US20130216488A1 - Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds - Google Patents

Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds Download PDF

Info

Publication number
US20130216488A1
US20130216488A1 US13/763,262 US201313763262A US2013216488A1 US 20130216488 A1 US20130216488 A1 US 20130216488A1 US 201313763262 A US201313763262 A US 201313763262A US 2013216488 A1 US2013216488 A1 US 2013216488A1
Authority
US
United States
Prior art keywords
extract
compounds
antimicrobial
avocado
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/763,262
Other languages
English (en)
Inventor
Carmen Hernandez-Brenes
Maria Isabel Garcia-Cruz
Janet Alejandra Gutierrez-Uribe
Jorge Alejandro Benavides-Lozano
Dariana Graciela Rodriguez-Sanchez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Instituto Technologico y de Estudios Superiores de Monterrey
AVOMEX Inc
Original Assignee
Instituto Technologico y de Estudios Superiores de Monterrey
AVOMEX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45893587&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20130216488(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Instituto Technologico y de Estudios Superiores de Monterrey, AVOMEX Inc filed Critical Instituto Technologico y de Estudios Superiores de Monterrey
Priority to US13/763,262 priority Critical patent/US20130216488A1/en
Assigned to AVOMEX, INC., INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY reassignment AVOMEX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENAVIDES-LOZANO, JORGE ALEJANDRO, GARCIA-CRUZ, MARIA ISABEL, GUTIERREZ-URIBE, JANET ALEJANDRA, HERNANDEZ-BRENES, CARMEN, RODRIGUEZ-SANCHEZ, DARIANA GRACIELA
Publication of US20130216488A1 publication Critical patent/US20130216488A1/en
Priority to US15/148,712 priority patent/US10575521B2/en
Priority to US15/348,740 priority patent/US10582707B2/en
Priority to US16/731,418 priority patent/US20200281198A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/16Acetic acid esters of dihydroxylic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/12Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group, wherein Cn means a carbon skeleton not containing a ring; Thio analogues thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/24Lauraceae [Laurel family], e.g. laurel, avocado, sassafras, cinnamon or camphor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/34635Antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • A23L3/3499Organic compounds containing oxygen with doubly-bound oxygen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3481Organic compounds containing oxygen
    • A23L3/3508Organic compounds containing oxygen containing carboxyl groups
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3526Organic compounds containing nitrogen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3544Organic compounds containing hetero rings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • A61K31/23Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin of acids having a carboxyl group bound to a chain of seven or more carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/54Lauraceae (Laurel family), e.g. cinnamon or sassafras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/001Preparations for care of the lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/14Acetic acid esters of monohydroxylic compounds
    • C07C69/145Acetic acid esters of monohydroxylic compounds of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/48Medical, disinfecting agents, disinfecting, antibacterial, germicidal or antimicrobial compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/266Esters or carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/22Organic compounds, e.g. vitamins
    • C11D9/26Organic compounds, e.g. vitamins containing oxygen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/35Extraction with lipophilic solvents, e.g. Hexane or petrol ether
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/39Complex extraction schemes, e.g. fractionation or repeated extraction steps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/524Preservatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • non-spore forming bacteria which is a known term used for pathogenic and spoilage bacteria that cannot form bacterial spores and can be destroyed or controlled by a heat treatment, refrigerated anaerobic storage, antibacterial substances and other methods known in the art used alone or in combination.
  • spore forming bacteria which includes pathogenic and spoilage bacterial capable of forming very resistant structures called bacterial spores (also termed endospores) that are not necessarily destroyed or controlled by the common methods known in the art for the control of non-spore forming bacteria and require specific treatments for their inhibition and/or inactivation.
  • both types of bacteria can exist in nature in a “vegetative state” also termed viable cells; however spore-forming bacteria can also exist in a “spore-state” which is more resistant to chemical and physical treatments for their inactivation.
  • spore-forming bacteria can also exist in a “spore-state” which is more resistant to chemical and physical treatments for their inactivation.
  • heat-shocked spores and/or pressure “pressure-shocked spores”.
  • antibacterial is a term used to describe an agent able of inhibiting the growth of a wide class of microorganisms including bacterias, fungus, molds, viruses or yeast.
  • antibacterial is a term used to describe an agent able of inhibiting the growth of spore forming or non-spore forming bacterias in a vegetative state.
  • spore germination inhibiting activity or “spore germination inhibiting effect” refers to spores from spore forming bacteria, except for where otherwise indicated.
  • raw extract is a term used to define an extract obtained by mixing Persea spp.
  • extract enriched in acetogenins is the term used to define an extract obtained after the removal of compounds different from acetogenins with antimicrobial, antibacterial and spore germination inhibiting effect.
  • This disclosure relates to the food and pharmaceutical arts. In particular it relates to a method of inhibiting vegetative cells, spore germination and growth of gram positive bacteria by the use of chemical compounds naturally present in Persea spp.
  • the disclosure also relates to the medical arts.
  • it relates to a method of inhibiting the growth of pathogenic spore forming bacteria in the body including the gastrointestinal tract of a human or non-human vertebrate by the use of an antimicrobial extract with specificity for this type of bacteria.
  • the proteolytic and non-proteolytic strains of Clostridium botulinum are a major concern for the food industry because of the potential germination of their bacterial spores in foods and the production of potent neurotoxins.
  • Nitrites are the most commonly used food additives in the food industry to retard/inhibit the growth of spore forming pathogenic bacteria in refrigerated low-acid foods.
  • the disclosure also relates to an important public health concern that is the ability of pathogenic species, especially the gram positive Listeria monocytogenes , to grow at commercial refrigeration temperatures at which processed foods are normally stored before final consumption.
  • Listeria monocytogenes is a non-spore forming pathogenic bacteria of special concern for ready-to-eat meats and dairy products; as such foods are frequently not heated by the user prior to consumption. Consumption of foods contaminated with Listeria monocytogenes are known in the art to increase the risk of infection, especially among infants, the elderly, pregnant women, and any immune compromised individuals.
  • a sporocidal agent is a substance with the ability to kill at least some types of bacterial spores whereas a sporostatic agent is a substance that has the ability to inhibit the growth and reproduction of at least some types of bacterial spores.
  • Spore germination inhibitors include both sporicidal and sporostatic agents.
  • the trans (E) form can include a terminal alkene which has the formula —CH ⁇ CH 2 (see e.g. (2R,16E)-1-acetoxy-2-hydroxy-4-oxo-nonadeca-16,18-diene below).
  • Kashman et al. (1969) isolated and elucidated the structure of eight compounds from a hexane extract of avocado fruit and seeds and a number of derivates thereof were prepared, obtaining higher yields from the seeds than the fruit. All compounds showed by Kashman (1969) belong to the same group of long chain aliphatic compounds, with one end being unsaturated and the other end highly oxygenated. Interestingly the compounds were divided by the authors in pairs differing only by having a double or triple bond at the end of the chain.
  • Prusky et al. (1982) described the presence of 1-acetoxy-2-hydroxy-4-oxo-heneicosa-12,15-diene (Persin) in the peel of unripe avocado fruits and attributed to the molecule the antimicrobial activity against Colletotrichum gloeosporioides , a fungus that causes anthracnose, a known problem encountered during storage of avocado fruits.
  • Persin 1-acetoxy-2-hydroxy-4-oxo-heneicosa-12,15-diene
  • the compound was isolated by Thin Layer Chromatography from an ethanolic extract partitioned with dichloromethane. This compound was later termed “persin” (Oelrichs et al., 1995), and was confirmed by other authors as the constituent of avocado with the highest inhibitory activity against the vegetative growth of the fungi Colletotrichum gloeosporioides tested in vitro (Sivanathan and Adikaram, 1989; Domergue et al., 2000), and with the capability to inhibit its fungi spore germination and germ tube elongation (Prusky et al., 1991a).
  • a 1:1 mixture of both antifungal compounds showed synergistic activity and increased the percent of inhibited germ tube elongation of germinated conidia (Prusky et al., 1991b).
  • Additional bioactivities that have been reported for acetogenins included insecticidal, antitumoral, and antihelmintic properties.
  • Persin has shown to have insecticidal activity, inhibiting the larval feeding of silkworm larvae Bombyx mori L., at a concentration in the artificial diet of 200 ⁇ g/g or higher (Chang et al., 1975; Murakoshi et al., 1976). More recently, Rodriguez-Saona et al. (1997) demonstrated the effects of persin on Spodoptera exigua , a generalist feeder insect, that does not feed on avocados, but is one of the major pests of many vegetables. Inhibitory effects were observed for both larval growth and feeding at concentrations of 200 ⁇ g/g and 400 ⁇ g/g of diet, respectively.
  • Persin was also identified as the active principle present in avocado leaves that induces lactating mammary gland necrosis of mice at a dose rate of 60-100 mg/kg, at doses above 100 mg/kg necrosis of mice myocardial fibers may occur, and hydrothorax may be present in severely affected animals (Oelrichs et al., 1995). Derived from this effect, this compound and others obtained from avocado leaves were patented as treatment for ovarian and breast cancer in mammals (Seawright et al., 2000). The compounds were administered orally up to 100 mg/kg of body weight of mammal being treated, but preferably on a number of consecutive days at a concentration of 20-40 mg/kg of body weight to avoid the previously reported toxic effects.
  • the concentration of these compounds in the avocado pulp is greatly reduced during ripening to values lower than 1500 ⁇ g/g (Kobiler et al, 1993); therefore more than 0.8 kg of avocado pulp should be consumed daily by a 60 kg human to reach the anticancer effect and even a higher concentration to reach the cytotoxic effects.
  • the annual therapeutic dose proposed for cancer treatment is 160-fold higher than the actual annual per capita consumption of avocado in the United States (1.8 kg or 4.1 pounds) reported by Pollack et al (2010).
  • Persenone A and its analog 1-acetoxy-2-hydroxy-5-nonadecen-4-one (Persenone B), along with Persin were found to inhibit superoxide (O2 ⁇ ) and nitric oxide (NO) generation in cell culture, activities that were associated by the authors to therapeutic uses as cancer chemopreventive agents in inflammation-related organs (Kim et al., 2000a, 2000b and 2000c). In vitro results demonstrated that they have equal or better activity than DHA (docosahexaenoic acid), a natural NO generation inhibitor.
  • the IC50 values were in the range of 1.2-3.5 ⁇ M for acetogenins and 4.5 ⁇ M for DHA (Kim et al., 2000a).
  • ACC acetyl CoA carboxylase
  • the preliminary art does not show any reports on the bio-assay guided isolation of the antimicrobial compounds from avocado ( Persea americana ) against microorganisms, particularly sporulated forms.
  • the present disclosure provides a series of steps for a process to obtain isolated compounds and/or a composition that concentrates the naturally occurring antibacterial compounds in Persea americana that inhibit the growth of vegetative and sporulated states of spore forming bacteria.
  • the isolation of compounds based on inhibition of sporulated microorganisms do not form part of the teaching of the prior art. More importantly, the synergistic effect of the specific compounds in partially purified mixtures is also part of the present disclosure.
  • spore germination inhibiting properties such as sporostatic and/or sporocidal properties
  • Maseko (2006) proposed a simple method to produce a non acetylated fatty acid derivative called (2R,4R)-1,2,4-trihydroxyheptadeca-16-ene by using (S)-malic acid as a cheap source of the triol fragment and the Grignard reaction to achieve the elongation of the aliphatic chain.
  • This precursor could be used for the synthesis of most acetogenins in avocado oil.
  • This molecule was produced as an analytical standard in Masenko (2006) and in prior art Néeman et al. (1970) had shown the potential of the compound as an antimicrobial agent against Staphylococcus spp., a non-spore forming bacteria. None of the cited authors tested any specific antimicrobial properties against spore forming bacteria nor a method to produce acetogenins with this particular effect.
  • U.S. Pat. No. 5,217,950 suggested the use of nisin compositions as bactericides for gram positive bacteria.
  • U.S. Pat. Nos. 5,573,797, 5,593,800 and 5,573,801 disclose antibacterial compositions which include a combination of a Streptococcus or Pediococcus derived bacteriocin or synthetic equivalent antibacterial agent in combination with a chelating agent.
  • U.S. Pat. No. 5,458,876 suggests the combination of an antibiotic (such as nisin) with lysozyme as an antibacterial.
  • lysozyme breaks down the cell wall and weakens the structural integrity of the target cell so that the antibacterial agent becomes more effective in damaging or killing the bacterial cell.
  • this combination proves to be effective in improving the antibacterial-efficacy of nisin against Listeria monocytogenes , yielding a significant reduction, though not a complete elimination, of Listeria at safe and suitable levels of use.
  • U.S. Pat. No. 6,620,446B2 describes an antibacterial composition for control of gram positive bacteria in food applications that may be used as an ingredient or applied to a food surface.
  • This composition includes nisin, and/or lysozyme and beta hops acids in order to reduce or eliminate gram positive spoilage or pathogenic bacteria, and, most especially, all strains of the harmful pathogen Listeria monocytogenes .
  • Perumalla and Hettiarachchy (2011) reported that green tea extract and grape seed extract (polyphenolic and proanthocyanidin rich compounds) had antimicrobial activities against major food borne pathogens like Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, and Campylobacter jejuni .
  • This disclosure is directed to an extract enriched in naturally occurring acetogenins from Persea spp. characterized by having antimicrobial, antibacterial or spore germination inhibiting effect and the process to obtain the said extract.
  • the disclosure is also directed to the use of the acetogenin enriched extract that presents spore germination inhibiting activity, as a sporicidal and/or sporostatic agent against native bacterial spores from Clostridium spp., Bacillus spp. and Alicyclobacillus spp., among other pathogenic and non-pathogenic bacteria.
  • the disclosure is also directed to pharmaceutical, foods, personal care and cleaning compositions or products comprising the said extract and thus having antimicrobial, antibacterial or spore germination inhibiting effect.
  • the enriched extract is effective as an antimicrobial agent to inhibit the growth of viable cells of other non-spore forming gram positive bacteria such as Listeria monocytogenes , in combination with refrigerated conditions.
  • the enriched extract contains two natural occurring acetogenins not previously characterized, which have antimicrobial and spore germination inhibiting effect. It is also part of this disclosure to protect the use of the acetogenin enriched extract in formulations that are heat treated, pressure treated or stabilized by other thermal or non-thermal conservation technologies.
  • FIG. 1 Primary extraction diagram for the compounds present in avocado seed used to evaluate their antimicrobial activities against vegetative cells, native spores and heat shocked spores of gram positive bacteria.
  • FIG. 2 Effect of the type of extraction solvent on the antimicrobial activities of crude avocado pit extracts against the growth of vegetative cells, native spores and heat shocked spores of Clostridium sporogenes (ATCC 7955). The extracts were tested at final concentration of 12.5 ⁇ g of solids. Data represents the average of three replications ⁇ the standard error of the mean.
  • FIG. 3 Effect of shaking on the extraction of antimicrobial compounds from avocado pit extracts using hexane and evaluation of their antimicrobial activities against the growth of vegetative cells, native spores and heat shocked spores of Clostridium sporogenes (ATCC 7955).
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids. Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05).
  • FIG. 4 Comparisons of the effect of extraction time using acetone or ethanol instead of hexane to obtain bioactive compounds from avocado pit that inhibit the growth of vegetative cells of C. sporogenes (ATCC 7955).
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids.
  • Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05).
  • FIG. 5 Comparisons of the effect of extraction time using acetone or ethanol instead of hexane to obtain bioactive compounds from avocado pit that inhibit the growth of native spores of C. sporogenes (ATCC 7955).
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids. Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05).
  • FIG. 6 Comparisons of the effect of extraction time using acetone or ethanol instead of hexane to obtain bioactive compounds from avocado pit that inhibit the growth of heat-shocked spores of C. sporogenes (ATCC 7955).
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids. Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05).
  • FIG. 7 A) Primary extraction diagram for the compounds present in avocado seeds using acetone and their subsequent partition in a heptane:methanol system to obtain fractions F001 and F002, in each phase respectively, later used to evaluate their antimicrobial activities against vegetative cells, native spores and heat shocked spores of gram positive bacteria.
  • FIG. 8 Evaluation of the antimicrobial activities against the growth of vegetative cells, native spores and heat shocked spores of Clostridium sporogenes (ATCC 7955) of extracts F001-F004 obtained as described in FIG. 7 .
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids. Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05).
  • FIG. 9 Evaluation of the antimicrobial activities against the growth of vegetative cells, native spores and heat shocked spores of Clostridium sporogenes (ATCC 7955), of the upper and lower phases of a two phase system (ethyl acetate:water) used as a second partition of lower phase F002 (methanol) obtained as described in FIG. 7A .
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids. Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05). (The letter c indicates a zero cm value for the disc inhibition zone)
  • FIG. 10 Evaluation of the antimicrobial activities against the growth of vegetative cells, native spores and heat shocked spores of Clostridium sporogenes (ATCC 7955), of the upper and lower phases of a two phases system (hexane:methanol) used for partiton of the acetonic crude extract obtained as described in Example 1.
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids.
  • Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05).
  • FIG. 11 Evaluation of the antimicrobial activities against the growth of vegetative cells, native spores and heat shocked spores of Clostridium sporogenes (ATCC 7955), of the unsaponifiables compounds from the acetone raw extract obtained as described in Example 1, and the unsaponifiables compounds from the upper phase of the two phases system (hexane:methanol) used for partiton of the acetonic raw extract as described in Example 5.
  • the extracts were tested at final concentration of 12.5 ⁇ g of solids. Data represents the average of three replications ⁇ the standard error of the mean. Values with the same letter are not significantly different (LSD test, p ⁇ 0.05). (The letter d indicates a zero cm value for the disc inhibition zone)
  • FIG. 12 Evaluation of the antimicrobial activities against the growth of vegetative cells and heat shocked spores of Clostridium sporogenes (ATCC 7955), of the fractions obtained by reverse phase Fast Centrifugal Partition Chromatography (RP-FCPC) of the upper phase (heptane) of the two phases system (heptane:methanol) used for partiton of the acetonic raw extract as described in Example 5.
  • the solvent system used to achieve the RP-FCPC was heptane:methanol (1:1) and methanol was used as mobile phase.
  • the fractions were tested at final concentration of 12.5 ⁇ g of solids.
  • FIG. 13 Evaluation of the antimicrobial activities against the growth of vegetative cells, native spores and heat shocked spores of Clostridium sporogenes (ATCC 7955), of the fractions obtained by Normal phase Fast Centrifugal Partition Chromatography (NP-FCPC) of the upper phase (heptane) of the two phases system (heptane:methanol) used for partiton of the acetonic raw extract as described in Example 5.
  • the solvent system used to achieve the NP-FCPC was heptane:methanol (1:1) and heptane was used as mobile phase.
  • the fractions were tested at final concentration of 12.5 ⁇ g of solids.
  • FIG. 14 Evaluation of the antimicrobial activities against the growth of vegetative cells of S. aureus and B. subtilis , of the fractions obtained by Normal phase Fast Centrifugal Partition Chromatography (NP-FCPC) of the upper phase (heptane) of the two phases system (heptane:methanol) used for partiton of the acetonic raw extract as described in Example 5.
  • the solvent system used to achieve the NP-CPC was heptane:methanol (1:1) and heptane was used as mobile phase.
  • the fractions were tested at final concentration of 12.5 ⁇ g of solids.
  • FIG. 15 Effect of temperature (25-100° C./60 min) treatments of hexane and ethyl acetate upper phases obtained as described in Example 5, on the inhibitory activity of the growth of vegetative cells of Clostridium sporogenes (ATCC 7955).
  • FIG. 16 Effect of temperature (25-100° C./60 min) treatments of hexane and ethyl acetate upper phases obtained as described in Example 5, on the inhibitory activity of the growth of native spores cells of Clostridium sporogenes (ATCC 7955).
  • FIG. 17 Progressive change in the chromatographic profiles of the fractions present in the active pool, obtained as described in Example 10, as their partition coefficient (Kd) increases.
  • the fractions were analyzed by means of high performance liquid chromatography and diode array detector set at 220 nm. The numbers represent the common peaks present in different fractions.
  • FIG. 18 Concentration of the active compounds present in the pool of active fractions described in Example 10.
  • the present disclosure provides a series of steps to obtain an extract enriched in naturally occurring antimicrobial, antibacterial or bacterial spore germination inhibiting compounds, termed acetogenins, from Persea spp. (avocado) for providing antimicrobial, antibacterial or bacterial spore germination inhibiting effect.
  • acetogenins naturally occurring antimicrobial, antibacterial or bacterial spore germination inhibiting compounds
  • an extract enriched in naturally occurring acetogenins with antimicrobial, antibacterial or bacterial spore germination inhibiting effect from Persea sp., which includes, but is not limited to Persea americana and gratissima (avocado) for providing antimicrobial, antibacterial or bacterial spore germination inhibiting effect, which includes but is not limited to the growth of vegetative cells and spores of gram positive bacteria.
  • the process to obtain the said enriched extract has as an starting point a raw extract of the dried or fresh seeds, and/or other Persea sp. tissue such as mesocarp, peel, leafstalks, branches or leaves, which comprises:
  • step b) Fractionating the extract with a high content of acetogenins obtained in step a) by Fast or High Performance Centrifugal Partition Chromatography (FCPC or HPCPC) or Countercurrent chromatography (CCC) based on their corresponding partition coefficient, to obtain fractions with higher concentration of acetogenins presenting bacterial spore germination inhibiting effect and separate them from other fractions comprising contaminants;
  • FCPC Fast or High Performance Centrifugal Partition Chromatography
  • CCC Countercurrent chromatography
  • step b) Recovering and mixing of the fractions comprising acetogenins with bacterial spore germination inhibiting effect obtained in step b), and concentration them to finally obtain an extract enriched in naturally occurring acetogenins from Persea sp. having bacterial spore germination inhibiting effect.
  • the two-phase solvent system said in step a) comprises:
  • At least one polar solvents selected from the group including, but is not limited to water, C 1 -C 4 alcohol (e.g. ethanol, isopropanol, methanol), dimethyl sulfoxide, tetrahydrofuran, acetone, acetonitrile; and
  • At least one non-polar solvents selected from the group including, but is not limited to hexanes, heptanes, ethyl ether, ethyl acetate, petroleum ether, butyl alcohol, chloroform, toluene, methyl tert-butyl ether, methyl isobutyl ketone and mixtures therein.
  • the fractionation by FCPC, HPCPC or CCC said in step b) is carried out to separate the compounds based on their corresponding partition coefficient with the aim of reducing and/or eliminating contaminants obtained during the extraction.
  • FCPC fractionation by FCPC, HPCPC or CCC
  • fractionation by FCPC, HPCPC or CCC can increase the concentration of naturally occurring antimicrobial compounds from avocados (more than 4-fold), that inhibit the growth of vegetative cells and spores of gram positive bacteria, to provide at least 1.2 to 2 times or greater antibacterial properties when compared to an acetone crude extract from avocado seed evaluated at the same concentration of solids (2.5 mg/mL).
  • the process to obtain the said enriched extract wherein the fractionation by FCPC, HPCPC or CCC said in step b) is carried out by use of a two-phases solvent system which include, but is not limited to:
  • recovered fractions comprising acetogenins with bacterial spore germination inhibiting effect said in step c) have a partition coefficient value lower than 0.5, and preferably in the in the range of between 0.19 to 0.35, when fresh seeds are used and FCPC, HPCPC or CCC is carried out with a heptane:methanol two-phase solvent system and heptane as initial stationary phase.
  • the extraction and purification process to obtain the enriched extract optionally does not result in saponification of the enriched or isolated compounds. In another embodiment of this aspect of the disclosure, the extraction and purification process optionally does not result in saponification of the enriched or isolated compounds.
  • the extract enriched in naturally occurring acetogenins, with antimicrobial, antibacterial or bacterial spore germination inhibiting compounds comprised of at least one acetogenins with m/z in the range of 329 to 381, including, but is not limited to: Persenone A, Persenone B, persin or the newly discovered (2R,5E,16E)-1-acetoxy-2-hydroxy-4-oxo-nonadeca-5,16-diene or the also newly discovered (2R,16E)-1-acetoxy-2-hydroxy-4-oxo-nonadeca-16,18-diene that can be purified from Persea spp., or chemically synthesized to enrich the bioactivity.
  • the extract of the disclosure enriched in naturally occurring acetogenins with antimicrobial, antibacterial or bacterial spore germination inhibiting effect is comprised of at least one compound characterized by the formula (I)
  • R 1 is an acetyl group
  • R 2 is hydrogen or a hydroxy protecting group
  • R 3 is an alkenyl group with at least one carbon-carbon double bonds; and/or compounds of formula (II)
  • R 1 is an acetyl group
  • R 2 and R 4 hydrogen or a hydroxy protecting group
  • R 3 is an alkenyl group with at least one carbon-carbon double bond.
  • the hydroxy protecting group can be any known hydroxy protecting group, e.g. those described in Greene and Wuts, Protective Groups in Organic Synthesis ( Third Edition ), Wiley-Interscience (1999).
  • the compounds of formula (I) and (II) include all stereoisomeric forms which includes (R) and (S) forms and cis (Z) and trans (E) forms of the compounds.
  • the trans (E) form can include a terminal alkene which has the formula —CH ⁇ CH 2 (see e.g. (2R,16E)-1-acetoxy-2-hydroxy-4-oxo-nonadeca-16,18-diene below).
  • the compounds of formula (I) can be synthesized by reacting dimethyl-1,3-dioxolane-ethylmagnesium halide (e.g. chloride or bromide) with a reagent of the formula R 3 COX wherein R 3 is as defined above and X is a halide and subsequently forming a diol from the dioxolane ring using the procedures described in Bull et al. (1994).
  • dimethyl-1,3-dioxolane-ethylmagnesium halide e.g. chloride or bromide
  • the compounds of formula (I) can be synthesized by obtaining an unsaturated fatty acid and converting it to its corresponding methyl ketone and then reacting the corresponding methyl ketone with 2-acetoxyacetaldehye using the procedures described in MacLeod et al. (1995).
  • the compounds of formula (II) can be synthesized via reduction of ketone from the compounds of Formula (I) or synthesized by reacting dimethyl-1,3-dioxolane-4-ethanal with a compound of R 3 MgX wherein R 3 is as defined above and X is a halide using procedures disclosed by Sugiyama et al. (1982).
  • the extract of the disclosure is comprised of at least one compounds preferably characterized by the formula (I), and wherein there is at least one carbon-carbon double bond at the C-5 and C-6 position of the compound.
  • the said extract comprised of at least one compounds preferably characterized by the formula (I) and wherein there is at least one carbon-carbon double bond at the C-5 and C-6 position of the compound, is characterized by having an inhibitory effect over bacterial spores from the genera which includes, but is not limited to Clostridium, Bacillus, Alicyclobacillus and can be used as a bacterial spore germination inhibiting agent.
  • the said extract comprised of at least one compounds preferably characterized by the formula (I) and wherein there is at least one carbon-carbon double bond at the C-5 and C-6 position of the compound, is characterized by having an inhibitory effect over bacterial spores from the group which includes, but is not limited to Clostridium botulinum, Clostridium perfringens, Clostridium difficile, Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Bacillus lichniformis, Alicyclobacillus acidoterrestris, Alicyclobacillus acidiphilus and can be used as an bacterial spore germination inhibiting agent.
  • the group which includes, but is not limited to Clostridium botulinum, Clostridium perfringens, Clostridium difficile, Bacillus anthracis, Bacillus cereus, Bacillus subtilis, Bacillus lichniformis, Alicyclobacillus acidoterrestris, Alicyclobac
  • the said extract is characterized by having an inhibitory effect over the genera Listeria at storage temperatures in the range of 0 to 10° C. and can be used as an anti-Listeria agent.
  • the extract of the disclosure is comprised of at least one compound preferably characterized by the formula (I), wherein there is a double bond with trans configuration at the C-16 and C-17 position of the compound.
  • the extract of the disclosure is comprised of at least one compound characterized by the formula:
  • the said extract is characterized by having an antibacterial, antifungical, antiviral, anti-yeast, and in spore germination inhibitory effect and can be used as an anti-microbial or spore germination inhibiting agent.
  • the extract of the disclosure can be used in compositions or products that inhibit the growth of bacterial spores, alone or in combination with other antimicrobial substances commonly known in the art which include but are not limited to nitrite compounds, nisin, bacteriocins, ethyl lauroyl arginate, essential oils, enthylenediaminetetraacetic acid (EDTA) and ascorbic acid derivatives, benzoic acid derivatives, among others in order to improve the antimicrobial activities against the growth of vegetative and sporulated states of bacteria.
  • antimicrobial substances commonly known in the art which include but are not limited to nitrite compounds, nisin, bacteriocins, ethyl lauroyl arginate, essential oils, enthylenediaminetetraacetic acid (EDTA) and ascorbic acid derivatives, benzoic acid derivatives, among others in order to improve the antimicrobial activities against the growth of vegetative and sporulated states of bacteria.
  • the extract of the disclosure or compounds there in contained, or extracts derived therefrom can be used in compositions or products providing an antimicrobial, antibacterial or bacterial spore germination inhibiting effect and can be formulated in solid or oily form, with antioxidants, emulsifying agents, carriers, excipients, encapsulating agents and other formulation components to improve the application and stability of the bioactive components.
  • composition or product for providing antimicrobial, antibacterial and bacterial spore germination inhibiting effect, wherein the composition or product is selected from the group consisting of:
  • composition comprising the extract and a pharmaceutically acceptable carrier
  • composition is suitable for one or more of the following administration vias: oral, dermal, parenteral, nasal, ophthalmical, optical, sublingual, rectal, gastrical or vaginal; Dermal administration includes topical application or transdermal administration.
  • Parenteral administration includes intravenous, intraarticular, intramuscular, and subcutaneous injections, as well as use of infusion techniques.
  • the extracts, compounds and compositions or products of the disclosure may be present in association with one or more non-toxic pharmaceutically acceptable ingredients to form the composition.
  • compositions can be prepared by applying known techniques in the art such as those taught in Remington—The Science and Practice of Pharmacy, 21st Edition (2005), Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th Edition (2005) and Ansel's Parmaceutical Dosage Forms and Drug Delivery Systems (8th Edition), edited by Allen et al., Lippincott Williams & Wilkins, (2005).
  • a food additive composition comprising the extract and a food grade acceptable carrier, suitable for inclusion into food products; wherein the food product is selected from one of more of the following: fish, crustaceans, fish substitutes, crustacean substitutes, meat, meat substitutes, poultry products, vegetables, greens, sauces, emulsions, beverages, juices, wines, beers, dairy products, egg-based products, jams, jellies, grain-based products, baked goods and confectionary products;
  • a personal care products wherein the personal care composition is selected from one or more of the following: creams, gels, powders, lotions, sunscreens, lipstick, body wash, herbal extracts, and formulations that support the growth of bacteria; and
  • a cleaning composition wherein the cleaning composition is suitable for application to one of the following: counter tops, doors, windows, handles, surgical equipment, medical tools, and contact surfaces that can contaminate humans or animals.
  • Another aspect of the disclosure is the use of the extracts or isolated compounds of the disclosure or compositions comprising the same, to provide an antibacterial, antimicrobial or sporicidal effect to a patient in need thereof.
  • compositions comprising the extract of the disclosure to provide an antibacterial, antimicrobial or sporicidal effect to a pharmaceutical, food, personal care, or cleaning composition or cleaning products.
  • Another aspect of the disclosure is the use of the extracts or isolated compounds of the disclosure or compositions comprising the same to provide an antibacterial, antimicrobial or sporicidal effect to a surface.
  • the effect may be produced by exposing the surface with the extracts or isolated compounds of the disclosure or by laminating or embedding the extracts or isolated compounds of the disclosure onto the surface itself.
  • the compounds of Formula (I) can have as few as one carbon-carbon double bond for R 3 and this double bond can either be in the cis (Z) or trans (E) configuration.
  • One embodiment of this scope of the compounds of Formula (I) is that the carbon-carbon double bond are at C-5/C-6, C-12/C-13, C-15/C-16, C-16/C-17 or any combination thereof, with the bonds being trans or cis bonds.
  • Another embodiment of the scope of the compounds include where the carbon-carbon double bond is at C-5 and C-6 alone, and/or C-16 and C-17, and/or C-12 and C-13, and/or C-15 and C-16 positions, either being trans or cis bonds.
  • the compound of Formula (I) can be used alone or in combination with the compounds for formula (II).
  • the antibacterial, antimicrobial or spostatic/sporicidal effects are at least as effective as other known antibacterial, antimicrobial or spostatic/sporicidal agents such as LAE (ethyl ester of lauramide of arginine monohydrochloride), nitrites or nisin (a polycyclic peptide with 34 amino acids).
  • LAE ethyl ester of lauramide of arginine monohydrochloride
  • nitrites or nisin a polycyclic peptide with 34 amino acids.
  • Acetone and hexane avocado seed extracts showed significant antimicrobial activity against vegetative bacterial cells, as well as native and heat-shocked spores of the spore forming bacteria Clostridium sporogenes (see FIG. 2 ). Non-significant differences between the activity of acetone and hexane extracts was observed, except for heat shocked spores were the hexane extract showed around 20% higher sporicidal activity than the acetone extract. Both acetone and hexane avocado seed extracts presented higher antibacterial activities than the positive control (nisin, 150 ⁇ g). Positive control treatments (nisin) gave inhibition zones of 1.3, 1.0 and 0.9 cm for vegetative bacterial cells, spores and heat shocked spores, respectively.
  • avocado seeds used to obtain the crude extracts once ground, can be stored at temperatures below 25° C. in presence or absence of oxygen for at least 14 days without affecting the antibacterial activity against spore forming bacteria. Therefore avocado seeds can be stored as a whole or as a meal prior to the preparation of the extracts enriched in bioactive compounds.
  • the efficacy of the present disclosure can be observed by the preparation of crude antibacterial extracts from mango seed kernel, which has been reported in the prior art to exhibit antibacterial activity against vegetative cells of spore-forming bacteria (Kabuki et al., 2000).
  • Crude extracts from avocado ( Persea americana ) and mango kernel ( Mangifera indica ) were prepared as described in Example 1 and their antibacterial activities tested against the growth of vegetative cells and heat-shocked spores of C. sporogenes (See Table 1).
  • the present example therefore demonstrates that the chemical nature of avocado phytochemicals is particularly useful for the inhibition of the growth of vegetative cells, spores and heat-shocked pores of spore-forming bacteria.
  • avocado seeds were ground using a colloidal mill obtaining particles with an average diameter of 0.5-2 mm.
  • Ground avocado seeds 50 g
  • Ground avocado seeds 50 g
  • Mixtures were shaken or soaked at 200 rpm for 24 hr at 25° C. in order to obtain an avocado seed raw extract.
  • the raw extracts were evaporated to dryness using a Rotary evaporator (35° C., 22 in Hg) and the obtained dry matter was weighed.
  • Example 1 dry matter was re-dissolved in acetone to a final concentration of 2.5 mg/ml for the antibacterial evaluations.
  • Clostridium sporogenes ATCC 7955 was used as test microorganism since it is a known surrogate microorganism for Clostridium botulinum .
  • Antimicrobial activities against vegetative bacterial cells, as well as native and heat-shocked spores were conducted as described in Example 1.
  • the extract obtained with shaking gave similar or lower inhibition zones than the positive control (nisin, 150 ⁇ g) which showed 1.3, 1 and 0.9 cm for vegetative cells, spores and heat shocked spores, respectively.
  • Clostridium sporogenes (ATCC 7955) was used as test microorganism in the antimicrobial assays. Antibacterial activities against vegetative cells, native spores and heat shocked spores (using the disc inhibition zone determination) were conducted as described in Example 1.
  • Antimicrobial activities of hexane extracts against vegetative bacterial cells, spores and heat-shocked spores were considered as a 100% inhibition for comparison purposes with the other solvents (acetone and ethanol) at the same time interval.
  • Results of the antibacterial activity against vegetative cells are shown in FIG. 4 and indicated that an ethanol extract obtained after an extraction time of 30 minutes had exactly the same activity as the one obtained with hexane under the same conditions.
  • the extract presented only 70% of the antimicrobial activity observed for the hexane extract, value that reached a maximum of antimicrobial activity of 80% of the activity observed in hexane extract after an extraction time of 5 hrs.
  • an acetone raw extract of avocado seed was obtained as described in Example 1, and evaporated to dryness.
  • the dry acetone raw extract obtained from 50 g of ground avocado seeds was directly added to a separation funnel containing a two non-miscible solvent system comprised of 100 ml of heptane (upper phase F002) and 100 ml of methanol (lower phase F001) in order to allow the partition of polar and non-polar compounds contained in the extract ( FIG. 7A ).
  • a second two-phase system was prepared with 50 g of ground avocado seeds directly added the other non-miscible solvent system also comprised of 100 ml of heptane (upper phase) and 100 ml of methanol (lower phase). Mixture was shaken at 200 rpm 24 hr at 35° C. in order to selectively extract and partition the compounds present in the seed in one step. Later, the seed was separated from the extract by means of vacuum filtration. The upper (F003) and the lower (F004) phases of this system were allowed to form in a separation funnel and were collected separately FIG. 7B .
  • Dried fractions were re-dissolved in acetone to a final concentration of 2.5 mg/ml for posterior evaluation of their antibacterial activities against Clostridium sporogenes (ATCC 7955).
  • Antibacterial activities against vegetative cells, native spores and heat-shocked spores were conducted as described in Example 1.
  • Results from the disc inhibition zones for heat shocked-spores indicated that a direct extraction of grounded avocado seeds with the two-non miscible solvents reduces the amount of contaminants that may migrate to the upper phase and that would dilute the effect of active compounds ( FIG. 8 ), therefore illustrates that is a better option for a one step isolation of compounds that inhibit spore germination.
  • both procedures resulted in similar results with no particular benefits of one over the other one.
  • the present example therefore demonstrates that the antibacterial substances were enriched in the upper phases of the heptane: methanol two-phase systems in both of the performed evaluations of direct extraction of the grounded seed and partitioning of a dried acetone avocado seed extract.
  • residual activity was also observed in the lower phases (F002 and F004), indicating that the upper phases were saturated with active compounds or that the compounds presented partial solubility in the lower phases of both systems. Therefore a subsequent extraction was set up by re-extracting the evaporated solids recovered from the lower methanol phase F002; the subsequent extraction systems (second two-non miscible solvent systems) used to recover the remaining antibacterial compounds were formed by ethyl acetate (100 mL) and water (100 mL). Antibacterial activities of the ethyl acetate and water phases are shown in FIG. 9 . This second two-non miscible solvent systems were more polar than the first ones used and no residual antibacterial activity was found in the lower phases (mainly water).
  • Saponification of the acetone raw extract and the partitioned hexane upper phase fraction was carried out according to Broutin et al (2003), with some modifications, in order to recover the unsaponifiable portion and selectively extract the furan lipids and polyhydroxylated fatty alcohols present in them.
  • 5 g of each extract were mixed with 2.5 ml of 12N potassium hydroxide and 10 ml of ethanol then allowed to rest for 4 hours.
  • the aqueous-alcoholic mixture was then transferred to a separations funnel and 17.5 ml of water were added, followed by addition of 17.5 ml of dichloroethane.
  • the mixture was shaken for 30 s and then allowed to separate into two phases.
  • the organic phase (lower phase) was recovered. This operation was repeated 6 times, and the organic phases were combined and washed with water.
  • the dichloroethane was evaporated to dryness using a rotary evaporator (35° C., 22 in Hg) and the obtained dry
  • Unsaponifiable compounds in the crude acetone extract had a higher specificity for vegetative cells than for spores. Partitioning with hexane-methanol reduced the activity of unsaponifiables against vegetative cells indicating that some of these compounds could migrate to the alcoholic phase during partitioning.
  • Acetone raw extract of avocado seed was obtained and evaporated to dryness as described in Example 1 then partitioned in a heptane:methanol two-phase system as described in Example 5.
  • the upper heptane-rich phase (F001), containing less polar compounds was evaporated to dryness using a Rotary evaporator (35° C., 22 in Hg) and then injected to a Fast Centrifugal Partition Chromatographer FCPC® Bench Scale with a 1000 ml column to fractionate the chemical compounds using heptane and methanol.
  • the heptane was pumped into the column and it served as the stationary phase (740 mL).
  • the methanol (mobile phase) was then pumped into the column at a flow-rate of 10 mL/min.
  • the rotor was set at 800 rpm.
  • the effluent from the outlet of the column was collected in test tubes using a fraction collector set at 10 ml for each tube. An aliquot of 1 ml of each fraction was collected for antibacterial and sporostatic/sporicidal activity tests.
  • the antibacterial activity was present in the fractions with partition coefficients (Kd) lower than 0.5 (more specifically between Kd values from 0.19 to 0.35) indicating that the active compounds were at least 2 times more soluble in heptane than in methanol. Also there was a slight difference in the activity of those fractions against vegetative cells compared to spores since inhibitors of vegetative cells growth were more spread into more polar fractions.
  • Kd partition coefficients
  • FCPC Partitioning the extract by FCPC increased the desired antibacterial activities (up to 3 cm diameter inhibition zones) in comparison with the previous experiments with less pure extracts, clearly indicating the need to eliminate other phytochemicals that might be diluting the concentration of the antibacterial compounds ( FIG. 12 ).
  • the antibacterial activities of some FCPC fractions were increased at least by 50% when compared to the data observed in FIG. 2 for the crude hexane and acetone avocado seed extracts. Results shown in FIG. 12 also demonstrate, as in FIG. 8 , that the active compounds have more affinity for the heptane phase than for the methanolic phase.
  • MIC minimum inhibitory concentration
  • MIC Minimal Inhibitory Concentration
  • the same extract portioned by FCPC under the conditions described above can also be partitioned using heptane as a mobile phase (normal phase) and results from the chromatographic separation followed the same behavior based on antibacterial activities ( FIG. 13 ). Therefore the first fractions obtained by FCPC had better activity than the last ones (more polar) and in FIG. 13 it is shown that antibacterial activity remained present until partition coefficient reaches 7.2, indicating that other compounds that are more than 7.2 times more soluble in heptanes than methanol do not inhibit the growth of vegetative cells or spores from C. sporogenes.
  • Acetone raw extract of avocado seed was obtained and evaporated to dryness as described in Example 1 then partitioned in a heptane:methanol two-phase system as described in Example 5.
  • the upper heptane-rich phase, containing less polar compounds was evaporated to dryness using a Rotary evaporator (35° C., 22 in Hg) and then injected into a Fast Centrifugal Partition Chromatographer FCPC® using the Normal Phase conditions described in Example 7.
  • Table 3 summarizes the antimicrobial results from previous experiments obtained from the evaluation of the crude extracts of Example 1, extracts partitioned as described in Example 5, and unsaponifiable fractions from Example 6. As it can be observed, interestingly, they did not showed any inhibitory effects on the growth of S. aureus and very low disc inhibition zones when tested against B. subtillis in comparison with the stronger inhibitory effects observed for the enriched CPC fractions shown in FIG. 14 .
  • Example 2 An acetone crude extract from avocado pit was obtained and evaporated to dryness as described in Example 1. Then the acetone extracted avocado solids were partitioned into a two-phase hexane-methanol system as described in Example 5, followed by a [then] second partitioning system of ethyl acetate:water used to completely recover the active compounds present in the lower phase (methanol) phase of the first partitioning system (also described in Example 5). The hexane and the ethyl acetate phases were recovered separately and evaporated to dryness using a Rotary evaporator (35° C., 22 in Hg).
  • HHP high hydrostatic pressure
  • the thermal stability of the active compounds was also tested at temperatures that ranged from 25 to 100° C. for 60 min.
  • the compounds with activity against the growth of vegetative cells of C. sporogenes were the less sensitive to thermal treatment ( FIG. 15 ) than those responsible for the inhibitory properties against the growth of native spores ( FIG. 16 ).
  • the inhibitory properties against vegetative cells were decreased by 20 and 23.5%, after a treatment of 100° C. for 60 minutes of the ethyl acetate and hexane extracts, respectively, and in reference to the inhibitory properties of non-heated control extracts maintained at 25° C.
  • Heat shocked spores were more resistant to the action of the thermally treated hexane and ethyl acetate crude extracts; the inhibitory properties against heat-shocked spores were decreased by 50%, after exposure of the extracts to 100° C. for 60 minutes, and in reference to the inhibitory properties observed for the control extracts maintained at 25° C.
  • the fractions with the highest disc inhibition zones ( FIG. 12 ), obtained by the use of reverse phase Fast Centrifugal Partition Chromatography (RP-FCPC), and that had a Kd between 0.19-0.35 were mixed together in order to form a “pool of active fractions”, as described in Example 7. Initially the fractions (13) were adjusted at the same concentration of 192.3 mg/ml and equal volumes of each of them (100 ⁇ l) were taken and adjusted with ethanol to a final concentration of 50 mg/ml.
  • RP-FCPC reverse phase Fast Centrifugal Partition Chromatography
  • FIG. 17 shows the progressive change in the chromatographic profiles of the fractions present in the active pool, as their Kd increases. Evaporated aliquotes of individual fractions were adjusted to 1 mg/ml with HPLC grade methanol and 2 ⁇ l were injected.
  • the column used was a Zorbax Extanded-C18 (100 ⁇ 3 mm d.i., 3.5 ⁇ m) column.
  • the mobile phases included water 100% as phase A and methanol 100% as phase B.
  • the solvent gradient used is described in Table 4, pumped at a flow rate of 0.38 ml/min and a post equilibration time of 6 mins.
  • the detector was set at a wavelength of 220 nm.
  • the typical chromatograph obtained for the active pool of antimicrobial compounds from avocado is shown in FIG. 17 .
  • the numbers indicated in the chromatogram represent the common peaks that absorb at 220 nm, labeled as Compounds I to 11, and the information on their mass and molecular formula is presented in Table 5.
  • Some of these compounds have been previously reported in avocado tissues, however some of them are being disclosed herein as new chemical compounds since they were discovered by the inventors in the antimicrobial fractions. In most of the bioactive fractions, compounds such as 1, 2, 4 and 11 were in lower concentrations when compared to compounds 7 and 9 ( FIG. 17 ).
  • MIC minimum inhibitory concentrations
  • MBC minimum bactericidal concentrations
  • Table 6 shows that the pool of active fractions was much better than nisin as an inhibitor of the growth of spores from C. sporogenes since its MIC is almost one tenth of that obtained for nisin. According to Smola (2007), if the ratio of the MBC/MIC ⁇ 4, the compound can be considered as sporocidal and if the ratio of the MBC/MIC>4, it is only sporostatic. In this example, both nisin and the pool of avocado active fractions presented a sporocidal effect.
  • Example 10 the antimicrobial activities of the same isolated compounds described in Example 10 (Table 5) were tested against the growth of vegetative cells and heat shocked spores of C. sporogenes , and on vegetative cells of S. aureus, P. aeuroginosa, E. coli . and B. subtilis as previously described in Example 1, and at a concentration of 0.5 mg/ml.
  • compound 6 peak 6
  • persenone B peak 9A
  • peak 7 demonstrated greater antimicrobial properties when tested against C. sporogenes , followed by persenone A (peak 7).
  • the MIC for the pool of active fractions was 19.5 ⁇ g/ml (Example 11) and it was reduced to 7.8 ⁇ g/ml for persenone A and persenone B when isolated, but the antimicrobial properties for Persenone B within the pool did not corresponded to its lower concentration since it contained less ⁇ g of that compound but when combined with the other bioactive molecules its activity appears to be potentiated.
  • isolated compounds presented only sporostatic activity against C. sporogenes and did not showed the sporocidal bioactivity that was observed for the pool of active fractions (Table 6).
  • the pool of active fractions described in Example 10 also presents antibacterial effects against cold-stressed vegetative cells of gram positive bacteria capable of growing under refrigerated conditions, such as Listeria monocytogenes .
  • the avocado pool extract enriched in bioactive acetogenins was not particularly useful for the inhibition of the growth of vegetative cells of the tested organism (Table 11). Contrary to the expected we found that the avocado seed pool extract was particularly useful for inhibiting the growth of Listeria monocytogenes under refrigerated conditions.
  • Table 13 shows that there is a very similar concentration of the most bioactive compounds against C. sporogenes (Compound 6, Persenone B and Persenone A) in fresh avocado pulp and seed, being Persenone A the most concentrated.
  • the information of this example is relevant because if the bioactive compounds are also present on the pulp they can be easily obtained from other parts of the fruit.
  • the present example also demonstrates that humans are being exposed to the bioactive molecules, when eating the fruit, at the concentrations required for achieving their antibacterial properties; therefore establishing their commercial potential in the food, medical and cosmetic arts.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pest Control & Pesticides (AREA)
  • Medical Informatics (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Inorganic Chemistry (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
US13/763,262 2010-08-09 2013-02-08 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds Abandoned US20130216488A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/763,262 US20130216488A1 (en) 2010-08-09 2013-02-08 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US15/148,712 US10575521B2 (en) 2010-08-09 2016-05-06 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US15/348,740 US10582707B2 (en) 2010-08-09 2016-11-10 Antimicrobial antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US16/731,418 US20200281198A1 (en) 2010-08-09 2019-12-31 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37198410P 2010-08-09 2010-08-09
PCT/IB2011/053535 WO2012042404A2 (en) 2010-08-09 2011-08-08 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US13/763,262 US20130216488A1 (en) 2010-08-09 2013-02-08 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/053535 Continuation WO2012042404A2 (en) 2010-08-09 2011-08-08 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/148,712 Continuation US10575521B2 (en) 2010-08-09 2016-05-06 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds

Publications (1)

Publication Number Publication Date
US20130216488A1 true US20130216488A1 (en) 2013-08-22

Family

ID=45893587

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/763,262 Abandoned US20130216488A1 (en) 2010-08-09 2013-02-08 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US15/148,712 Active 2033-07-17 US10575521B2 (en) 2010-08-09 2016-05-06 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US15/348,740 Active 2032-11-13 US10582707B2 (en) 2010-08-09 2016-11-10 Antimicrobial antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US16/731,418 Abandoned US20200281198A1 (en) 2010-08-09 2019-12-31 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/148,712 Active 2033-07-17 US10575521B2 (en) 2010-08-09 2016-05-06 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US15/348,740 Active 2032-11-13 US10582707B2 (en) 2010-08-09 2016-11-10 Antimicrobial antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
US16/731,418 Abandoned US20200281198A1 (en) 2010-08-09 2019-12-31 Antimicrobial, antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds

Country Status (8)

Country Link
US (4) US20130216488A1 (zh)
EP (2) EP2851062B1 (zh)
JP (1) JP2013535499A (zh)
CN (2) CN103327960A (zh)
CA (1) CA2807779C (zh)
ES (1) ES2846675T3 (zh)
MX (1) MX348348B (zh)
WO (1) WO2012042404A2 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051208A1 (en) * 2015-09-23 2017-03-30 Instituto Tecnológico y de Estudios Superiores de Monterrey Acetogenin molecules having antiplatelet and/or antithrombic activities, and methods and compositions thereof
US9957215B2 (en) 2015-12-10 2018-05-01 Apeel Technology, Inc. Plant extract compositions for forming protective coatings
US9982216B2 (en) 2012-07-10 2018-05-29 Avomed Ltd. Polyhydroxylated fatty alcohols
US10092014B2 (en) 2016-01-26 2018-10-09 Apeel Technology, Inc. Method for preparing and preserving sanitized products
US10239069B2 (en) 2013-07-29 2019-03-26 Apeel Technology, Inc. Agricultural skin grafting
US10266708B2 (en) 2015-09-16 2019-04-23 Apeel Technology, Inc. Precursor compounds for molecular coatings
US10517310B2 (en) 2015-05-20 2019-12-31 Apeel Technology, Inc. Plant extract compositions and methods of preparation thereof
WO2020181016A1 (en) * 2019-03-04 2020-09-10 Broussard Robert R Health promoting food products and method for designing and manufacturing same
US10843997B2 (en) 2016-11-17 2020-11-24 Apeel Technology, Inc. Compositions formed from plant extracts and methods of preparation thereof
US10932484B2 (en) 2016-10-19 2021-03-02 Instituto Tecnologico Y De Estudios Superiores De Monterrey Inhibitory activity of acetogenins against Listeria monocytogenes
US11413268B2 (en) * 2015-02-27 2022-08-16 Spectrum Therapeutics GmbH CPC distribution chromatography of cannabinoids
US11641865B2 (en) 2020-03-04 2023-05-09 Apeel Technology, Inc. Compounds and formulations for protective coatings
US11827591B2 (en) 2020-10-30 2023-11-28 Apeel Technology, Inc. Compositions and methods of preparation thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CL2010000987A1 (es) * 2010-09-16 2010-12-24 Instituto De Investig Agropecuarias Extracto alcoholico de cuesco de palta constituido por compuestos del tipo avocadofuranos derivados de la palta tipo persea americana mill; uso del extracto como acaricida contra o. yothersi, t. cinnabarinus y p. citri, e insecticida contra t. vaporariorum.
TWI605822B (zh) * 2015-04-09 2017-11-21 高雄醫學大學 酪梨萃取物、avocadenol B及(2R,4R)-1,2,4-三羥基十七碳-16-炔的用途,以及包含酪梨萃取物之保健食品
JP2018039752A (ja) * 2016-09-07 2018-03-15 花王株式会社 Nrf2活性化剤
CN106520362A (zh) * 2016-10-10 2017-03-22 澳宝化妆品(惠州)有限公司 一种环保高效的鳄梨油的提取方法及含有鳄梨油的护肤膏霜
CN106834417A (zh) * 2017-02-16 2017-06-13 雅戈尔服装控股有限公司 汉麻韧皮纤维提取物抗菌能力的快速测定方法
CN107751359A (zh) * 2017-11-02 2018-03-06 广西吉朋投资有限公司 一种果蔬保鲜剂
CN110117553B (zh) * 2018-02-05 2021-02-05 华中农业大学 对几种食源性病原细菌有抑菌活性的蜡样芽胞杆菌及其细菌素
NL2023148B1 (en) * 2019-05-16 2020-12-01 W&C Holding B V Composition for dust suppression
CN112438918A (zh) * 2019-08-30 2021-03-05 广东丸美生物技术股份有限公司 一种牛油果提取物及其制备方法和在抗衰老化妆品中的应用
CN114467983A (zh) * 2021-12-21 2022-05-13 安徽英钛利生物科技有限公司 针对包膜类病毒的高效安全的消毒剂

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468490A (en) * 1993-10-25 1995-11-21 Conkle & Olesten Lipidic furans useful for skin therapeutics
JP2002053474A (ja) * 2000-08-07 2002-02-19 Kagome Co Ltd 新規摂食抑制剤
US20050170027A1 (en) * 2000-08-07 2005-08-04 Yasushi Arimoto Novel hepatic disorder suppressant
US20060062813A1 (en) * 2002-06-14 2006-03-23 Ogawa 7Co., Ltd. Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
US20110250154A1 (en) * 2008-09-08 2011-10-13 Shai Meretzki Cosmetic compositions comprising polyhydroxyltate fatty alcohols and derivatives and uses thereof
US20120071551A1 (en) * 2010-09-16 2012-03-22 Robinson Vargas Mesina ETHANOLIC EXTRACTS OF HASS AVOCADO SEEDS, Persea americana Mill., AND ITS USE AS MITICIDE FOR Panonychus citri, Oligonychus yothersi, AND Tetranychus cinnabarinus, AND AS AN INSECTICIDE FOR Trialeurodes vaporariorum
US20120294887A1 (en) * 2010-01-29 2012-11-22 Laboratories Expanscience Solid/liquid extraction

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA494110A (en) 1953-06-30 B. Jensen Lloyd Antibiotic from avocado plant
US2550254A (en) * 1946-04-05 1951-04-24 Swift & Co Process for extraction of antibiotic material
GB1421129A (en) 1972-03-03 1976-01-14 Shell Int Research Process for preparing heptadec-16-en-1,2,4-triol derivatives
US5217950A (en) 1988-06-22 1993-06-08 Applied Microbiology, Inc. Nisin compositions for use as enhanced, broad range bactericides
US5458876A (en) 1988-12-21 1995-10-17 Haarman & Reimer Corp. Control of microbial growth with lantibiotic/lysozyme formulations
US5573800A (en) 1989-02-21 1996-11-12 Viskase Corporation Antimicrobial composition for surface treatment of foodstuffs
US5573797A (en) 1989-02-21 1996-11-12 Viskase Corporation Film and method for surface treatment of foodstuffs with antimicrobial compositions
US5573801A (en) 1989-02-21 1996-11-12 Viskase Corporation Surface treatment of foodstuffs with antimicrobial compositions
FR2678632B1 (fr) * 1991-07-03 1994-09-02 Pharmascience Lab Procede de preparation de l'insaponifiable d'avocat permettant d'ameliorer sa teneur en l'une de ses fractions dite h.
US5593800A (en) 1994-01-06 1997-01-14 Canon Kabushiki Kaisha Mask manufacturing method and apparatus and device manufacturing method using a mask manufactured by the method or apparatus
US6057366A (en) 1994-02-28 2000-05-02 The University Of Queensland Method of treatment of cancer as well as method of inhibition of lactation in mammals
US6133313A (en) * 1998-04-27 2000-10-17 The Regents Of The University Of California Insecticidal avocadofurans and triolein
US6326364B1 (en) 1999-02-08 2001-12-04 Cedars-Sinai Medical Center Use of 5-aminosalicylates as antimicrobial agents
US6451365B1 (en) 2000-07-14 2002-09-17 Rhodia Inc. Antibacterial composition for control of gram positive bacteria in food applications
FR2798667B1 (fr) * 1999-09-22 2001-12-21 Pharmascience Lab Procede d'extraction des composes furaniques et alcools gras polyhydroxyles de l'avocat, composition a base de et utilisation de ces composes en therapeutique, cosmetique et alimentaire
JP2001097828A (ja) * 1999-10-01 2001-04-10 Noevir Co Ltd 毛髪用化粧料
DK1450608T3 (da) 2001-04-28 2006-01-09 Miret Lab Antimikrobiel sammensætning omfattende kaliumsorbat og LAE
WO2003034842A1 (en) 2001-10-25 2003-05-01 Laboratorios Miret, S.A. Use of cationic preservative in food products
WO2004016106A1 (fr) 2002-07-29 2004-02-26 Laboratoires Expanscience Procede d'obtention d'un insaponifiable d'avocat riche en lipides furaniques
FR2893628B1 (fr) 2005-11-18 2008-05-16 Expanscience Laboratoires Sa Procede d'obtention d'une huile d'avocat raffinee riche en triglycerides et huile susceptible d'etre obtenue par un tel procede
JP5085120B2 (ja) * 2006-12-21 2012-11-28 日本メナード化粧品株式会社 脳機能改善剤
JP2009164558A (ja) 2007-12-10 2009-07-23 Toyota Central R&D Labs Inc 半導体装置とその製造方法、並びにトレンチゲートの製造方法
JP2011526593A (ja) 2008-07-02 2011-10-13 ラボラトリオス ミレ, エス.ア. カチオン性界面活性剤の殺胞子剤としての使用
US20100034944A1 (en) 2008-08-06 2010-02-11 Martha Lubenova Beyazova Use of Avocado Derivatives in Flavor Applications
EP2334293A2 (en) * 2008-09-08 2011-06-22 Shai Meretzki Compositions comprising polyhydroxyltate fatty alcohol derivatives and the therapeutic uses
WO2011048617A2 (en) 2009-10-19 2011-04-28 Laila Nutraceuticals Extracts, fractions and compositions comprising acetogenins and their applications
JP5720885B2 (ja) 2010-03-03 2015-05-20 日本電気硝子株式会社 ガラスロール、及びガラスロールの製造方法
US20120177730A1 (en) 2011-01-07 2012-07-12 Elcelyx Therapeutics, Inc. Chemosensory Receptor Ligand-Based Therapies
FR2984748B1 (fr) 2011-12-26 2017-02-10 Expanscience Lab Utilisation d'avocats mous entiers pour obtenir une huile d'avocat riche en insaponifiable

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468490A (en) * 1993-10-25 1995-11-21 Conkle & Olesten Lipidic furans useful for skin therapeutics
JP2002053474A (ja) * 2000-08-07 2002-02-19 Kagome Co Ltd 新規摂食抑制剤
US20050170027A1 (en) * 2000-08-07 2005-08-04 Yasushi Arimoto Novel hepatic disorder suppressant
US20060062813A1 (en) * 2002-06-14 2006-03-23 Ogawa 7Co., Ltd. Flavor deterioration inhibitor and inhibitor for the generation of citral deterioration smell
US20110250154A1 (en) * 2008-09-08 2011-10-13 Shai Meretzki Cosmetic compositions comprising polyhydroxyltate fatty alcohols and derivatives and uses thereof
US20120294887A1 (en) * 2010-01-29 2012-11-22 Laboratories Expanscience Solid/liquid extraction
US20120071551A1 (en) * 2010-09-16 2012-03-22 Robinson Vargas Mesina ETHANOLIC EXTRACTS OF HASS AVOCADO SEEDS, Persea americana Mill., AND ITS USE AS MITICIDE FOR Panonychus citri, Oligonychus yothersi, AND Tetranychus cinnabarinus, AND AS AN INSECTICIDE FOR Trialeurodes vaporariorum

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9982216B2 (en) 2012-07-10 2018-05-29 Avomed Ltd. Polyhydroxylated fatty alcohols
US10239069B2 (en) 2013-07-29 2019-03-26 Apeel Technology, Inc. Agricultural skin grafting
US10537130B2 (en) 2013-07-29 2020-01-21 Apeel Technology, Inc. Agricultural skin grafting
US11413268B2 (en) * 2015-02-27 2022-08-16 Spectrum Therapeutics GmbH CPC distribution chromatography of cannabinoids
US10959442B2 (en) 2015-05-20 2021-03-30 Apeel Technology, Inc. Plant extract compositions and methods of preparation thereof
US11812758B2 (en) 2015-05-20 2023-11-14 Apeel Technology, Inc. Plant extract compositions and methods of preparation thereof
US10517310B2 (en) 2015-05-20 2019-12-31 Apeel Technology, Inc. Plant extract compositions and methods of preparation thereof
US11160287B2 (en) 2015-05-20 2021-11-02 Apeel Technology, Inc. Plant extract compositions and methods of preparation thereof
US11472970B2 (en) 2015-09-16 2022-10-18 Apeel Technology, Inc. Precursor compounds for molecular coatings
US10266708B2 (en) 2015-09-16 2019-04-23 Apeel Technology, Inc. Precursor compounds for molecular coatings
US11447646B2 (en) 2015-09-16 2022-09-20 Apeel Technology, Inc. Precursor compounds for molecular coatings
US10493057B2 (en) * 2015-09-23 2019-12-03 Instituto Tecnologico Y De Estudios Superiores De Monterrey Acetogenin molecules having antiplatelet and/or antithrombic activities, and methods and compositions thereof
WO2017051208A1 (en) * 2015-09-23 2017-03-30 Instituto Tecnológico y de Estudios Superiores de Monterrey Acetogenin molecules having antiplatelet and/or antithrombic activities, and methods and compositions thereof
US10407377B2 (en) 2015-12-10 2019-09-10 Apeel Technology, Inc. Plant extract compositions for forming protective coatings
US11767278B2 (en) 2015-12-10 2023-09-26 Apeel Technology, Inc. Plant extract compositions for forming protective coatings
US10561155B2 (en) 2015-12-10 2020-02-18 Apeel Technology, Inc. Plant extract compositions for forming protective coatings
US11028030B2 (en) 2015-12-10 2021-06-08 Apeel Technology, Inc. Plant extract compositions for forming protective coatings
US9957215B2 (en) 2015-12-10 2018-05-01 Apeel Technology, Inc. Plant extract compositions for forming protective coatings
US10092014B2 (en) 2016-01-26 2018-10-09 Apeel Technology, Inc. Method for preparing and preserving sanitized products
US11723377B2 (en) 2016-01-26 2023-08-15 Apeel Technology, Inc. Method for preparing and preserving sanitized products
US10537115B2 (en) 2016-01-26 2020-01-21 Apeel Technology, Inc. Method for preparing and preserving sanitized products
US10932484B2 (en) 2016-10-19 2021-03-02 Instituto Tecnologico Y De Estudios Superiores De Monterrey Inhibitory activity of acetogenins against Listeria monocytogenes
US10843997B2 (en) 2016-11-17 2020-11-24 Apeel Technology, Inc. Compositions formed from plant extracts and methods of preparation thereof
US11319275B2 (en) 2016-11-17 2022-05-03 Apeel Technology, Inc. Compositions formed from plant extracts and methods of preparation thereof
US11918003B2 (en) 2016-11-17 2024-03-05 Apeel Technology, Inc. Compositions formed from plant extracts and methods of preparation thereof
WO2020181016A1 (en) * 2019-03-04 2020-09-10 Broussard Robert R Health promoting food products and method for designing and manufacturing same
US11641865B2 (en) 2020-03-04 2023-05-09 Apeel Technology, Inc. Compounds and formulations for protective coatings
US11827591B2 (en) 2020-10-30 2023-11-28 Apeel Technology, Inc. Compositions and methods of preparation thereof

Also Published As

Publication number Publication date
CN103327960A (zh) 2013-09-25
EP2603198A4 (en) 2014-01-08
US20200281198A1 (en) 2020-09-10
EP2603198A2 (en) 2013-06-19
MX348348B (es) 2017-04-24
ES2846675T3 (es) 2021-07-28
US10575521B2 (en) 2020-03-03
CN106397205A (zh) 2017-02-15
WO2012042404A3 (en) 2012-11-01
US20170055526A1 (en) 2017-03-02
EP2851062B1 (en) 2021-01-06
MX2013001609A (es) 2014-07-30
EP2851062A2 (en) 2015-03-25
CN106397205B (zh) 2020-09-22
US10582707B2 (en) 2020-03-10
WO2012042404A2 (en) 2012-04-05
CA2807779A1 (en) 2012-04-05
JP2013535499A (ja) 2013-09-12
EP2851062A3 (en) 2015-07-01
US20160249613A1 (en) 2016-09-01
CA2807779C (en) 2019-06-18

Similar Documents

Publication Publication Date Title
US10582707B2 (en) Antimicrobial antibacterial and spore germination inhibiting activity from an avocado extract enriched in bioactive compounds
TWI686209B (zh) 包含胚芽乳酸桿菌培養物的抗菌化粧品組成物
Tahir et al. Phytochemistry and pharmacological profile of traditionally used medicinal plant Hyssop (Hyssopus officinalis L.)
EP2532232A1 (en) Long chain glycolipids useful to avoid perishing or microbial contamination of materials
Rodríguez-Sánchez et al. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination
Girardot et al. Natural sources as innovative solutions against fungal biofilms
KR20100007122A (ko) 항균 또는 항진균용 조성물
JP2009013106A (ja) 炎症性サイトカイン産生抑制作用を有するキサントン誘導体、それらの製造方法、それからなる食品製剤、化粧品、抗炎症剤
KR101433823B1 (ko) 부챗말 추출물 또는 분획물을 이용한 피부 외용제 조성물
KR20120097385A (ko) 3,5-디히드록시-2-멘텐일스틸벤, 그것을 포함하는 식물 추출물, 및 그 채취 방법과 그 응용
Oli et al. Antifungal Activity of Plant's Essential Oils against Post Harvest Fungal Disease of Apple Fruit
KR102411576B1 (ko) 잣나무 잎 추출물을 포함하는 항균 조성물
Abu-Salem et al. Antimicrobial activity and phytochemicals screening of jojoba (Simmondsia chinensis) root extracts and latex
KR101211669B1 (ko) 무릇으로부터 얻은 항균 활성을 나타내는 화합물 및 이를 포함하는 항균 조성물
Khalil et al. Biochemical activity of propolis alcoholic extracts against Fusarium oxysporum hm89
KR20220043008A (ko) 여뀌바늘 추출물을 이용한 항산화 또는 항균용 조성물
KR102009604B1 (ko) 인동덩굴 추출물 및 후박 추출물을 포함하는 항균용 조성물
Negi Exploring plant and agro-industrial wastes for antimicrobial biochemicals
KR101761607B1 (ko) 반주름말 추출물을 이용한 항산화용 조성물 및 항균용 조성물
KR102359223B1 (ko) 애플망고 종자 추출물을 유효성분으로 함유하는 화장료 조성물
KR102420990B1 (ko) 잣나무 잎 추출물을 포함하는 항균 조성물
JPH1180012A (ja) 天然物由来の抗菌剤
Mir Myrtus Communis Leaves; Source of Bioactives, Traditional Use and Their Biological Properties
KR20220149475A (ko) 후박나무 추출물 또는 이의 분획물을 유효성분으로 함유하는 항균용 조성물
El-Fadaly et al. Correlation Between HPLC Identification Technique of Rocket as Antifungal

Legal Events

Date Code Title Description
AS Assignment

Owner name: AVOMEX, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERNANDEZ-BRENES, CARMEN;GARCIA-CRUZ, MARIA ISABEL;GUTIERREZ-URIBE, JANET ALEJANDRA;AND OTHERS;REEL/FRAME:030188/0393

Effective date: 20130208

Owner name: INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HERNANDEZ-BRENES, CARMEN;GARCIA-CRUZ, MARIA ISABEL;GUTIERREZ-URIBE, JANET ALEJANDRA;AND OTHERS;REEL/FRAME:030188/0393

Effective date: 20130208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION