7
- 231100000021 irritant Toxicity 0.000 claims description 7
- 229920002401 polyacrylamide Polymers 0.000 claims description 7
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 claims description 6
- UQCNKQCJZOAFTQ-ISWURRPUSA-N Oxymorphone Chemical compound O([C@H]1C(CC[C@]23O)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O UQCNKQCJZOAFTQ-ISWURRPUSA-N 0.000 claims description 6
- 239000002269 analeptic agent Substances 0.000 claims description 6
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 claims description 6
- 229960001410 hydromorphone Drugs 0.000 claims description 6
- 229960001252 methamphetamine Drugs 0.000 claims description 6
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 claims description 6
- 229960005118 oxymorphone Drugs 0.000 claims description 6
- 208000002193 Pain Diseases 0.000 claims description 5
- 235000010443 alginic acid Nutrition 0.000 claims description 5
- 229920000615 alginic acid Polymers 0.000 claims description 5
- 230000000561 anti-psychotic effect Effects 0.000 claims description 5
- 229940125717 barbiturate Drugs 0.000 claims description 5
- 229940049706 benzodiazepine Drugs 0.000 claims description 5
- 239000002895 emetic Substances 0.000 claims description 5
- 235000011187 glycerol Nutrition 0.000 claims description 5
- 229960005181 morphine Drugs 0.000 claims description 5
- 229960001475 zolpidem Drugs 0.000 claims description 5
- ZAFYATHCZYHLPB-UHFFFAOYSA-N zolpidem Chemical compound N1=C2C=CC(C)=CN2C(CC(=O)N(C)C)=C1C1=CC=C(C)C=C1 ZAFYATHCZYHLPB-UHFFFAOYSA-N 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 4
- 229920001817 Agar Polymers 0.000 claims description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 4
- 239000008272 agar Substances 0.000 claims description 4
- 235000010419 agar Nutrition 0.000 claims description 4
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 claims description 4
- 239000008120 corn starch Substances 0.000 claims description 4
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 claims description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 4
- 239000003158 myorelaxant agent Substances 0.000 claims description 4
- 239000004084 narcotic analgesic agent Substances 0.000 claims description 4
- 150000002990 phenothiazines Chemical class 0.000 claims description 4
- 229920000233 poly(alkylene oxides) Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 claims description 3
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 claims description 3
- 229920001353 Dextrin Polymers 0.000 claims description 3
- 239000004375 Dextrin Substances 0.000 claims description 3
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 claims description 3
- 239000000783 alginic acid Substances 0.000 claims description 3
- 229960001126 alginic acid Drugs 0.000 claims description 3
- 150000004781 alginic acids Chemical class 0.000 claims description 3
- 229960004538 alprazolam Drugs 0.000 claims description 3
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 claims description 3
- 239000003693 atypical antipsychotic agent Substances 0.000 claims description 3
- 150000001557 benzodiazepines Chemical class 0.000 claims description 3
- 239000007894 caplet Substances 0.000 claims description 3
- 229920003086 cellulose ether Polymers 0.000 claims description 3
- 229960004782 chlordiazepoxide Drugs 0.000 claims description 3
- ANTSCNMPPGJYLG-UHFFFAOYSA-N chlordiazepoxide Chemical compound O=N=1CC(NC)=NC2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 ANTSCNMPPGJYLG-UHFFFAOYSA-N 0.000 claims description 3
- KWGRBVOPPLSCSI-UHFFFAOYSA-N d-ephedrine Natural products CNC(C)C(O)C1=CC=CC=C1 KWGRBVOPPLSCSI-UHFFFAOYSA-N 0.000 claims description 3
- 235000019425 dextrin Nutrition 0.000 claims description 3
- 229960003528 flurazepam Drugs 0.000 claims description 3
- SAADBVWGJQAEFS-UHFFFAOYSA-N flurazepam Chemical compound N=1CC(=O)N(CCN(CC)CC)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1F SAADBVWGJQAEFS-UHFFFAOYSA-N 0.000 claims description 3
- 125000005456 glyceride group Chemical group 0.000 claims description 3
- 229960003299 ketamine Drugs 0.000 claims description 3
- 229960004391 lorazepam Drugs 0.000 claims description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 3
- KWGRBVOPPLSCSI-WCBMZHEXSA-N pseudoephedrine Chemical compound CN[C@@H](C)[C@@H](O)C1=CC=CC=C1 KWGRBVOPPLSCSI-WCBMZHEXSA-N 0.000 claims description 3
- 229960003908 pseudoephedrine Drugs 0.000 claims description 3
- 239000003368 psychostimulant agent Substances 0.000 claims description 3
- 229920003109 sodium starch glycolate Polymers 0.000 claims description 3
- 239000008109 sodium starch glycolate Substances 0.000 claims description 3
- 229940079832 sodium starch glycolate Drugs 0.000 claims description 3
- 229960003386 triazolam Drugs 0.000 claims description 3
- JOFWLTCLBGQGBO-UHFFFAOYSA-N triazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1Cl JOFWLTCLBGQGBO-UHFFFAOYSA-N 0.000 claims description 3
- KWTSXDURSIMDCE-MRVPVSSYSA-N (R)-amphetamine Chemical compound C[C@@H](N)CC1=CC=CC=C1 KWTSXDURSIMDCE-MRVPVSSYSA-N 0.000 claims description 2
- SVUOLADPCWQTTE-UHFFFAOYSA-N 1h-1,2-benzodiazepine Chemical compound N1N=CC=CC2=CC=CC=C12 SVUOLADPCWQTTE-UHFFFAOYSA-N 0.000 claims description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 claims description 2
- YFGHCGITMMYXAQ-UHFFFAOYSA-N 2-[(diphenylmethyl)sulfinyl]acetamide Chemical compound C=1C=CC=CC=1C(S(=O)CC(=O)N)C1=CC=CC=C1 YFGHCGITMMYXAQ-UHFFFAOYSA-N 0.000 claims description 2
- VKNASXZDGZNEDA-UHFFFAOYSA-N 2-cyanoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC#N VKNASXZDGZNEDA-UHFFFAOYSA-N 0.000 claims description 2
- SFPNZPQIIAJXGL-UHFFFAOYSA-N 2-ethoxyethyl 2-methylprop-2-enoate Chemical compound CCOCCOC(=O)C(C)=C SFPNZPQIIAJXGL-UHFFFAOYSA-N 0.000 claims description 2
- LYRSLMWAHYTKIG-UHFFFAOYSA-N 3-(1h-inden-1-yl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C2C3=CC=CC=C3C=C2)=C1 LYRSLMWAHYTKIG-UHFFFAOYSA-N 0.000 claims description 2
- GUJRSXAPGDDABA-NSHDSACASA-N 3-bromo-N-[[(2S)-1-ethyl-2-pyrrolidinyl]methyl]-2,6-dimethoxybenzamide Chemical compound CCN1CCC[C@H]1CNC(=O)C1=C(OC)C=CC(Br)=C1OC GUJRSXAPGDDABA-NSHDSACASA-N 0.000 claims description 2
- PMXMIIMHBWHSKN-UHFFFAOYSA-N 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]ethyl}-9-hydroxy-2-methyl-6,7,8,9-tetrahydropyrido[1,2-a]pyrimidin-4-one Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCC(O)C4=NC=3C)=NOC2=C1 PMXMIIMHBWHSKN-UHFFFAOYSA-N 0.000 claims description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 claims description 2
- CEUORZQYGODEFX-UHFFFAOYSA-N Aripirazole Chemical compound ClC1=CC=CC(N2CCN(CCCCOC=3C=C4NC(=O)CCC4=CC=3)CC2)=C1Cl CEUORZQYGODEFX-UHFFFAOYSA-N 0.000 claims description 2
- 241000416162 Astragalus gummifer Species 0.000 claims description 2
- 229920000623 Cellulose acetate phthalate Polymers 0.000 claims description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 claims description 2
- 229920002284 Cellulose triacetate Polymers 0.000 claims description 2
- 229920002785 Croscarmellose sodium Polymers 0.000 claims description 2
- 244000303965 Cyamopsis psoralioides Species 0.000 claims description 2
- IJVCSMSMFSCRME-KBQPJGBKSA-N Dihydromorphine Chemical compound O([C@H]1[C@H](CC[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O IJVCSMSMFSCRME-KBQPJGBKSA-N 0.000 claims description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 claims description 2
- 240000007472 Leucaena leucocephala Species 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- DUGOZIWVEXMGBE-UHFFFAOYSA-N Methylphenidate Chemical compound C=1C=CC=CC=1C(C(=O)OC)C1CCCCN1 DUGOZIWVEXMGBE-UHFFFAOYSA-N 0.000 claims description 2
- 235000015125 Sterculia urens Nutrition 0.000 claims description 2
- 240000001058 Sterculia urens Species 0.000 claims description 2
- 229920001615 Tragacanth Polymers 0.000 claims description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 claims description 2
- 229940047812 adderall Drugs 0.000 claims description 2
- 229920003144 amino alkyl methacrylate copolymer Polymers 0.000 claims description 2
- 229960004372 aripiprazole Drugs 0.000 claims description 2
- 235000013871 bee wax Nutrition 0.000 claims description 2
- 239000012166 beeswax Substances 0.000 claims description 2
- 229940092738 beeswax Drugs 0.000 claims description 2
- 229960001736 buprenorphine Drugs 0.000 claims description 2
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 claims description 2
- FFSAXUULYPJSKH-UHFFFAOYSA-N butyrophenone Chemical class CCCC(=O)C1=CC=CC=C1 FFSAXUULYPJSKH-UHFFFAOYSA-N 0.000 claims description 2
- 239000003557 cannabinoid Substances 0.000 claims description 2
- 229930003827 cannabinoid Natural products 0.000 claims description 2
- 229940065144 cannabinoids Drugs 0.000 claims description 2
- 239000004203 carnauba wax Substances 0.000 claims description 2
- 235000013869 carnauba wax Nutrition 0.000 claims description 2
- 229940082483 carnauba wax Drugs 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 claims description 2
- 229940081734 cellulose acetate phthalate Drugs 0.000 claims description 2
- 229960000541 cetyl alcohol Drugs 0.000 claims description 2
- 229960003120 clonazepam Drugs 0.000 claims description 2
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 claims description 2
- 229960004170 clozapine Drugs 0.000 claims description 2
- QZUDBNBUXVUHMW-UHFFFAOYSA-N clozapine Chemical compound C1CN(C)CCN1C1=NC2=CC(Cl)=CC=C2NC2=CC=CC=C12 QZUDBNBUXVUHMW-UHFFFAOYSA-N 0.000 claims description 2
- 229960004126 codeine Drugs 0.000 claims description 2
- 229960001681 croscarmellose sodium Drugs 0.000 claims description 2
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 claims description 2
- JURKNVYFZMSNLP-UHFFFAOYSA-N cyclobenzaprine Chemical group C1=CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 JURKNVYFZMSNLP-UHFFFAOYSA-N 0.000 claims description 2
- 229960003572 cyclobenzaprine Drugs 0.000 claims description 2
- 229960000632 dexamfetamine Drugs 0.000 claims description 2
- RBOXVHNMENFORY-DNJOTXNNSA-N dihydrocodeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC RBOXVHNMENFORY-DNJOTXNNSA-N 0.000 claims description 2
- 229960000920 dihydrocodeine Drugs 0.000 claims description 2
- 229960002336 estazolam Drugs 0.000 claims description 2
- CDCHDCWJMGXXRH-UHFFFAOYSA-N estazolam Chemical compound C=1C(Cl)=CC=C(N2C=NN=C2CN=2)C=1C=2C1=CC=CC=C1 CDCHDCWJMGXXRH-UHFFFAOYSA-N 0.000 claims description 2
- 229960001578 eszopiclone Drugs 0.000 claims description 2
- GBBSUAFBMRNDJC-INIZCTEOSA-N eszopiclone Chemical compound C1CN(C)CCN1C(=O)O[C@H]1C2=NC=CN=C2C(=O)N1C1=CC=C(Cl)C=N1 GBBSUAFBMRNDJC-INIZCTEOSA-N 0.000 claims description 2
- 150000002191 fatty alcohols Chemical class 0.000 claims description 2
- 239000007903 gelatin capsule Substances 0.000 claims description 2
- 229950005223 levamfetamine Drugs 0.000 claims description 2
- 238000002483 medication Methods 0.000 claims description 2
- 229920003145 methacrylic acid copolymer Polymers 0.000 claims description 2
- 229960001344 methylphenidate Drugs 0.000 claims description 2
- 239000004200 microcrystalline wax Substances 0.000 claims description 2
- 235000019808 microcrystalline wax Nutrition 0.000 claims description 2
- 229960001165 modafinil Drugs 0.000 claims description 2
- 229960005017 olanzapine Drugs 0.000 claims description 2
- KVWDHTXUZHCGIO-UHFFFAOYSA-N olanzapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2NC2=C1C=C(C)S2 KVWDHTXUZHCGIO-UHFFFAOYSA-N 0.000 claims description 2
- 239000003401 opiate antagonist Substances 0.000 claims description 2
- 229960001057 paliperidone Drugs 0.000 claims description 2
- 239000006187 pill Substances 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 229960003448 remoxipride Drugs 0.000 claims description 2
- 229960001534 risperidone Drugs 0.000 claims description 2
- RAPZEAPATHNIPO-UHFFFAOYSA-N risperidone Chemical compound FC1=CC=C2C(C3CCN(CC3)CCC=3C(=O)N4CCCCC4=NC=3C)=NOC2=C1 RAPZEAPATHNIPO-UHFFFAOYSA-N 0.000 claims description 2
- 125000003696 stearoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 239000000829 suppository Substances 0.000 claims description 2
- 235000010487 tragacanth Nutrition 0.000 claims description 2
- 239000000196 tragacanth Substances 0.000 claims description 2
- 229940116362 tragacanth Drugs 0.000 claims description 2
- 229960004010 zaleplon Drugs 0.000 claims description 2
- HUNXMJYCHXQEGX-UHFFFAOYSA-N zaleplon Chemical compound CCN(C(C)=O)C1=CC=CC(C=2N3N=CC(=C3N=CC=2)C#N)=C1 HUNXMJYCHXQEGX-UHFFFAOYSA-N 0.000 claims description 2
- 229960000607 ziprasidone Drugs 0.000 claims description 2
- MVWVFYHBGMAFLY-UHFFFAOYSA-N ziprasidone Chemical compound C1=CC=C2C(N3CCN(CC3)CCC3=CC=4CC(=O)NC=4C=C3Cl)=NSC2=C1 MVWVFYHBGMAFLY-UHFFFAOYSA-N 0.000 claims description 2
- 230000003444 anaesthetic effect Effects 0.000 claims 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims 2
- 229940099112 cornstarch Drugs 0.000 claims 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 claims 1
- 229940114937 microcrystalline wax Drugs 0.000 claims 1
- 239000000178 monomer Substances 0.000 claims 1
- 239000006186 oral dosage form Substances 0.000 abstract description 13
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 304
- 239000003826 tablet Substances 0.000 description 205
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 163
- 235000019359 magnesium stearate Nutrition 0.000 description 152
- 239000008187 granular material Substances 0.000 description 150
- 239000000203 mixture Substances 0.000 description 146
- 239000010410 layer Substances 0.000 description 119
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 98
- 229920003149 Eudragit® E 100 Polymers 0.000 description 97
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 96
- NEDGUIRITORSKL-UHFFFAOYSA-N butyl 2-methylprop-2-enoate;2-(dimethylamino)ethyl 2-methylprop-2-enoate;methyl 2-methylprop-2-enoate Chemical compound COC(=O)C(C)=C.CCCCOC(=O)C(C)=C.CN(C)CCOC(=O)C(C)=C NEDGUIRITORSKL-UHFFFAOYSA-N 0.000 description 96
- 229930195725 Mannitol Natural products 0.000 description 94
- 239000000594 mannitol Substances 0.000 description 94
- 235000010355 mannitol Nutrition 0.000 description 94
- 229960001855 mannitol Drugs 0.000 description 94
- 239000002904 solvent Substances 0.000 description 93
- VDPLLINNMXFNQX-UHFFFAOYSA-N (1-aminocyclohexyl)methanol Chemical compound OCC1(N)CCCCC1 VDPLLINNMXFNQX-UHFFFAOYSA-N 0.000 description 85
- 239000010408 film Substances 0.000 description 85
- 229960002764 hydrocodone bitartrate Drugs 0.000 description 85
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 80
- 239000007931 coated granule Substances 0.000 description 70
- 229960005489 paracetamol Drugs 0.000 description 69
- 239000007916 tablet composition Substances 0.000 description 69
- 229960003943 hypromellose Drugs 0.000 description 61
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 54
- 235000017557 sodium bicarbonate Nutrition 0.000 description 49
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 49
- 239000000546 pharmaceutical excipient Substances 0.000 description 45
- 230000008569 process Effects 0.000 description 43
- 239000000945 filler Substances 0.000 description 39
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 38
- 208000029618 autoimmune pulmonary alveolar proteinosis Diseases 0.000 description 38
- 239000011248 coating agent Substances 0.000 description 37
- 238000000576 coating method Methods 0.000 description 37
- 239000012530 fluid Substances 0.000 description 34
- 229920003125 hypromellose 2910 Polymers 0.000 description 34
- 229940031672 hypromellose 2910 Drugs 0.000 description 34
- 239000000243 solution Substances 0.000 description 31
- GQIVTWIJJVAWQR-DANDVKJOSA-N (4r,4ar,7ar,12bs)-9-methoxy-3-methyl-1,2,4,4a,5,6,7a,13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinoline-7-one;(2r,3r)-2,3-dihydroxybutanedioic acid;n-(4-hydroxyphenyl)acetamide Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.CC(=O)NC1=CC=C(O)C=C1.C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC GQIVTWIJJVAWQR-DANDVKJOSA-N 0.000 description 29
- 238000005469 granulation Methods 0.000 description 29
- 230000003179 granulation Effects 0.000 description 29
- BQNSLJQRJAJITR-UHFFFAOYSA-N 1,1,2-trichloro-1,2-difluoroethane Chemical compound FC(Cl)C(F)(Cl)Cl BQNSLJQRJAJITR-UHFFFAOYSA-N 0.000 description 26
- 239000008202 granule composition Substances 0.000 description 26
- 229960003617 oxycodone hydrochloride Drugs 0.000 description 26
- 239000000463 material Substances 0.000 description 22
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 20
- 239000004615 ingredient Substances 0.000 description 20
- DDBREPKUVSBGFI-UHFFFAOYSA-N phenobarbital Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NC(=O)NC1=O DDBREPKUVSBGFI-UHFFFAOYSA-N 0.000 description 19
- 229960002695 phenobarbital Drugs 0.000 description 19
- 238000009472 formulation Methods 0.000 description 17
- ABFPKTQEQNICFT-UHFFFAOYSA-M 2-chloro-1-methylpyridin-1-ium;iodide Chemical compound [I-].C[N+]1=CC=CC=C1Cl ABFPKTQEQNICFT-UHFFFAOYSA-M 0.000 description 16
- 238000004090 dissolution Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 16
- 229960005197 quetiapine fumarate Drugs 0.000 description 16
- 239000007921 spray Substances 0.000 description 16
- 238000002156 mixing Methods 0.000 description 15
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- 230000037406 food intake Effects 0.000 description 13
- 239000008213 purified water Substances 0.000 description 13
- 238000007906 compression Methods 0.000 description 12
- 238000000227 grinding Methods 0.000 description 12
- 229920001983 poloxamer Polymers 0.000 description 12
- 210000002784 stomach Anatomy 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000001035 drying Methods 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- 230000001476 alcoholic effect Effects 0.000 description 10
- 229940035676 analgesics Drugs 0.000 description 10
- 235000010493 xanthan gum Nutrition 0.000 description 10
- 239000000230 xanthan gum Substances 0.000 description 10
- 229920001285 xanthan gum Polymers 0.000 description 10
- 229940082509 xanthan gum Drugs 0.000 description 10
- DKSZLDSPXIWGFO-BLOJGBSASA-N (4r,4ar,7s,7ar,12bs)-9-methoxy-3-methyl-2,4,4a,7,7a,13-hexahydro-1h-4,12-methanobenzofuro[3,2-e]isoquinoline-7-ol;phosphoric acid;hydrate Chemical compound O.OP(O)(O)=O.OP(O)(O)=O.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC.C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC DKSZLDSPXIWGFO-BLOJGBSASA-N 0.000 description 9
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 9
- 239000000730 antalgic agent Substances 0.000 description 9
- 229960004415 codeine phosphate Drugs 0.000 description 9
- JUMYIBMBTDDLNG-OJERSXHUSA-N hydron;methyl (2r)-2-phenyl-2-[(2r)-piperidin-2-yl]acetate;chloride Chemical compound Cl.C([C@@H]1[C@H](C(=O)OC)C=2C=CC=CC=2)CCCN1 JUMYIBMBTDDLNG-OJERSXHUSA-N 0.000 description 9
- 229960001033 methylphenidate hydrochloride Drugs 0.000 description 9
- 238000005549 size reduction Methods 0.000 description 9
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 9
- DMBUODUULYCPAK-UHFFFAOYSA-N 1,3-bis(docosanoyloxy)propan-2-yl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCCCCCC DMBUODUULYCPAK-UHFFFAOYSA-N 0.000 description 8
- 241000283690 Bos taurus Species 0.000 description 8
- 239000004141 Sodium laurylsulphate Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 239000005557 antagonist Substances 0.000 description 8
- 229950011318 cannabidiol Drugs 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000003086 colorant Substances 0.000 description 8
- 238000000605 extraction Methods 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 229940069328 povidone Drugs 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- XWSCOGPKWVNQSV-UHFFFAOYSA-N 5-bromo-2,3-dichloropyridine Chemical compound ClC1=CC(Br)=CN=C1Cl XWSCOGPKWVNQSV-UHFFFAOYSA-N 0.000 description 6
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 6
- 239000003925 fat Substances 0.000 description 6
- 239000008101 lactose Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- GRVOTVYEFDAHCL-RTSZDRIGSA-N morphine sulfate pentahydrate Chemical compound O.O.O.O.O.OS(O)(=O)=O.O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O.O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O GRVOTVYEFDAHCL-RTSZDRIGSA-N 0.000 description 6
- 229940005483 opioid analgesics Drugs 0.000 description 6
- 239000012086 standard solution Substances 0.000 description 6
- 229960005111 zolpidem tartrate Drugs 0.000 description 6
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 5
- DYUTXEVRMPFGTH-UHFFFAOYSA-N 4-(2,5-dimethylphenyl)-5-methyl-1,3-thiazol-2-amine Chemical compound S1C(N)=NC(C=2C(=CC=C(C)C=2)C)=C1C DYUTXEVRMPFGTH-UHFFFAOYSA-N 0.000 description 5
- BCGJBQBWUGVESK-KCTCKCTRSA-N Oxymorphone hydrochloride Chemical compound Cl.O([C@H]1C(CC[C@]23O)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BCGJBQBWUGVESK-KCTCKCTRSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 210000001035 gastrointestinal tract Anatomy 0.000 description 5
- 229960002738 hydromorphone hydrochloride Drugs 0.000 description 5
- 229960002532 methamphetamine hydrochloride Drugs 0.000 description 5
- 230000003533 narcotic effect Effects 0.000 description 5
- 229960005374 oxymorphone hydrochloride Drugs 0.000 description 5
- 239000003002 pH adjusting agent Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 235000019759 Maize starch Nutrition 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 229940005530 anxiolytics Drugs 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- TWXDDNPPQUTEOV-FVGYRXGTSA-N methamphetamine hydrochloride Chemical compound Cl.CN[C@@H](C)CC1=CC=CC=C1 TWXDDNPPQUTEOV-FVGYRXGTSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000003637 steroidlike Effects 0.000 description 4
- 239000000021 stimulant Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- VHKVKWTWHZUFIA-DGOKBZBKSA-N (2s)-1-phenylpropan-2-amine;(2s,3s,4s,5r)-2,3,4,5-tetrahydroxyhexanedioic acid Chemical compound C[C@H](N)CC1=CC=CC=C1.OC(=O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O VHKVKWTWHZUFIA-DGOKBZBKSA-N 0.000 description 3
- PYHRZPFZZDCOPH-QXGOIDDHSA-N (S)-amphetamine sulfate Chemical compound [H+].[H+].[O-]S([O-])(=O)=O.C[C@H](N)CC1=CC=CC=C1.C[C@H](N)CC1=CC=CC=C1 PYHRZPFZZDCOPH-QXGOIDDHSA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-M 3-carboxy-2,3-dihydroxypropanoate Chemical compound OC(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-M 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 3
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- PYHRZPFZZDCOPH-UHFFFAOYSA-N amphetamine sulfate Chemical compound OS(O)(=O)=O.CC(N)CC1=CC=CC=C1.CC(N)CC1=CC=CC=C1 PYHRZPFZZDCOPH-UHFFFAOYSA-N 0.000 description 3
- 229940008238 amphetamine sulfate Drugs 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 3
- 229940052370 dextroamphetamine saccharate Drugs 0.000 description 3
- 229940119751 dextroamphetamine sulfate Drugs 0.000 description 3
- BYNVYIUJKRRNNC-UHFFFAOYSA-N docosanoic acid;propane-1,2,3-triol Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCCCCCCCC(O)=O BYNVYIUJKRRNNC-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- UFFSXJKVKBQEHC-UHFFFAOYSA-N heptafluorobutyric anhydride Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(=O)OC(=O)C(F)(F)C(F)(F)C(F)(F)F UFFSXJKVKBQEHC-UHFFFAOYSA-N 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 229940124531 pharmaceutical excipient Drugs 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920001592 potato starch Polymers 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- DAWXRFCLWKUCNS-MNTSKLTCSA-N (2s)-2-aminobutanedioic acid;1-phenylpropan-2-amine;hydrate Chemical compound O.OC(=O)[C@@H](N)CC(O)=O.CC(N)CC1=CC=CC=C1.CC(N)CC1=CC=CC=C1 DAWXRFCLWKUCNS-MNTSKLTCSA-N 0.000 description 2
- JVTIXNMXDLQEJE-UHFFFAOYSA-N 2-decanoyloxypropyl decanoate 2-octanoyloxypropyl octanoate Chemical compound C(CCCCCCC)(=O)OCC(C)OC(CCCCCCC)=O.C(=O)(CCCCCCCCC)OCC(C)OC(=O)CCCCCCCCC JVTIXNMXDLQEJE-UHFFFAOYSA-N 0.000 description 2
- NJXPYZHXZZCTNI-UHFFFAOYSA-N 3-aminobenzonitrile Chemical compound NC1=CC=CC(C#N)=C1 NJXPYZHXZZCTNI-UHFFFAOYSA-N 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 206010013654 Drug abuse Diseases 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- 239000004368 Modified starch Substances 0.000 description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 208000028017 Psychotic disease Diseases 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 description 2
- ZZHLYYDVIOPZBE-UHFFFAOYSA-N Trimeprazine Chemical compound C1=CC=C2N(CC(CN(C)C)C)C3=CC=CC=C3SC2=C1 ZZHLYYDVIOPZBE-UHFFFAOYSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- VIROVYVQCGLCII-UHFFFAOYSA-N amobarbital Chemical compound CC(C)CCC1(CC)C(=O)NC(=O)NC1=O VIROVYVQCGLCII-UHFFFAOYSA-N 0.000 description 2
- 229940030922 amphetamine aspartate monohydrate Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 239000000164 antipsychotic agent Substances 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 description 2
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- 239000003372 dissociative anesthetic agent Substances 0.000 description 2
- 229960004242 dronabinol Drugs 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 235000009973 maize Nutrition 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 2
- 235000019426 modified starch Nutrition 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 239000000825 pharmaceutical preparation Substances 0.000 description 2
- 229940127557 pharmaceutical product Drugs 0.000 description 2
- 229960000502 poloxamer Drugs 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229940001470 psychoactive drug Drugs 0.000 description 2
- 239000004089 psychotropic agent Substances 0.000 description 2
- 229940100486 rice starch Drugs 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 208000019116 sleep disease Diseases 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 208000011117 substance-related disease Diseases 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229940100445 wheat starch Drugs 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- YCHYFHOSGQABSW-RTBURBONSA-N (6ar,10ar)-1-hydroxy-6,6-dimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene-9-carboxylic acid Chemical compound C1C(C(O)=O)=CC[C@H]2C(C)(C)OC3=CC(C(C)(C)CCCCCC)=CC(O)=C3[C@@H]21 YCHYFHOSGQABSW-RTBURBONSA-N 0.000 description 1
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- GSTZHANFXAKPSE-MXTREEOPSA-N (e)-4-[2-[(1s,2s,5s)-6,6-dimethyl-4-oxo-2-bicyclo[3.1.1]heptanyl]-3-hydroxy-5-(2-methyloctan-2-yl)phenoxy]-4-oxobut-2-enoic acid Chemical compound OC(=O)/C=C/C(=O)OC1=CC(C(C)(C)CCCCCC)=CC(O)=C1[C@@H]1[C@@H](C2(C)C)C[C@@H]2C(=O)C1 GSTZHANFXAKPSE-MXTREEOPSA-N 0.000 description 1
- VIESAWGOYVNHLV-UHFFFAOYSA-N 1,3-dihydropyrrol-2-one Chemical compound O=C1CC=CN1 VIESAWGOYVNHLV-UHFFFAOYSA-N 0.000 description 1
- SXLHPBDGZHWKSX-UHFFFAOYSA-N 1-(5-amino-2-hydroxyphenyl)ethanone Chemical compound CC(=O)C1=CC(N)=CC=C1O SXLHPBDGZHWKSX-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical class CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- ZTGXAWYVTLUPDT-ZWKOTPCHSA-N 2-[(1r,6r)-3-methyl-6-prop-1-en-2-ylcyclohex-3-en-1-yl]-5-pentylbenzene-1,3-diol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-ZWKOTPCHSA-N 0.000 description 1
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical class C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 208000032529 Accidental overdose Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000107 Acetylated distarch adipate Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- XXGMIHXASFDFSM-UHFFFAOYSA-N Delta9-tetrahydrocannabinol Natural products CCCCCc1cc2OC(C)(C)C3CCC(=CC3c2c(O)c1O)C XXGMIHXASFDFSM-UHFFFAOYSA-N 0.000 description 1
- 206010012335 Dependence Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- CYQFCXCEBYINGO-DLBZAZTESA-N Dronabinol Natural products C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@H]21 CYQFCXCEBYINGO-DLBZAZTESA-N 0.000 description 1
- 229920003119 EUDRAGIT E PO Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920003151 Eudragit® RL polymer Polymers 0.000 description 1
- 229920003152 Eudragit® RS polymer Polymers 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- OZYUPQUCAUTOBP-QXAKKESOSA-N Levallorphan Chemical compound C([C@H]12)CCC[C@@]11CCN(CC=C)[C@@H]2CC2=CC=C(O)C=C21 OZYUPQUCAUTOBP-QXAKKESOSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920003093 Methocel™ K100 LV Polymers 0.000 description 1
- 229920003094 Methocel™ K4M Polymers 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- OJNSNSZTGUACNI-IBFUIWIBSA-N N[C@H](CC(O)=O)C(O)=O.CC(N)CC1=CC=CC=C1.CC(N)CC1=CC=CC=C1 Chemical compound N[C@H](CC(O)=O)C(O)=O.CC(N)CC1=CC=CC=C1.CC(N)CC1=CC=CC=C1 OJNSNSZTGUACNI-IBFUIWIBSA-N 0.000 description 1
- WJBLNOPPDWQMCH-MBPVOVBZSA-N Nalmefene Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=C)O)CC1)O)CC1CC1 WJBLNOPPDWQMCH-MBPVOVBZSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920003110 Primojel Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- XZAGBDSOKNXTDT-UHFFFAOYSA-N Sucrose monopalmitate Chemical compound CCCCCCCCCCCCCCCC(O)=O.OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(CO)O1 XZAGBDSOKNXTDT-UHFFFAOYSA-N 0.000 description 1
- QLYKJCMUNUWAGO-GAJHUEQPSA-N Taranabant Chemical compound N([C@@H](C)[C@@H](CC=1C=CC(Cl)=CC=1)C=1C=C(C=CC=1)C#N)C(=O)C(C)(C)OC1=CC=C(C(F)(F)F)C=N1 QLYKJCMUNUWAGO-GAJHUEQPSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 1
- KLBQZWRITKRQQV-UHFFFAOYSA-N Thioridazine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C KLBQZWRITKRQQV-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229960003790 alimemazine Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960001301 amobarbital Drugs 0.000 description 1
- 229940052327 amphetamine aspartate Drugs 0.000 description 1
- 239000012164 animal wax Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- UKMSUNONTOPOIO-UHFFFAOYSA-M behenate Chemical compound CCCCCCCCCCCCCCCCCCCCCC([O-])=O UKMSUNONTOPOIO-UHFFFAOYSA-M 0.000 description 1
- 229940116224 behenate Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical class O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- IFKLAQQSCNILHL-QHAWAJNXSA-N butorphanol Chemical compound N1([C@@H]2CC3=CC=C(C=C3[C@@]3([C@]2(CCCC3)O)CC1)O)CC1CCC1 IFKLAQQSCNILHL-QHAWAJNXSA-N 0.000 description 1
- 229960001113 butorphanol Drugs 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 229960001714 calcium phosphate Drugs 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940095672 calcium sulfate Drugs 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229940075508 carbomer homopolymer type b Drugs 0.000 description 1
- 229940049638 carbomer homopolymer type c Drugs 0.000 description 1
- 229940075510 carbopol 981 Drugs 0.000 description 1
- 229940084030 carboxymethylcellulose calcium Drugs 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- ZPEIMTDSQAKGNT-UHFFFAOYSA-N chlorpromazine Chemical compound C1=C(Cl)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 ZPEIMTDSQAKGNT-UHFFFAOYSA-N 0.000 description 1
- 229960001076 chlorpromazine Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001531 copovidone Polymers 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- SSQJFGMEZBFMNV-PMACEKPBSA-N dexanabinol Chemical compound C1C(CO)=CC[C@@H]2C(C)(C)OC3=CC(C(C)(C)CCCCCC)=CC(O)=C3[C@H]21 SSQJFGMEZBFMNV-PMACEKPBSA-N 0.000 description 1
- 229960004193 dextropropoxyphene Drugs 0.000 description 1
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 235000013804 distarch phosphate Nutrition 0.000 description 1
- 239000001245 distarch phosphate Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960000394 droperidol Drugs 0.000 description 1
- RMEDXOLNCUSCGS-UHFFFAOYSA-N droperidol Chemical compound C1=CC(F)=CC=C1C(=O)CCCN1CC=C(N2C(NC3=CC=CC=C32)=O)CC1 RMEDXOLNCUSCGS-UHFFFAOYSA-N 0.000 description 1
- 239000003107 drug analog Substances 0.000 description 1
- 239000003118 drug derivative Substances 0.000 description 1
- 238000009506 drug dissolution testing Methods 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- FSXVSUSRJXIJHB-UHFFFAOYSA-M ethyl prop-2-enoate;methyl 2-methylprop-2-enoate;trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CCOC(=O)C=C.COC(=O)C(C)=C.CC(=C)C(=O)OCC[N+](C)(C)C FSXVSUSRJXIJHB-UHFFFAOYSA-M 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 229960002428 fentanyl Drugs 0.000 description 1
- IVLVTNPOHDFFCJ-UHFFFAOYSA-N fentanyl citrate Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 IVLVTNPOHDFFCJ-UHFFFAOYSA-N 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000009477 fluid bed granulation Methods 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- FETSQPAGYOVAQU-UHFFFAOYSA-N glyceryl palmitostearate Chemical compound OCC(O)CO.CCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O FETSQPAGYOVAQU-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 238000009478 high shear granulation Methods 0.000 description 1
- 239000000416 hydrocolloid Substances 0.000 description 1
- 239000001341 hydroxy propyl starch Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000013828 hydroxypropyl starch Nutrition 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002973 irritant agent Substances 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 229960000263 levallorphan Drugs 0.000 description 1
- MYWUZJCMWCOHBA-SECBINFHSA-N levmetamfetamine Chemical compound CN[C@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-SECBINFHSA-N 0.000 description 1
- 229940031703 low substituted hydroxypropyl cellulose Drugs 0.000 description 1
- 229960000423 loxapine Drugs 0.000 description 1
- XJGVXQDUIWGIRW-UHFFFAOYSA-N loxapine Chemical compound C1CN(C)CCN1C1=NC2=CC=CC=C2OC2=CC=C(Cl)C=C12 XJGVXQDUIWGIRW-UHFFFAOYSA-N 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229960001797 methadone Drugs 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 229960004715 morphine sulfate Drugs 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- GECBBEABIDMGGL-RTBURBONSA-N nabilone Chemical compound C1C(=O)CC[C@H]2C(C)(C)OC3=CC(C(C)(C)CCCCCC)=CC(O)=C3[C@@H]21 GECBBEABIDMGGL-RTBURBONSA-N 0.000 description 1
- 229960002967 nabilone Drugs 0.000 description 1
- 229960005297 nalmefene Drugs 0.000 description 1
- UZHSEJADLWPNLE-GRGSLBFTSA-N naloxone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(O)C2=C5[C@@]13CCN4CC=C UZHSEJADLWPNLE-GRGSLBFTSA-N 0.000 description 1
- 229960004127 naloxone Drugs 0.000 description 1
- DQCKKXVULJGBQN-XFWGSAIBSA-N naltrexone Chemical compound N1([C@@H]2CC3=CC=C(C=4O[C@@H]5[C@](C3=4)([C@]2(CCC5=O)O)CC1)O)CC1CC1 DQCKKXVULJGBQN-XFWGSAIBSA-N 0.000 description 1
- 229960003086 naltrexone Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000008388 non-ionic emulsifying wax Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940124636 opioid drug Drugs 0.000 description 1
- 239000012168 ouricury wax Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 229960000482 pethidine Drugs 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- WSDQIHATCCOMLH-UHFFFAOYSA-N phenyl n-(3,5-dichlorophenyl)carbamate Chemical compound ClC1=CC(Cl)=CC(NC(=O)OC=2C=CC=CC=2)=C1 WSDQIHATCCOMLH-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229940116317 potato starch Drugs 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 239000004170 rice bran wax Substances 0.000 description 1
- 235000019384 rice bran wax Nutrition 0.000 description 1
- JZCPYUJPEARBJL-UHFFFAOYSA-N rimonabant Chemical compound CC=1C(C(=O)NN2CCCCC2)=NN(C=2C(=CC(Cl)=CC=2)Cl)C=1C1=CC=C(Cl)C=C1 JZCPYUJPEARBJL-UHFFFAOYSA-N 0.000 description 1
- 229960003015 rimonabant Drugs 0.000 description 1
- 102220310434 rs764401457 Human genes 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229960002060 secobarbital Drugs 0.000 description 1
- KQPKPCNLIDLUMF-UHFFFAOYSA-N secobarbital Chemical compound CCCC(C)C1(CC=C)C(=O)NC(=O)NC1=O KQPKPCNLIDLUMF-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- XDLYMKFUPYZCMA-UHFFFAOYSA-M sodium;4-oct-1-enoxy-4-oxobutanoate Chemical compound [Na+].CCCCCCC=COC(=O)CCC([O-])=O XDLYMKFUPYZCMA-UHFFFAOYSA-M 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940100515 sorbitan Drugs 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229950005022 taranabant Drugs 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960003188 temazepam Drugs 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229960002784 thioridazine Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229960004380 tramadol Drugs 0.000 description 1
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2077—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets
- A61K9/2081—Tablets comprising drug-containing microparticles in a substantial amount of supporting matrix; Multiparticulate tablets with microcapsules or coated microparticles according to A61K9/50
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/485—Morphinan derivatives, e.g. morphine, codeine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/13—Amines
- A61K31/135—Amines having aromatic rings, e.g. ketamine, nortriptyline
- A61K31/137—Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/192—Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4402—Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 2, e.g. pheniramine, bisacodyl
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4458—Non condensed piperidines, e.g. piperocaine only substituted in position 2, e.g. methylphenidate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/513—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
- A61K31/515—Barbituric acids; Derivatives thereof, e.g. sodium pentobarbital
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/551—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
- A61K31/5513—1,4-Benzodiazepines, e.g. diazepam or clozapine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/554—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/60—Salicylic acid; Derivatives thereof
- A61K31/612—Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid
- A61K31/616—Salicylic acid; Derivatives thereof having the hydroxy group in position 2 esterified, e.g. salicylsulfuric acid by carboxylic acids, e.g. acetylsalicylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/167—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
- A61K9/1676—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface having a drug-free core with discrete complete coating layer containing drug
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2009—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2013—Organic compounds, e.g. phospholipids, fats
- A61K9/2018—Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2027—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/205—Polysaccharides, e.g. alginate, gums; Cyclodextrin
- A61K9/2054—Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2004—Excipients; Inactive ingredients
- A61K9/2022—Organic macromolecular compounds
- A61K9/2063—Proteins, e.g. gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5015—Organic compounds, e.g. fats, sugars
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5026—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5031—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
- A61K9/5042—Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
- A61K9/5047—Cellulose ethers containing no ester groups, e.g. hydroxypropyl methylcellulose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5073—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings
- A61K9/5078—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals having two or more different coatings optionally including drug-containing subcoatings with drug-free core
Definitions
- the present invention relates to the field of oral dosage forms that contain abuse-deterrent features, in particular including immediate release dosage forms that contain a drug that is commonly susceptible to abuse.
- Pharmaceutical products including both prescription and over-the-counter pharmaceutical products, while useful for improving health of a person in need, are also susceptible to intentional and unintentional abuse and overdosing.
- Examples of commonly abused active pharmaceutical ingredients include psychoactive drugs, anxiolytics, sedative hypnotics, stimulants, depressants, and analgesics such as narcotic analgesics, among others.
- a complete list of specific drug compounds that are commonly abused would be lengthy; a short listing of some classes of drugs commonly abused includes opioids and morphine derivatives, barbiturates, amphetamines, ketamine, and other drugs that can cause psychological or physical dependence.
- Some common techniques for intentionally abusing a drug begin with an abuser obtaining a solid dosage form such as an orally administered tablet or capsule, and crushing the solid dosage form into a powder.
- the powder may be administered by an abuser by nasal insufflation (i.e., “snorting”) to introduce the drug to the abuser's bloodstream intranasally.
- the crushed dosage form may be combined with a solvent that is capable of dissolving the drug (active pharmaceutical ingredient, or “API”), and the solvent with the dissolved drug may be injected directly into an abuser's bloodstream.
- an abuser might simply ingest multiple units (e.g., tablets) of the dosage form together, e.g., simultaneously. Each one of the multiple dosage form units—immediately releases an amount of drug to produce a short-term concentration spike of the drug in the user's bloodstream and a desired “high” in the user.
- the pharmaceutical industry has identified various mechanisms of adapting drug compositions and oral dosage forms that can be useful to discourage abuse of oral dosage forms.
- Pharmaceutical companies have studied dosage forms that contain a nasal irritant or an effervescent agent, which can cause irritation or pain in a nasal passage if the dosage form is crushed and then snorted, thus discouraging abuse by nasal insufflation.
- Another possible abuse deterrent may be addition of an emetic agent which can deter abuse by causing emesis on ingestion of multiple doses.
- Another abuse deterrent involves adding an antagonist of an API to a dosage form that will substantially block the effect of the drug.
- the following description relates to oral dosage forms that are useful for immediate release of an active pharmaceutical ingredient or “API.”
- the dosage form can be designed to release the API as desired in an immediate release dosage form, and can also include one or a combination of feature that will prevent or deter abuse of the API.
- the abuse deterrent features described herein can be included singly or in any combination in an immediate release dosage form.
- a dosage form as described can include a gelling polymer to prevent or compromise abuse practices wherein the dosage form is crushed and then combined with a small amount of a solvent to produce a liquid composition that contains a concentrated amount of API and that can be delivered to an abuser using a syringe.
- the gelling polymer can be any polymer useful to achieve this functionality, and can be placed in the dosage form at any location to allow the gelling polymer to perform as described and still allow immediate release of the API.
- a gelling polymer can be included in a core of a coated of core-shell particle or in a matrix of a dosage form that suspends the core-shell particles.
- the core may contain any amount of gelling polymer, such as from 0 to 100 percent gelling polymer based on a total weight of the core.
- the core in a core-shell particle may comprise a filler, e.g., up to 100 percent filler, such as a sugar sphere or microcrystalline cellulose sphere (up to 100 percent microcrystalline cellulose spheres such as those available under the trade name Celphere®).
- Another type of abuse deterrent feature can be a wax that alone or with other ingredients, e.g., the gelling polymer, is effective in compromising abuse practices wherein a dosage form is crushed and combined with a solvent to produce a liquid composition that can be abused by nasal insufflation or delivered to an abuser using a syringe.
- the wax can additionally inhibit or prevent an abuser from grinding the dosage form into a powder because upon grinding the wax will smear as opposed to fracturing or powdering.
- wax can be included in a dosage form at any location that allows the wax to function as an abuse deterrent feature while not interfering with an immediate release profile of the API.
- a wax can be included in a core of a coated particle.
- a core may contain any amount of wax, such as from 0 to 100 percent wax based on a total weight of the core, such as up to 50, 75, or 80 weight percent wax based on a total weight of the core.
- Still another type of abuse deterrent feature can be a filler or binder that alone or in combination with other ingredients can compromise abuse practices wherein a dosage form is being crushed and combined with a small amount of a solvent to produce a liquid composition that can be delivered to an abuser using a syringe.
- the filler or binder can inhibit or prevent an abuser from grinding the dosage form into a powder because upon grinding, the polymeric filler or binder will smear as opposed to fracturing or powdering.
- the filler or binder can be included in a dosage form in any manner and location that allows the filler or binder to function as an abuse deterrent feature while not interfering with an immediate release profile of the API.
- a filler or binder can be included in a core of a coated particle.
- a core may contain any amount of polymeric filler or binder such as from 0 to 100 percent filler or binder on a total weight of the core, or up to 50, 75, or 80 weight percent filler or binder based on a total weight of the core.
- Yet another type of abuse deterrent feature can be a film layer that surrounds or covers API in a dosage form and that is optionally resistant to being dissolved by one or more of the solvents commonly used by abusers to dissolve an API for injection, including water and C 1 -C 4 alcohols such as ethanol, methanol, and mixtures thereof.
- the film layer may be prepared from any film material that is disposed as a continuous layer on a coated particle at a location to enclose and surround the API.
- Examples of film layers can optionally and preferably provide properties of a solvent-resistant film, which is a film that is slow or difficult to dissolve in a limited or small volume of one the solvents commonly used by abusers to dissolve API of a dosage form.
- an abuser may grind the dosage form and combine the ground dosage form with a solvent (as described) in an attempt to produce a solution that contains the concentrated API and the solvent, and that may be efficiently injected or snorted.
- a solvent as described
- a solvent-resistant film layer that surrounds API of a dosage form can prevent an abuser from easily accessing and so manipulating the API.
- an immediate release dosage form can include these features in a coated particle, such as a core-shell particle.
- An exemplary core-shell particle can include a core and one or more layers surrounding the core.
- the API may be included in the core, or in one or more layers surrounding the core, or in both the core and one or more layers surrounding the core.
- the core can include any one or more of: a gelling polymer, wax, binder, or filler, alone or in combination. Alternately, the core may comprise a microcrystalline cellulose or sugar sphere.
- a film layer may surround and enclose the core, or an API-containing layer that is disposed around the core.
- the film layer may preferably be a solvent-resistant film in the form of a continuous coating that covers the core, which contains API, or that covers an API-containing layer or coating disposed around the core.
- a coated particle as described herein can be useful in a dosage form that includes one or more optional abuse deterrent features, and a matrix such as a compressed matrix that is formed to allow for immediate release of the API present in the coated particles.
- An exemplary matrix composition may comprise additional gelling polymer, disintegrant, or both additional gelling polymer and disintegrant.
- additional gelling polymer as used above means an amount of gelling polymer that is in addition to an amount of gelling polymer present in the coated particles.
- the additional gelling polymer may be the same or different in nature, chemistry, molecular weight, etc., as compared to the gelling polymer that is included in the coated particles.
- a disintegrant as a component of the matrix may be useful to facilitate release of the API of the dosage form, e.g., API present in the coated particles.
- the active pharmaceutical ingredient included in the dosage form, especially in the coated particle surrounded by a film layer can be any active pharmaceutical ingredient desired to be administered orally, and may in particular be a type of active pharmaceutical ingredient that is commonly susceptible to abuse.
- active pharmaceutical ingredients that are considered to be commonly susceptible to abuse include psychoactive drugs, tranquilizers, sedative hypnotics, anxiolytics, stimulants, depressants, and narcotic analgesics, among others.
- Certain more specific classes of drugs commonly abused includes opioids, barbiturates, benzodiadepines, amphetamines, as well as many other drugs that are known to cause psychological or physical dependence.
- Dosage forms of the present description can be useful as immediate release dosage forms, and may also include abuse deterrent features as described.
- the abuse deterrent features can discourage or prevent abuse by nasal insufflation, by injection, and can also be effective to prevent or significantly limit the success of abuse by the common methods (especially with immediate release oral dosage forms) of orally taking multiple dosage form units together.
- the final mode of abuse (sometimes referred to herein as “multi-tablet dosing”) is often particularly difficult to deter, especially in immediate release oral dosage forms, making these described dosage forms particularly useful as abuse-resistant oral immediate release dosage forms.
- Embodiments of the described dosage forms can be effective in the absence of other types of abuse deterrent features such as nasal irritants, emetic agents, bittering agents, and effervescent agents, to inhibit nasal insufflation or other forms of abuse, or the inclusion of drug antagonists of the subject drug.
- abuse deterrent features such as nasal irritants, emetic agents, bittering agents, and effervescent agents
- the invention relates to an immediate release dosage form that includes core-shell particles.
- the core-shell particles include: an inner core containing a gelling polymer; at least one layer surrounding the core, the at least one layer including a film layer surrounding the core; and an active pharmaceutical ingredient.
- the active pharmaceutical ingredient is also surrounded by the film layer that surrounds the core.
- the invention in another aspect, relates to an immediate release dosage form that includes core-shell particles.
- the core-shell particles includes a core and an active pharmaceutical layer surrounding the core.
- the active pharmaceutical layer contains an active pharmaceutical ingredient.
- the core contains less than 5 weight percent of a total amount of the active pharmaceutical ingredient in the core-shell particles.
- the invention in yet another aspect relates to an immediate release dosage form that contains core-shell particles.
- the core-shell particles include: a core and an active pharmaceutical ingredient.
- the dosage form further includes a matrix.
- the matrix includes disintegrant and an additional amount of gelling polymer.
- FIGS. 1A , 1 B, and 1 C illustrate embodiments of core-shell particles as described, in cross section.
- FIGS. 2A and 2B illustrate embodiments of core-shell particles as described, in cross section.
- FIG. 3 is a perspective view of an embodiment of a dosage form as described.
- FIG. 4 shows a plot of Multiple Tablet oral Abuse Resistance (Supratherapeutic Dosing)—Dissolution of Hydrocodone Bitartrate in 0.1N HCl media as a function of time.
- FIG. 5 shows a plot of multiple tablet oral abuse resistance (supratherpeutic dosing)—dissolution of acetaminophen in 0.1N HCl media as a function of time.
- FIG. 6 shows a plot of multiple tablet oral abuse resistance (supratherapeutic dosing)—dissolution of hydrocodone bitartrate in 0.1N HCl media as a function of time.
- FIG. 7 shows a plot of multiple tablet oral abuse resistance (supratherpeutic dosing)—dissolution of acetaminophen in 0.1N HCl media as a function of time
- FIG. 8 shows a plot of multiple tablet oral abuse resistance (supratherapeutic dosing)—dissolution of hydrocodone bitartrate in 0.1N HCl media as a function of time.
- FIG. 9 shows a plot of multiple tablet oral abuse resistance (supratherpeutic dosing)—dissolution of acetaminophen in 0.1N HCl media as a function of time.
- the present description relates to immediate release dosage forms that include one or more abuse deterrent features for reducing the potential for a) parenteral abuse, b) abuse by nasal insufflation (“snorting”), and c) abuse by simultaneous oral ingestion of multiple oral dosage form units (tablets or capsules) of a drug.
- abuse deterrent features are achieved by preparing the dosage form to include certain structural features and certain ingredients that have now been determined to effectively prevent an abuser from realizing the intended biological effect of the drug abuse by using certain presently-common methods used to abuse the API.
- a dosage form prepared to contain one or more of the described abuse deterrent features, as a deterrent to abuse of one or more API that is commonly susceptible to abuse, can still be constructed to provide immediate release of the one or more API upon normal therapeutic use by oral ingestion.
- expressions such as “abuse deterrent” and “preventing” or “deterring” or “inhibiting” practices and processes associated with the abuse and overdose of drugs relate to features of the claimed formulations that provide significant physical and chemical impediments to these practices and processes.
- the objective in such deterrence includes both making abuse practices significantly more difficult to carry out, and making any product resulting from an attempt to carry out such abuse practices on the claimed formulations significantly less desirable, less profitable, and less abusable to the potential abuser.
- immediate release refers to a dosage form that upon oral ingestion by a human releases substantially all of a contained active pharmaceutical ingredient into a gastrointestinal tract for biological uptake in a short time.
- in vitro methods of measuring a release profile of a dosage form, for the purpose of determining whether a dosage form exhibits an immediate release or dissolution profile are known in the pharmaceutical arts.
- examples of dosage forms as described herein can be measured to be capable of releasing substantially all of a total amount of at least one type of active pharmaceutical ingredient (e.g., an API commonly susceptible to abuse) contained in the dosage form (e.g., at least 75, 80, or 90 weight percent of the total amount of the API in a dosage form) into a solution (e.g., acidic aqueous solution) of a suitable pH within 240 minutes, e.g., in less than 180 minutes, less than 90 minutes, or less than 60, 30, 15, or 5 minutes.
- a solution e.g., acidic aqueous solution
- a release profile of a dosage form of the present description may be measured by a method that exposes the dosage form to a volume of up to 900 milliliters (e.g., 300 milliliters, or 900 milliliters, based on various test methods) of hydrochloric acid (0.01 to 0.1N) (e.g., aqueous hydrochloric acid) at a pH of from 1 to 2, and at a temperature of 37 degrees Celsius.
- hydrochloric acid e.01 to 0.1N
- aqueous hydrochloric acid e.g., aqueous hydrochloric acid
- Dosage forms as described can be formulated to provide an immediate release profile of an API, and can also be prepared to include effective or advantageous abuse deterrent features that are effective to deter abuse of the same API (e.g., one that is commonly susceptible to abuse) that exhibits the immediate release profile.
- effective or advantageous abuse deterrent features that are effective to deter abuse of the same API (e.g., one that is commonly susceptible to abuse) that exhibits the immediate release profile.
- the combination of immediate release of an API with broad abuse resistance of the same API for multiple abuse modalities including multi-tablet dosing, as described herein, is not believed to be previously known.
- dosage forms as described herein can provide an immediate release profile of an API, and can at the same time include abuse deterrent features that provide general abuse deterrence or abuse resistance of the same API.
- the dosage forms can also be more specifically characterized as resistant to certain common methods of abuse, such as 1) abuse by injection (e.g., by steps that include grinding a dosage form and dissolving API of the dosage form), 2) abuse by nasal insufflation (e.g., also by grinding and optionally dissolving API of a dosage form), and 3) abuse by multi-tablet dosing by oral consumption, meaning simultaneous oral ingestion of multiple or excessive quantities of orally administered dosage forms such as tablets or capsules.
- the third mode of abuse, multi-tablet dosing is particularly common with immediate release dosage forms and is particularly difficult to defend against by design of a dosage form structure or by formulation. Accordingly, that the presently-described dosage forms can be effective to prevent or deter abuse (or even accidental overdose) by the mode of multi-tablet dosing can be a particularly useful feature of the dosage forms described herein.
- in vitro testing of exemplary dosage forms as described herein indicates that exemplary dosage forms provide deterrence against abuse by multi-tablet dosing. More specifically, in vitro testing of exemplary dosage forms was performed by conducting dissolution testing of one or more dosage forms (tablets) in 300 milliliters of 0.1NHCL maintained at 37 degrees Celsius using a 50 RPM paddle speed. See, Example 26 (a) and FIGS. 4 and 5 herein. As shown at FIGS. 4 , 5 , 6 , 7 , 8 and 9 , the amount (percentage per tablet) of API (opioid) or APAP (acetaminophen) released in the media is reduced with an increase in the number of tablets.
- API opioid
- APAP acetaminophen
- the tested dosage forms are effective to prevent increased levels of API uptake in an individual who would accidentally ingest multiple tablets, preventing or reducing the risk of an unintentional overdose of the API.
- the 1 tablet and 2 tablet dosage forms are as prepared in Example 3, infra
- the 5 tablet, 8 tablet, and 12 tablet dosage forms are as prepared in Example 5, infra.
- the tablets used in FIGS. 6 , 7 , 8 and 9 are as prepared as per Example 17.
- a dosage form as described can include one or more gelling polymers.
- a gelling polymer can act as an abuse deterrent feature by compromising abuse practices wherein an active pharmaceutical ingredient of a dosage form is being dissolved in a small volume of solvent or being accessible or easily isolatable if combined with solvent with the gelling polymer also present.
- a gelling polymer can also deter or prevent abuse of an API in a dosage form by increasing the viscosity of a combination of the ground dosage form with solvent (especially a “small volume” of solvent) to a viscosity that is sufficiently high to prevent the combination or the API from being taken up by and injected using a syringe.
- a preferred gelling polymer contained in a ground dosage form when exposed to a limited volume (or “small volume”) of solvent such as a C 1-4 alcohol (e.g., ethanol or methanol) or water, can form a non-injectable mass ranging from an insoluble mass, to a gel, to a viscous slurry, each of which exhibits a viscosity that substantially prevents either uptake by or injection from a needle of a hypodermic syringe.
- solvent such as a C 1-4 alcohol (e.g., ethanol or methanol) or water
- Suitable gelling polymers include one or a combination of polymers that, as part of a dosage form, upon contact of the dosage form with a small volume of solvent, will absorb the solvent and swell to form a viscous or semi-viscous substance that significantly reduces or minimizes the amount of free solvent that can contain an amount of a solubilized API and that can be drawn into a syringe.
- the gelled polymer can also reduce the overall amount of drug extractable with the solvent by entrapping the drug in a gel matrix.
- the gelling polymer can be present in the dosage form at a location and in an amount that together allow the gelling polymer to produce a viscous gel in the event of an abuser grinding the dosage form and combining the crushed dosage form with a solvent.
- the gelling polymer, as present in the dosage form will preferably not interfere with desired dissolution of the dosage form, the desired release (immediate release) of API from the dosage form, or the uptake of the API by a patient ingesting the intact immediate release dosage form for an intended therapeutic purpose.
- An exemplary location for the gelling polymer is in a coated particle that also includes active pharmaceutical ingredient, such as in a core or in a layer coated to surround the core; wherein an amount of active pharmaceutical ingredient is contained in either the core, or a layer coated to surround the core, or is contained in both.
- Another exemplary location is within a matrix used to form a compressed tablet, a capsule (e.g., a compressed capsule), a caplet, or another type of dosage form that contains a coated particle that contains active pharmaceutical ingredient.
- the gelling polymer can be present in a dosage form at any desired amount and at any portion of, or location in a dosage form structure.
- the amount of gelling polymer can be any useful amount, meaning an amount that can produce an abuse-resistant viscous mixture or gel if the dosage form is crushed, ground, powdered, etc., and mixed with solvent.
- a useful amount of total gelling polymer in a dosage form may be in a range from 0.5 to 90 weight percent gelling polymer based on a total weight of the dosage form, e.g., from 0.7 to 20, or 2 to 15 weight percent gelling polymer based on total weight of the dosage form.
- total gelling polymer can be present in one or more locations of the dosage form, to achieve the specified total amount, such as in a portion at a coated particle (e.g., core), a matrix (e.g., compressed matrix) structure that supports and contains the coated particles, or in both the coated particles and the matrix.
- a coated particle e.g., core
- a matrix e.g., compressed matrix
- a core (uncoated) of a core-shell particle can contain any useful amount of gelling polymer, such from 0 up to and including 100 percent gelling polymer in a core of a core-shell particle, e.g., from 10 to 95 weight percent gelling polymer based on a total weight of the core, such as from 40 to 85 or 50 to 75 weight percent gelling polymer based on total weight core.
- an amount of gelling polymer present in a core of a core shell polymer may be, e.g., in a range from 0.5 to 15 weight percent gelling polymer (present in the core) per total weight of the dosage form, such as from 1 to 10 weight percent gelling polymer (present in the core) per total weight dosage form.
- An amount of gelling polymer present in a matrix of a dosage form may be any desired amount, such as an amount in a range from 0.5 to 15 weight percent gelling polymer (as excipient in a matrix) based on a total weight of the dosage form, such as from 1 to 10 weight percent gelling polymer (present as excipient in a matrix) based on total weight dosage form.
- a useful gelling polymer can be any polymeric material that exhibits the ability to retain a significant fraction of adsorbed solvent in its molecular structure, e.g., the solvent being a solvent otherwise useful by an abuser to extract API from a dosage form or a crushed or powdered dosage form, the solvent for example being water or a C 1 to C 4 alcohol such as ethanol or methanol, etc.
- examples of gelling polymers include materials that can swell or expand to a very high degree when placed in contact with such a solvent. The swelling or expansion may cause the gelling polymer to experience from a two- to one-thousand-fold volume increase from a dry state.
- gelling polymers include swellable polymers sometimes referred to as osmopolymers or hydrogels.
- the gelling polymer may be non-cross-linked, lightly crosslinked, or highly crosslinked.
- the crosslinking may involve covalent or ionic bonds with the polymer possessing the ability to swell in the presence of a solvent, and when cross-linked will not dissolve in the solvent.
- a gelling polymer upon dissolution or dispersion in an aqueous solution or dispersion (e.g., water) at a concentration of 2% w/w (based on the dry material), creates a solution/dispersion with a viscosity of from about 100 to about 200,000 mPa ⁇ s (e.g., 4,000 to 175,000 mPa ⁇ s, and 4,000 to 50,000 mPa ⁇ s) as measured at 20 degrees Celsius (+/ ⁇ 0.2 degree Celsius) using the analysis method described in the USP 33 monograph for hypromellose (incorporated herein by reference).
- an aqueous solution or dispersion e.g., water
- a concentration of 2% w/w based on the dry material
- suitable gelling polymers include pharmaceutically acceptable polymers that undergo an increase in viscosity upon contact with a solvent, as described.
- Various examples of polymers are known to be useful in this manner, generally including natural and synthetic starches (i.e., modified or pregelatinized modified starch), natural and synthetic celluloses, acrylates, and polyalkylene oxides.
- natural starches include natural starches include corn starch, potato starch, rice starch, tapioca starch and wheat starch, hydroxypropyl starch such as hydroxypropyl corn starch, hydroxypropyl pea starch and hydropropyl potato starch (derivative of natural starch).
- Examples of synthetic starches include acetylated distarch adipate, waxy maize basis, acid-treated maize starch, acid-treated waxy maize starch, distarch phosphate, waxy maize basis, oxidized waxy maize starch, and sodium octenyl succinate starch.
- Examples of celluloses include carboxymethylcellulose calcium, carboxymethylcellulose sodium, ethycellulose, methylcellulose, cellulose ethers such as hydroxypropyl cellulose, hydroxyethylcellulose, hydroxyethylmethyl cellulose, hydroxypropyl methyl cellulose, carboxymethylcellulose sodium, and low substituted hydroxypropyl cellulose.
- Examples of acrylates include Eudragit RS, RL, NE, NM.
- Examples of polyalkylene oxides include polyethylene oxide such as POLYOX N10, N80, N60K, WSR-1105 LEO, or WSR-301 LEO, or WSR-303 LEO.
- suitable gelling polymers include polyethylene oxide, polyvinyl alcohol, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethylmethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, polyacrylic acid and polyvinyl carboxy polymers such as those commercially available under the trade name Carbopol®, and other high molecular weight polymers capable of attaining a viscosity level effective to prevent uptake in a syringe, if combined with a small volume of solvent as described.
- Suitable gelling polymers can include, if of sufficiently high molecular weight: ethylcellulose, cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate and cellulose triacetate, cellulose ether, cellulose ester, cellulose ester ether, cellulose; acrylic resins comprising copolymers synthesized from acrylic and methacrylic acid esters, for example acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, poly(methacrylic acid anhydride), and glycidyl methacrylate
- Exemplary gelling polymers can include natural polymers such as those derived from a plant or animal, as well as polymers prepared synthetically. Examples include polyhydroalkylcellulose having a molecular weight greater than 50,000; poly(hydroxy-alkylmethacrylate) having a molecular weight of from 5,000 to 5,000,000; poly(vinyl-pyrrolidone) having a molecular weight of from 100,000 to 3,000,000; anionic and cationic hydrogels; poly(electrolyte) complexes; poly(vinyl alcohol) having a low acetate residual; a swellable mixture of agar and carboxymethyl cellulose; a swellable composition comprising methyl cellulose mixed with a sparingly cross-linked agar; a polyether having a molecular weight of from 10,000 to 6,000,000; water-swellable copolymer produced by a dispersion of finely divided copolymer of maleic anhydride with styrene, ethylene, propylene, or
- polymers useful as a gelling polymer include pectin having a molecular weight ranging from 30,000 to 300,000; polysaccharides such as agar, acacia, karaya, tragacanth, algins and guar; polyacrylamides; water-swellable indene maleic anhydride polymers; Good-rite® polyacrylic acid having a molecular weight of 80,000 to 200,000; Polyox® polyethylene oxide polymers having a molecular weight of 100,000 to 7,000,000; starch graft copolymers; Aqua-Keep® acrylate polymers with water absorbability of 400 times its original weight; diesters of polyglucan; a mixture of cross-linked polyvinyl alcohol and poly(-vinyl-2-pyrrolidone); poly(ethylene glycol) having a molecular weight of 4,000 to 100,000.
- pectin having a molecular weight ranging from 30,000 to 300,000
- polysaccharides such as agar, acacia
- a gelling polymer may be, or may include, hydroxypropyl methyl cellulose (e.g., Hypromellose or HPMC), and hydroxy methyl cellulose, methyl cellulose, hydroxyethylmethyl cellulose, and sodium carboxymethyl cellulose.
- HPMC hydroxypropyl methyl cellulose
- HPMC Hypromellose
- hydroxy methyl cellulose methyl cellulose, hydroxyethylmethyl cellulose, and sodium carboxymethyl cellulose.
- the hydroxypropyl methyl cellulose can have a molecular weight ranging from 10,000 to 1,500,000.
- suitable, commercially available hydroxypropyl methylcellulose polymers include HPMC K100M, Methocel K100LV and Methocel K4M.
- a specific class of gelling polymer is the class of carbomer polymers, which are polymers derived from acrylic acid (e.g., acrylic acid homopolymers) and crosslinked with polyalcohol allyl ethers, e.g., crosslinked with polyalkenyl ethers of pentaerythritol or sucrose.
- Carbomer polymers are hydrophilic and are not substantially soluble in water. Rather, these polymers swell when dispersed in water forming a colloidal, mucilage-like dispersion.
- Carboxyl groups provided by acrylic acid residues of the polymer backbone are responsible for certain behavior of the polymers. Particles of this polymer can be viewed as a network structure of polymer chains interconnected by crosslinks.
- the structure can swell in water by up to one thousand times of an original (dry) volume (and ten times an original diameter of polymer particles) to form a gel when exposed to a pH environment above 4-6.
- the pKa of these polymers can be 6 ⁇ 0.5.
- carboxylate groups pendant from the polymer backbone can ionize at a pH above 6, producing a repulsion between the negatively-charged particles, which adds to the swelling of the polymer if exposed to solvent at this pH range.
- a dosage form as described herein can preferably include a pH adjuster in an amount and location within the dosage form to raise the pH of a carbomer polymer to at least 6, to substantially neutralize the carboxylate groups.
- Carbomer polymers are often referred to in the art using alternative terminology such as, for example, carbomer homopolymer, acrylic acid polymers, carbomera, Carbopol, carboxy polymethylene, carboxyvinyl polymer, Pemulen, polyacrylic acid, and poly(acrylic acid),
- the USP-NF lists three umbrella monographs i.e. for “carbomer copolymer,” for “carbomer homopolymer,” and for “carbomer interpolymer.”
- carbopol (carbomer) polymers that may be useful as a gelling polymer can have an average equivalent weight of 76 per carboxyl group.
- suitable commercially available carbomers include Carbopol® 934, 934P NF, Carbopol® 974P NF and Carbopol® 971P NF, Carbopol® 940, and Carbopol® 941, Carbopol® 71G, commercially available from Lubrizol. Examples of such polymers are described in U.S. Pat. Nos. 2,798,053 and 2,909,462, the entireties of which are incorporated herein by reference.
- a gelling polymer e.g., Carbopol®
- a gelling polymer can have a molecular weight and viscosity-increasing performance that will reduce or substantially inhibit an ability of an abuser to extract API from a combination of dosage form and a small volume of solvent, as described, while also being capable of being processed into a compressed dosage form.
- a gelling polymer can also be characterized by viscosity of a solution prepared from the gelling polymer.
- Product information for commercially available Carbopol® polymers reports that viscosities of different Carbopol® polymers are as follows:
- Viscosity specified Type of Carbomer (cP) Carbomer Homopolymer Type A 4,000-11,000 (compendial name for Carbopol 71G, Carbopol 971P and Carbopol 981) Carbomer Homopolymer Type B 25,000-45,000 (compendial name for Carbopol 934P, and Carbopol 934) Carbomer Homopolymer Type C 40,000-60,000 (compendial name for Carbopol 980) (Type A and Type B viscosities measured using a Brookfield RVT, 20 rpm, neutralized to pH 7.3-7.8, 0.5 weight percent mucilage, spindle #5.)
- xanthan gum polymers which includes natural polymers useful as hydrocolloids, and derived from fermentation of a carbohydrate.
- a molecular weight of a Xanthan gum may be approximately 1,000,000.
- Xanthan gum has been shown to provide particularly useful extraction resistance in a dosage form as described, and therefore may be preferred in dosage forms as described, especially if present in an amount of at least 2 or 3 weight percent based on a total weight of a dosage form.
- the dosage form may optionally include another abuse deterrent in the form of a wax, such as a wax/fat material as described in Applicant's co-pending United States patent application 2008/0311205, the entirety of which is incorporated herein by reference.
- the wax can be a solid wax material that is present in the dosage form at a location that inhibits an abuser from crushing, grinding, or otherwise forming the dosage form into a ground powder that might be abused by a nasal insufflation mode, or from which active pharmaceutical agent can be easily accessed and removed such as by dissolution or extraction using a solvent.
- the wax may be present in the dosage form at a location and in an amount to also not interfere with desired uptake of the active pharmaceutical ingredient by a patient upon oral ingestion, in an immediate release dosage form.
- An exemplary location is at a core of a core-shell particle, especially a core that also contains gelling polymer and that either may or may not contain active pharmaceutical ingredient.
- Wax located at a core of a particle e.g., a core-shell particle
- active pharmaceutical ingredient e.g., at a layer covering the core, or within the core
- the active ingredient is inhibited or prevented from becoming thereafter dissolved in a solvent such as water or otherwise efficiently accessed by an abuser.
- a core (uncoated) of a core-shell particle can contain any useful amount of wax, up to and including 100 percent wax, e.g., from 0.1 to 85 weight percent wax based on a total weight of the core, such as from 15 to 60 or 25 to 50 weight percent wax based on total weight core. More generally, a useful amount of wax in a dosage form (e.g., with the wax located in the coated particle, e.g., in the core) may be in a range from 0.05 to 15 weight percent wax based on total weight of a dosage form, e.g., from 0.1 to 10 or from 2 to 5 weight percent wax based on total weight of the dosage form.
- the wax may be a wax (e.g., fat) material that is generally hydrophobic and that may be either solid or liquid at room temperature, preferably solid at room temperature (25 degrees Celsius).
- Generally useful fats include those hydrophobic materials that are fatty acid-based compounds generally having a hydrophilic/lipophilic balance (HLB) of 6 or less, more preferably 4 or less, and most preferably 2 or less.
- HLB hydrophilic/lipophilic balance
- a fat can have any melting temperature, with preferred fats being solid at room temperature and having a melting point that is at least 30 degrees Celsius, e.g., at least 40 degrees Celsius, e.g., at least 50 degrees Celsius.
- Useful fats include fatty acids and fatty esters that may be substituted or unsubstituted, saturated or unsaturated, and that have a chain length of at least 10, 12, or 14 carbons.
- the esters may include a fatty acid group bound to any of an alcohol, glycol, or glycerol.
- glycercols for example, mono-, di-, and tri-fatty substituted glycerols can be useful as well as mixtures thereof.
- Suitable wax ingredients include fatty aced esters, glycerol fatty acid esters, fatty glyceride derivatives, waxes, and fatty alcohols such as, for example, glycerol behenate (a.k.a. glyceryl behenate, glycerin behenate, glycerol docosanoate) (e.g., COMPRITOL®), glycerol palmitostearate (PRECIROL®), glycerol monostearate, stearoyl macroglycerides (GELUCIRE® 50/13).
- glycerol behenate a.k.a. glyceryl behenate, glycerin behenate, glycerol docosanoate
- COMPRITOL® glycerol palmitostearate
- PRECIROL® glycerol monostearate
- stearoyl macroglycerides glycerol monostearate
- waxes more generally include insect and animal waxes, vegetable waxes, mineral waxes, petroleum waxes, and synthetic waxes; particularly examples include beeswax, carnauba wax, condelilla wax, montan wax, ouricury wax, rice-bran wax, jojoba wax, microcrystalline wax, cetyl ester wax, cetyl alcohol, anionic emulsifying wax, nonionic emulsifying wax and paraffin wax.
- the dosage form may optionally include another abuse deterrent in the form of a filler or binder material provided in a manner to compromising abuse practices wherein an abuser crushes, grinds, or otherwise forms the dosage form into a ground powder that might be abused by a nasal insufflation mode, or from which active pharmaceutical agent can be easily accessed and removed such as by dissolution or extraction using a solvent.
- another abuse deterrent in the form of a filler or binder material provided in a manner to compromising abuse practices wherein an abuser crushes, grinds, or otherwise forms the dosage form into a ground powder that might be abused by a nasal insufflation mode, or from which active pharmaceutical agent can be easily accessed and removed such as by dissolution or extraction using a solvent.
- the binder or filler may be present in the dosage form at a location and in an amount to also not interfere with desired uptake of the active pharmaceutical ingredient by a patient upon oral ingestion, in an immediate release dosage form.
- An exemplary location is at a core of a core-shell particle.
- Suitable filler or binder located at a core of a particle e.g., a core-shell particle
- active pharmaceutical ingredient e.g., at a layer covering the core, or within the core
- the active pharmaceutical ingredient is inhibiting or prevented from becoming thereafter dissolved in a solvent such as water or otherwise efficiently accessed by an abuser.
- filler or binder When present within a core or particle of a dosage form, e.g., at a core of a core-shell particle, filler or binder may be present in any useful amount, such from 0 up to and including 100 percent filler or binder (singly or in combination) in a core of a core-shell particle, e.g., from 10 to 95 weight percent filler or binder (singly or in combination) based on total weight of the core, such as from 40 to 85 or 50 to 75 weight percent based on total weight core.
- cores that contain high levels of filler include spherical particles that contain 100 percent sugar, and spherical particles that contain 100 percent microcrystalline cellulose.
- Inert spherical filler products such as these, having useful particle sizes, are commercially available under the trade name Celphere®, and under the trade name Suglets® (sugar spheres, also containing starch), including as follows: CELPHERE SCP-100 (Particle size ( ⁇ m) 75-212); CELPHERE SCP-102 (Particle size ( ⁇ m) 106-212); CELPHERE SCP-203 (Particle size ( ⁇ m) 150-300); CELPHERE SCP-305 (Particle size ( ⁇ m) 300-500); CELPHERE SCP-507 (Particle size ( ⁇ m) 500-710); CELPHERE SCP-708 (Particle size ( ⁇ m) 710-850).
- the particles sizes of these can be considered to be useful for any core as described herein, prepared of any single filler, gelling polymer, binder, any combination thereof, or any single or combination of materials combined with API.
- a film layer or coating as part of a core-shell particle that is located over and surrounds an API.
- the film layer can be any film layer capable of being applied as a film layer to core-shell particles, to surround API.
- the film layer may be prepared from and will include any pharmaceutically acceptable film forming polymer material, such as one or more of a binder (e.g.
- hydroxypropyl cellulose such as hydroxypropyl cellulose, poly(methyl methacrylates), ethyl cellulose, hydroxypropyl methyl cellulose, hydroxyl methyl cellulose, polyvinyl alcohol, and the like), a solvent-resistant layer, and a pH-sensitive layer (also sometimes referred to as a reverse enteric material or layer), e.g., Eudragit® RL.
- the film layer may include any one of these materials alone (e.g., a film layer may include 100 percent of a single one of these types of materials), or a film layer may include a combination of two or more of these types of materials.
- a solvent-resistant layer is a film layer that retards or prevent release of a drug in a solvent (e.g., one or more of water, ethanol, and methanol) while still allowing the drug to release normally in a gastrointestinal tract when ingested as an immediate release oral dosage form.
- a solvent e.g., one or more of water, ethanol, and methanol
- This type of abuse deterrent feature e.g., solvent-resistant film
- the solvent-resistant film can dissolve in a human gastrointestinal tract with sufficient rapidity to allow for an immediate release profile.
- this type of solvent-resistant film covers and encloses API of a core-shell particle and acts as a film barrier or retardant to prevent or retard access to the API by use of solvent.
- a solvent-resistant film is one that does not readily or immediately dissolve in a small volume of a solvent of the type often used by an abuser to dissolve an API, such as any one of water or a C 1 -C 4 alcohol such as ethanol or methanol.
- a “small volume” refers to an amount of such a solvent that can contain an amount of dissolved API that is sufficiently concentrated to be useful to an abuser to realize the intended biological effect of the drug abuse, and that is also capable of being administered for abuse of the API, e.g., a volume that can contain an amount (concentration) of API that is effective to achieve a desired “high” if administered by injection or nasal insufflation, the volume also being sufficiently small to allow the volume to be administered by injection or nasal insufflation.
- an API in the dosage form must be capable of being accessed and dissolved at sufficient concentration by an abuser without undue complication, into a “small volume” of solvent, which is a volume that can be administered by injection or by nasal insufflation.
- a “small volume” of solvent means 50 milliliters or less, or 20 milliliters or less, or 10 milliliters or less, or 5 milliliters or less (volumes which could be injected or used for nasal insufflation).
- a solvent-resistant film layer can be a film placed on a core-shell particle that is difficult to dissolve in a “small volume” of water or a C 1 -C 4 alcohol such as ethanol or methanol, e.g., that does not immediately dissolve in one or more of water or any one of a C 1 -C 4 alcohol such as methanol or ethanol.
- the solvent-resistant film thereby retards or prevents an abuser from accessing an API portion of a core-shell particle if the core-shell particle is placed in one of these solvents.
- the solvent-resistant film need not be completely or substantially insoluble in any one of these solvents, or in all of the solvents, and it must be capable of allowing the API to be accessed with sufficient rapidity, in a gastrointestinal tract, for the dosage form to be useful as an immediate release dosage form.
- a particular example of a solvent-resistant film is a film that exhibits solubility properties that depend on the pH of a solvent.
- An example of a solvent-resistant film may be a film that is substantially or completely insoluble at a pH that is greater than a pH condition of a human stomach, and that is sufficiently soluble at a pH condition of a stomach (and gastrointestinal tract) to allow the film to dissolve and release API with sufficient rapidity that the dosage form can be useful as an immediate release oral dosage form.
- a pH-sensitive layer is a type of solvent-resistant film, and can be disposed in a dosage form to surround an active pharmaceutical ingredient and inhibit or prevent access to and dissolution of the active pharmaceutical ingredient in a solvent outside of a stomach (e.g., at a neutral pH environment), while still allowing the active pharmaceutical ingredient to be efficiently released from an immediate release dosage form at a lower pH environment of a user's stomach.
- This type of abuse deterrent feature can prevent or significantly impede an abuser's access to an active pharmaceutical agent of a dosage form (e.g., at the core of a core-shell particle or in a layer disposed on the core, or in both the core and the layer disposed on the core) by use of a solvent that is outside of a stomach and that does not have a relatively acidic pH, such as water or a C 1 -C 4 alcohol such as ethanol, methanol, etc., or a mixture thereof, having a pH that is higher than a pH found in a human stomach, for example a pH greater than 4; greater than 5; or greater than 5.5; or greater than 6.
- a pH-sensitive layer may be useful as a solvent-resistant film, placed in a dosage form as a layer of a core-shell particle to surround, cover, or enclose a portion of the core-shell particle that contains active pharmaceutical ingredient.
- an active pharmaceutical ingredient may be located as desired at a core or at a layer outside of an uncoated or coated core; a solvent-resistant film in the form of a pH-sensitive layer may be disposed as a separate layer surrounding or covering the portion of the core-shell particle that contains the active pharmaceutical ingredient.
- the pH-sensitive layer may be in direct contact with (adjacent to) a core or a layer that includes active pharmaceutical ingredient; alternately a core-shell particle may include one or more intermediate layers between a pH-sensitive layer and a core or layer that includes active pharmaceutical ingredient.
- a useful pH-sensitive layer may include a polymer or other material that can be placed as a layer of a particle as described herein, such as to cover a more inner layer or core that contains active pharmaceutical ingredient, to form a pH-sensitive film surrounding or covering active pharmaceutical ingredient.
- the pH-sensitive film can be solubilized by exposure to a liquid that exhibits a pH that may be present in a stomach of a user of the dosage form, such as a pH below 6 or below 5.5.
- the pH-sensitive layer can contain polymer that is not easily or substantially soluble at a pH that is higher than a pH found in a human stomach, e.g., a pH greater than 6; by being insoluble at a pH greater than 6, the pH-sensitive polymer will not dissolve in many solvents easily available and commonly used by an abuser to extract a water-soluble drug from a dosage form such as water, ethanol, methanol, etc.
- pH-sensitive polymer useful in a pH-sensitive layer include the class of reverse enteric polymers that contain cationic-functional groups and that exhibit pH-dependent solubility as described herein.
- examples include polymers that contain basic functional groups such as amino groups, and that exhibit solubility at pH conditions found in a (human) stomach but not at relatively higher pH conditions, e.g., not above a pH of 4, 5, or 5.5, or not above a pH of 6.
- pH-sensitive polymers include copolymers of dimethyl aminoethyl methacrylates, and neutral methacrylic acid esters; e.g., dimethyl aminoethyl methacrylate, butyl methacrylates, and methyl methacrylates, such as at a ratio of 2:1:1.
- Examples of such polymers are commercially available under the trade name Eudragit® E-100, Eudragit® E PO, Eudragit® E 12.5, and similar amino-functional pH-sensitive polymers.
- a preferred pH-sensitive polymer is the polymer Eudragit E100, but any polymer that is sufficiently hydrophilic at a low pH and hydrophobic at a higher pH to exhibit pH-dependent solubility as described, may also be effective if otherwise acceptable for use in a pharmaceutical dosage form, for example as a non-toxic ingredient of an oral dosage form.
- Reverse enteric compositions are also described in EP 1694724 B1, titled “pH Sensitive Polymer and Process for Preparation Thereof.”
- a solvent-resistant film layer When present as a coating of a particle that contains active pharmaceutical ingredient, a solvent-resistant film layer may be present at any amount useful as an abuse deterrent feature, such as in a range from 0.1 to 90 weight percent of a total weight of a core-shell particle, e.g., from 3 to 50 or 4 to 40 weight percent solvent-resistant polymer per total weight core-shell particle. More generally, a useful amount solvent-resistant film layer or polymer in a dosage form may be in a range from 1 to 50 weight percent solvent-resistant film layer or polymer based on a total weight of a dosage form, e.g., from 2 to 30 or from 3 to 15 weight percent solvent-resistant polymer based on total weight dosage form.
- a dosage form as presently described can also preferably include a disintegrant, which functions to cause the dosage form to expand and break up during use, e.g., at conditions of a human stomach, to allow active pharmaceutical ingredient of the dosage form to be released in a manner to achieve an immediate release profile.
- Disintegrants are known ingredients of pharmaceutical dosage forms, with various examples being known and commercially available.
- disintegrants include compositions of or containing sodium starch glycolate, starch (e.g., maize starch, potato starch, rice starch, tapioca starch, wheat starch, corn starch and pregelatinized starch), croscarmellose sodium, crospovidone (crosslinked polyvinyl N-pyrrolidone or PVP) (polyplasdone XL-10), sodium starch glycolate (EXPLOTAB® or PRIMOJEL®), any combination of two or more of the foregoing, and other pharmaceutically acceptable materials formed into particles having a having particle size, density, etc., to allow processing of the disintegrant into a useful immediate release dosage form.
- starch e.g., maize starch, potato starch, rice starch, tapioca starch, wheat starch, corn starch and pregelatinized starch
- croscarmellose sodium crospovidone (crosslinked polyvinyl N-pyrrolidone or PVP) (polyplasdone
- the disintegrant can be present in an immediate release dosage form at any location that allows the disintegrant to function as desired, to expand within the intact dosage form, upon ingestion, to cause the ingested dosage form to break apart and allow for desired immediate release of active pharmaceutical ingredient from the dosage form, in a stomach.
- One useful location for a disintegrant can be as a component of an excipient used to contain core-shell particles that contain active pharmaceutical ingredient, as described herein, in a dosage form such as a compressed tablet or capsule.
- disintegrant When included as an excipient of a dosage form, disintegrant may be present in an amount useful to achieve immediate release of an API of a dosage form.
- useful amounts of disintegrant in an immediate release dosage form as described herein may be in a range from 0.5 to 50 weight percent disintegrant based on a total weight of the dosage form, e.g., from 1 to 30 weight percent disintegrant based on total weight of the dosage form.
- the amount of disintegrant in a matrix of a dosage form can be consistent with these amounts, e.g., disintegrant can be included in a matrix (e.g., total of a dosage form that is other than the coated particles or API) of a dosage form in an amount in a range from 0.5 to 50 weight percent disintegrant based on a total weight of the matrix, e.g., from 1 to 30 weight percent disintegrant based on total weight matrix.
- a matrix e.g., total of a dosage form that is other than the coated particles or API
- a dosage form as described can also include any of various known and conventional pharmaceutical excipients that may be useful to achieve desired processing and performance properties of an immediate release dosage form.
- excipients include fillers, binders, lubricants, glidants, coloring agents, pH-adjusters, etc., and can be included in core-shell particles or in a matrix (e.g., compressed matrix) of a tablet or capsule.
- a matrix e.g., compressed matrix
- a pH-adjuster can be included in an immediate release dosage form as described, for example at a location to affect pH at a specific location of the dosage form that is only a portion of a total dosage form.
- a pH-adjuster in the form of a base may be included at a location of a gelling polymer that contains acid functionalities, to neutralize the acid functionalities.
- the amount of pH-adjuster included at the location of the gelling polymer can be an amount effective to neutralize the acid functionalities of the gelling polymer at that location.
- a component of a dosage form as described that includes an acid-functional gelling polymer such as a carbopol may include a base in an amount and location to neutralize the acid functionalities of that polymer.
- the pH-adjuster can be located at a location effective to cause such neutralization, e.g., at the location of the dosage form that contains the acid-functional gelling polymer, for example at a core of a core-shell particle or as part of an excipient that includes acid-functional gelling polymer and that functions to bind particles together as a dosage form.
- fillers examples include lactose, starch, dextrose, sucrose, fructose, maltose, mannitol, sorbitol, kaolin, microcrystalline cellulose, powdered cellulose, calcium sulfate, calcium phosphate, dicalcium phosphate, lactitol or any combination of the foregoing.
- a filler will have a molecular weight that does not result in a substantial viscosity increase or formation of a gel as described herein for a gelling polymer, if combined with a solvent such as water.
- a filler may be present in any portion of a dosage form as described, including a core-shell particle; the filler may be present in a core, in a layer containing an active pharmaceutical ingredient that is disposed on the core, in a solvent resistant film, at a matrix, or in two or more of these portions of the dosage form.
- the filler may be present at any one or more of these portions of a dosage form in an amount to provide desired processing or functional properties of a portion of the dosage form and of the entire dosage form.
- the amount of total filler in a dosage form can also be as desired to provide desired functionality, including an immediate release profile, for example in an amount in a range from 0 to 80 weight percent filler based upon the total weight of the dosage form, e.g. from 5 to 50 percent filler based on total weight dosage form.
- binders examples include polymeric material such as alginic acid, sodium carboxymethylcellulose, microcrystalline cellulose, dextrin, ethylcellulose, gelatin, starch, pregelatinized starch, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyacrylamides, polyvinyloxoazolidone, polyvinylalcohols, methylcellulose, hydroxypropyl cellulose, hydroxymethyl cellulose and any combination of two or more of these.
- polymeric material such as alginic acid, sodium carboxymethylcellulose, microcrystalline cellulose, dextrin, ethylcellulose, gelatin, starch, pregelatinized starch, polyvinyl alcohol, polyethylene oxide, polyvinylpyrrolidone, polyacrylamides, polyvinyloxoazolidone, polyvinylalcohols, methylcellulose, hydroxypropyl cellulose, hydroxymethyl cellulose and any combination of two or more of these.
- a binder may be a water soluble material; as compared to non-binder ingredients such as a gelling polymer, a binder is of a molecular weight that does not result in formation of a gel or a highly viscous composition upon combining with a small volume of water.
- a binder can exhibit a relatively low molecular weight as compared to a gelling polymer, and a relatively lower viscosity (e.g., when measured in a 2% aqueous solution).
- Polymer useful as a binder may typically have a molecular weight of less than 50,000, e.g., less than 30,000, or than 10,000.
- a binder may be present in any portion of a dosage form as described, including a core or a film or coating of a core-shell particle, or as part of an excipient to contain or bind core-shells particles in a dosage form.
- Filler may be included in a core of a core-shell particle in combination with active pharmaceutical ingredient, gelling polymer or both; as part of an active pharmaceutical layer located over a core or another layer of a core-shell particle; as part of a solvent-resistant film; or within an excipient useful to bind particles into a dosage form.
- a binder may be present at any one or more of these portions of an immediate release dosage form as described, in an amount to provide desired processing or functional properties in each portion of the dosage form and of the overall dosage form.
- the amount of total binder in a dosage form can also be as desired to provide desired functionality, including immediate release functionality, for example in an amount in a range from 0.1 to 10 weight percent binder based on a total weight of a dosage form, e.g., from 0.5 to 7 weight percent binder based on total weight dosage form.
- lubricants include inorganic materials such as talc (a hydrated magnesium silicate; polymers, such as, PEG 4000; fatty acids, such as stearic acid; fatty acid esters, such as glyceride esters (e.g., glyceryl monostearate, glyceryl tribehenate, and glyceryl dibehenate); sugar esters (e.g., sorbitan monostearate and sucrose monopalmitate); glyceryl dibehenate (Compritol® 888 ATO); and metal salts of fatty acids (e.g., magnesium stearate, calcium stearate, and zinc stearate).
- talc a hydrated magnesium silicate
- polymers such as, PEG 4000
- fatty acids such as stearic acid
- fatty acid esters such as glyceride esters (e.g., glyceryl monostearate, glyceryl tribehenate, and gly
- Lubricant may be included in an immediate release dosage form as described, in any useful amount, such as an amount in a range from 0.1 to 10 weight percent lubricant based on a total weight of a dosage form, e.g., from 0.5 to 7 weight percent lubricant based on total weight dosage form.
- glidants examples include colloidal silicon dioxide, untreated fumed silica (e.g., as available under the trade name Cab-O-Sil®), and crystalline or fused quartz. Glidant may be included in an immediate release dosage form as described, in any useful amount.
- coloring agents include FD&C-type dyes and lakes, fruit and vegetable extracts, titanium dioxide and mixtures thereof.
- a coloring agent may be incorporated into a dosage form by blending the coloring agent any other ingredient. Alternately, coloring agent may be applied to an outer surface of a dosage form.
- APIs that can be particularly useful can be those types of active pharmaceutical ingredients that can be subject to abuse, addiction, overdosing, or two or more of these; such APIs can be located in the dosage form at a location to cause the API to be subject to abuse deterrent features of the core-shell particle, e.g., at a core or inner layer of a core-shell particle.
- Drugs commonly susceptible to abuse include sedative-hypnotics, stimulants (e.g., central nervous system ((CNS) stimulants), anxiolytics, antipsychotics, dissociative anesthetics, and narcotic analgesics including but not limited to drugs that can cause psychological or physical dependence on the drug.
- stimulants e.g., central nervous system ((CNS) stimulants
- anxiolytics e.g., central nervous system ((CNS) stimulants
- anxiolytics e.g., antipsychotics
- dissociative anesthetics e.g., narcotic analgesics
- narcotic analgesics including but not limited to drugs that can cause psychological or physical dependence on the drug.
- An API can include any therapeutically acceptable drug salt, drug derivative, drug analog, drug homologue, or polymorph of an active pharmaceutical ingredient.
- Sedative hypnotics include, for example, barbiturates, for example phenobarbital, methobarbital, amobarbital, pentobarbital, and secobarbital and pharmaceutically acceptable salts thereof; benzodiazepines, for example diazepam, chlorodiazepoxide, lorazepam, triazolam, temazepam, alprazolam and flurazepam and pharmaceutically acceptable salts thereof; phenothiazines, such as for example, alimemazine, chlorpromazine, thioridazine, and pharmaceutically acceptable salts thereof, and sleep medications, such as for example, zolpidem, zaleplon, and eszopiclone and pharmaceutically acceptable salts thereof.
- barbiturates for example phenobarbital, methobarbital, amobarbital, pentobarbital, and secobarbital and pharmaceutically acceptable salts thereof
- benzodiazepines for example diaze
- Anxiolytics include, for example, benzodiazepines, for example diazepam, chlordiazepoxide, estazolam, lorazepam, triazolam, alprazolam, clonazepam and flurazepam and pharmaceutically acceptable salts thereof.
- benzodiazepines for example diazepam, chlordiazepoxide, estazolam, lorazepam, triazolam, alprazolam, clonazepam and flurazepam and pharmaceutically acceptable salts thereof.
- CNS Stimulants include, for example, amphetamines, such as for example, dextroamphetamine, levoamphetamine (benzadrine), methamphetamine (methadrine), pseudoephedrine, and Adderall (amphetamine mixed salts) and pharmaceutically acceptable salts thereof, and non-amphetamine psychostimulants such as methylphenidate, modafinil and armodafinil and pharmaceutically acceptable salts thereof.
- amphetamines such as for example, dextroamphetamine, levoamphetamine (benzadrine), methamphetamine (methadrine), pseudoephedrine, and Adderall (amphetamine mixed salts) and pharmaceutically acceptable salts thereof
- non-amphetamine psychostimulants such as methylphenidate, modafinil and armodafinil and pharmaceutically acceptable salts thereof.
- Narcotic analgesics include opioids such as, for example, buprenorphine, butorphanol, codeine, dihydrocodeine, dihydromorphine, hydrocodone, hydromorphone, morphine, oxycodone, oxymorphone, methadone, fentanyl, meperidine, tramadol, propoxyphene, and pharmaceutically acceptable salts thereof.
- opioids such as, for example, buprenorphine, butorphanol, codeine, dihydrocodeine, dihydromorphine, hydrocodone, hydromorphone, morphine, oxycodone, oxymorphone, methadone, fentanyl, meperidine, tramadol, propoxyphene, and pharmaceutically acceptable salts thereof.
- Antipsychotic agents can include, for example, phenothiazines as listed above, butyrophenones, such as, for example, droperidol and haloperidol, dibenzoxazepines such as loxapine, and atypical antipsychotic agents such as aripiprazole, clozapine, olanzapine, quetiapine, risperidone ziprasidone, paliperidone and remoxipride.
- phenothiazines as listed above
- butyrophenones such as, for example, droperidol and haloperidol
- dibenzoxazepines such as loxapine
- atypical antipsychotic agents such as aripiprazole, clozapine, olanzapine, quetiapine, risperidone ziprasidone, paliperidone and remoxipride.
- muscle relaxants such as for example cyclobenzaprine and pharmaceutically acceptable salts thereof
- cannabinols e.g., ⁇ 1 -cannabidiol. ⁇ 2 -cannabidiol, ⁇ 3 -cannabidiol, ⁇ 3,7 -cannabidiol, ⁇ 4 -cannabidiol, ⁇ 5 -cannabidiol, and ⁇ 6 -cannabidiol
- cannabinoids such as dronabinol, delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD), nabilone, dexanabinol, ajulemic acid, cannabinor, rimonabant and taranabant, and pharmaceutically acceptable salts thereof
- dissociative anesthetic agents such as ketamine and Esketamine, and pharmaceutically acceptable salts thereof.
- the amount of active pharmaceutical ingredient included in an immediate release dosage form can be any useful amount, as is known and as may be found in relevant literature such as Goodman & Gillman's, The Pharmacological Basis of Therapeutics, 9th ed. pages 219-222, 361-396, 521-535 1996.
- typical therapeutic amounts of oxycodone range 5 mg, 10 mg, or up to 400 mg, for the hydrochloride salt.
- the active pharmaceutical ingredient can be present in such dosage form in an amount normally prescribed, typically 0.5 to 25 percent on a dry weight basis, based on the total weight of the dosage form.
- narcotic analgesics such as opioids in a single unit dosage form, such as at a level from about 1 to about 500 mg, or from about 1 to about 250 mg, or from about 1 to about 100 mg; for example, 2.5, 5, 7.5, 10, 15, 20, or 30, milligram (mg) per dosage form unit.
- a dosage form contains any appropriate amount of an API to provide a therapeutic effect.
- the present invention is also directed to methods of treatment, comprising orally administering an effective amount of the herein described immediate release abuse deterrent dosage form.
- Also provided herein is a method for treating sleep disorders in a subject in need thereof by administering an effective amount of the herein described immediate release abuse deterrent dosage form containing an API that is a sedative hypnotic drug such as a barbiturate,
- Also provided herein is a method for treating anxiety in a subject in need thereof by administering a an effective amount of the herein described immediate release abuse deterrent dosage form containing an API that is an anxiolytic drug such as a benzodiazepine,
- Also provided herein is a method for treating psychoses in a subject in need thereof by administering a an effective amount of the herein described immediate release abuse deterrent dosage form containing an API that is an antipsychotic drug such as questiapine,
- an “effective amount” of when used in connection with composition described herein is an amount sufficient to produce a therapeutic result in a subject in need thereof.
- a therapeutic result can include, but is not limited to treating or preventing pain, sleep disorders, anxiety or psychotic symptomology by a subject.
- a dosage form as described can optionally include one or more additional APIs of a type that is not commonly susceptible to abuse.
- This additional APIs may be any suitable or desired API, such as those in the class of non-steroidal analgesic drugs.
- non-steroidal analgesic drugs refers to drugs that include those commonly referred to as non-steroidal anti-inflammatory drugs, or “NSAIDS,” and acetaminophen, which is non-steroidal, but does not act via an inflammation mechanism. Accordingly, the term “non-steroidal analgesic drugs” would include acetaminophen, and also include NSAIDS such as aspirin, ibuprofen, and naproxen.
- the dosage form also exhibits immediate release properties with respect to these not-commonly-subject-to-abuse APIs.
- these APIs can be present in the dosage form at any useful level, typically 0.5 to 25, e.g., 1 to 10 weight percent of the API on a dry weight basis, based on a total weight of the dosage form, e.g., at a level of or between 5, 25, 50, 75, 100, 125, 150, 175, 200, 300, 325, 500, 750 or up to or exceeding 1000 milligram (mg) per dosage form unit.
- a dosage form contains an appropriate amount of an API to provide a therapeutic effect.
- An immediate release dosage form as described can include one or more of the described abuse deterrent features, alone or in combination; e.g., one or more of: gelling polymer as part of a core-shell particle (e.g., at a core of the core-shell particle); wax as part of a core-shell particle (e.g., at a core of the core-shell particle); binder or filler as part of a core-shell particle (e.g., at a core of the core-shell particle); a film layer that may optionally be a solvent-resistant film (e.g., pH-sensitive film) as part of a core-shell layer; or gelling polymer as a component of an excipient or binder used to hold core-shell particles together as part of in an immediate release dosage form.
- a solvent-resistant film e.g., pH-sensitive film
- some dosage forms include nasal irritant to discourage or prevent abuse by nasal insufflation.
- the nasal irritant can be a mucous membrane irritant or nasal passageway irritant that, if inhaled through a nasal passageway when contained in a ground or powdered dosage form, can induce pain or irritation of the abuser's nasal passageway tissue.
- examples include surfactants such as sodium lauryl sulfate, poloxamer, sorbitan monoesters, and glyceryl monooleates.
- dosage forms can include an emetic agent, to cause vomiting.
- Certain particular embodiments of dosage forms of the present description do not require and can specifically exclude an emetic agent.
- some dosage forms include an effervescent agent that acts as a deterrent to abuse by nasal insufflation.
- the effervescent includes an acidic component and a basic component that release a gas such as oxygen or carbon dioxide when combined in the presence of an aqueous media, such as upon nasal insufflation.
- the acid source may be, for example, citric acid, tartaric acid, malic acid, maleic acid, lactic acid, glycolic acid, ascorbic acid, fumaric acid, adipic acid, succinic acid, salts thereof, and combinations thereof.
- the base may be, for example, a carbonate or bicarbonate. Dosage forms of the present description do not require, and can specifically exclude, an effervescent in the form of an acid and a base that can combine to a gas such as oxygen or carbon dioxide.
- Still other dosage forms include a biologically active chemical compound that functions as an antagonist to an active pharmaceutical ingredient.
- An antagonist may prevent the potential abuse of a dosage form in a manner, including the method of consuming multiple or several or more dosage form units at once.
- Antagonist agents are compounds that block or negate the effect of an active pharmaceutical ingredient, and are available and known for various classes of drugs including opioids and other pharmaceutical agents.
- antagonist agents for opioids include compounds such as naltrexone, naloxone, nalmefene, cyclazacine, levallorphan.
- Specific examples of antagonist agents and methods for preparing antagonist agents for incorporation into a dosage form are provided in U.S. Pat. Nos. 7,682,633 and 7,658,939, which are incorporated herein by reference.
- an immediate release dosage form that includes an opioid and that includes one or more abuse deterrent feature as described herein (e.g., a gelling polymer, wax, solvent-resistant film, or a combination thereof), can be formulated to not contain and to specifically exclude an agonist of an API that is also included in the dosage form, e.g., an opioid antagonist in a dosage form containing an opioid.
- an opioid e.g., a gelling polymer, wax, solvent-resistant film, or a combination thereof
- a dosage form can include particles 10 A, 10 B that contain API.
- the particle e.g., coated particle or “core-shell” particle
- the particle can include a core 12 (or “uncoated core”), which may be coated with one or more layer, film or coating, e.g., 14 , 16 , or any additional layer or coating that is coated over, underneath, or intermediate to these.
- Particle 10 A, 10 B can contain one or more of the ingredients described herein, such as any one or more of API (especially an API that is susceptible to abuse), a gelling polymer, optional wax, optional solvent-resistant layer, as well as one or more additional layer or layers under, over, or intermediate to these layers or between either layer and the core.
- Each layer can be present in size or amount (e.g., thickness) that will result in a useful immediate release dosage form having one or more of the presently described abuse deterrent features.
- Other optional components of a core or layer of particle 10 can be filler, binder, other excipient, or solvent (not more than a residual amount, if any) such as water or ethanol for use in preparing the coated particle, and that is substantially removed after formation of the core, coating, or coated particle.
- the core 10 A, 10 B can include any amount of the different ingredients of: a gelling polymer (e.g.
- filler as described herein such as sugar (mannitol) or microcrystalline cellulose (e.g., from 0 to 100 percent of a core), binder (e.g., from 0 to 100 percent of a core), and wax (e.g., from 0 to 100 percent of a core).
- sugar mannitol
- microcrystalline cellulose e.g., from 0 to 100 percent of a core
- binder e.g., from 0 to 100 percent of a core
- wax e.g., from 0 to 100 percent of a core
- core-shell particles 10 are believed to be new and inventive, certain method steps useful to prepare these novel coated particles may be known. Available methods include certain methods and processing steps known to be useful for preparing particles and coated particles in the pharmaceutical arts.
- a core-shell particle 10 can be prepared by an initial step of mixing ingredients of core 12 with a solvent such as water or ethanol and forming the mixture into a spherical core particle by known methods. The particle may be dried and separated by size, and then one or more coating in the form of a continuous film or layer can be applied to the core, optionally successively to produce multiple layers surrounding the core.
- General processing to produce a multi-layer coated particle can include a series of steps such as compounding, mixing, granulation, wet milling, coating (by any method such as fluidized bed coating, spray coating, etc.), and one or more drying steps such as by use of a fluidized bed or other drying method. Intermittently between core-forming and coating steps, e.g., after a drying step, coated or uncoated particles can be sorted or separated based on size to produce a composition or a collection of particles having a desired size range and distribution.
- an immediate release dosage form as described can include a core-shell particle 10 A that includes a core 12 A that contains only a minor amount of API or that contains an insubstantial amount of API.
- Core 12 A may contain less than 5 weight percent, e.g., less than 1 or less than 0.5 weight percent active pharmaceutical ingredient based on a total weight of the core of the core-shell particle.
- core 12 A may contain less than 5 weight percent of a total amount of pharmaceutical ingredient in a core-shell polymer, e.g., less than 5, less than 1, or less than 0.5 weight percent active pharmaceutical ingredient based on total weight of API in the core-shell particle.
- a major portion of API can be contained outside of core 12 A, e.g., in an API layer 16 , which can contain at least 50, at least 75, or at least 90 weight percent of a total amount of the API in a core-shell polymer.
- Core 12 A can include binder, gelling polymer (e.g., HPMC), wax, or filler, optionally alone or in combination, each in an amount to allow the materials of the core to function as one or more abuse deterrent feature as described herein. See the examples included herewith for examples of useful amounts and ranges of amounts of these ingredients.
- gelling polymer e.g., HPMC
- wax e.g., wax
- filler optionally alone or in combination, each in an amount to allow the materials of the core to function as one or more abuse deterrent feature as described herein. See the examples included herewith for examples of useful amounts and ranges of amounts of these ingredients.
- core 12 A contains gelling polymer, wax, binder, or filler, or any combination of these, and no API (meaning not more than an insignificant amount, such as less than 0.5 or less than 0.1 weight percent based on the weight of core 12 A).
- core 12 A, not containing API can be coated with a coating layer that contains API, e.g., an active pharmaceutical layer or API layer 16 A.
- API e.g., an active pharmaceutical layer or API layer 16 A.
- core-shell particle 10 A includes core 12 A, which does not contain any API, and API layer 16 A, which contains an amount of API, such as a total amount of API (e.g., API commonly susceptible to abuse) to be contained in a dosage form prepared from particles 10 A.
- API layer 16 A can contain one or more ingredients as described herein useful to form API layer 16 A as a layer over an outer surface of core 12 A.
- API in API layer 16 A can be a type of API that is commonly susceptible to abuse, such as an opioid, and can account for all of or most of (e.g., at least 70, at least 80, at least 90, or at least percent) the total amount of that type of API in the core-shell particles and in the dosage form; in this embodiment the core can contain less than 10, less than 5, or less than 1 percent of the total amount of API in the core-shell particles, and less than 10, 5, or 1 percent of the total amount of API in the dosage form.)
- Useful non-API ingredients in an API layer can include a binder along with the API.
- the API and binder can be carried in a solvent (e.g., water, ethanol, or both) and coated and dried to form a preferably continuous film layer on an outer surface of core 12 A, i.e., API layer 16 A. See the examples included herewith for examples of useful amounts and ranges of amounts of these ingredients.
- a solvent e.g., water, ethanol, or both
- a core-shell particle 10 A can also optionally include a film layer, e.g., a solvent-resistant layer (e.g., a pH-sensitive layer) 14 A as described herein.
- a film layer e.g., a solvent-resistant layer (e.g., a pH-sensitive layer) 14 A as described herein.
- a dosage form as described can include a core-shell particle 10 B that includes a core 12 B that does contain a useful amount of API, such as an amount of API useful in an immediate release dosage form having one or more abuse deterrent features as described herein, prepared to include particles 10 B. See FIGS. 2A and 2B .
- core 12 B of particle 10 B can contain a gelling polymer, optional wax, optional binder or filler, and an amount of API.
- core 12 B contains gelling polymer, optional wax, optional binder, and API.
- core 12 B, containing API can optionally be coated with solvent-resistant layer (e.g., a pH-sensitive layer) 14 B as described herein for use in an immediate release dosage form.
- solvent-resistant layer e.g., a pH-sensitive layer
- a coated particle 10 that includes API can be included in any of a variety of dosage forms, examples including a compressed tablet or compressed capsule, a suppository, capsule, caplet, pill, gel, soft gelatin capsule, etc.
- a dosage form 12 can be prepared as a compressed tablet or compressed capsule.
- Tablet or capsule 12 can contain core-shell particles 10 (e.g., 10 A or 10 B) distributed within a matrix 20 , compressed to form the compressed tablet or capsule 12 .
- Core-shell particles 10 A or 10 B can be as described herein, generally or specifically, and can contain an amount of API suited to provide a desired dosage upon ingestion of tablet or capsule 12 ; e.g., matrix 20 does not include any substantial amount of API.
- Matrix 20 can include ingredients useful in combination with the core-shell particles 10 A, 10 B, to produce an immediate release dosage form.
- useful excipients of an immediate release dosage form can include ingredients that allow the dosage form to break up or disintegrate upon ingestion and facilitate exposure to fluid in a stomach, such as a useful amount of disintegrant.
- examples of such excipients for such a dosage form can also include one or more ingredients that act as an abuse deterrent feature, such as a gelling polymer as described herein.
- Other excipients can be useful for processing to form a compressed dosage form, and also may allow the compressed dosage form to function as an immediate release dosage form, with one or more abuse deterrent features.
- the following non-limiting examples show various dosage forms as described herein.
- the described and exemplified dosage forms can be made from methods that include granulating, coating, and compressing steps as follows.
- the blending, compression and bottling process for hydrocodone and acetaminophen tablets manufactured using the coated intermediate is as follows:
- Granules were manufactured in a high shear granulator, where hypromellose and glyceryl behenate were dry mixed for 3 minutes. Then, a 10% hydroalcoholic solution of ethylcellulose N10 was slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition was continued until the entire amount of ethylcellulose was added. The granules were then wet milled using a size reduction mill (Granumill) and were subsequently loaded into fluid bed for drying.
- a size reduction mill Granules were then wet milled using a size reduction mill (Granumill) and were subsequently loaded into fluid bed for drying.
- coated granules were prepared according to Example 1 above and mixed with paracetamol and other excipients (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- paracetamol and other excipients carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- the prepared coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Coated granules were prepared according to the procedure described in Example 1. The prepared coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, red iron oxide, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, red iron oxide, microcrystalline cellulose
- Microcrystalline cellulose particles were layered in a bottom spray fluid bed coater with a 12% aqueous solution of oxycodone hydrochloride and HPMC 2910.
- the oxycodone hydrochloride layered particles were then coated in a bottom spray fluid bed coater with 25% alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate. The resulting coated particles were subsequently used for further blending and compression process.
- coated particles were mixed with other excipients (crospovidone and lactose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into oxycodone tablets.
- excipients crospovidone and lactose
- coated spheres were mixed with acetaminophen and other excipients (mannitol, microcrystalline cellulose, binder and crospovidone) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into oxycodone tablets.
- Coated spheres were prepared as in Example 7, and mixed with acetaminophen and other excipients (mannitol, microcrystalline cellulose, xanthan gum and crospovidone) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone tablets.
- acetaminophen and other excipients mannitol, microcrystalline cellulose, xanthan gum and crospovidone
- Coated spheres were prepared as in Example 7, and mixed with acetaminophen and other excipients (mannitol, microcrystalline cellulose, carbopol, sodium bicarbonate and crospovidone) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into tablets.
- acetaminophen and other excipients mannitol, microcrystalline cellulose, carbopol, sodium bicarbonate and crospovidone
- Oxycodone tablet composition Component mg/tablet Core Shell composition (above) 250 APAP 325 gelatin 12.14 lactose 84.9 carbopol 30 microcrystalline cellulose 120 crospovidone 150 sodium bicarbonate 18 magnesium stearate 10 Total 1000.04
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into oxycodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Oxycodone/acetaminophen tablet composition Component mg/tablet Core Shell composition (above) 250 APAP 325 gelatin 12.14 mannitol 82.9 xanthan gum 50 microcrystalline cellulose 120 crospovidone 150 magnesium stearate 10 Total 1000.04
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with acetaminophen and other excipients (xanthan gum, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into oxycodone/acetaminophen tablets.
- excipients xanthan gum, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Oxycodone/acetaminophen tablet composition Component mg/tablet Core Shell composition (above) 250 APAP 325 Gelatin 12.14 Mannitol 52.9 Carbopol 50 microcrystalline cellulose 120 Crospovidone 150 sodium bicarbonate 30 magnesium stearate 10 Total 1000.04
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into oxycodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with acetaminophen and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- excipients carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Granules were prepared and coated as described in Example 1. The coated granules were then mixed with Paracetamol and other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose and coloring agents) and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and the mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- Armodafinil tablet composition Armodafinil: Components (mg/tab) 50 mg 150 mg 200 mg hypromellose 64.26 36 48 Compritol 888 ATO 17.85 10 14 ethylcellulose 10.71 10 14 armodafinil 50 150 200 Eudragit E-100 21 30 40 Mannitol Ez 17 25 25 Carbopol 71g 50 50 50 50 microcrystalline cellulose 100 125 125 crospovidone 150 200 200 sodium bicarbonate #1 30 30 30 30 magnesium stearate non- 71 25 32 bovine Lutrol F68 (1:5) 150 200 200 sodium lauryl sulphate (3%) 23 30 40 Alcohol SDA-3A, * * * * anhydrous * purified water * * * * * Total Tablet Weight 754.82 921 1018 * Removed during Processing Granules are prepared and coated as described in Example 1.
- coated granules are then mixed with the other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes.
- the other excipients include butylene glycol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Magnesium stearate non-bovine
- Phenobarbital granule compositions 15 mg Dose 30 mg Dose 60 mg Dose 100 mg Dose mg/g mg/tab mg/g mg/tab mg/g mg/tab mg/g mg/tab Granulation Hypromellose 450 19.31 450 38.57 450 77.18 450 128.57 Phenobarbital 350 15.02 350 30 350 60.03 350 100 Compritol 125 5.36 125 10.71 125 21.44 125 35.71 888 ATO Ethylcellulose 75 3.22 75 6.43 75 12.86 75 21.43 Alcohol SDA-3A, * * * * * * * * * * Anhyd.
- Granules are prepared and coated as described in Example 1.
- the coated granules are then mixed with the other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes.
- Magnesium stearate (non-bovine) is then added to lubricate the blend and the mixture is blended for an additional 5 minutes prior to compressing into phenobarbital tablets.
- coated granules are then mixed with the other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes.
- the other excipients include butylene glycol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose
- Magnesium stearate non-bovine
- Granules are prepared and coated as described in Example 1.
- the coated granules are then mixed with the other excipients (carbopol, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes.
- Magnesium stearate (non-bovine) is then added to lubricate the blend and the mixture is blended for an additional 5 minutes prior to compressing into hydrocodone tablets.
- Coated granules were prepared according to the Example 1 above.
- the prepared coated granules were then mixed with Paracetamol and other excipients (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose, colorants such as FD and C blue, red iron oxide or yellow iron oxide are premixed and blended in a bin blender for 30 minutes.
- Paracetamol and other excipients carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose, colorants such as FD and C blue, red iron oxide or yellow iron oxide are premixed and blended in a bin blender for 30 minutes.
- Magnesium stearate was then added to lubricate the blend and the resulting mixture was blended for an additional 5 minutes prior to compressing into hydrocodone/acetaminophen tablets.
- the Dosage form (intact and crushed) prepared according to Examples 3 above (10/325 mg hydrocodone bitartrate/Acetaminophen tablet) was taken up in a small volume of water and extracted to simulate the amount of hydrocodone that was available to abusers via intravenous (IV) route.
- the resultant mixture was assessed for ability to draw the mixture through a filter material into a syringe for IV injection.
- Various needle sizes and extraction volumes were evaluated. Filtrates were assayed by HPLC for content of hydrocodone bitartrate.
- the dosage form prepared according to Example 3 above (10/325 mg hydrocodone bitartrate/Acetaminophen tablets) was crushed using a pestle and mortar and placed in 10 mL of simulated nasal fluid at 37° C., with gentle agitation to simulate the amount of hydrocodone bitartrate available for abuse by nasal insufflation. Aliquots were removed at 10 and 30 minutes for analysis of hydrocodone bitartrate by HPLC. The amount of hydrocodone bitartrate extracted from crushed tablets for simulated nasal insufflation is provided in the table below.
- This method is for the determination of hydrocodone bitartrate released from simulated nasal fluid extractions of hydrocodone bitartrate extended-release tablets.
- Solvent A (0.1% HFBA in H 2 O): Combine 1 mL of HFBA and 1 L of HPLC grade water, and mix well. Solvent A is stable for 14 days. Proportionate volumes may be prepared.
- Mobile Phase 70:30 Solvent A:MeOH: Combine 700 mL of Solvent A and 300 mL of MeOH, and mix well. Prepared solutions are stable for 1 month. Proportionate volumes may be prepared.
- the HPLC pump may be used to mix the mobile phase.
- Diluent/Medium 0.1 N HCl
- Proportionate volumes may be prepared.
- Injector Flush 50:50 MeOH:H2O: Combine 500 mL of MeOH and 500 mL of HPLC grade water, and mix well. 50:50 MeOH:H 2 O is stable for 1 month. Proportionate volumes may be prepared.
- Working Standard Solution Pipette 15 mL of each stock standard solution into separate 50-mL volumetric flasks. Dilute to volume with 0.1 N HCl diluent, and mix well. These working standard solutions are approximately 90 micrograms/mL (as anhydrous hydrocodone bitartrate) and are stable for 43 days under ambient laboratory conditions (unprotected from light). Proportionate volumes may be prepared.
- the dosage form prepared according to Example 3 and 5 above was evaluated for multiple tablet oral abuse resistance by stirring the selected number of tablets in 300 mL of 0.1N HCl. Dissolution was performed using USP Apparatus II at 50 rpm and 37° C. One to twelve tablets were added to the vessel simultaneously and aliquots were removed after 5, 10, 15, 30, 60, 120, 240 and 360 minutes of agitation and analyzed for hydrocodone bitartrate ( FIG. 4 ) and APAP ( FIG. 5 ) by HPLC. The results were plotted against time and appear in FIGS. 4 and 5 .
- the dosage form prepared according to Example 17 above was evaluated for multiple tablet oral abuse resistance by stirring the selected number of tablets in 300 mL of 0.1N HCl. Dissolution was performed using USP Apparatus II at 50 rpm and 37° C. One to twelve tablets were added to the vessel simultaneously and aliquots were removed after 5, 10, 15, 30, 60, 120, 240 and 360 minutes of agitation and analyzed for hydrocodone bitartrate ( FIG. 6 ) and APAP ( FIG. 7 ) by HPLC. The results were plotted against time and appear in FIGS. 6 and 7 .
- the dosage form prepared according to Example 17 above was evaluated for multiple tablet oral abuse resistance by stirring the selected number of tablets in 300 mL of 0.1N HCl. Dissolution was performed using USP Apparatus II at 50 rpm and 37° C. One to twelve tablets were added to the vessel simultaneously and aliquots were removed after 5, 10, 15, 30, 60, 120, 240 and 360 minutes of agitation and analyzed for hydrocodone bitartrate and APAP by HPLC. The results were plotted against time and appear in FIG. 8 (hydrocodone bitartrate) and FIG. 9 (APAP).
- Coated esketamine granules are prepared as per the process described in Example 1 with slight variation from Example 1 in components as illustrated below.
- coated granules prepared per Example 27 above are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and the resulting mixture was blended for additional 5 minutes prior to compressing into tablets.
- Coated esketamine granules are prepared as per the process described in Example 1 with slight variation from Example 1 in components as illustrated in the Table below.
- Coated granules prepared per Example 29 above are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate is added to lubricate the blend and the resulting mixture was blended for additional 5 minutes prior to compressing into tablets.
- Esketamine granules are manufactured using a process similar to that described in Example 1 above with some modification to the process.
- the active ingredient instead of being layered on the granules resides in the core where it is granulated with other excipients as per the Table below, and is subsequently coated with Eudragit E-100.
- Granules are manufactured in a high shear granulator where hypromellose, Esketamine hydrochloride and glyceryl behenate are dry mixed for 3 minutes. Then a 10% hydroalcoholic solution of ethylcellulose is slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition is continued until the entire amount of ethylcellulose is added.
- the granules are then wet milled using a size reduction mill (Granumill) and subsequently loaded into fluid bed for drying.
- Esketamine hydrochloride granules are then coated in a bottom spray fluid bed coater with 25% alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate (2:1). The coated granules are subsequently used in blending and compression process.
- Coated granules prepared per Example 31 above are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose) and blended in a V-blender for 30 minutes. Magnesium stearate is added to lubricate the blend and the resulting mixture was blended for additional 5 minutes prior to compressing into tablets.
- Esketamine hydrochloride tablet composition Components (mg/tablet) 28 mg 56 mg 84 mg hypromellose 36 72 108 gyceryl behenate 10 20 30 ethylcellulose 6 12 18 esketamine hydrochloride 28 56 84 Eudragit E-100 11.7 23.4 35.1 mannitol 17 17 20.1 carbopol 50 50 50 microcrystalline cellulose 100 100 100 crospovidone 150 150 150 sodium bicarbonate 30 30 30 magnesium stearate 12 20 30 Total Tablet Weight 450.7 550.4 655.2
- Esketamine granules are manufactured using a process similar to that described in Example 1 and Example 32 above with some modification to the process.
- the active ingredient is granulated with other excipients per the table below, and is subsequently coated with Eudragit E-100.
- Granules containing Esketamine hydrochloride are manufactured in a high shear granulator where hypromellose, esketamine hydrochloride and glyceryl behenate are dry mixed for 3 minutes. Then a 10% hydroalcoholic solution of ethylcellulose is slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition is continued until the entire amount of ethylcellulose is added. The granules are then wet milled using a size reduction mill (Granumill) and then loaded into fluid bed for drying.
- a size reduction mill Granules containing Esketamine hydrochloride
- the granules are then coated in a bottom spray fluid bed coater with 25% alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate (2:1). The resulting coated granules are subsequently used for blending and compression process.
- coated granules prepared per Example 33 above are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Esketamine hydrochloride tablet compositions Components (mg/tab) 200 mg 300 mg 400 mg Hypromellose 48 72 96.4 Glyceryl behenate 14 21 27.6 Ethylcellulose 14 21 27.6 Esketamine hydrochloride 200 300 400 Eudragit E-100 40 61 81 Mannitol 25 25 25 Carbopol 75 75 75 Microcrystalline cellulose 125 125 125 Crospovidone 300 300 300 Sodium bicarbonate 45 45 45 Magnesium stearate 140 150 160 Total Tablet Weight 1026 1195 1362.6
- Coated Zolpidem tartrate granules are prepared as per the process described in Example 1 as per the composition illustrated in the Table below.
- Coated zolpidem granules are prepared as per the process described in Example 35 above.
- the coated granules are mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Zolpidem tartrate tablet compositions Components (mg/tab) 5 mg 10 mg hypromellose 25.5 51.1 glyceryl behenate 11 21.9 ethylcellulose 6 12 zolpidem tartrate 5 10 Hypromellose 2910 2.5 5 Eudragit E-100 33.4 66.7 mannitol 70 70 carbopol 50 50 microcrystalline cellulose 95 94 crospovidone 100 100 sodium bicarbonate 30 30 magnesium stearate 21.6 39.3 Total Tablet Weight 450 550 550
- Quetiapine granules are manufactured using a process similar to that described in Example 1 above with some modification to the process.
- the Quetiapine fumarate instead of being layered on the granules, resides in the core where it granulated along with other excipients per Table 70 (Granulation) and is subsequently coated with Eudragit E-100 and magnesium stearate.
- Granules are manufactured in a high shear granulator where hypromellose, Quetiapine fumarate, a portion of the Lutrol, sodium lauryl sulphate and glyceryl behenate are dry mixed for 3 minutes. Then a 10% hydroalcoholic solution of ethylcellulose is slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition is continued until the entire amount of ethylcellulose is added. The granules are then wet milled using a size reduction mill (Granumill) and then loaded into fluid bed for drying.
- a size reduction mill Granules are then wet milled using a size reduction mill (Granumill) and then loaded into fluid bed for drying.
- the quetiapine fumarate granules are then coated in a bottom spray fluid bed coater with alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate.
- the resulting coated granules are then used in blending and compression process.
- coated granules prepared per Example 37 above are subsequently mixed with other components (carbomer, crospovidone, remaining portion of Lutrol, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Quetiapine fumarate tablet compositions 25 mg 50 mg 100 mg (mg/ (mg/ (mg/ Components (mg/tablet) tablet) tablet) tablet) hypromellose 16 32 63 glyceryl behenate 9 18 36 ethylcellulose 5 11 22 quetiapine fumarate 25 50 100 Eudragit E-100 27 53 107 mannitol 17 17 20.1 carbopol 50 50 50 microcrystalline cellulose 100 100 100 100 crospovidone 150 150 150 200 sodium bicarbonate 30 30 30 magnesium stearate 18 31 63 Lutrol 45 51 62 sodium lauryl sulphate 6 12 24 Total Tablet Weight 498 605 877.1
- Quetiapine granules are manufactured using a process similar to that described in Example 1 and with some modification to the process.
- the Quetiapine fumarate instead of being layered on the granules, resides in the core where it is granulated along with other excipients per Table 72 and is subsequently coated with Eudragit E-100.
- Granules are manufactured in a high shear granulator where hypromellose, Quetiapine fumarate, sodium lauryl sulphate, portion of Lutrol and glyceryl behenate are dry mixed for 3 minutes. Then a 10% hydroalcoholic solution of ethylcellulose is slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition is continued until the entire amount of ethylcellulose is added. The granules are then wet milled using a size reduction mill (Granumill) and then loaded into fluid bed for drying.
- a size reduction mill Granules are then wet milled using a size reduction mill (Granumill) and then loaded into fluid bed for drying.
- Quetiapine Fumarate granules are then coated in a bottom spray fluid bed coater with alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate. The resultant coated granules are subsequently used for blending and compression process.
- coated granules prepared as per Example 39 above are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose, and remaining portion of Lutrol) and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Quetiapine fumarate tablet compositions Components (mg/tab) 200 mg 300 mg 400 mg hypromellose 48 72.5 97 glyceryl behenate 14 20.8 28 ethylcellulose 14 20.8 28 quetiapine fumarate 200 300 400 Eudragit E-100 40 74 99 mannitol 25 25 25 carbopol 50 65 65 microcrystalline cellulose 125 125 125 crospovidone 200 275 275 sodium bicarbonate 45 45 45 magnesium stearate 36 48 64 Lutrol 78 91.6 105 sodium lauryl sulphate 34 51.2 69 Total Tablet Weight 909 1213.9 1425
- Coated hydromorphone granules are prepared as per the process described in Example 1 with slight variation from Example 1 in components as illustrated below.
- Coated hydromorphone granules are prepared as per the process described in Example 1 and Example 41 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Coated methamphetamine granules are prepared according to the process described in Example 1.
- Methamphetamine hydrochloride granule composition % w/w Granulation hypromellose 60 glyceryl behenate 26 ethylcellulose 14 TOTAL 100 Layering methamphetamine hydrochloride 5 polymer granules (EC, HPMC and 92.5 Compritol) Hypromellose 2910 2.5 TOTAL 100 Coating methamphetamine layered 50 granules Eudragit E-100 33 magnesium stearate 17 TOTAL 100
- Coated methamphetamine granules are prepared as per the process described in Example 1 and Example 43 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Methamphetamine hydrochloride tablet composition Components (mg/tablet) 5 mg hypromellose 55.6 glyceryl behenate 23.8 ethylcellulose 13.1 methamphetamine hydrochloride 5 Hypromellose 2910 2.5 Eudragit E-100 66.7 mannitol 70 carbopol 50 microcrystalline cellulose 95 crospovidone 100 sodium bicarbonate 30 magnesium stearate 39 Total Tablet Weight 550.7
- Coated oxymorphone granules are prepared as per the process described in Example 1.
- Coated oxymorphone granules are prepared as per the process described in Example 1 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Oxymorphone hydrochloride tablet compositions Components (mg/tablet) 5 mg 10 mg hypromellose 25.5 51.1 glyceryl behenate 11 21.9 ethylcellulose 6 12 oxymorphone hydrochloride 5 10 Hypromellose 2910 2.5 5 Eudragit E-100 33.4 66.7 mannitol 70 70 carbopol 45 45 microcrystalline cellulose 95 94 crospovidone 100 100 sodium bicarbonate 27 27 magnesium stearate 21.6 39.3 Total Tablet Weight 442 542
- Coated oxycodone granules are prepared as per the process described in Example 1.
- Coated oxycodone granules are prepared as per the process described in Example 1 and Example 47 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Oxycodone hydrochloride tablet compositions Components (mg/tablet) 5 mg 15 mg 30 mg hypromellose 25.5 76.6 153.3 glyceryl behenate 11 32.8 65.7 ethylcellulose 6 18.1 36.1 oxycodone hydrochloride 5 15 30 Hypromellose 2910 2.5 7.5 15 Eudragit E-100 33.4 100.1 200.1 mannitol 70 37.29 70 carbopol 45 50 50 microcrystalline cellulose 95 130 94 crospovidone 100 150 200 sodium bicarbonate 27 30 30 magnesium stearate 21.6 57 110 Total Tablet Weight 442 704.39 1054.2
- Coated morphine granules are prepared as per the process described in Example 1.
- Morphine Sulfate tablet compositions % w/w Granulation hypromellose 60 glyceryl behenate 26 ethylcellulose 14 TOTAL 100 Layering morphine sulphate 10 polymer granules (EC, HPMC and 85 Compritol) Hypromellose 2910 5 TOTAL 100 Coating morphine layered granules 50 Eudragit E-100 33 magnesium stearate 17 TOTAL 100
- Coated morphine granules are prepared as per the process described in Example 1 and Example 49 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Morphine sulphate tablet compositions Components (mg/tablet) 6 mg 15 mg 30 mg hypromellose 30.6 76.6 153.3 glyceryl behenate 13.1 32.8 65.7 ethylcellulose 7.2 18.1 36.1 morphine sulphate 6 15 30 Hypromellose 2910 3 7.5 15 Eudragit E-100 40.02 100.1 200.1 mannitol 70 70 70 carbopol 45 50 50 microcrystalline cellulose 95 130 94 crospovidone 100 150 200 sodium bicarbonate 27 30 30 magnesium stearate 24.5 57 110 Total Tablet Weight 461.42 737.1 1054.2
- Coated granules containing mixed amphetamine salts are prepared as per the process described in Example 1.
- Coated granules containing mixed amphetamine salts are prepared as per the process described in Example 1 and Example 51 above.
- the coated granules are subsequently mixed with other components such as carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Coated granules containing Codeine phosphate are prepared as per the process described in Example 1 with some modifications to the composition as described below.
- Coated granules containing codeine phosphate are prepared as per the process described in Example 1 and Example 53 above.
- the coated granules are subsequently mixed with other active ingredient (paracetamol), and other components (carbomer, crospovidone, sodium bicarbonate, mannitol, colorant, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- active ingredient paracetamol
- other components carbomer, crospovidone, sodium bicarbonate, mannitol, colorant, microcrystalline cellulose
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Coated granules containing methylphenidate hydrochloride are prepared as per the process described in Example 1.
- Coated granules containing methylphenidate hydrochloride are prepared as per the process described in Example 1 and Example 55 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Methylphenidate hydrochloride tablet formulation Components (mg/tablet) 5 mg 20 mg hypromellose 25.5 102.15 glyceryl behenate 10.9 43.8 ethylcellulose 6.02 24.1 methylphenidate hydrochloride 5 20 Hypromellose 2910 2.5 10 Eudragit E-100 33.4 133.4 mannitol 70 70 carbopol 45 50 microcrystalline cellulose 95 150 crospovidone 100 160 sodium bicarbonate 27 30 magnesium stearate 21.5 75 Total Tablet Weight 441.82 868.45
- Coated granules containing oxycodone hydrochloride were prepared and coated as per the process described in Example 1.
- Granules were manufactured in a high shear granulator where Hypromellose and glyceryl behenate were dry mixed for 3 minutes. Then a 10% hydroalcoholic solution of ethylcellulose N10 was slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition was continued until the entire amount of ethylcellulose was added. The granules were then wet milled using a size reduction mill (Granumill) and were subsequently loaded into fluid bed for drying.
- a size reduction mill Granules were then wet milled using a size reduction mill (Granumill) and were subsequently loaded into fluid bed for drying.
- the prepared granules were then layered in a bottom spray fluid bed coater with a 12% aqueous solution of oxycodone hydrochloride and HPMC 2910 (2:1).
- the oxycodone hydrochloride layered granules were then coated in a bottom spray fluid bed coater with 25% alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate (2:1). The resulting coated granules were subsequently used for further blending and compression process.
- coated granules prepared according to the example 57 above were mixed with another active agent, Paracetamol, and other excipients (carbomer, crospovidone, sodium bicarbonate, mannitol, FD&C blue, microcrystalline cellulose), and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and blended for additional 5 minutes prior to compressing into oxycodone/APAP tablets.
- Oxycodone hydrochloride tablet formulation Component % w/w oxycodone coated granules 20.0 Paracetamol* 33.7 mannitol 4.2 carbopol 5.0 microcrystalline cellulose 13.0 crospovidone 20.0 sodium bicarbonate 3.0 FD and C blue 0.06 magnesium stearate 1.0 Total 100 *Contains 95% acetaminophen and 5% gelatin
- coated granules prepared according to the example 57 above were mixed with another active agent, Paracetamol, and other excipients (carbomer, crospovidone, sodium bicarbonate, mannitol, FD&C blue, microcrystalline cellulose), and blended in a V-blender for 30 minutes. Magnesium stearate was then added to lubricate the blend and blended for additional 5 minutes prior to compressing into oxycodone/APAP tablets.
- Oxycodone/acetaminophen tablet formulations Component (% w/w) 5/325 mg 7.5/325 mg 10/325 mg oxycodone coated granules 12.5 16.7 20.0 paracetamol* 42.8 38.0 34.2 mannitol 3.7 4.37 3.79 carbopol 6.25 5.6 5 microcrystalline cellulose 12 12 13 crospovidone 18 19 20 sodium bicarbonate 3.75 3.3 3 Iron Oxide yellow 0.06 NA NA FD&C Blue # 2 NA 0.06 NA magnesium stearate 1.0 1.0 1.0 Total 100 100 100 *Contains 95% acetaminophen and 5% gelatin
- Armodafinil granules are manufactured using a process similar to that described in Example 1 and with some modification to the process.
- the active ingredient, Armodafinil instead of being layered on the granules, resides in the core where it is granulated along with other excipients as per Table 93, and is subsequently coated with Eudragit E-100.
- Granules are manufactured in a high shear granulator where hypromellose, Armodafinil, povidone and glyceryl behenate are dry mixed for 3 minutes. Then a 10% hydroalcoholic solution of ethylcellulose is slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition is continued until the entire amount of ethylcellulose is added. The granules are then wet milled using a size reduction mill (Granumill) and subsequently loaded into fluid bed for drying.
- a size reduction mill Granules are then wet milled using a size reduction mill (Granumill) and subsequently loaded into fluid bed for drying.
- Armodafinil granules are then coated in a bottom spray fluid bed coater with alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate.
- the resultant coated granules are subsequently used for blending and compression process.
- coated granules prepared as per Example 60 above are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Phenobarbital granules are manufactured using a process similar to that described in Example 1 and with some modification to the process.
- the active ingredient, Phenobarbital instead of being layered on the granules, resides in the core where it is granulated along with other excipients per the Table below, and is subsequently coated with Eudragit E-100.
- Granules are manufactured in a high shear granulator where hypromellose, phenobarbital, povidone and glyceryl behenate are dry mixed for 3 minutes. Then a 10% hydroalcoholic solution of ethylcellulose is slowly added while maintaining the granulator impeller and chopper speed at pre-selected values that provide enough shear for granule formation and growth. Solution addition is continued until the entire amount of ethylcellulose is added. The granules are then wet milled using a size reduction mill (Granumill) and subsequently loaded into fluid bed for drying.
- a size reduction mill Granules are then wet milled using a size reduction mill (Granumill) and subsequently loaded into fluid bed for drying.
- the phenobarbital granules are then coated in a bottom spray fluid bed coater with alcoholic suspension of Eudragit E-100 copolymer and magnesium stearate.
- the resultant coated granules are subsequently used for blending and compression process.
- Phenobarbital granule formulations % w/w Granulation
- coated granules prepared as per Example 62 above are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Phenobarbital tablet formulations 15 mg 30 mg 60 mg 100 mg (mg/ (mg/ (mg/ (mg/ Components tablet) tablet) tablet) tablet) hypromellose 3.8 7.5 15 25.01 glyceryl behenate 1 2 3.4 5.72 ethylcellulose 1 2 3.4 5.72 phenobarbital 15 30 60 100 Eudragit E-100 15 30 59 98.5 mannitol 20 20 20 20 20 20 20 20 carbopol 50 50 50 50 50 50 50 50 50 50 50 microcrystalline cellulose 75 100 100 100 crospovidone 130 130 200 200 sodium bicarbonate 30 30 30 30 30 30 magnesium stearate 12 20 36 59 povidone 2 4 7.7 12.9 Total Tablet Weight 354.8 425.5 584.5 706.85
- Coated diazepam granules are prepared as per the process described in Example 1 with slight variation from Example 1 in components as illustrated in the Table below.
- Coated diazepam granules are prepared as per the process described in Example 1 and Example 64 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose), and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
- Diazepam tablet formulations Components (mg/tablet) 2 mg 5 mg 10 mg hypromellose 22.2 55.6 111.2 glyceryl behenate 9.5 23.8 47.64 ethylcellulose 5.2 13.1 26.2 diazepam 2 5 10 Hypromellose 2910 1 2.5 5 Eudragit E-100 26.7 66.7 133.4 mannitol 70 70 70 carbopol 50 50 50 50 microcrystalline cellulose 95 95 94 crospovidone 120 120 150 sodium bicarbonate 30 30 30 magnesium stearate 18.1 38.6 74.6 Total Tablet Weight 449.7 570.3 802.04
- Coated granules containing hydrocodone bitartrate are prepared as per the process described in Example 1.
- Coated granules containing hydrocodone bitartrate are prepared as per the process described in Example 1 and Example 66 above.
- the coated granules are subsequently mixed with other components (carbomer, crospovidone, sodium bicarbonate, mannitol, microcrystalline cellulose and blended in a V-blender for 30 minutes.
- Magnesium stearate is added to lubricate the blend and blended for additional 5 minutes prior to compressing into tablets.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Emergency Medicine (AREA)
- Pain & Pain Management (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Priority Applications (24)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/333,986 US20150118300A1 (en) | 2013-10-31 | 2014-07-17 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
PCT/US2014/054061 WO2015065586A1 (en) | 2013-10-31 | 2014-09-04 | Immediate release abuse-deterrent granulated dosage forms |
US14/477,354 US20150118301A1 (en) | 2013-10-31 | 2014-09-04 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US14/484,793 US20150118295A1 (en) | 2013-10-31 | 2014-09-12 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
EP14858628.2A EP3062778A4 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
AU2014342412A AU2014342412B2 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
US14/527,215 US9707224B2 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
EA201690874A EA032013B1 (ru) | 2013-10-31 | 2014-10-29 | Препятствующие злоупотреблению гранулированные лекарственные формы с немедленным высвобождением |
PE2016000556A PE20160606A1 (es) | 2013-10-31 | 2014-10-29 | Formas de dosificacion granuladas disuasivas del abuso de liberacion inmediata |
CA2900858A CA2900858C (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
JP2016552219A JP6659925B2 (ja) | 2013-10-31 | 2014-10-29 | 即放性乱用抑止性剤形 |
MX2016005482A MX384376B (es) | 2013-10-31 | 2014-10-29 | Formas de dosificación de liberación inmediata disuasivas del abuso, en forma de partículas recubiertas con capas múltiples que comprenden un analgésico narcótico susceptible de abuso o sobredosis. |
PCT/US2014/062887 WO2015066172A1 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
US15/032,658 US20160250203A1 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
CN201480059281.6A CN105682647A (zh) | 2013-10-31 | 2014-10-29 | 立即释放型滥用制止粒状剂型 |
HK16112327.1A HK1223856A1 (zh) | 2013-10-31 | 2014-10-29 | 立即釋放型濫用制止粒狀劑型 |
KR1020167013870A KR102363573B1 (ko) | 2013-10-31 | 2014-10-29 | 즉시 방출 남용 저지 입상 투여 형태 |
US14/539,231 US9757371B2 (en) | 2013-10-31 | 2014-11-12 | Immediate release abuse-deterrent granulated dosage forms |
IL245125A IL245125B (en) | 2013-10-31 | 2016-04-14 | Immediate-release granulated dosage forms prevent abuse |
ZA2016/04451A ZA201604451B (en) | 2013-10-31 | 2016-04-22 | Immediate release abuse-deterrent granulated dosage forms |
CL2016001031A CL2016001031A1 (es) | 2013-10-31 | 2016-04-29 | Forma de dosificación de liberación inmediata que evita el abuso, que comprende partículas de núcleo recubiertas y una matriz; su uso para preparar un medicamento útil para prevenir, aliviar o aminorar un nivel de dolor y para prevenir el abuso de un fármaco analgésico narcótico, entre otros. |
US15/908,013 US10568881B2 (en) | 2013-10-31 | 2018-02-28 | Immediate release abuse-deterrent granulated dosage forms |
US16/751,043 US11207318B2 (en) | 2013-10-31 | 2020-01-23 | Immediate release abuse-deterrent granulated dosage forms |
US17/527,528 US11844796B2 (en) | 2013-10-31 | 2021-11-16 | Immediate release abuse-deterrent granulated dosage forms |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361898207P | 2013-10-31 | 2013-10-31 | |
US14/333,986 US20150118300A1 (en) | 2013-10-31 | 2014-07-17 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/054061 Continuation-In-Part WO2015065586A1 (en) | 2013-10-31 | 2014-09-04 | Immediate release abuse-deterrent granulated dosage forms |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/477,354 Continuation-In-Part US20150118301A1 (en) | 2013-10-31 | 2014-09-04 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150118300A1 true US20150118300A1 (en) | 2015-04-30 |
Family
ID=51263565
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/333,986 Abandoned US20150118300A1 (en) | 2013-10-31 | 2014-07-17 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US14/477,354 Abandoned US20150118301A1 (en) | 2013-10-31 | 2014-09-04 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US14/484,793 Abandoned US20150118295A1 (en) | 2013-10-31 | 2014-09-12 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US14/527,215 Active US9707224B2 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
US15/032,658 Abandoned US20160250203A1 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
US14/539,231 Active US9757371B2 (en) | 2013-10-31 | 2014-11-12 | Immediate release abuse-deterrent granulated dosage forms |
US15/908,013 Active US10568881B2 (en) | 2013-10-31 | 2018-02-28 | Immediate release abuse-deterrent granulated dosage forms |
US16/751,043 Active US11207318B2 (en) | 2013-10-31 | 2020-01-23 | Immediate release abuse-deterrent granulated dosage forms |
US17/527,528 Active US11844796B2 (en) | 2013-10-31 | 2021-11-16 | Immediate release abuse-deterrent granulated dosage forms |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/477,354 Abandoned US20150118301A1 (en) | 2013-10-31 | 2014-09-04 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US14/484,793 Abandoned US20150118295A1 (en) | 2013-10-31 | 2014-09-12 | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US14/527,215 Active US9707224B2 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
US15/032,658 Abandoned US20160250203A1 (en) | 2013-10-31 | 2014-10-29 | Immediate release abuse-deterrent granulated dosage forms |
US14/539,231 Active US9757371B2 (en) | 2013-10-31 | 2014-11-12 | Immediate release abuse-deterrent granulated dosage forms |
US15/908,013 Active US10568881B2 (en) | 2013-10-31 | 2018-02-28 | Immediate release abuse-deterrent granulated dosage forms |
US16/751,043 Active US11207318B2 (en) | 2013-10-31 | 2020-01-23 | Immediate release abuse-deterrent granulated dosage forms |
US17/527,528 Active US11844796B2 (en) | 2013-10-31 | 2021-11-16 | Immediate release abuse-deterrent granulated dosage forms |
Country Status (11)
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9629807B2 (en) | 2003-08-06 | 2017-04-25 | Grünenthal GmbH | Abuse-proofed dosage form |
US9636303B2 (en) | 2010-09-02 | 2017-05-02 | Gruenenthal Gmbh | Tamper resistant dosage form comprising an anionic polymer |
US9655853B2 (en) | 2012-02-28 | 2017-05-23 | Grünenthal GmbH | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
US9675610B2 (en) | 2002-06-17 | 2017-06-13 | Grünenthal GmbH | Abuse-proofed dosage form |
US9737490B2 (en) | 2013-05-29 | 2017-08-22 | Grünenthal GmbH | Tamper resistant dosage form with bimodal release profile |
US9750701B2 (en) | 2008-01-25 | 2017-09-05 | Grünenthal GmbH | Pharmaceutical dosage form |
US9855263B2 (en) | 2015-04-24 | 2018-01-02 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
US9872835B2 (en) | 2014-05-26 | 2018-01-23 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
US9913814B2 (en) | 2014-05-12 | 2018-03-13 | Grünenthal GmbH | Tamper resistant immediate release capsule formulation comprising tapentadol |
US9925146B2 (en) | 2009-07-22 | 2018-03-27 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US10058548B2 (en) | 2003-08-06 | 2018-08-28 | Grünenthal GmbH | Abuse-proofed dosage form |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
US10080721B2 (en) | 2009-07-22 | 2018-09-25 | Gruenenthal Gmbh | Hot-melt extruded pharmaceutical dosage form |
US10130591B2 (en) | 2003-08-06 | 2018-11-20 | Grünenthal GmbH | Abuse-proofed dosage form |
US10154966B2 (en) | 2013-05-29 | 2018-12-18 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
US10201502B2 (en) | 2011-07-29 | 2019-02-12 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
US10300141B2 (en) | 2010-09-02 | 2019-05-28 | Grünenthal GmbH | Tamper resistant dosage form comprising inorganic salt |
US10335373B2 (en) | 2012-04-18 | 2019-07-02 | Grunenthal Gmbh | Tamper resistant and dose-dumping resistant pharmaceutical dosage form |
US10449547B2 (en) | 2013-11-26 | 2019-10-22 | Grünenthal GmbH | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
US10624862B2 (en) | 2013-07-12 | 2020-04-21 | Grünenthal GmbH | Tamper-resistant dosage form containing ethylene-vinyl acetate polymer |
US10632113B2 (en) | 2014-02-05 | 2020-04-28 | Kashiv Biosciences, Llc | Abuse-resistant drug formulations with built-in overdose protection |
WO2020092987A1 (en) * | 2018-11-01 | 2020-05-07 | Molecular Infusions, Llc | Polymer-based oral cannabinoid and/or terpene formulations |
US10695297B2 (en) | 2011-07-29 | 2020-06-30 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US10729658B2 (en) | 2005-02-04 | 2020-08-04 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US10842750B2 (en) | 2015-09-10 | 2020-11-24 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
US11224576B2 (en) | 2003-12-24 | 2022-01-18 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US20220202742A1 (en) * | 2019-05-07 | 2022-06-30 | Clexio Biosciences Ltd. | Dosage forms for preventing drug-facilitated assault |
EP3965733A4 (en) * | 2019-05-07 | 2023-01-11 | Clexio Biosciences Ltd. | ABUSE DETERRENT DOSAGE FORMS CONTAINING ESKETAMINE |
US11844865B2 (en) | 2004-07-01 | 2023-12-19 | Grünenthal GmbH | Abuse-proofed oral dosage form |
US11992468B2 (en) | 2019-05-07 | 2024-05-28 | Clexio Biosciences Ltd. | Abuse-deterrent dosage forms containing esketamine |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150118300A1 (en) | 2013-10-31 | 2015-04-30 | Cima Labs Inc. | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US12208068B2 (en) * | 2013-12-31 | 2025-01-28 | Pharmapotheca A Inc. | Amphetamine controlled release, prodrug, and abuse-deterrent dosage forms |
AU2015237721B2 (en) * | 2014-03-26 | 2018-04-26 | Sun Pharma Advanced Research Company Ltd. | Abuse deterrent immediate release coated reservoir solid dosage form |
WO2016094358A1 (en) | 2014-12-08 | 2016-06-16 | Cima Labs Inc. | Immediate release abuse-deterrent granulated dosage forms |
US20180185352A1 (en) * | 2015-06-09 | 2018-07-05 | KVK-Tech, Inc. | Abuse deterrent pharmaceutical compositions |
US9861629B1 (en) | 2015-10-07 | 2018-01-09 | Banner Life Sciences Llc | Opioid abuse deterrent dosage forms |
GB201520007D0 (en) * | 2015-11-12 | 2015-12-30 | Sensidose Ab | Compacted powder |
CN108884019A (zh) | 2016-04-11 | 2018-11-23 | 克雷西奥生物科技有限公司 | 氘代氯胺酮衍生物 |
US10335405B1 (en) | 2016-05-04 | 2019-07-02 | Patheon Softgels, Inc. | Non-burst releasing pharmaceutical composition |
WO2018044895A1 (en) | 2016-08-29 | 2018-03-08 | Cima Labs Inc. | Immediate release dosage forms with abuse deterrence and alcohol resistance |
US10335375B2 (en) | 2017-05-30 | 2019-07-02 | Patheon Softgels, Inc. | Anti-overingestion abuse deterrent compositions |
US9993486B1 (en) | 2017-06-19 | 2018-06-12 | Tlc Therapeutics, Llc | Oral quetiapine suspension formulations with extended shelf life and enhanced bioavailability |
AU2018288071A1 (en) * | 2017-06-23 | 2020-02-06 | Sun Pharma Advanced Research Company Limited | Abuse deterrent oral solid dosage form |
GB2571696B (en) | 2017-10-09 | 2020-05-27 | Compass Pathways Ltd | Large scale method for the preparation of Psilocybin and formulations of Psilocybin so produced |
US10532869B2 (en) | 2017-11-01 | 2020-01-14 | Eighty Eight Pharma, Inc. | Device for deterring abuse of drugs |
TWI744858B (zh) * | 2019-04-12 | 2021-11-01 | 財團法人醫藥工業技術發展中心 | 治療精神疾病之控釋藥物組合物和方法 |
WO2020212951A1 (en) | 2019-04-17 | 2020-10-22 | Compass Pathfinder Limited | Methods for treating anxiety disorders, headache disorders, and eating disorders with psilocybin |
US11071739B1 (en) | 2020-09-29 | 2021-07-27 | Genus Lifesciences Inc. | Oral liquid compositions including chlorpromazine |
US20230414514A1 (en) * | 2022-06-22 | 2023-12-28 | Purdue Research Foundation | Formulation to deter abuse of drugs by smoking |
Family Cites Families (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2798053A (en) | 1952-09-03 | 1957-07-02 | Goodrich Co B F | Carboxylic polymers |
US2909462A (en) | 1955-12-08 | 1959-10-20 | Bristol Myers Co | Acrylic acid polymer laxative compositions |
US5169645A (en) | 1989-10-31 | 1992-12-08 | Duquesne University Of The Holy Ghost | Directly compressible granules having improved flow properties |
US5266331A (en) | 1991-11-27 | 1993-11-30 | Euroceltique, S.A. | Controlled release oxycodone compositions |
US5248669A (en) | 1991-12-17 | 1993-09-28 | Samir Amer | Inhibition of anoxia or hypoxia-induced, endothelium-mediated vasospasm with avermectins |
US5580578A (en) | 1992-01-27 | 1996-12-03 | Euro-Celtique, S.A. | Controlled release formulations coated with aqueous dispersions of acrylic polymers |
US5968551A (en) | 1991-12-24 | 1999-10-19 | Purdue Pharma L.P. | Orally administrable opioid formulations having extended duration of effect |
US5958459A (en) | 1991-12-24 | 1999-09-28 | Purdue Pharma L.P. | Opioid formulations having extended controlled released |
US5472712A (en) | 1991-12-24 | 1995-12-05 | Euroceltique, S.A. | Controlled-release formulations coated with aqueous dispersions of ethylcellulose |
US5681585A (en) | 1991-12-24 | 1997-10-28 | Euro-Celtique, S.A. | Stabilized controlled release substrate having a coating derived from an aqueous dispersion of hydrophobic polymer |
IL110014A (en) | 1993-07-01 | 1999-11-30 | Euro Celtique Sa | Solid controlled-release oral dosage forms of opioid analgesics |
US6210714B1 (en) | 1993-11-23 | 2001-04-03 | Euro-Celtique S.A. | Immediate release tablet cores of acetaminophen having sustained-release coating |
US5500227A (en) | 1993-11-23 | 1996-03-19 | Euro-Celtique, S.A. | Immediate release tablet cores of insoluble drugs having sustained-release coating |
GB9401894D0 (en) | 1994-02-01 | 1994-03-30 | Rhone Poulenc Rorer Ltd | New compositions of matter |
DE4413350A1 (de) | 1994-04-18 | 1995-10-19 | Basf Ag | Retard-Matrixpellets und Verfahren zu ihrer Herstellung |
US5965161A (en) | 1994-11-04 | 1999-10-12 | Euro-Celtique, S.A. | Extruded multi-particulates |
US20020006438A1 (en) | 1998-09-25 | 2002-01-17 | Benjamin Oshlack | Sustained release hydromorphone formulations exhibiting bimodal characteristics |
GB9519363D0 (en) | 1995-09-22 | 1995-11-22 | Euro Celtique Sa | Pharmaceutical formulation |
US6245351B1 (en) | 1996-03-07 | 2001-06-12 | Takeda Chemical Industries, Ltd. | Controlled-release composition |
DE69722191T2 (de) | 1996-03-08 | 2004-04-01 | Nycomed Danmark Aps | Dosiszusammensetzung mit modifizierter freigabe aus vielen einzelkomponenten |
US20020110595A1 (en) | 1996-06-28 | 2002-08-15 | Basf Corporation | Slow release pharmaceutical compositions |
US6375987B1 (en) | 1996-10-01 | 2002-04-23 | Gattefossé, S.A. | Process for the manufacture of pharmaceutical composition with modified release of active principle comprising the matrix |
BE1011045A3 (fr) | 1997-03-14 | 1999-04-06 | Ucb Sa | Compositions pharmaceutiques pour la liberation controlee de substances actives. |
US6024981A (en) | 1997-04-16 | 2000-02-15 | Cima Labs Inc. | Rapidly dissolving robust dosage form |
US6607751B1 (en) | 1997-10-10 | 2003-08-19 | Intellipharamaceutics Corp. | Controlled release delivery device for pharmaceutical agents incorporating microbial polysaccharide gum |
US20040028735A1 (en) | 1997-11-14 | 2004-02-12 | Unchalee Kositprapa | Pharmaceutical formulation |
US6251430B1 (en) | 1998-02-04 | 2001-06-26 | Guohua Zhang | Water insoluble polymer based sustained release formulation |
US6372254B1 (en) | 1998-04-02 | 2002-04-16 | Impax Pharmaceuticals Inc. | Press coated, pulsatile drug delivery system suitable for oral administration |
SE9803239D0 (sv) | 1998-09-24 | 1998-09-24 | Diabact Ab | Composition for the treatment of acute pain |
US6033686A (en) | 1998-10-30 | 2000-03-07 | Pharma Pass Llc | Controlled release tablet of bupropion hydrochloride |
KR20070051953A (ko) | 1998-11-02 | 2007-05-18 | 엘란 코포레이션, 피엘씨 | 다입자 변형 방출 조성물 |
PE20001396A1 (es) | 1999-01-18 | 2000-12-23 | Gruenenthal Chemie | Formulaciones medicamentosas retardadas que contienen una combinacion de un opioide o una sal fisiologicamente tolerables del mismo, un o-agonista |
DE19901687B4 (de) | 1999-01-18 | 2006-06-01 | Grünenthal GmbH | Opioide Analgetika mit kontrollierter Wirkstofffreisetzung |
CA2361555A1 (en) | 1999-02-03 | 2000-08-10 | Powderject Research Limited | Hydrogel particle formulations |
US7374779B2 (en) | 1999-02-26 | 2008-05-20 | Lipocine, Inc. | Pharmaceutical formulations and systems for improved absorption and multistage release of active agents |
US6680071B1 (en) | 1999-03-03 | 2004-01-20 | R. P. Scherer Technologies, Inc. | Opioid agonist in a fast dispersing dosage form |
EP1064912B1 (de) | 1999-07-02 | 2004-01-28 | Cognis Iberia, S.L. | Mikrokapseln - I |
ATE304344T1 (de) | 1999-07-02 | 2005-09-15 | Cognis Ip Man Gmbh | Mikrokapseln - iii |
DE19932603A1 (de) | 1999-07-13 | 2001-01-25 | Gruenenthal Gmbh | Wirkstoffhaltiger Mehrschichtfilm aus in situ vernetzten hydrophilen Polymeren |
US6500459B1 (en) | 1999-07-21 | 2002-12-31 | Harinderpal Chhabra | Controlled onset and sustained release dosage forms and the preparation thereof |
US20030118641A1 (en) | 2000-07-27 | 2003-06-26 | Roxane Laboratories, Inc. | Abuse-resistant sustained-release opioid formulation |
SE9903236D0 (sv) | 1999-09-10 | 1999-09-10 | Astra Ab | Method to obtain microparticles |
EP1103256A1 (de) | 1999-11-26 | 2001-05-30 | Claudius Dr. med. Böck | Verwendung von Ketamin zur Behandlung von neuroendokriner Immundysfunktion und algogenem Psychosyndrom |
US6708822B1 (en) | 1999-11-30 | 2004-03-23 | Cutispharma, Inc. | Compositions and kits for compounding pharmaceuticals |
HK1039897A1 (zh) | 1999-12-08 | 2002-05-17 | Pharmacia Corporation | 选择性醛甾酮受体拮抗剂「eplerenone」毫微粒子合成物 |
DK2517710T3 (en) | 2000-02-08 | 2015-05-26 | Euro Celtique Sa | Oral opioid agonist formulations secured against forgery |
PT1276470E (pt) * | 2000-04-20 | 2007-08-13 | Novartis Ag | Composição de revestimento para dissimular o sabor |
US6419954B1 (en) | 2000-05-19 | 2002-07-16 | Yamanouchi Pharmaceutical Co., Ltd. | Tablets and methods for modified release of hydrophilic and other active agents |
DE10025946A1 (de) | 2000-05-26 | 2001-11-29 | Gruenenthal Gmbh | Wirkstoffkombination |
EP2932964A1 (en) | 2000-10-30 | 2015-10-21 | Euro-Celtique S.A. | Controlled release hydrocodone formulations |
UA81224C2 (uk) | 2001-05-02 | 2007-12-25 | Euro Celtic S A | Дозована форма оксикодону та її застосування |
CA2446550C (en) * | 2001-05-11 | 2012-03-06 | Endo Pharmaceuticals, Inc. | Abuse-resistant controlled-release opioid dosage form |
CA2446738C (en) | 2001-05-11 | 2012-05-29 | Endo Pharmaceuticals, Inc. | Abuse-resistant opioid dosage form |
US20030068375A1 (en) * | 2001-08-06 | 2003-04-10 | Curtis Wright | Pharmaceutical formulation containing gelling agent |
US7842307B2 (en) * | 2001-08-06 | 2010-11-30 | Purdue Pharma L.P. | Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent |
EP1429744A1 (en) | 2001-09-21 | 2004-06-23 | Egalet A/S | Morphine polymer release system |
US20030125347A1 (en) | 2001-11-02 | 2003-07-03 | Elan Corporation Plc | Pharmaceutical composition |
US6863901B2 (en) | 2001-11-30 | 2005-03-08 | Collegium Pharmaceutical, Inc. | Pharmaceutical composition for compressed annular tablet with molded triturate tablet for both intraoral and oral administration |
KR100540035B1 (ko) | 2002-02-01 | 2005-12-29 | 주식회사 태평양 | 다단계 경구 약물 방출 제어 시스템 |
ATE346591T1 (de) * | 2002-02-07 | 2006-12-15 | Pharmacia Corp | Pharmazeutische tablette |
US6855735B2 (en) | 2002-03-20 | 2005-02-15 | Temple University Of The Commonwealth System Of Higher Education | Ketamine treatment of restless legs syndrome |
EP1639997A1 (en) | 2002-04-05 | 2006-03-29 | Euro-Celtique S.A. | Matrix for sustained, invariant and independant release of active compounds |
US20050106249A1 (en) | 2002-04-29 | 2005-05-19 | Stephen Hwang | Once-a-day, oral, controlled-release, oxycodone dosage forms |
US7776314B2 (en) | 2002-06-17 | 2010-08-17 | Grunenthal Gmbh | Abuse-proofed dosage system |
CA2491572C (en) | 2002-07-05 | 2010-03-23 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opiods and other drugs |
US8557291B2 (en) | 2002-07-05 | 2013-10-15 | Collegium Pharmaceutical, Inc. | Abuse-deterrent pharmaceutical compositions of opioids and other drugs |
US7985422B2 (en) | 2002-08-05 | 2011-07-26 | Torrent Pharmaceuticals Limited | Dosage form |
US20040052844A1 (en) | 2002-09-16 | 2004-03-18 | Fang-Hsiung Hsiao | Time-controlled, sustained release, pharmaceutical composition containing water-soluble resins |
PT1551372T (pt) | 2002-09-20 | 2018-07-23 | Alpharma Pharmaceuticals Llc | Subunidade de sequestração e composições e métodos relacionados |
EP1545468A4 (en) | 2002-09-20 | 2007-06-20 | Alpharma Inc | SUSTAINED RELEASE OPIOID PREPARATIONS AND METHODS OF USE |
JP5189242B2 (ja) | 2002-09-23 | 2013-04-24 | アルケルメス ファーマ アイルランド リミテッド | 乱用抵抗性の医薬組成物 |
JP2006516969A (ja) | 2003-01-23 | 2006-07-13 | アモレパシフィック コーポレーション | 徐放性製剤及びその製造方法 |
US10172810B2 (en) | 2003-02-24 | 2019-01-08 | Pharmaceutical Productions, Inc. | Transmucosal ketamine delivery composition |
DE602004024963D1 (de) | 2003-03-13 | 2010-02-25 | Controlled Chemicals Inc | Oxycodon- konjugate mit niedrigerem missbrauch- potential und ausgedehnter tätigkeitsdauer |
EP1782834A3 (en) | 2003-03-13 | 2007-08-01 | Controlled Chemicals, Inc. | Oxycodone conjugates with lower abuse potential and extended duration of action |
US20040202717A1 (en) | 2003-04-08 | 2004-10-14 | Mehta Atul M. | Abuse-resistant oral dosage forms and method of use thereof |
MXPA05011071A (es) | 2003-04-21 | 2005-12-12 | Euro Celtique Sa | Forma de dosificacion resistente a la alteracion que comprende particulas co-extrusionadas de agente adverso y proceso de fabricacion de las misma. |
DE10336400A1 (de) | 2003-08-06 | 2005-03-24 | Grünenthal GmbH | Gegen Missbrauch gesicherte Darreichungsform |
US20090304793A1 (en) | 2003-09-22 | 2009-12-10 | Alpharma, Inc. | Sustained release opioid formulations and methods of use |
KR20120106757A (ko) | 2003-09-26 | 2012-09-26 | 알자 코포레이션 | 오피오이드 및 비오피오이드 진통제의 제어 방출 제제 |
JP4691500B2 (ja) | 2003-09-30 | 2011-06-01 | シャイア エルエルシー | 過剰摂取又は乱用を防止するための薬学組成物 |
EP1677768A4 (en) | 2003-10-03 | 2011-06-29 | Elite Lab Inc | PROLONGED RELEASE OPIOID FORMULATIONS AND METHOD OF USING THE FORMULATIONS |
HUP0303382A2 (hu) | 2003-10-10 | 2005-08-29 | EGIS Gyógyszergyár Rt. | Venlafaxin-hidroklorid-tartalmú pelletek |
US7201920B2 (en) | 2003-11-26 | 2007-04-10 | Acura Pharmaceuticals, Inc. | Methods and compositions for deterring abuse of opioid containing dosage forms |
JP5000890B2 (ja) | 2003-12-15 | 2012-08-15 | カウンシル オブ サイエンティフィク アンド インダストリアル リサーチ | pH感受性ポリマー及びそれらの製造方法 |
US20050165038A1 (en) | 2004-01-22 | 2005-07-28 | Maxwell Gordon | Analgetic dosage forms that are resistant to parenteral and inhalation dosing and have reduced side effects |
US20060024361A1 (en) | 2004-07-28 | 2006-02-02 | Isa Odidi | Disintegrant assisted controlled release technology |
US20070009589A1 (en) | 2005-07-07 | 2007-01-11 | Kandarapu Raghupathi | Extended release compositions |
WO2008134071A1 (en) | 2007-04-26 | 2008-11-06 | Theraquest Biosciences, Inc. | Multimodal abuse resistant extended release formulations |
US20090317355A1 (en) | 2006-01-21 | 2009-12-24 | Abbott Gmbh & Co. Kg, | Abuse resistant melt extruded formulation having reduced alcohol interaction |
US20090022798A1 (en) * | 2007-07-20 | 2009-01-22 | Abbott Gmbh & Co. Kg | Formulations of nonopioid and confined opioid analgesics |
ZA200807571B (en) | 2006-03-01 | 2009-08-26 | Ethypharm Sa | Crush-resistant tablets intended to prevent accidental misuse and unlawful diversion |
US20070212414A1 (en) | 2006-03-08 | 2007-09-13 | Penwest Pharmaceuticals Co. | Ethanol-resistant sustained release formulations |
US20080069891A1 (en) * | 2006-09-15 | 2008-03-20 | Cima Labs, Inc. | Abuse resistant drug formulation |
CN101677963B (zh) | 2006-06-19 | 2012-05-30 | 奥尔制药公司 | 药物组合物 |
DE602007005653D1 (de) | 2006-08-04 | 2010-05-12 | Ethypharm Sa | Mehrschichtige im mund zerfallende tablette |
BRPI0714514B8 (pt) | 2006-08-04 | 2021-05-25 | Ethypharm Sa | grânulo compreendendo núcleo revestido por oxicodona, bem como comprimido para desintegração oral e seu processo de fabricação |
WO2008024490A2 (en) | 2006-08-24 | 2008-02-28 | Theraquest Biosciences, Inc. | Oral pharmaceutical formulations of abuse deterrent cannabinoids and method of use |
US8445018B2 (en) * | 2006-09-15 | 2013-05-21 | Cima Labs Inc. | Abuse resistant drug formulation |
US8187636B2 (en) | 2006-09-25 | 2012-05-29 | Atlantic Pharmaceuticals, Inc. | Dosage forms for tamper prone therapeutic agents |
BRPI0815387B8 (pt) | 2007-08-13 | 2021-05-25 | Abuse Deterrent Pharmaceutical Llc | composição farmacêutica, método para fazer uma composição farmacêutica e uso da composição farmacêutica |
EP2187876B1 (en) | 2007-09-21 | 2012-08-22 | Evonik Röhm GmbH | Ph-dependent controlled release pharmaceutical opioid composition with resistance against the influence of ethanol |
US20090110724A1 (en) * | 2007-10-31 | 2009-04-30 | Everett Laboratories, Inc. | Compositions and methods for treatment of pain |
ES2337935T3 (es) | 2007-11-09 | 2010-04-30 | Acino Pharma Ag | Comprimidos de accion retardada con hidromorfona. |
US8383152B2 (en) * | 2008-01-25 | 2013-02-26 | Gruenenthal Gmbh | Pharmaceutical dosage form |
GB2462611A (en) * | 2008-08-12 | 2010-02-17 | Cambridge Lab | Pharmaceutical composition comprising tetrabenazine |
KR101660996B1 (ko) | 2008-09-16 | 2016-09-28 | 넥타르 테라퓨틱스 | 남용에 대한 낮은 잠재성을 갖는 페길화 오피오이드 |
WO2010044842A1 (en) | 2008-10-16 | 2010-04-22 | University Of Tennessee Research Foundation | Tamper resistant oral dosage forms containing an embolizing agent |
FR2949062B1 (fr) * | 2009-08-12 | 2011-09-02 | Debregeas Et Associes Pharma | Nouvelles formulations pharmaceutiques contre le mesusage des medicaments |
US9211292B2 (en) | 2010-04-21 | 2015-12-15 | Alitair Pharmaceuticals Inc | Preventing or reducing drug abuse and overdose events |
EP2635258A1 (en) | 2010-11-04 | 2013-09-11 | AbbVie Inc. | Drug formulations |
WO2012112952A1 (en) | 2011-02-17 | 2012-08-23 | QRxPharma Ltd. | Technology for preventing abuse of solid dosage forms |
US20150224097A1 (en) | 2011-11-22 | 2015-08-13 | Watson Pharmaceuticals, Inc. | Immediate Release Abuse Deterrent Tablet |
NZ629468A (en) * | 2012-03-02 | 2017-08-25 | Rhodes Pharmaceuticals Lp | Tamper resistant immediate release formulations |
US20140079740A1 (en) | 2012-08-02 | 2014-03-20 | ClinPharm Support GmbH | Oral transmucosal adminstration forms of s-ketamine |
FR2999426B1 (fr) * | 2012-12-13 | 2015-01-02 | Flamel Tech Sa | Forme orale multiparticulaire a liberation immediate d'au moins un compose actif, comprenant des particules enrobees resistantes au broyage. |
CA2817728A1 (en) * | 2013-05-31 | 2014-11-30 | Pharmascience Inc. | Abuse deterrent immediate release formulation |
US9913803B2 (en) * | 2013-08-26 | 2018-03-13 | Amorsa Therapeutics, Inc. | Single-layer oral dose of neuro-attenuating ketamine |
EP3062778A4 (en) | 2013-10-31 | 2017-07-19 | Cima Labs Inc. | Immediate release abuse-deterrent granulated dosage forms |
US20150118300A1 (en) | 2013-10-31 | 2015-04-30 | Cima Labs Inc. | Immediate Release Abuse-Deterrent Granulated Dosage Forms |
US10632113B2 (en) | 2014-02-05 | 2020-04-28 | Kashiv Biosciences, Llc | Abuse-resistant drug formulations with built-in overdose protection |
EP4180030A1 (en) | 2014-04-17 | 2023-05-17 | Ketabon GmbH | Oral dosage form of ketamine |
EP3215147B1 (en) | 2014-11-04 | 2024-02-28 | ACADIA Pharmaceuticals Inc. | Neuro-attenuating norketamine compounds and methods |
WO2016094358A1 (en) | 2014-12-08 | 2016-06-16 | Cima Labs Inc. | Immediate release abuse-deterrent granulated dosage forms |
-
2014
- 2014-07-17 US US14/333,986 patent/US20150118300A1/en not_active Abandoned
- 2014-07-17 WO PCT/US2014/047014 patent/WO2015065547A1/en active Application Filing
- 2014-09-04 WO PCT/US2014/054061 patent/WO2015065586A1/en active Application Filing
- 2014-09-04 US US14/477,354 patent/US20150118301A1/en not_active Abandoned
- 2014-09-12 US US14/484,793 patent/US20150118295A1/en not_active Abandoned
- 2014-10-29 CN CN201480059281.6A patent/CN105682647A/zh active Pending
- 2014-10-29 PE PE2016000556A patent/PE20160606A1/es not_active Application Discontinuation
- 2014-10-29 AU AU2014342412A patent/AU2014342412B2/en active Active
- 2014-10-29 US US14/527,215 patent/US9707224B2/en active Active
- 2014-10-29 KR KR1020167013870A patent/KR102363573B1/ko active Active
- 2014-10-29 HK HK16112327.1A patent/HK1223856A1/zh unknown
- 2014-10-29 US US15/032,658 patent/US20160250203A1/en not_active Abandoned
- 2014-10-29 MX MX2016005482A patent/MX384376B/es unknown
- 2014-10-29 JP JP2016552219A patent/JP6659925B2/ja active Active
- 2014-11-12 US US14/539,231 patent/US9757371B2/en active Active
-
2016
- 2016-04-22 ZA ZA2016/04451A patent/ZA201604451B/en unknown
- 2016-04-29 CL CL2016001031A patent/CL2016001031A1/es unknown
-
2018
- 2018-02-28 US US15/908,013 patent/US10568881B2/en active Active
-
2020
- 2020-01-23 US US16/751,043 patent/US11207318B2/en active Active
-
2021
- 2021-11-16 US US17/527,528 patent/US11844796B2/en active Active
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10369109B2 (en) | 2002-06-17 | 2019-08-06 | Grünenthal GmbH | Abuse-proofed dosage form |
US9675610B2 (en) | 2002-06-17 | 2017-06-13 | Grünenthal GmbH | Abuse-proofed dosage form |
US9629807B2 (en) | 2003-08-06 | 2017-04-25 | Grünenthal GmbH | Abuse-proofed dosage form |
US10058548B2 (en) | 2003-08-06 | 2018-08-28 | Grünenthal GmbH | Abuse-proofed dosage form |
US10130591B2 (en) | 2003-08-06 | 2018-11-20 | Grünenthal GmbH | Abuse-proofed dosage form |
US11224576B2 (en) | 2003-12-24 | 2022-01-18 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US11844865B2 (en) | 2004-07-01 | 2023-12-19 | Grünenthal GmbH | Abuse-proofed oral dosage form |
US10675278B2 (en) | 2005-02-04 | 2020-06-09 | Grünenthal GmbH | Crush resistant delayed-release dosage forms |
US10729658B2 (en) | 2005-02-04 | 2020-08-04 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US9750701B2 (en) | 2008-01-25 | 2017-09-05 | Grünenthal GmbH | Pharmaceutical dosage form |
US10493033B2 (en) | 2009-07-22 | 2019-12-03 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US9925146B2 (en) | 2009-07-22 | 2018-03-27 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US10080721B2 (en) | 2009-07-22 | 2018-09-25 | Gruenenthal Gmbh | Hot-melt extruded pharmaceutical dosage form |
US10300141B2 (en) | 2010-09-02 | 2019-05-28 | Grünenthal GmbH | Tamper resistant dosage form comprising inorganic salt |
US9636303B2 (en) | 2010-09-02 | 2017-05-02 | Gruenenthal Gmbh | Tamper resistant dosage form comprising an anionic polymer |
US10695297B2 (en) | 2011-07-29 | 2020-06-30 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US10201502B2 (en) | 2011-07-29 | 2019-02-12 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
US10864164B2 (en) | 2011-07-29 | 2020-12-15 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US9655853B2 (en) | 2012-02-28 | 2017-05-23 | Grünenthal GmbH | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
US10335373B2 (en) | 2012-04-18 | 2019-07-02 | Grunenthal Gmbh | Tamper resistant and dose-dumping resistant pharmaceutical dosage form |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
US10154966B2 (en) | 2013-05-29 | 2018-12-18 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
US9737490B2 (en) | 2013-05-29 | 2017-08-22 | Grünenthal GmbH | Tamper resistant dosage form with bimodal release profile |
US10624862B2 (en) | 2013-07-12 | 2020-04-21 | Grünenthal GmbH | Tamper-resistant dosage form containing ethylene-vinyl acetate polymer |
US10449547B2 (en) | 2013-11-26 | 2019-10-22 | Grünenthal GmbH | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
US10632113B2 (en) | 2014-02-05 | 2020-04-28 | Kashiv Biosciences, Llc | Abuse-resistant drug formulations with built-in overdose protection |
US9913814B2 (en) | 2014-05-12 | 2018-03-13 | Grünenthal GmbH | Tamper resistant immediate release capsule formulation comprising tapentadol |
US9872835B2 (en) | 2014-05-26 | 2018-01-23 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
US9855263B2 (en) | 2015-04-24 | 2018-01-02 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
US10842750B2 (en) | 2015-09-10 | 2020-11-24 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
WO2020092987A1 (en) * | 2018-11-01 | 2020-05-07 | Molecular Infusions, Llc | Polymer-based oral cannabinoid and/or terpene formulations |
EP3873440A4 (en) * | 2018-11-01 | 2022-08-17 | Molecular Infusions, LLC | POLYMER-BASED ORAL CANNABINOID AND/OR TERPEN FORMULATIONS |
US20220202742A1 (en) * | 2019-05-07 | 2022-06-30 | Clexio Biosciences Ltd. | Dosage forms for preventing drug-facilitated assault |
EP3965733A4 (en) * | 2019-05-07 | 2023-01-11 | Clexio Biosciences Ltd. | ABUSE DETERRENT DOSAGE FORMS CONTAINING ESKETAMINE |
US11992468B2 (en) | 2019-05-07 | 2024-05-28 | Clexio Biosciences Ltd. | Abuse-deterrent dosage forms containing esketamine |
Also Published As
Publication number | Publication date |
---|---|
AU2014342412B2 (en) | 2019-11-21 |
JP2016535773A (ja) | 2016-11-17 |
US20220071990A1 (en) | 2022-03-10 |
MX384376B (es) | 2025-03-14 |
PE20160606A1 (es) | 2016-07-06 |
WO2015065547A1 (en) | 2015-05-07 |
US10568881B2 (en) | 2020-02-25 |
US20150118302A1 (en) | 2015-04-30 |
US9707224B2 (en) | 2017-07-18 |
KR102363573B1 (ko) | 2022-02-16 |
KR20160070839A (ko) | 2016-06-20 |
MX2016005482A (es) | 2016-12-16 |
JP6659925B2 (ja) | 2020-03-04 |
US20200155544A1 (en) | 2020-05-21 |
US20150118303A1 (en) | 2015-04-30 |
CL2016001031A1 (es) | 2016-11-11 |
US11844796B2 (en) | 2023-12-19 |
US9757371B2 (en) | 2017-09-12 |
CN105682647A (zh) | 2016-06-15 |
US20150118295A1 (en) | 2015-04-30 |
US20150118301A1 (en) | 2015-04-30 |
WO2015065586A1 (en) | 2015-05-07 |
US20160250203A1 (en) | 2016-09-01 |
HK1223856A1 (zh) | 2017-08-11 |
ZA201604451B (en) | 2019-07-31 |
US20180185354A1 (en) | 2018-07-05 |
US11207318B2 (en) | 2021-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11844796B2 (en) | Immediate release abuse-deterrent granulated dosage forms | |
US11534409B2 (en) | Immediate release abuse-deterrent granulated dosage forms | |
AU2014342412A1 (en) | Immediate release abuse-deterrent granulated dosage forms | |
CA2900858C (en) | Immediate release abuse-deterrent granulated dosage forms | |
US11324707B2 (en) | Abuse-deterrent dosage forms containing esketamine | |
US20170157052A1 (en) | Immediate release dosage forms that deter abuse by oral ingestion of multiple dosage units | |
BR112016009748B1 (pt) | Formas de dosagem oral de liberação imediata dissuasora de uso abusivo e usos da mesma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CIMA LABS INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HASWANI, DINESH K.;MOE, DEREK V.;O'NEILL, VICTORIA A.;AND OTHERS;SIGNING DATES FROM 20140915 TO 20140918;REEL/FRAME:033776/0714 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |