US20150042974A1 - Illumination optical unit and optical system for euv projection lithography - Google Patents
Illumination optical unit and optical system for euv projection lithography Download PDFInfo
- Publication number
- US20150042974A1 US20150042974A1 US14/510,725 US201414510725A US2015042974A1 US 20150042974 A1 US20150042974 A1 US 20150042974A1 US 201414510725 A US201414510725 A US 201414510725A US 2015042974 A1 US2015042974 A1 US 2015042974A1
- Authority
- US
- United States
- Prior art keywords
- illumination
- optical unit
- pupil
- field
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 304
- 230000003287 optical effect Effects 0.000 title claims abstract description 157
- 238000001459 lithography Methods 0.000 title claims abstract description 11
- 210000001747 pupil Anatomy 0.000 claims abstract description 192
- 238000003384 imaging method Methods 0.000 claims abstract description 96
- 230000003993 interaction Effects 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 16
- 230000001419 dependent effect Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001393 microlithography Methods 0.000 description 2
- 238000013041 optical simulation Methods 0.000 description 2
- 238000009304 pastoral farming Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2002—Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70075—Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70091—Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
- G03F7/70116—Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70125—Use of illumination settings tailored to particular mask patterns
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/702—Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70258—Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
Definitions
- the invention relates to an illumination optical unit for EUV projection lithography for obliquely illuminating an illumination field, in which an object field of a downstream imaging catoptric optical unit and a reflective object to be imaged can be arranged. Furthermore, the invention relates to an optical system for EUV projection lithography comprising such an illumination optical unit and a projection optical unit for imaging the object field into an image field. Furthermore, the invention relates to a projection exposure apparatus comprising such an optical system, a method for setting such an optical system, a method for producing micro- or nanostructured components using such a projection exposure apparatus, and a micro- or nanostructured component, in particular a semiconductor chip, produced according to such a production method.
- An illumination optical unit, an optical system, a projection exposure apparatus, a component production method and a component produced thereby are known from WO 2011/154 244 A1, DE 10 2010 003 167 A1 and WO 2011/076 500 A1.
- US 2009/0097001 A1 discloses a non-telecentric lithography apparatus and a method of manufacturing integrated circuits.
- US 2004/0137677 A1 discloses a device manufacturing method and a computer program and the use of a projection system of a lithographic apparatus in that respect.
- an illumination optical unit for EUV projection lithography for obliquely illuminating an illumination field, in which an object field of a downstream imaging catoptric optical unit and a reflective object to be imaged can be arranged,
- an interaction of the oblique illumination with structures of the reflective object leads to imaging aberrations that reduce the imaging performance of a projection exposure apparatus.
- the imaging aberrations can be caused by shading effects of the illumination light at the object structures, for example at lines or ridges, and a reflection behavior of the object that is dependent on the angle of incidence.
- the cause can be, in particular, a finite depth of the object structures.
- the object can have a multilayer coating (multilayer or multilayer stack) for improving its interacting properties with the illumination light.
- the pupil generating device serves for manipulating the illumination pupil of the illumination optical unit.
- the illumination optical unit can have a pupil facet mirror and a field facet mirror, wherein it is possible to change between different illumination settings, that is to say between different pupil facet ensembles illuminated with illumination light.
- the embodiment of the illumination optical unit can be such that, by tilting setting mirrors, in particular by tilting field facets of the field facet mirror, it is possible to change between different object field illumination channels with which different pupil facets of the pupil facet mirror are associated.
- the embodiment of the illumination optical unit can be such that, by tilting setting mirrors, in particular field facets, it is possible to change between different illumination channels with which at least one object field illumination channel which acts on a pupil facet and a turn-off illumination channel, which does not contribute to the object field illumination, are associated.
- WO 2011/154 244 A1 gives an example of an illumination optical unit in which it is possible to change between object field illumination channels and a turn-off illumination channel.
- a non-compensating imaging telecentricity can be greater than 10 mrad, can be greater than 15 mrad, can be greater than 20 mrad, can be greater than 30 mrad or can be even greater still.
- a compensating telecentricity deviation present overall which can be brought about via the compensation by the pupil generating device, over the object field, can be less than 10 mrad, can be less than 8 mrad, can be less than 5 mrad and can even be less than 3 mrad, for typical object structure variables in the range of between 20 nm and 250 nm.
- An oblique illumination of the illumination field is present when a chief ray of the illumination, which chief ray illuminates a central field point, has an angle with respect to the normal to the illumination field that is greater than 3°.
- the angle can be greater than 5°, can be greater than 6°, can be greater than 8°, can be greater than 9° and can be, in particular, at least 10°.
- the illumination optical unit can be embodied in such a way that the illumination pupil has a pole imbalance with respect to at least one main pupil coordinate, which pole imbalance in terms of absolute value is greater than 1%, in terms of absolute value is greater than 2%, in terms of absolute value is greater than 5%, in terms of absolute value is greater than 7%, in terms of absolute value is greater than 9%, in terms of absolute value is greater than 10% or in terms of absolute value is even greater still.
- the pole imbalance (PB) is in this case defined as
- PB ( I 1 ⁇ I 2 )/( I 1 +I 2 ) ⁇ 100%.
- I 1 is an integrated illumination light intensity over the pupil in the case of positive values of the main pupil coordinate, for example sigma x>0
- 12 is the integrated illumination light intensity over the pupil in the case of negative values of the main pupil coordinate, that is to say in the case of sigma y ⁇ 0.
- the optical system can be fashioned such that both the imaging telecentricity is compensated for via a pupil generating device and the imaging focus shift is compensated for via a wavefront manipulation device.
- At least one wavefront manipulator configured as wavefront manipulation device, can be realized via a fine adjustment of mirrors or mirror segments and/or via a deformation of mirrors or mirror segments of the projection optical unit.
- symmetry contributions of the wavefront can thereby be manipulated.
- the symmetry contributions can be manipulated selectively on the basis of a set of functions, for example on the basis of Zernike polynomials.
- desired values predefined via optimization calculations can thereby be attained.
- Wavefront manipulators suitable in principle are known from DE 10 2007 019 570 A1, DE 10 2008 000 990 B3 and U.S. Pat. No. 5,420,436.
- a method for setting an optical system according to the invention comprising the following steps:
- FIG. 1 shows a projection exposure apparatus for microlithography schematically and, with respect to an illumination optical unit, in meridional section;
- FIG. 2 shows a plan view of a facet arrangement of a field facet mirror of the illumination optical unit of the projection exposure apparatus according to FIG. 1 ;
- FIG. 3 shows a plan view of a facet arrangement of a pupil facet mirror of the illumination optical unit of the projection exposure apparatus according to FIG. 1 ;
- FIG. 4 shows, in an illustration similar to FIG. 2 , a facet arrangement of a further embodiment of a field facet mirror
- FIG. 5 schematically shows some pupil facets of a pupil facet mirror according to the type of that according to FIG. 3 , wherein pairs of the pupil facets which are assigned to one and the same field facet of the field facet mirror of the illumination optical unit via object field illumination channels are in each case highlighted by connecting lines;
- FIG. 6 schematically shows a field facet assigned to a pair of pupil facets in a section perpendicular to its reflection surface
- FIG. 7 schematically shows illumination conditions in the case of an oblique illumination of an object to be imaged in an object field on an illumination pupil of the illumination optical unit, wherein functional planes, namely a pupil plane on the one hand and an object plane on the other hand, are illustrated one above another;
- FIG. 8 shows a plan view of a facet arrangement of a further embodiment of a pupil facet mirror of the illumination optical unit, wherein a ring-shaped (annular) illumination setting of pupil facets illuminated with illumination light is highlighted;
- FIG. 9 shows a pupil coordinate diagram of an illumination pupil of the illumination optical unit in the case of a ring-shaped illumination setting in accordance with FIG. 7 before a compensation setting is carried out;
- FIG. 10 shows in a diagram the dependency of a telecentricity deviation ( ⁇ TC) on a typical object structure variable (pitch p) for the illumination setting according to FIG. 9 ;
- FIG. 11 shows, in an illustration similar to FIG. 9 , the illumination pupil after a compensation setting has been carried out
- FIG. 12 shows, in an illustration similar to FIG. 10 , the dependency between telecentricity deviation and structure variable for the illumination setting according to FIG. 11 ;
- FIG. 13 likewise shows, in an illustration similar to FIG. 9 , a further illumination setting after a compensation setting has been carried out, wherein, in contrast to the illumination setting according to FIG. 11 , turn-off illumination channels, which do not contribute to the object field illumination, are also chosen in the case of the illumination setting according to FIG. 13 ;
- FIG. 14 shows, in an illustration similar to FIG. 10 , the dependency between telecentricity deviation and structure variable for the illumination setting according to FIG. 13 ;
- FIG. 15 shows, in an illustration similar to FIG. 8 , the plan view of a facet arrangement of the pupil facet mirror in the case of a y-dipole illumination setting
- FIG. 16 shows, in an illustration similar to FIG. 9 , the pupil coordinate diagram of a y-dipole illumination setting according to FIG. 15 before a compensation setting is carried out;
- FIG. 17 shows, in an illustration similar to FIG. 10 , the dependency between telecentricity deviation and structure variable for the illumination setting according to FIG. 16 ;
- FIG. 18 shows, in an illustration similar to FIG. 9 , the illumination setting after a compensation setting has been carried out
- FIG. 19 shows, in an illustration similar to FIG. 10 , the dependency between telecentricity deviation and structure variable for the illumination setting according to FIG. 18 ;
- FIG. 20 likewise shows, in an illustration similar to FIG. 9 , a further illumination setting after a compensation setting has been carried out, wherein, in contrast to the illumination setting according to FIG. 18 , turn-off illumination channels, which do not contribute to the object field illumination, are also chosen in the case of the illumination setting according to FIG. 20 ;
- FIG. 21 shows, in an illustration similar to FIG. 10 , the dependency between telecentricity deviation and structure variable for the illumination setting according to FIG. 20 ;
- FIG. 22 likewise shows, in a pupil coordinate diagram, a further example of a y-dipole setting before a compensation setting is carried out
- FIG. 23 shows, in an illustration similar to FIG. 10 , the dependency between telecentricity deviation and structure variable for the illumination setting according to FIG. 22 ;
- FIG. 24 shows the illumination setting according to FIG. 22 after a compensation setting has been performed
- FIG. 25 shows the dependency between telecentricity deviation and structure variable for the illumination setting according to FIG. 24 ;
- FIGS. 26 to 29 show, in each case in a diagram, the dependency of an imaging focus shift (best focus shift, bfs) on a structure variable (pitch p) for imaging wavefronts before and after a compensation setting.
- a projection exposure apparatus 1 for microlithography serves for producing a micro- or nanostructured electronic semiconductor component.
- a light source 2 emits EUV radiation used for illumination in the wavelength range of, for example, between 5 nm and 30 nm.
- the light source 2 can be a GDPP source (gas discharge produced plasma) or an LPP source (laser produced plasma).
- a radiation source based on a synchrotron can also be used for the light source 2 .
- Information concerning a light source of this type can be found by the person skilled in the art in U.S. Pat. No. 6,859,515 B2, for example.
- EUV illumination light or illumination radiation 3 is used for illumination and imaging within the projection exposure apparatus 1 .
- the EUV illumination light 3 Downstream of the light source 2 , the EUV illumination light 3 firstly passes through a collector 4 , which can be, for example, a nested collector having a multi-shell construction known from the prior art or, alternatively, an ellipsoidally shaped collector. A corresponding collector is known from EP 1 225 481 A. Downstream of the collector 4 , the EUV illumination light 3 firstly passes through an intermediate focal plane 5 , which can be used for separating the EUV illumination light 3 from undesired radiation or particle portions. After passing through the intermediate focal plane 5 , the EUV illumination light 3 firstly impinges on a field facet mirror 6 .
- a collector 4 Downstream of the collector 4 , the EUV illumination light 3 firstly passes through an intermediate focal plane 5 , which can be used for separating the EUV illumination light 3 from undesired radiation or particle portions. After passing through the intermediate focal plane 5 , the EUV illumination light 3 firstly impinges on a field facet mirror 6 .
- FIG. 1 a Cartesian global xyz coordinate system is depicted in FIG. 1 .
- the x-axis runs perpendicular to the plane of the drawing and out of the latter.
- the y-axis runs toward the right in FIG. 1 .
- the z-axis runs upward in FIG. 1 .
- a Cartesian local xyz or xy coordinate system is in each case also used in the following figures.
- the respective local xy coordinates span, unless described otherwise, a respective principal arrangement plane of the optical component, for example a reflection plane.
- the x-axes of the global xyz coordinate system and of the local xyz or xy coordinate systems run parallel to one another.
- the respective y-axes of the local xyz or xy coordinate systems have an angle with respect to the y-axis of the global xyz coordinate system, which corresponds to a tilting angle of the respective optical component about the x-axis.
- FIG. 2 shows, by way of example, a facet arrangement of field facets 7 of the field facet mirror 6 .
- the field facets 7 are rectangular and each have the same x/y aspect ratio.
- the x/y aspect ratio can be for example 12/5, can be 25/4 or can be 104/8.
- the field facets 7 predefine a reflection surface of the field facet mirror 6 and are grouped in four columns each having six to eight field facet groups 8 a , 8 b .
- the field facet groups 8 a each have seven field facets 7 .
- the two additional marginal field facet groups 8 b of the two central field facet columns each have four field facets 7 .
- the facet arrangement of the field facet mirror 6 has interspaces 9 , in which the field facet mirror 6 is shaded by holding spokes of the collector 4 .
- the EUV illumination light 3 After reflection at the field facet mirror 6 , the EUV illumination light 3 split into beams or partial beams which are assigned to the individual field facets 7 impinges on a pupil facet mirror 10 .
- FIG. 3 shows an exemplary facet arrangement of round pupil facets 11 of the pupil facet mirror 10 .
- the pupil facets 11 are arranged around a center in facet rings situated one in another.
- a pupil facet 11 is assigned to each partial beam of the EUV illumination light 3 reflected by one of the field facets 7 , such that a respective facet pair impinged upon and comprising one of the field facets 7 and one of the pupil facets 11 predefines an object field illumination channel for the associated partial beam of the EUV illumination light 3 .
- the channel-by-channel assignment of the pupil facets 11 to the field facets 7 is effected depending on a desired illumination by the projection exposure apparatus 1 .
- the field facets 7 are imaged into an object plane 16 of the projection exposure apparatus 1 .
- the EUV mirror 14 is embodied as a mirror for grazing incidence (grazing incidence mirror).
- a reflective reticle 17 Arranged in the object plane 16 as object to be imaged is a reflective reticle 17 , from which, with the EUV illumination light 3 , an illumination region in the form of an illumination field is illuminated which coincides with an object field 18 of a downstream projection optical unit 19 of the projection exposure apparatus 1 .
- the object field illumination channels are superimposed in the object field 18 .
- the EUV illumination light 3 is reflected from the reticle 17 .
- the projection optical unit 19 images the object field 18 in the object plane 16 into an image field 20 in an image plane 21 .
- the illumination light 3 is therefore also designated as imaging light.
- a wafer 22 Arranged in the image plane 21 is a wafer 22 , which bears a light-sensitive layer that is exposed during the projection exposure via the projection exposure apparatus 1 .
- both the reticle 17 and the wafer 22 are scanned in a synchronized manner in the y-direction.
- the projection exposure apparatus 1 is embodied as a scanner.
- the scan direction is also designated hereinafter as object displacement direction.
- the field facet mirror 6 , the pupil facet mirror 10 and the mirrors 12 to 14 of the transfer optical unit 15 are parts of an illumination optical unit 23 of the projection exposure apparatus 1 . Together with the projection optical unit 19 , the illumination optical unit 23 forms an optical system of the projection exposure apparatus 1 .
- the projection optical unit 19 is embodied as a catoptric optical unit, that is to say as an optical unit having a plurality of mirrors, of which a first mirror M1 and a last mirror M6 in an illumination beam path of the projection optical unit 19 are illustrated in FIG. 1 . Since the reticle 17 is embodied such that it is reflective to the illumination light 3 , an oblique illumination of the reticle 17 is necessary in order to separate a beam of the illumination light 3 that impinges on the reticle 17 from a beam of the illumination light 3 that is reflected from the reticle 17 .
- the beam of the illumination light 3 impinges on the reticle 17 at an angle ⁇ of incidence between a chief ray of a central object field point and a normal to the object plane, wherein a minimum angle ⁇ is dependent on an object-side numerical aperture used by the projection optical unit 19 .
- the angle ⁇ of incidence is measured in a plane of incidence of the illumination of the reticle 17 , which coincides with the yz plane.
- FIG. 4 shows a further embodiment of a field facet mirror 6 .
- Components corresponding to those which have been explained above with reference to the field facet mirror 6 according to FIG. 2 bear the same reference numerals and are only explained in so far as they differ from the components of the field facet mirror 6 according to FIG. 2 .
- the field facet mirror 6 according to FIG. 4 has a field facet arrangement comprising curved field facets 7 .
- the field facets 7 are arranged in a total of five columns each having a plurality of field facet groups 8 .
- the field facet arrangement is inscribed into a circular boundary of a carrier plate 24 of the field facet mirror.
- the field facets 7 of the embodiment according to FIG. 4 all have the same area and the same ratio of width in the x-direction and height in the y-direction, which corresponds to the x/y aspect ratio of the field facets 7 of the embodiment according to FIG. 2 .
- Each of the field facets 7 of the respective embodiment of the field facet mirror 6 are assigned to exactly two of the pupil facets 11 of the pupil facet mirror 10 via a respective object field illumination channel.
- the pupil facet mirror 10 therefore has exactly twice as many pupil facets 11 as the field facet mirror 6 has field facets 7 .
- FIGS. 5 and 6 illustrate this on the basis of a schematically illustrated facet arrangement of a further embodiment of the pupil facet mirror 10 .
- the illustration of the facet arrangement in FIG. 5 is highly schematic.
- the pupil facet mirror 10 in the embodiment according to FIGS. 3 and 5 actually has approximately 800 pupil facets 11 .
- Each of the pupil facets 11 has a diameter of approximately 10 mm.
- Reflection surfaces of the field facets 7 of the field facet mirror 6 are tiltable between a first illumination tilting position for guiding the EUV partial beam impinging on the field facet 7 along a first object field illumination channel in the direction of one of the pupil facets 11 , and a further illumination tilting position for guiding the EUV partial beam impinging on the field facet 7 along a further object field illumination channel in the direction of another of the pupil facets 11 i , which differs from that pupil facet 11 to which the partial beam is guided in the first illumination tilting position of the field facet 7 .
- FIG. 5 shows schematically in a highlighted fashion a total of four pairs 11 1 , 11 1′ ; 11 2 , 11 2′ ; 11 3 , 11 3′ ; 11 4 , 11 4′ of the pupil facets 11 , wherein the pupil facets of each of the pairs are respectively assigned to the two illumination tilting positions of one of the field facets 7 .
- Connecting lines 25 1 , 25 2 , 25 3 , 25 4 between the pupil facet pairs 11 1 , 11 1′ ; 11 2 , 11 2′ ; 11 3 , 11 3′ ; 11 4 , 11 4′ schematically indicate the path of the EUV partial beam reflected from the assigned field facet 7 when the field facet 7 changes between the two illumination tilting positions.
- the connecting lines 25 are illustrated schematically as straight lines. In reality, the connecting lines 25 often do not run straight, but rather in the form of conic sections. The exact form of the course of the connecting lines 25 is dependent on the geometries of an illumination of the pupil facets 11 , on the one hand, and a tilting mechanism for the respective field facet 7 , on the other hand.
- an outer pupil facet 11 1 , 11 2 , 11 3 , 11 4 and an inner pupil facet 11 1′ , 11 2′ , 11 3′ , 11 4′ are in each case assigned to one another.
- the inner pupil facets 11 1′ to 11 4′ can also be moved even closer to a center Z of the pupil facet mirror 10 than is illustrated schematically in FIG. 5 .
- the arrangement of the pupil facets 11 can be roughly subdivided into four quadrants I, II, III, IV wherein the quadrant I in FIG. 5 encompasses those pupil facets 11 which, as viewed from the center Z of the carrier plate 24 indicated in FIG. 4 , lie in the sector arranged on the right and the further quadrants II to IV are numbered consecutively in the counterclockwise direction, as usual mathematically.
- the field facets 7 which are tiltable between the illumination tilting positions, are furthermore tiltable into a turn-off tilting position. While the two illumination tilting positions are defined exactly in their position via end stops of the tilting of the tiltable field facet 7 , this is not the case for the turn-off tilting position, which lies between the two illumination tilting positions.
- the turn-off tilting position serves for guiding the EUV partial beam impinging on the field facet 7 in the direction of a turn-off beam path, which does not act on the object field 18 , the direction differing from the direction of the object field illumination channels.
- FIG. 6 shows the field facet 7 1 assigned to the pupil facet pair 11 1 , 11 1′ in a section perpendicular to the reflection surface of the field facet.
- the field facet 7 1 is tiltable relative to a field facet carrier 26 about an articulation axis 27 , which is perpendicular to the plane of the drawing in FIG. 6 , between the two illumination tilting positions defined by stops 28 , 29 on the field facet 7 1 , on the one hand, and on the field facet carrier 26 , on the other hand, with the aid of an actuator (not illustrated).
- the field facet 7 1 is illustrated in the turn-off tilting position lying between these two illumination tilting positions.
- FIG. 6 shows the field facet 7 1 assigned to the pupil facet pair 11 1 , 11 1′ in a section perpendicular to the reflection surface of the field facet.
- the field facet 7 1 is tiltable relative to a field facet carrier 26 about an articulation axis 27 , which is perpendicular to the
- the field facets 7 are in each case tilted via actuators 29 a , which are signal-connected, in a manner not illustrated, to a central control device 29 b of the projection exposure apparatus 1 .
- FIG. 7 schematically illustrates the illumination of the central object field point OF on the reticle 17 in the object field 18 via an illumination pupil 31 of the illumination optical unit 23 .
- the illumination pupil 31 lies in a pupil plane 32 of the illumination optical unit 23 .
- An intensity distribution of the illumination light 3 in the illumination pupil 31 is directly correlated with an illumination angle distribution of the illumination over the object field 18 .
- the illumination light intensity distribution can be specified over the illumination pupil on the basis of a distribution I(sigma x, sigma y), wherein sigma x and sigma y are pupil coordinates, that is to say coordinates spanning the illumination pupil 31 , which correspond to the object field coordinates x, y.
- FIG. 7 furthermore shows by way of example two typical line structures on the reticle 17 , that is to say typical variants of structures which are intended to be transferred to the wafer 22 during the projection exposure.
- the illustration shows horizontal lines 33 of a horizontal line structure and vertical lines 34 of a vertical line structure.
- a distance between the adjacent horizontal lines 33 is p H (horizontal pitch).
- a distance between adjacent vertical lines 34 is p V (vertical pitch).
- the horizontal lines 33 run parallel to the x-axis of the global xyz coordinate system according to FIG. 1 .
- the vertical lines 34 run parallel to the y-axis of the global xyz coordinate system according to FIG. 1 .
- FIGS. 8 and 15 show by way of example different illumination settings, that is to say different distributions of pupil facets 11 that can be illuminated via object field illumination channels. These different illumination settings correspondingly lead to different distributions of illumination angles with which the illumination field, that is to say the object field 18 , is illuminated.
- FIG. 8 shows the illumination of pupil facets 11 which lie outside a limiting radius R G around the center Z of the pupil facet mirror 10 . Therefore, this involves an illumination of the pupil facet mirror 10 for producing an annular illumination setting.
- FIG. 15 shows a y-dipole illumination setting, in which the pupil facets 11 in the quadrants II and IV are illuminated via object field illumination channels.
- an x-dipole illumination setting is also possible, in which pupil facets 11 in the quadrants I and III are illuminated via object field illumination channels.
- FIG. 9 shows, in a pupil coordinate diagram, an exemplary intensity distribution of the illumination light 3 in the case of an annular illumination setting before a compensation setting is carried out.
- a partial beam of the illumination light 3 impinges in each case at the location of one of the pupil facets 11 and thereby provides for an intensity contribution I (sigma x, sigma y) in the diagram according to FIG. 9 .
- the intensity contributions I are illustrated with different sizes depending on the intensity which is present there and which is integrated over a pupil facet location. Smaller points correspond to lower integrated intensity. The differences in intensity arise on account of different illumination light intensities that are guided via the respective object field illumination channel.
- the annular illumination setting according to FIG. 9 at any rate as far as the configuration of the pupil facets 11 on which the illumination light 3 impinges is concerned, is mirror-symmetrical both with respect to the pupil coordinate sigma x and with respect to the pupil coordinate sigma y.
- FIG. 10 shows, in a further diagram, the dependency of a telecentricity deviation ⁇ TC on an object structure variable p (pitch).
- the dependency is plotted as a telecentricity curve 35 for the object structure having the vertical lines 34 and as a telecentricity curve 36 for the object structure having the horizontal lines 33 .
- FIG. 11 shows, once again in a pupil coordinate diagram, an intensity distribution for a compensating illumination pupil 37 .
- the compensating illumination pupil 37 is the result of a compensation setting, which will be explained below.
- the compensating illumination pupil 37 brings about a dependency of the imaging telecentricity TC against the structure variable p of the reticle 17 such that the dependency of the imaging telecentricity TC against the structure variable p as described above with reference to FIG. 10 , which results on account of the oblique illumination, is reduced, that is to say at least partly compensated for.
- the compensating illumination pupil 37 has a ring-shaped ring pupil contribution 38 , the inner limiting radius R G and the outer limiting radius of which correspond to the limiting radii of the annular illumination setting according to FIG. 9 .
- the compensating illumination pupil 37 has a compensation pupil contribution 39 within the ring pupil contribution 38 , that is to say at pupil coordinate values where R ⁇ R G .
- the compensation pupil contribution 39 is produced by changing over selected field facets 7 between the respective first illumination tilting position, in which the field facets act on a pupil facet 11 in accordance with the illumination setting according to FIG. 9 , into a second illumination tilting position, in which a pupil facet within the limiting radius R G is illuminated.
- the tiltable field facets 7 are a pupil generating device for generating a predefined illumination pupil.
- the compensating illumination pupil 37 with regard to the pupil facets 11 acted on, is exactly mirror-symmetrical neither with respect to the coordinate axis sigma x nor with respect to the coordinate axis sigma y.
- FIG. 12 shows, in a ⁇ TC/pitch diagram corresponding to FIG. 10 , a horizontal structure telecentricity curve 40 and a vertical structure telecentricity curve 41 for the compensating illumination pupil 37 .
- the horizontal structure telecentricity curve 40 has a maximum absolute value of the telecentricity deviation ⁇ TC of 2 mrad.
- the vertical structure telecentricity curve 41 has a maximum absolute value for the value ⁇ TC of 2.5 mrad. As a result of the provision of the compensating illumination pupil 37 , therefore, the maximum telecentricity deviation has been reduced from a value of approximately 12 mrad in terms of absolute value to a value of approximately 2.5 mrad in terms of absolute value.
- FIG. 13 shows a further compensating illumination pupil 42 in an illustration corresponding to that according to FIG. 11 .
- This compensating illumination pupil 42 is also generated proceeding from an annular illumination setting according to FIG. 9 .
- some of the field facets 7 were brought not only into the second illumination tilting position, but also into the turn-off tilting position.
- Overall, approximately 5% of the field facets 7 were brought into the second illumination tilting position and 4% of the field facets 7 were brought into the turn-off tilting position.
- These percentage proportions can also be variable and have values as already explained above in connection with FIG. 11 .
- FIG. 14 shows, once again in a ⁇ TC/p diagram, the profile of a horizontal structure telecentricity curve 43 and of a vertical structure telecentricity curve 44 for the compensating illumination pupil 42 .
- the curve profile of the telecentricity curves 43 , 44 is qualitatively similar to that of the telecentricity curves 40 , 41 according to FIG. 12 with the difference that the horizontal structure telecentricity curve 43 is shifted somewhat toward higher ⁇ TC values in comparison with the horizontal structure telecentricity curve 40 , whereas the vertical structure telecentricity curve 44 is shifted somewhat toward lower ⁇ TC values in comparison with the vertical telecentricity curve 41 .
- a reduction by more than a factor of 5 was achieved in comparison with the initial maximum value of the absolute value for ⁇ TC (cf. FIG. 10 , 12 mrad).
- an object imaging variable is determined, which is dependent on the object structure variable of the reticle 17 , that is to say in particular the pitch p.
- the object imaging variable can be, as explained by way of example above, the telecentricity deviation.
- the telecentricity deviation or the telecentricity error denotes the ratio of a lateral image shift to a focus deviation.
- the focus deviation is measured perpendicular to the image plane 21 and denotes the difference between the z-coordinate of an ideal image point and the z-coordinate of an actual image point at which the image is measured or at which a layer to be exposed on the wafer 22 is situated.
- the lateral image shift is measured in a plane parallel to the ideal image plane 21 . A distance between this measurement plane and the ideal image plane 21 is precisely the focus deviation.
- the lateral image shift denotes the distance between the ideal image point and the actual image point in the measurement plane parallel to the image plane 21 .
- Such a telecentricity deviation can arise as a result of interaction of the oblique illumination of the reticle 17 with the illumination light 3 .
- the telecentricity deviation can additionally be influenced via the configuration of the illumination pupil.
- the telecentricity deviation can either be measured or be calculated with the aid of an optical simulation calculation.
- a compensation imaging parameter that is to say the intensity distribution within the illumination pupil 31 in the example explained above, is predefined in such a way as to result in a structure-dependent total imaging variable, which can be composed of the imaging variable before the compensation and the compensation contribution of the imaging variable, wherein the total imaging variable lies within a predefined tolerance range of imaging variable values.
- a structure-dependent total imaging variable which can be composed of the imaging variable before the compensation and the compensation contribution of the imaging variable, wherein the total imaging variable lies within a predefined tolerance range of imaging variable values.
- the predefinition of the compensation imaging parameter can be determined by empirical determination of the compensation influence of individual field facet tilting changeovers. Alternatively or additionally, the compensation influence can be determined computationally via optical simulation calculations.
- the object imaging variable which is determined and compensated for, it is possible to take account of horizontal object lines perpendicular to the illumination plane of incidence and/or vertical object lines in the illumination plane of incidence. Instead of a predefinition of a maximum value of a deviation of the imaging variable from a predefined value, it is also possible to predefine an average value of a deviation of the imaging variable from a predefined value. It is also possible to define a structure dependency profile of a desired imaging variable. In connection with the predefinition of the compensation imaging parameter, it is also possible to take account of secondary conditions, for example a minimum transmission of the illumination optical unit 23 , or other imaging variables, such as, for example, an NILS value or a contrast value of the illumination.
- NILS normalized image log slope
- NILS indicates the derivative of the aerial image intensity curve, that is to say an intensity of the imaging light over the image field 20 , at the edge position of the imaged structure (e.g. line) and, in a manner comparable to the contrast, is a measure of the quality of the image.
- the value NILS can be calculated as follows:
- NILS ⁇ CD ⁇ ⁇ ( ln ⁇ ⁇ I ) ⁇ / ⁇ ⁇ x
- I 0 ⁇ CD ⁇ / ⁇ I 0 ⁇ ⁇ I ⁇ / ⁇ ⁇ x
- CD critical dimension
- I is the image intensity as a function of the spatial coordinate x
- In is the natural logarithm
- I 0 is the intensity threshold value at which the aerial image is evaluated.
- I 0 means that the derivative is formed at the position x at which the aerial image intensity I assumes the value I 0 .
- a predefinition of the compensation imaging parameter can be effected in combination with the predefinition of a specific layout of the reticle, which is also designated as optical proximity correction. This involves producing a pre-compensating structure profile on the reticle 17 , in which aberrations as a result of imaging using the projection exposure apparatus 1 are pre-compensated for structurally.
- the predefinition of the compensation imaging parameter can be effected iteratively. Different variants of the generation of a compensating illumination pupil as compensation imaging parameter, proceeding from a y-dipole illumination setting, are described by way of example below with reference to FIGS. 16 to 25 .
- FIG. 16 shows, in an illustration similar to FIG. 9 , a y-dipole setting, wherein pupil facets 11 in the quadrants II and IV of the pupil facet mirror are illuminated.
- FIG. 17 shows the profile of a horizontal structure telecentricity curve 45 and of a vertical structure telecentricity curve 46 in an illustration corresponding to that according to FIG. 10 .
- the horizontal structure telecentricity curve 45 has a value ⁇ TC ⁇ 5.5 mrad at p ⁇ 35 nm.
- the absolute value of the telecentricity deviation firstly falls to a value of ⁇ TC ⁇ 8 mrad at p ⁇ 42 nm. Afterward, the telecentricity deviation value rises up to ⁇ TC ⁇ 3 mrad at p ⁇ 85 nm and then remains at this level for larger structure variables p.
- FIG. 18 shows a compensating illumination pupil 47 which was attained on the basis of the y-dipole pupil according to FIG. 16 by changing over once again approximately 5% of the field facets 7 from a first illumination tilting position into a second illumination tilting position.
- a compensation pupil contribution 49 with illuminated pupil facets 11 in the quadrants I and III is also present alongside a dipole pupil contribution 48 with illuminated pupil facets 11 in the quadrants II and IV.
- FIG. 19 once again shows a horizontal structure telecentricity curve 50 and a vertical structure telecentricity curve 51 for the compensating illumination pupil 47 .
- the horizontal structure telecentricity curve 50 runs on a plateau at ⁇ TC ⁇ 1 mrad between the structure variables p ⁇ 35 nm and p ⁇ 75 nm. Afterward, the horizontal structure telecentricity curve 50 changes sign and reaches a value of ⁇ TC ⁇ 1 mrad at p ⁇ 85 nm and remains approximately at this value for larger structure variables.
- the vertical structure telecentricity curve 51 remains to a good approximation at ⁇ TC ⁇ 0 between the structure variables p ⁇ 75 nm and p ⁇ 200 nm.
- the two telecentricity curves 50 , 51 each have a maximum absolute value for the telecentricity deviation which is at most 1.4 mrad.
- FIG. 20 shows, in an illustration corresponding to that according to FIG. 13 , a further compensating illumination pupil 52 , in which approximately 4% of the field facets were changed over into a second illumination tilting position and approximately 1% of the field facets 7 were changed over into a turn-off tilting position, once again proceeding from a first illumination tilting position, which resulted in the y-dipole illumination setting according to FIG. 16 .
- FIG. 21 shows a horizontal structure telecentricity curve 53 and a vertical structure telecentricity curve 54 for the compensating illumination pupil 52 according to FIG. 20 .
- a profile of the telecentricity curves 53 , 54 approximately corresponds to those of the telecentricity curves 50 , 51 .
- FIG. 22 shows a variant of a y-dipole illumination setting, in which, within the quadrants II and IV, illumination pupils or pupil coordinates are illuminated which are at a distance R from a center Z which is greater than a limiting radius R G .
- the two poles of the y-dipole according to FIG. 22 do not sweep over 90° in the circumferential direction around the center Z, as in the case of the y-dipole setting according to FIG. 16 , but rather only 60°.
- PB sigma y 0% holds true for the illumination setting according to FIG. 22 .
- the upper dipole pupil contribution 48 in FIG. 22 therefore has exactly the same integrated illumination light intensity as the lower dipole pupil contribution 48 in FIG. 22 .
- FIG. 23 shows a desired structure profile of a desired telecentricity curve 55 for horizontal object lines 33 .
- the desired telecentricity curve 55 represents a negative of a telecentricity curve produced on account of the structures on the reticle 17 upon reflection at the reticle 17 .
- FIG. 24 shows a compensating illumination pupil 56 generated preceding from the y-dipole illumination setting according to FIG. 22 .
- the compensating illumination pupil 56 was once again attained by changing over a portion of the field facets 7 from a first illumination tilting position, in which the setting according to FIG. 22 was illuminated, into a second illumination tilting position. Approximately 15% of the field facets 7 were changed over.
- the illumination light 3 impinges on approximately 10% more illumination channels than in the case of the illumination setting according to FIG. 22 .
- the compensating illumination pupil 56 was generated almost exclusively by changing over field facets 7 which illuminated the lower pole—in FIGS. 22 and 24 —of the y-dipole setting in the first illumination tilting position, and by switching in further field facets 7 .
- the compensating illumination pupil 56 is mirror-symmetrical with respect to the sigma y-axis.
- FIG. 25 shows a total telecentricity curve as a sum of the contributions from a telecentricity deviation produced by the compensating illumination pupil 56 and a reticle-induced telecentricity deviation as total telecentricity curve 57 .
- the total telecentricity curve 57 has a value of ⁇ TC ⁇ 0 at p ⁇ 25 nm.
- a maximum absolute value of the total telecentricity deviation ⁇ TC is 5.5 mrad in the case of the total telecentricity curve 57 .
- the wavefront manipulation device is a manipulator in the form of an adjustment/deformation unit 58 (cf. FIG. 1 ), which acts on at least one of the mirrors M1 to M6 of the projection optical unit 19 and provides there for a fine adjustment and/or deformation of the mirror or of a segment thereof.
- the adjustment/deformation unit 58 therefore constitutes a wavefront manipulator of the projection optical unit 19 .
- This wavefront influencing is used for correspondingly influencing an imaging focus shift (best focus shift, bfs), that is to say a z-offset of an image position, of an image on the one hand of the horizontal lines 33 and on the other hand of the vertical lines 34 of the reticle 17 .
- an imaging focus shift best focus shift, bfs
- FIG. 26 shows a horizontal structure focus shift curve 59 and a vertical structure focus shift curve 60 in a focus shift (best focus shift, bfs)/structure variable (pitch) diagram.
- These focus shift curves 59 , 60 apply to a non-compensating wavefront.
- the horizontal structure focus shift curve 59 has a value of bfs ⁇ 17 nm in the case of a smallest detected structure variable p ⁇ 40 nm. This value rises up to bfs ⁇ 22 nm at p ⁇ 50 nm and then falls down to a value of bfs ⁇ 8 nm at p ⁇ 80 nm and then remains approximately at this level.
- the value bfs at p ⁇ 40 nm is approximately ⁇ 25 nm, then rises to approximately ⁇ 22 nm at p ⁇ 55 nm and then falls again to bfs ⁇ 30 nm starting from a structure variable p ⁇ 80 nm and remains approximately at this value for larger structure variables.
- a compensating wavefront of the imaging light 3 of the catoptric optical unit 19 results in such a way that a compensating horizontal structure focus shift curve 61 and a compensating vertical structure focus shift curve 62 to a good approximation oscillate around the value bfs ⁇ 0 in the structure variable range 40 nm ⁇ p ⁇ 200 nm and a maximum absolute value of bfs of less than 2.5 nm results.
- FIGS. 27 to 29 show corresponding adjustment/deformation compensations of the wavefront on the basis of compensating horizontal structure focus shift curves 63 , 65 , 67 and vertical structure focus shift curves 64 , 66 and 68 .
- the symmetry groups were varied in accordance with the Zernike polynomials Z4, Z5 and Z9.
- the symmetry groups were varied in accordance with the Zernike polynomials Z4 and Z5.
- the symmetry groups were varied in accordance with the Zernike polynomial Z5.
- a significant reduction of a maximum absolute value of the focus shift likewise arises in comparison with the initial curves 59 , 60 for the focus shift.
- the maximum absolute value is bfs ⁇ 4 nm in the case of the compensation according to FIG. 27 , bfs ⁇ 8 nm in the case of the compensation according to FIG. 28 , and bfs ⁇ 9 nm in the case of the compensation according to FIG. 29 .
- a reduction of the maximum absolute value of the focus shift by a factor of more than 2 arises in all cases.
- the reticle 17 and the wafer 22 which bears a coating that is light-sensitive to the EUV illumination light 3 , are provided. Afterward, at least one section of the reticle 17 is projected onto the wafer 22 with the aid of the projection exposure apparatus 1 with the aid of the optical system correspondingly set by the predefinition of at least one compensation imaging parameter. Finally, the light-sensitive layer exposed with the EUV illumination light 3 on the wafer 22 is developed. In this way, the micro- or nanostructured component, for example a semiconductor chip, is produced.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Lenses (AREA)
- Microscoopes, Condenser (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/510,725 US20150042974A1 (en) | 2012-05-03 | 2014-10-09 | Illumination optical unit and optical system for euv projection lithography |
| US16/598,408 US10976668B2 (en) | 2012-05-03 | 2019-10-10 | Illumination optical unit and optical system for EUV projection lithography |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102012207377.9 | 2012-05-03 | ||
| DE102012207377A DE102012207377A1 (de) | 2012-05-03 | 2012-05-03 | Beleuchtungsoptik sowie optisches System für die EUV-Projektionslithographie |
| US201261642683P | 2012-05-04 | 2012-05-04 | |
| PCT/EP2013/058171 WO2013164207A1 (en) | 2012-05-03 | 2013-04-19 | Illumination optical unit and optical system for euv projection lithography |
| US14/510,725 US20150042974A1 (en) | 2012-05-03 | 2014-10-09 | Illumination optical unit and optical system for euv projection lithography |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2013/058171 Continuation WO2013164207A1 (en) | 2012-05-03 | 2013-04-19 | Illumination optical unit and optical system for euv projection lithography |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/598,408 Continuation US10976668B2 (en) | 2012-05-03 | 2019-10-10 | Illumination optical unit and optical system for EUV projection lithography |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20150042974A1 true US20150042974A1 (en) | 2015-02-12 |
Family
ID=49384467
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/510,725 Abandoned US20150042974A1 (en) | 2012-05-03 | 2014-10-09 | Illumination optical unit and optical system for euv projection lithography |
| US16/598,408 Active US10976668B2 (en) | 2012-05-03 | 2019-10-10 | Illumination optical unit and optical system for EUV projection lithography |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/598,408 Active US10976668B2 (en) | 2012-05-03 | 2019-10-10 | Illumination optical unit and optical system for EUV projection lithography |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US20150042974A1 (enExample) |
| JP (1) | JP5979693B2 (enExample) |
| KR (1) | KR102092365B1 (enExample) |
| DE (1) | DE102012207377A1 (enExample) |
| TW (2) | TWI607286B (enExample) |
| WO (1) | WO2013164207A1 (enExample) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109472189A (zh) * | 2017-09-08 | 2019-03-15 | 托比股份公司 | 瞳孔半径补偿 |
| US10976668B2 (en) | 2012-05-03 | 2021-04-13 | Carl Zeiss Smt Gmbh | Illumination optical unit and optical system for EUV projection lithography |
| DE102020210829A1 (de) | 2020-08-27 | 2022-03-03 | Carl Zeiss Smt Gmbh | Pupillenfacettenspiegel für eine Beleuchtungsoptik einer Projektionsbelichtungsanlage |
| US20220206398A1 (en) * | 2019-09-19 | 2022-06-30 | Carl Zeiss Smt Gmbh | Facet mirror for an illumination optical unit of a projection exposure apparatus |
| DE102021203961B3 (de) | 2021-04-21 | 2022-08-25 | Carl Zeiss Smt Gmbh | Pupillenblende für eine Beleuchtungsoptik eines Metrologiesystems, Beleuchtungsoptik und Metrologiesystem |
| US20230050291A1 (en) * | 2021-08-11 | 2023-02-16 | Carl Zeiss Smt Gmbh | Method and device for correcting a telecentricity error of an imaging device |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102014203188A1 (de) * | 2014-02-21 | 2015-08-27 | Carl Zeiss Smt Gmbh | Verfahren zur Beleuchtung eines Objektfeldes einer Projektionsbelichtungsanlage |
| WO2016128253A1 (de) * | 2015-02-11 | 2016-08-18 | Carl Zeiss Smt Gmbh | Beleuchtungsoptik für die euv-projektionslithografie |
| US9875534B2 (en) * | 2015-09-04 | 2018-01-23 | Kla-Tencor Corporation | Techniques and systems for model-based critical dimension measurements |
| DE102016222033A1 (de) | 2016-11-10 | 2016-12-29 | Carl Zeiss Smt Gmbh | Verfahren zur Zuordnung von Feldfacetten zu Pupillenfacetten zur Schaffung von Beleuchtungslicht-Ausleuchtungskanälen in einem Be-leuchtungssystem in einer EUV-Projektionsbelichtungsanlage |
| DE102021213827A1 (de) * | 2021-12-06 | 2023-06-07 | Carl Zeiss Smt Gmbh | Verfahren zur Optimierung einer Pupillen-Blendenform zur Nachbildung von Beleuchtungs- und Abbildungseigenschaften eines optischen Produktionssystems bei der Beleuchtung und Abbildung eines Objekts mittels eines optischen Messsystems |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5680588A (en) * | 1995-06-06 | 1997-10-21 | International Business Machines Corporation | Method and system for optimizing illumination in an optical photolithography projection imaging system |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3259373B2 (ja) | 1992-11-27 | 2002-02-25 | 株式会社日立製作所 | 露光方法及び露光装置 |
| US6859515B2 (en) | 1998-05-05 | 2005-02-22 | Carl-Zeiss-Stiftung Trading | Illumination system, particularly for EUV lithography |
| DE10138313A1 (de) | 2001-01-23 | 2002-07-25 | Zeiss Carl | Kollektor für Beleuchtugnssysteme mit einer Wellenlänge < 193 nm |
| US6573975B2 (en) * | 2001-04-04 | 2003-06-03 | Pradeep K. Govil | DUV scanner linewidth control by mask error factor compensation |
| US7042550B2 (en) * | 2002-11-28 | 2006-05-09 | Asml Netherlands B.V. | Device manufacturing method and computer program |
| JP2004252358A (ja) * | 2003-02-21 | 2004-09-09 | Canon Inc | 反射型投影光学系及び露光装置 |
| EP1771771B1 (en) * | 2004-07-14 | 2009-12-30 | Carl Zeiss SMT AG | Catadioptric projection objective |
| JP4701030B2 (ja) * | 2005-07-22 | 2011-06-15 | キヤノン株式会社 | 露光装置、露光パラメータを設定する設定方法、露光方法、デバイス製造方法及びプログラム |
| DE102006059024A1 (de) * | 2006-12-14 | 2008-06-19 | Carl Zeiss Smt Ag | Projektionsbelichtungsanlage für die Mikrolithographie, Beleuchtungsoptik für eine derartige Projektionsbelichtungsanlage, Verfahren zum Betrieb einer derartigen Projektionsbelichtungsanlage, Verfahren zur Herstellung eines mikrostrukturierten Bauteils sowie durch das Verfahren hergestelltes mikrostrukturiertes Bauteil |
| US8937706B2 (en) * | 2007-03-30 | 2015-01-20 | Asml Netherlands B.V. | Lithographic apparatus and method |
| DE102007019570A1 (de) | 2007-04-25 | 2008-10-30 | Carl Zeiss Smt Ag | Spiegelanordnung, Kontaktierungsanordnung und optisches System |
| JP2009043933A (ja) | 2007-08-08 | 2009-02-26 | Canon Inc | 露光装置、調整方法、露光方法及びデバイス製造方法 |
| US20090097001A1 (en) * | 2007-10-15 | 2009-04-16 | Qimonda Ag | Non-Telecentric Lithography Apparatus and Method of Manufacturing Integrated Circuits |
| DE102008000990B3 (de) | 2008-04-04 | 2009-11-05 | Carl Zeiss Smt Ag | Vorrichtung zur mikrolithographischen Projektionsbelichtung und Verfahren zum Prüfen einer derartigen Vorrichtung |
| DE102008001511A1 (de) * | 2008-04-30 | 2009-11-05 | Carl Zeiss Smt Ag | Beleuchtungsoptik für die EUV-Mikrolithografie sowie Beleuchtungssystem und Projektionsbelichtungsanlage mit einer derartigen Beleuchtungsoptik |
| DE102008042438B4 (de) * | 2008-09-29 | 2010-11-04 | Carl Zeiss Smt Ag | Mikrolithographie-Projektionsbelichtungsanlage mit mindestens zwei Arbeitszuständen |
| WO2010108516A1 (en) * | 2009-03-27 | 2010-09-30 | Carl Zeiss Smt Ag | Illumination optical system for euv microlithography and euv attenuator for an illumination optical system of this kind, illumination system and projection exposure installation having an illumination optical system of this kind |
| DE102010003167A1 (de) | 2009-05-29 | 2010-10-14 | Carl Zeiss Smt Ag | Verfahren zum Betreiben einer mikrolithographischen Projektionsbelichtungsanlage, sowie Beleuchtungseinrichtung |
| WO2011006522A1 (en) * | 2009-07-17 | 2011-01-20 | Carl Zeiss Smt Gmbh | Microlithographic projection exposure apparatus and method of measuring a parameter related to an optical surface contained therein |
| DE102009054540B4 (de) | 2009-12-11 | 2011-11-10 | Carl Zeiss Smt Gmbh | Beleuchtungsoptik für die EUV-Mikrolithographie |
| WO2011076500A1 (en) | 2009-12-23 | 2011-06-30 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| DE102010029765A1 (de) | 2010-06-08 | 2011-12-08 | Carl Zeiss Smt Gmbh | Beleuchtungsoptik für die EUV-Projektionslithografie |
| EP2583138B1 (en) * | 2010-06-15 | 2020-01-22 | Carl Zeiss SMT GmbH | Mask for euv lithography, euv lithography system and method for optimising the imaging of a mask |
| DE102010041746A1 (de) * | 2010-09-30 | 2012-04-05 | Carl Zeiss Smt Gmbh | Projektionsbelichtungsanlage der EUV-Mikrolithographie und Verfahren zur mikrolithographischen Belichtung |
| DE102012207377A1 (de) | 2012-05-03 | 2013-11-07 | Carl Zeiss Smt Gmbh | Beleuchtungsoptik sowie optisches System für die EUV-Projektionslithographie |
-
2012
- 2012-05-03 DE DE102012207377A patent/DE102012207377A1/de not_active Ceased
-
2013
- 2013-04-19 JP JP2015509363A patent/JP5979693B2/ja active Active
- 2013-04-19 WO PCT/EP2013/058171 patent/WO2013164207A1/en not_active Ceased
- 2013-04-19 KR KR1020147033758A patent/KR102092365B1/ko active Active
- 2013-05-02 TW TW102115781A patent/TWI607286B/zh active
- 2013-05-02 TW TW106136162A patent/TWI633399B/zh active
-
2014
- 2014-10-09 US US14/510,725 patent/US20150042974A1/en not_active Abandoned
-
2019
- 2019-10-10 US US16/598,408 patent/US10976668B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5680588A (en) * | 1995-06-06 | 1997-10-21 | International Business Machines Corporation | Method and system for optimizing illumination in an optical photolithography projection imaging system |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10976668B2 (en) | 2012-05-03 | 2021-04-13 | Carl Zeiss Smt Gmbh | Illumination optical unit and optical system for EUV projection lithography |
| CN109472189A (zh) * | 2017-09-08 | 2019-03-15 | 托比股份公司 | 瞳孔半径补偿 |
| US20220206398A1 (en) * | 2019-09-19 | 2022-06-30 | Carl Zeiss Smt Gmbh | Facet mirror for an illumination optical unit of a projection exposure apparatus |
| US11789367B2 (en) * | 2019-09-19 | 2023-10-17 | Carl Zeiss Smt Gmbh | Facet mirror for an illumination optical unit of a projection exposure apparatus |
| DE102020210829A1 (de) | 2020-08-27 | 2022-03-03 | Carl Zeiss Smt Gmbh | Pupillenfacettenspiegel für eine Beleuchtungsoptik einer Projektionsbelichtungsanlage |
| WO2022043226A1 (en) | 2020-08-27 | 2022-03-03 | Carl Zeiss Smt Gmbh | Pupil facet mirror for an illumination optical unit of a projection exposure apparatus |
| DE102021203961B3 (de) | 2021-04-21 | 2022-08-25 | Carl Zeiss Smt Gmbh | Pupillenblende für eine Beleuchtungsoptik eines Metrologiesystems, Beleuchtungsoptik und Metrologiesystem |
| US11531272B2 (en) | 2021-04-21 | 2022-12-20 | Carl Zeiss Smt Gmbh | Pupil stop for an illumination optical unit of a metrology system |
| US20230050291A1 (en) * | 2021-08-11 | 2023-02-16 | Carl Zeiss Smt Gmbh | Method and device for correcting a telecentricity error of an imaging device |
| US12105427B2 (en) * | 2021-08-11 | 2024-10-01 | Carl Zeiss Smt Gmbh | Method and device for correcting a telecentricity error of an imaging device |
Also Published As
| Publication number | Publication date |
|---|---|
| TW201411292A (zh) | 2014-03-16 |
| JP5979693B2 (ja) | 2016-08-24 |
| US20200041911A1 (en) | 2020-02-06 |
| WO2013164207A1 (en) | 2013-11-07 |
| TW201805735A (zh) | 2018-02-16 |
| TWI607286B (zh) | 2017-12-01 |
| KR20150013660A (ko) | 2015-02-05 |
| KR102092365B1 (ko) | 2020-03-24 |
| US10976668B2 (en) | 2021-04-13 |
| DE102012207377A1 (de) | 2013-11-07 |
| TWI633399B (zh) | 2018-08-21 |
| JP2015517729A (ja) | 2015-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10976668B2 (en) | Illumination optical unit and optical system for EUV projection lithography | |
| JP5159027B2 (ja) | 照明光学系及び露光装置 | |
| KR102469060B1 (ko) | Euv 마이크로리소그라피를 위한 투영 렌즈, 투영 노광 장치 및 투영 노광 방법 | |
| US20080165925A1 (en) | Double-facetted illumination system with attenuator elements on the pupil facet mirror | |
| US7126757B2 (en) | Illumination apparatus, exposure apparatus using the same, and device fabricating method | |
| US9791785B2 (en) | Method for assigning a pupil facet of a pupil facet mirror of an illumination optical unit of a projection exposure apparatus to a field facet of a field facet mirror of the illumination optical unit | |
| US20080143987A1 (en) | Exposure apparatus and device fabrication method | |
| CN102483516A (zh) | 在像场中成像物场的成像光学系统和照明物场的照明光学系统 | |
| US11092897B2 (en) | Method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography | |
| US10928733B2 (en) | Illumination optic for projection lithography | |
| US11378887B2 (en) | Pupil facet mirror, illumination optics and optical system for a projection lithography system | |
| US20040218164A1 (en) | Exposure apparatus | |
| KR20170114976A (ko) | 투영 노광 방법 및 투영 노광 장치 | |
| US7292316B2 (en) | Illumination optical system and exposure apparatus having the same | |
| JP2002057081A (ja) | 照明光学装置並びに露光装置及び露光方法 | |
| JPH11224853A (ja) | 照明光学装置、露光装置、露光方法、及び半導体デバイス製造方法 | |
| CN113168114A (zh) | 投射光刻的照明光学系统 | |
| JPH02234411A (ja) | 投影露光装置 | |
| HK1241042A1 (en) | Illumination assembly, exposure apparatus and methods for manufacturing, image forming, illumination and exposure | |
| HK1241042A (en) | Illumination assembly, exposure apparatus and methods for manufacturing, image forming, illumination and exposure | |
| HK1241046A (en) | Illumination assembly, exposure apparatus and methods for manufacturing, image forming, illumination and exposure | |
| HK1241046A1 (en) | Illumination assembly, exposure apparatus and methods for manufacturing, image forming, illumination and exposure | |
| JP2002100565A (ja) | 走査型露光装置、及びその装置を用いるデバイス製造方法 | |
| TW201802612A (zh) | Euv投影微影的照明光學單元 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CARL ZEISS SMT GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ZIMMERMANN, JOERG;REEL/FRAME:033960/0155 Effective date: 20141014 |
|
| STCV | Information on status: appeal procedure |
Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS |
|
| STCV | Information on status: appeal procedure |
Free format text: BOARD OF APPEALS DECISION RENDERED |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |