US20130209363A1 - Method for production of f-18 labeled amyloid beta ligands - Google Patents

Method for production of f-18 labeled amyloid beta ligands Download PDF

Info

Publication number
US20130209363A1
US20130209363A1 US13/702,007 US201113702007A US2013209363A1 US 20130209363 A1 US20130209363 A1 US 20130209363A1 US 201113702007 A US201113702007 A US 201113702007A US 2013209363 A1 US2013209363 A1 US 2013209363A1
Authority
US
United States
Prior art keywords
ethoxy
compound
hplc
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/702,007
Other languages
English (en)
Inventor
Mathias Berndt
Matthias Friebe
Fabrice Samson
Rainer Braun
Gunnar Garke
Marianne Patt
Andreas Schildan
Christoph Smuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Life Molecular Imaging SA
Original Assignee
Piramal Imaging SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44584930&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20130209363(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Piramal Imaging SA filed Critical Piramal Imaging SA
Assigned to PIRAMAL IMAGING SA reassignment PIRAMAL IMAGING SA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAMSON, FABRICE, SMUDA, CHRISTOPH, GARKE, GUNNAR, BERNDT, MATHIAS, BRAUN, RAINER, FRIEBE, MATTHIAS, PATT, MARIANNE, SCHILDAN, ANDREAS
Publication of US20130209363A1 publication Critical patent/US20130209363A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0453Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0455Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/121Solutions, i.e. homogeneous liquid formulation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • This invention relates to methods, which provide access to [F-18]fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amine derivatives.
  • AD Alzheimer's Disease
  • a ⁇ beta-amyloid peptide
  • APP amyloid precursor protein
  • a ⁇ peptides are released as soluble proteins and are detected at low level in the cerebrospinal fluid (CSF) in normal aging brain.
  • CSF cerebrospinal fluid
  • the A ⁇ peptides aggregate and form amyloid deposits in the parenchyma and vasculature of the brain, which can be detected post mortem as diffuse and senile plaques and vascular amyloid during histological examination (for a recent review see: Blennow et al. Lancet. 2006 Jul. 29; 368(9533):387-403).
  • AD Alzheimer's disease
  • diagnosis of AD in an academic memory-disorders clinic setting is approximately 85-90% accurate (Petrella J R et al. Radiology. 2003 226:315-36). It is based on the exclusion of a variety of diseases causing similar symptoms and the careful neurological and psychiatric examination, as well as neuropsychological testing.
  • positron emitting isotopes include e.g. carbon, iodine, nitrogen and oxygen. These isotopes can replace their non-radioactive counterparts in target compounds to produce PET tracers that have similar biological properties.
  • F-18 is a preferred labeling isotope due to its half life of 110 min, which permits the preparation of diagnostic tracers and subsequent study of biochemical processes.
  • its low ⁇ +energy (634 keV) is also advantageous.
  • amyloid deposits are also known to play a role in amyloidoses, in which amyloid proteins (e.g. tau) are abnormally deposited in different organs and/or tissues, causing disease.
  • amyloid proteins e.g. tau
  • Fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amines such as 4-[(E)-2-(4- ⁇ 2-[2-(2-fluoroethoxy)ethoxy]ethoxy ⁇ phenyl)vinyl]-N-methylaniline and 4-[(E)-2-(6- ⁇ 2-[2-(2-fluoroethoxy)ethoxy]ethoxy ⁇ pyridin-3-yl)vinyl]-N-methylaniline have been labeled with F-18 fluoride and are covered by patent applications WO2006066104, WO2007126733 and members of the corresponding patent families.
  • precursor 2a (2-[2-(2- ⁇ 4-[(E)-2- ⁇ 4-[(tert-butoxycarbonyl)(methyl)amino]-phenyl ⁇ vinyl]phenoxy ⁇ ethoxy)ethoxy]ethyl methanesulfonate) in 0.5 mL DMSO were reacted with [F-18]fluoride/kryptofix/potassium carbonate complex.
  • the intermediate was deprotected with HCl and neutralized with NaOH.
  • the crude product was diluted with acetonitrile/0.1 M ammonium formate (6/4) and purified by semi-preparative HPLC.
  • FIG. 1 final solid-phase extraction cartridge C3, elution with ethanol from V8; see also FIG. 7 , final solid-phase extraction cartridge 11, elution with ethanol from one of the vials 9).
  • the general setup of the manufacturing process for F-18 labeled fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amines as previously described is illustrated in FIG. 7 .
  • the manufacturing process can be divided into three major parts:
  • the manufacturing steps of drying of [F-18]fluoride, radiolabeling of the precursor molecule and deprotection are performed on the part A of the synthesis device ( FIG. 7 ).
  • the crude product mixture is transferred to the second part B for purification by HPLC (on reversed phase silica gel using acetonitrile/buffer eluent).
  • HPLC reversed phase silica gel using acetonitrile/buffer eluent
  • the solvent (acetonitrile) present in the product fraction needs to be removed and exchanged by a composition that is appropriate for the manufacturing of a medicament.
  • the product fraction is diluted with water (vessel “ 8 ”, FIG. 7 , part C) and then passed through a reversed phase cartridge (“ 11 ”, FIG.
  • FIG. 7 part C
  • the cartridge is washed with a aqueous solution from one of the reservoirs 9 ( FIG. 7 , part C) and finally eluted from the cartridge with an ethanolic solution (or ethanol) from another of the reservoirs 9 into the product vial, that optionally comprises further parts and excipients of the final Formulation.
  • ethanolic solution or ethanol
  • a “GMP compliant” manufacturing process for 4-[(E)-2-(6- ⁇ 2-[2-(2-[F-18]fluoroethoxy)ethoxy]-ethoxy ⁇ pyridin-3-yl)vinyl]-N-methylaniline is disclosed in WO2010078370 and C.-H. Yao et al., Applied Radiation and Isotopes 68 (2010) 2293-2297.
  • radiochemical purity was only about 95.3 ⁇ 2.2% at product activity levels of up to 18.5 GBq (Yao et al.)—probably due to decomposition by radiolysis.
  • product activity levels of up to 18.5 GBq (Yao et al.)—probably due to decomposition by radiolysis.
  • product activity levels of 4-[(E)-2-(4- ⁇ 2-[2-(2-[F-18]fluoroethoxy)ethoxy]-ethoxy ⁇ phenyl)vinyl]-N-methylaniline (Example 7, FIG. 9 , method A).
  • the re-Formulation during the current process requires additional process time and demands more complex equipment.
  • the process for the synthesis of 4-[(E)-2-(6- ⁇ 2-[2-(2-[F-18]fluoroethoxy)ethoxy]ethoxy ⁇ pyridin-3-yl)vinyl]-N-methylaniline described by Silva et al. and Casale et al. demands three modules for the overall manufacturing procedure.
  • the Synthesis of the crude product (schematically illustrated in FIG. 7 , Part A) was accomplished on an IBA Synthera module, a semi-preparative HPLC system was used for purification (schematically illustrated in FIG. 7 , Part B) and an additional IBA Synthera synthesis module was used for re-Formulation (schematically illustrated in FIG. 7 , Part C).
  • the problem to be solved by the present invention is to provide an improved HPLC purification process for F-18 labeled fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amines that provides high chemical and radiochemical purities of the radiotracer, avoiding a concentration of the labeled product after purification to prevent radiolysis, especially at higher levels of radioactivity.
  • Such process should be suitable for the manufacturing of larger quantities (radioactivity) of the radiotracer to allow a distribution to imaging facilities without own radiopharmaceutical production. So far the maximum activity for a F-18 labeled fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amine was reported to be 18.5 GBq (Yao et al.).
  • a prerequisite of the new manufacturing method should be a high radiochemical purity (e.g. >95%) within a broad range of radioactivity. More precisely, such process should be suitable for the manufacturing of higher activity levels of the radiotracer than previously described (e.g. >20 GBq, or even >50 GBq, or even >100 GBq) with radiochemical purities reliably ⁇ 95%. As an additional feature such process should be less complex than the processes described before.
  • the problems described above were solved by an modified purification procedure.
  • the solvent composition for HPLC purification was modified. Instead of an acetonitrile/buffer mixture, an ethanol/buffer mixture is used.
  • An advantage of the new HPLC solvent mixture is, that all constituents of the HPLC solvent—in contrast to previously described compositions—are well tolerated as part of a Formulation, thereby suitable for injection into human. Therefore a re-Formulation to remove constituents of the HPLC solvent (as illustrated in FIG. 7 , Part C) is not longer required.
  • the major advantage of the new method described herein is the reliably high radiochemical purity of the F-18 labeled fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amines synthesized by the new method.
  • Example 7 and FIG. 9 the radiochemical purity in dependence of purification method and amount (radioactivity) of radiolabeled product at end of synthesis is demonstrated.
  • the dots/squares (each representing an individual experiment) and the trendlines in FIG. 9 clearly demonstrate that the radiochemical purity obtained after HPLC with re-Formulation by SPE varies significantly ( FIG. 9 , empty squares). Especially at higher radioactivity levels (>20 GBq) the radiochemical purity often is even ⁇ 95%.
  • the present invention is directed to a Method for producing compound of Formula I
  • n 1-6, preferably 2-4, more preferably 3.
  • X is selected from the group comprising
  • X ⁇ CH
  • R is selected from the group comprising
  • PG is an “Amine-protecting group”.
  • PG is selected from the group comprising:
  • R is H
  • R is Boc
  • LG is a Leaving group.
  • LG is selected from the group comprising:
  • Halogen is chloro, bromo or iodo.
  • Halogen is bromo or chloro.
  • Sulfonyloxy is selected from the group consisting of Methanesulfonyloxy, p-Toluenesulfonyloxy, Trifluormethylsulfonyloxy, 4-Cyanophenylsulfonyloxy, 4-Bromophenylsulfonyloxy, 4-Nitrophenylsulfonyloxy, 2-Nitrophenylsulfonyloxy, 4-Isopropyl-phenylsulfonyloxy, 2,4,6-Triisopropyl-phenylsulfonyloxy, 2,4,6-Trimethylphenylsulfonyloxy, 4-tert-Butyl-phenylsulfonyloxy, 4-Adamantylphenylsulfonyloxy and 4-Methoxyphenylsulfonyloxy.
  • Sulfonyloxy is selected from the group comprising:
  • LG is Methanesulfonyloxy.
  • LG is p-Toluenesulfonyloxy.
  • a preferred compound of Formula I is:
  • Another preferred compound of Formula I is:
  • a preferred compound of Formula II is:
  • Another preferred compound of Formula II is:
  • Another preferred compound of Formula II is:
  • Another preferred compound of Formula II is:
  • Another preferred compound of Formula II is:
  • Step 1 comprises a straight forward [F-18]fluoro labeling reaction from compounds of Formula II for obtaining compound of Formula I (if R ⁇ H) or compound of Formula III (if R ⁇ PG).
  • the radiolabeling method comprises the step of reacting a compound of Formula II with a F-18 fluorinating agent for obtaining a compound of Formula III or compound of Formula I.
  • the [F-18]fluoride derivative is 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]-hexacosane K[F-18]F (Kryptofix K[F-18]F), K[F-18]F, H[F-18]F, KH[F-18]F 2 , Cs[F-18]F, Na[F-18]F or tetraalkylammonium salt of [F-18]F (e.g.
  • [F-18]tetrabutylammonium fluoride More preferably, the fluorination agent is K[F-18]F, H[F-18]F, [F-18]tetrabutylammonium fluoride, Cs[F-18]F or KH[F-18]F 2 , most preferably K[F-18], Cs[F-18]F or [F-18]tetrabutylammonium fluoride.
  • An even more preferred F-18 fluorinating agent is kryptofix/potassium[F-18]fluoride, preferably generated from [F-18]fluoride, kryptofix and potassium carbonate.
  • the radiofluorination reactions are carried out in acetonitrile, dimethylsulfoxide or dimethylformamide or a mixture thereof. But also other solvents can be used which are well known to someone skilled in the art. Water and/or alcohols can be involved in such a reaction as co-solvent.
  • the radiofluorination reactions are conducted for less than 60 minutes. Preferred reaction times are less than 30 minutes. Further preferred reaction times are less than 15 min. This and other conditions for such radiofluorination are known to experts (Coenen, Fluorine-18 Labeling Methods: Features and Possibilities of Basic Reactions, (2006), in: Schubiger P. A., Friebe M., Lehmann L., (eds), PET-Chemistry—The Driving Force in Molecular Imaging. Springer, Berlin Heidelberg, pp. 15-50).
  • 7.5-75 ⁇ mol, preferably 10-50 ⁇ mol, more preferably 10-30 ⁇ mol and even more preferably 12-25 ⁇ mol and even more preferably 13-25 ⁇ mol of compound of Formula II are used in Step 1.
  • Step 1 more than 7.5 ⁇ mol, preferably more than 10 ⁇ mol, and more preferable more than 12 ⁇ mol and even more preferably more than 13 ⁇ mol of compound of Formula II are used in Step 1.
  • Step 1 more than 5 mg, preferably more than 6 mg and more preferably more than 7 mg of compound of Formula II are used in Step 1.
  • the Radiofluorination of compound of Formula II is carried out in acetonitrile or in a mixture of acetonitrile and co-solvents, wherein the percentage of acetonitrile is at least 50%, more preferably at least 70%, even more preferably at least 90%.
  • Step 2 comprises the deprotection of compound of Formula III to obtain compound of Formula I.
  • Reaction conditions are known or obvious to someone skilled in the art, which are chosen from but not limited to those described in the textbook Greene and Wuts, Protecting groups in Organic Synthesis, third edition, page 494-653, included herewith by reference.
  • Preferred reaction conditions are addition of an acid and stirring at 0° C.-180° C.; addition of an base and heating at 0° C.-180° C.; or a combination thereof.
  • step 1 and step 2 are performed in the same reaction vessel.
  • Step 3 comprises the purification and Formulation of compound of Formula I using a HPLC separation system, wherein, the HPLC solvent eluent (e.g. mixtures of ethanol and aqueous buffers) can be part of the injectable Formulation of compound of Formula I.
  • the collected product fraction can be diluted or mixed with other parts of the Formulation.
  • the HPLC solvent mixture is consisting of ethanol or an aqueous buffer or an ethanol/aqueous buffer mixture, wherein the aqueous buffer is consisting of components or excipient that can be injected into human.
  • aqueous buffer examples include solutions of sodium chloride, sodium phosphate buffer, ascorbic acid, ascorbate buffer or mixtures thereof.
  • the Method for manufacturing of compound of Formula I is carried out by use of a module (review: Krasikowa, Synthesis Modules and Automation in F-18 labeling (2006), in: Schubiger P. A., Friebe M., Lehmann L., (eds), PET-Chemistry—The Driving Force in Molecular Imaging. Springer, Berlin Heidelberg, pp. 289-316) which allows an automated synthesis. More preferably, the Method is carried out by use of an one-pot module. Even more preferable, the Method is carried out on commonly known non-cassette type modules (e.g. Ecker&Ziegler Modular-Lab, GE Tracerlab FX, Raytest SynChrom) and cassette type modules (e.g. GE Tracerlab MX, GE Fastlab, IBA Synthera, Eckert&Ziegler Modular-Lab PharmTracer), optionally, further equipment such as HPLC or dispensing devices are attached to the said modules.
  • a module view: Krasikowa, Synthesis Module
  • the present invention is directed to a fully automated and/or remote controlled Method for production of compound of Formula I wherein compounds of Formula I, II and III and Steps 1, 2 and 3 are described above.
  • this method is a fully automated process, compliant with GMP guidelines, that provides a Formulation of Formula I for the use of administration (injection) into human.
  • the present invention is directed to a Kit for the production of a pharmaceutical composition of compound of Formula I.
  • the Kit comprising a sealed vial containing a predetermined quantity of the compound of Formula II.
  • the Kit contains 1.5-75 ⁇ mol, preferably 7.5-50 ⁇ mol, more preferably 10-50 ⁇ mol and even more preferably 12-25 ⁇ mol and even more preferably 12-25 ⁇ mol and even more preferably 13-25 ⁇ mol of compound of Formula II.
  • the Kit contains more than 7.5 ⁇ mol, preferably more than 10 ⁇ mol and more preferably more than 12 ⁇ mol and even more preferably more than 13 ⁇ mol of compound of Formula II.
  • the Kit contains more than 5 mg, preferably more than 6 mg and more preferably more than 7 mg of compound of Formula II.
  • Kit contains 7 mg of compound of Formula II.
  • the Kit contains 8 mg of compound of Formula II.
  • the kit also contains a solvent or solvent mixture or the components for the solvent (mixture) for HPLC purification, wherein those solvent, solvent mixture or components are appropriate for the direct use for injection into patient.
  • the Kit contains further components for manufacturing of compound of Formula I, such as solid-phase extraction cartridges, reagent for fluorination (as described above), acetonitrile or acetonitrile and a co-solvent, reagent for cleavage of deprotection group, solvent or solvent mixtures for purification, solvents and excipient for Formulation.
  • solid-phase extraction cartridges such as solid-phase extraction cartridges, reagent for fluorination (as described above), acetonitrile or acetonitrile and a co-solvent, reagent for cleavage of deprotection group, solvent or solvent mixtures for purification, solvents and excipient for Formulation.
  • the Kit contains a platform (e.g. cassette) for a “cassette-type module” (such as Tracerlab MX or IBA Synthera).
  • a platform e.g. cassette
  • a “cassette-type module” such as Tracerlab MX or IBA Synthera
  • preferred salts are pharmaceutically suitable salts of the compounds according to the invention.
  • the invention also comprises salts which for their part are not suitable for pharmaceutical applications, but which can be used, for example, for isolating or purifying the compounds according to the invention.
  • Pharmaceutically suitable salts of the compounds according to the invention include acid addition salts of mineral acids, carboxylic acids and sulphonic acids, for example salts of hydrochloric acid, hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, ethanesulphonic acid, toluenesulphonic acid, benzenesulphonic acid, naphthalene disulphonic acid, acetic acid, trifluoroacetic acid, propionic acid, lactic acid, tartaric acid, malic acid, citric acid, fumaric acid, maleic acid and benzoic acid.
  • hydrochloric acid hydrobromic acid, sulphuric acid, phosphoric acid, methanesulphonic acid, ethanesulphonic acid, toluenesulphonic acid, benzenesulphonic acid, naphthalene disulphonic acid, acetic acid, trifluoroacetic acid, propionic acid, lactic acid, tartaric acid,
  • salts of the compounds according to the invention also include salts of customary bases, such as, by way of example and by way of preference, alkali metal salts (for example sodium salts and potassium salts), alkaline earth metal salts (for example calcium salts and magnesium salts) and ammonium salts, derived from ammonia or organic amines having 1 to 16 carbon atoms, such as, by way of example and by way of preference, ethylamine, diethylamine, triethylamine, ethyldiisopropylamine, monoethanolamine, diethanolamine, triethanolamine, dicyclohexylamine, dimethylaminoethanol, procaine, diben-zylamine, N methylmorpholine, arginine, lysine, ethylenediamine and N methylpiperidine.
  • alkali metal salts for example sodium salts and potassium salts
  • alkaline earth metal salts for example calcium salts and magnesium salts
  • ammonium salts derived
  • Halogen or halo refers to Cl, Br, F or I.
  • Amine-protecting group as employed herein by itself or as part of another group is known or obvious to someone skilled in the art, which is chosen from but not limited to a class of protecting groups namely carbamates, amides, imides, N-alkyl amines, N-aryl amines, imines, enamines, boranes, N-P protecting groups, N-sulfenyl, N-sulfonyl and N-silyl, and which is chosen from but not limited to those described in the textbook Greene and Wuts, Protecting groups in Organic Synthesis, third edition, page 494-653, included herewith by reference.
  • the amine-protecting group is preferably Carbobenzyloxy (Cbz), p-Methoxybenzyl carbonyl (Moz or MeOZ), tert-Butyloxycarbonyl (BOC), 9-Fluorenylmethyloxycarbonyl (FMOC), Benzyl (Bn), p-Methoxybenzyl (PMB), 3,4-Dimethoxybenzyl (DMPM), p-methoxyphenyl (PMP) or the protected amino group is a 1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl(phthalimido) or an azido group.
  • Leaving group as employed herein by itself or as part of another group is known or obvious to someone skilled in the art, and means that an atom or group of atoms is detachable from a chemical substance by a nucleophilic agent. Examples are given e.g. in Synthesis (1982), p. 85-125, table 2 (p. 86; (the last entry of this table 2 needs to be corrected: “n-C 4 F 9 S(O) 2 —O— nonaflat” instead of “n-C 4 H 9 S(O) 2 —O— nonaflat”), Carey and Sundberg, Organische Synthese, (1995), page 279-281, table 5.8; or Netscher, Recent Res. Dev. Org.
  • alkyl refers to a C 1 -C 10 straight chain or branched alkyl group such as, for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, isopentyl, neopentyl, heptyl, hexyl, decyl or adamantyl.
  • alkyl is C 1 -C 6 straight chain or branched alkyl or C 7 -C 10 straight chain or branched alkyl.
  • Lower alkyl is a C 1 -C 6 straight chain or branched alkyl.
  • aryl as employed herein by itself or as part of another group refers to monocyclic or bicyclic aromatic groups containing from 6 to 10 carbons in the ring portion, such as phenyl, naphthyl or tetrahydronaphthyl.
  • substituted it is meant to indicate that one or more hydrogens on the atom indicated in the expression using “substituted” is/are replaced by one ore multiple moieties from the group comprising halogen, nitro, cyano, trifluoromethyl, alkyl and O-alkyl, provided that the regular valency of the respective atom is not exceeded, and that the substitution results in a chemically stable compound, i.e. a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture.
  • the present invention includes all of the hydrates, salts, and complexes.
  • F-18 means fluorine isotope 18 F.
  • F-19 means fluorine isotope 19 F.
  • Radiochemical and chemical purities of 4-[(E)-2-(4- ⁇ 2-[2-(2-[F-18]fluoroethoxy)ethoxy]-ethoxy ⁇ phenyl)vinyl]-N-methylaniline and 4-[(E)-2-(4- ⁇ 2-[2-(2-[F-18]fluoroethoxy)ethoxy]-ethoxy ⁇ phenyl)vinyl]-N-methylaniline were determined by analytical HPLC (column: Atlantis T3; 150 ⁇ 4.6 mm, 3 ⁇ m, Waters; solvent A: 5 mM K 2 HPO 4 pH 2.2; solvent B: acetonitrile; flow: 2 mL/min, gradient: 0:00 min 40% B, 0:00-05:50 min 40-90% B, 05:50-05:60 min 90-40% B, 05:60-09:00 min 40% B).
  • a Tracerlab FX N synthesizer have been adopted to the “direct cut HPLC approach” ( FIG. 4 ).
  • [F-18]Fluoride (3700 MBq) was trapped on a QMA cartridge.
  • the activity was eluted with potassium carbonate/kryptofix/acetonitrile/water mixture into the reactor.
  • the solvent was removed while heating under gentle nitrogen stream and vacuum. Drying was repeated after addition of acetonitrile.
  • a solution of 7 mg 2a in 1 mL acetonitrile was added to the dried residue and the mixture was heated for 8 min at 120° C. After cooling to 60° C., a mixture of 0.5 mL 2M HCl, and 0.5 mL acetonitrile was added and the reactor was heated at 110° C. for 4 min.
  • the crude product was neutralized (1 mL 1M NaOH+2 mL buffer) and transferred to a semi-preparative HPLC column (Synergy Hydro-RP, 250 ⁇ 10 mm, Phenomenex). A mixture of 60% ethanol and 40% ascorbate buffer (pH 7.0) was flushed through the column with 3 mL/min. The product fraction at ⁇ 16 min ( FIG. 2 ) was directly collected into the product vial containing 8.5 Formulation basis (phosphate buffer, ascorbic acid, PEG400). Radiochemical purity was determined to be >99%.
  • [F-18]Fluoride was trapped on a QMA cartridge (C1).
  • the activity was eluted with a kryptofix mixture (from “V1”) into the reactor.
  • the solvent was removed while heating under gentle nitrogen stream and vacuum. Drying was repeated after addition of 100 ⁇ L acetonitrile (from “V2”).
  • the solution of precursor 2a was added to the dried residue and the mixture was heated for 10 min at 120° C. After cooling to 40° C., 2 mL 1.5M HCl (from “V4”) was added and solution was heated for 5 min at 110° C.
  • the crude product mixture was diluted with 1.2 mL 2M NaOH and 0.8 mL ammonium formate (1 M) from vial “V5” and then transferred to the HPLC vial (“Mix-Vial”) containing previously 1 mL acetonitrile and 0.5 mL ethanol.
  • the mixture was transferred to the 10 mL sample injection loop of the semi-preparative HPLC using a nitrogen overpressure in the HPLC vial (“Mix-Vial”) and via a liquid sensor which controlled the end of the loading.
  • the mixture is loaded to the semi-preparative HPLC column (Synergi Hydro-RP, 250 ⁇ 10 mm, Phenomenex).
  • the crude product mixture was diluted with 1.2 mL 2M NaOH and 0.8 mL ammonium formate (1 M) from syringe “Si” and then transferred to the HPLC vial (“Mix-Vial”) in which 1 mL acetonitrile (from “V2”) and 0.5 mL ethanol (from “V5”) are added separately.
  • the average 6-7 mL mixture was transferred to a 30 mL syringe which then pushed the totality of the volume into the 10 mL sample injection loop of the semi-preparative HPLC.
  • the mixture is loaded to the semi-preparative HPLC column (Synergi Hydro-RP, 250 ⁇ 10 mm, Phenomenex).
  • a mixture of 60% ethanol and 40% ascorbate buffer was flushed through the column with 6 mL/min.
  • the product fraction at ⁇ 9 min was collected for 50 sec directly into the product vial containing 15 mL Formulation basis (consisting of phosphate buffer, PEG400 and ascorbic acid).
  • Analytical HPLC of the final product showed excellent radiochemical and chemical purity. No impurity higher than 0.5 ⁇ g/mL was quantified.
  • the crude product mixture was diluted with 1.2 mL 2M NaOH and 0.8 mL ammonium formate (1 M) from syringe “S1”. 1 mL acetonitrile (from “V2”) and 0.5 mL ethanol (from “V5”) are added separately to the mixture and then transferred to the right syringe of the GE TracerLab MX automate.
  • the mixture was transferred to the 10 mL sample injection loop of the semi-preparative HPLC using the right syringe of the GE TracerLab MX automate via a liquid sensor which controlled the end of the loading.
  • the mixture was loaded to the semi-preparative HPLC column (Synergi Hydro-RP, 250 ⁇ 10 mm, Phenomenex).
  • a mixture of 60% ethanol and 40% ascorbate buffer was flushed through the column with 6 mL/min.
  • the product fraction at ⁇ 9 min was collected directly during 50 sec into the product vial containing 15 mL Formulation basis (consisting of phosphate buffer, PEG400 and ascorbic acid).
  • Analytical HPLC of the final product showed excellent radiochemical and chemical purity. No impurity higher than 0.7 ⁇ g/mL was quantified.
  • the crude product mixture obtained after deprotection is neutralized with a mixture of 2M NaOH and 0.1M ammonium formate and injected onto a semipreparative HPLC (e.g. column: Gemini C18, 10 ⁇ 250 mm, 5 ⁇ m, Phenomenex; solvent: 70% acetonitrile, 30% ammonium formate buffer 0.1M with 5 mg/mL sodium ascorbate, flow rate 3 mL/min).
  • the product fraction is collected into a flask containing approx. 160 mL water with 10 mg/mL sodium ascorbate.
  • the mixture is passed through a C18 cartridge (tC18 SepPak environmental, Waters). The cartridge is washed with approx.
  • the crude product mixture obtained after deprotection is neutralized with a mixture of 2M NaOH and 0.1M ammonium formate and injected onto a semipreparative HPLC (column: e.g.: Gemini C18, 10 ⁇ 250 mm, 5 ⁇ m, Phenomenex or Synergi Hydro-RP, 250 ⁇ 10 mm, 10 ⁇ m 80 ⁇ , Phenomenex or Synergi Hydro-RP, 250 ⁇ 10 mm, 4 ⁇ M 80 ⁇ , Phenomenex; solvent: 60-70% ethanol, 40-30% ascorbate buffer ⁇ 5 mg/mL ascorbate; flow 3 mL/min or 4 mL/min or 6 mL/min).
  • a semipreparative HPLC columnumn: e.g.: Gemini C18, 10 ⁇ 250 mm, 5 ⁇ m, Phenomenex or Synergi Hydro-RP, 250 ⁇ 10 mm, 10 ⁇ m 80 ⁇ , Phenomenex or Syner
  • the product fraction is directly collected into a vial containing “Formulation basis” (comprising PEG400, phosphate buffer and ascorbic acid) to provide 10-24 mL of the final Formulation.
  • “Formulation basis” comprising PEG400, phosphate buffer and ascorbic acid
  • the peak-cutting time was adjusted in the software to obtain a Formulation comprising 15% EtOH.
  • FIG. 9 represents an individual experiment for the manufacturing of 4-[(E)-2-(4- ⁇ 2-[2-(2-[F-18]fluoroethoxy)ethoxy]-ethoxy ⁇ phenyl)vinyl]-N-methylaniline.
  • the tendency of radiochemical purity in correlation with radioactivity of the final product is illustrated by linear trendlines.
  • the radiochemical purity obtained after HPLC with re-Formulation by SPE varies significantly ( FIG. 9 , empty squares). Especially at higher radioactive levels (>20 GBq) the radiochemical purity often is even 95%.
  • a Tracerlab FX N synthesizer has been adopted to the “direct cut HPLC approach” ( FIG. 4 ).
  • [F-18]Fluoride (10 GBq) was trapped on a QMA cartridge.
  • the activity was eluted with potassium carbonate/kryptofix/acetonitrile/water mixture into the reactor.
  • the solvent was removed while heating under gentle nitrogen stream and vacuum. Drying was repeated after addition of acetonitrile.
  • a solution of 8 mg 2b in 1.5 mL acetonitrile was added to the dried residue and the mixture was heated for 10 min at 120° C. After cooling to 60° C., 1 mL 1.5M HCl was added and the reactor was heated at 110° C. for 5 min.
  • the crude product was neutralized (1 mL 1M NaOH/ammonium formate), diluted (with 0.5 mL EtOH and 1.5 mL MeCN) and transferred to a semi-preparative HPLC column (Synergy Hydro-RP, 250 ⁇ 10 mm, Phenomenex).
  • a mixture of 60% ethanol and 40% ascorbate buffer (5 g/l sodium ascorbate and 50 mg/l ascorbic acid, pH 7.0) was flushed through the column with 3 mL/min.
  • the product fraction at ⁇ 10 min was directly collected for 100 sec and mixed with 15 mL Formulation basis (phosphate buffer, ascorbic acid, PEG400).
  • a Tracerlab FX N synthesizer have been adopted to the “direct cut HPLC approach” ( FIG. 4 ).
  • [F-18]Fluoride (6.85 GBq) was trapped on a QMA cartridge.
  • the activity was eluted with potassium carbonate/kryptofix/acetonitrile/water mixture into the reactor.
  • the solvent was removed while heating under gentle nitrogen stream and vacuum. Drying was repeated after addition of acetonitrile.
  • a solution of 8 mg 2c in 1.5 mL acetonitrile was added to the dried residue and the mixture was heated for 10 min at 120° C. After cooling to 60° C., the crude product was diluted with 4 mL HPLC eluent and transferred to a semi-preparative HPLC column (Synergy Hydro-RP, 250 ⁇ 10 mm, Phenomenex).
  • FIG. 1 Setup of Tracerlab FX N for purification with re-Formulation (adopted from tracerlab software)
  • FIG. 2 Chromatogramm of purification using Synergy column on Eckert&Ziegler modular lab (Radioactivity channel)
  • FIG. 3 Analytical HPLC of radiolabeled product (top radioactivity channel, bottom UV channel)
  • FIG. 4 Setup of Tracerlab FX N for purification without re-Formulation (adopted from tracerlab software)
  • FIG. 5 Setup of Tracerlab MX (adopted from Coincidence FDG software)
  • FIG. 6 Setup of Eckert&Ziegler purification unit (adopted from Modual-Lab software)
  • FIG. 7 Schematic illustration of process and equipment for manufacturing of F-18 labeled fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amines comprising three parts: A) Synthesis, B) HPLC, C) Formulation; including (1) vials for reagents and solvents, (2) a reaction vessel, (3) target line for F-18, optionally gas lines, vacuum ect., (4) optionally fluid detector or filter ect., (5) injection valve, (6) HPLC column, (7) valve for peak cutting, (W) waste line(s), (8) vessel for collection/dilution of HPLC fraction, (9) solvent vials for washing and elution, (10) valve, (11) cartridge, e.g. C18 cartridge for trapping of the product, (12) valve.
  • A) Synthesis B) HPLC
  • C) Formulation including (1) vials for reagents and solvents, (2) a reaction vessel, (3) target line for F-18, optionally gas lines, vacuum ect.
  • FIG. 8 Schematic illustration of process and equipment for manufacturing of F-18 labeled fluoropegylated (aryl/heteroaryl vinyl)-phenyl methyl amines comprising two parts: A) Synthesis, B) HPLC; including (1) vials for reagents and solvents, (2) a reaction vessel, (3) target line for F-18, optionally gas lines, vacuum ect., (4) optionally fluid detector or filter ect., (5) injection valve, (6) HPLC column, (7) valve for peak cutting.
  • A) Synthesis B) HPLC; including (1) vials for reagents and solvents, (2) a reaction vessel, (3) target line for F-18, optionally gas lines, vacuum ect., (4) optionally fluid detector or filter ect., (5) injection valve, (6) HPLC column, (7) valve for peak cutting.
  • FIG. 9 Influence of purification method on radiochemical purity
  • FIG. 10 Chromatogramm of purification of 4-[(E)-2-(6- ⁇ 2-[2-(2-[F-18]fluoro-ethoxy)ethoxy]ethoxy ⁇ pyridin-3-yl)vinyl]-N-methylaniline on Eckert&Ziegler modular lab (Radioactivity channel)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyridine Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
US13/702,007 2010-06-04 2011-05-30 Method for production of f-18 labeled amyloid beta ligands Abandoned US20130209363A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10164949.9 2010-06-04
EP10164949 2010-06-04
PCT/EP2011/058820 WO2011151283A1 (en) 2010-06-04 2011-05-30 Method for production of f-18 labeled amyloid beta ligands

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/058820 A-371-Of-International WO2011151283A1 (en) 2010-04-06 2011-05-30 Method for production of f-18 labeled amyloid beta ligands

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/062,604 Continuation US9592308B2 (en) 2010-06-04 2016-03-07 Method for production of F-18 labeled amyloid beta ligands

Publications (1)

Publication Number Publication Date
US20130209363A1 true US20130209363A1 (en) 2013-08-15

Family

ID=44584930

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/702,007 Abandoned US20130209363A1 (en) 2010-06-04 2011-05-30 Method for production of f-18 labeled amyloid beta ligands
US15/062,604 Active US9592308B2 (en) 2010-06-04 2016-03-07 Method for production of F-18 labeled amyloid beta ligands

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/062,604 Active US9592308B2 (en) 2010-06-04 2016-03-07 Method for production of F-18 labeled amyloid beta ligands

Country Status (22)

Country Link
US (2) US20130209363A1 (da)
EP (1) EP2579902B2 (da)
JP (2) JP5869562B2 (da)
KR (1) KR101761451B1 (da)
CN (1) CN103269724B (da)
AU (1) AU2011260421B2 (da)
BR (1) BR112012030935B1 (da)
CA (1) CA2801530C (da)
DK (1) DK2579902T4 (da)
EA (1) EA022897B1 (da)
ES (1) ES2642086T5 (da)
HR (1) HRP20171397T4 (da)
HU (1) HUE033237T2 (da)
IL (1) IL223358A (da)
LT (1) LT2579902T (da)
MX (1) MX345069B (da)
PL (1) PL2579902T5 (da)
PT (1) PT2579902T (da)
SG (1) SG185782A1 (da)
SI (1) SI2579902T2 (da)
TW (1) TWI583397B (da)
WO (1) WO2011151283A1 (da)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130217920A1 (en) * 2010-06-04 2013-08-22 Piramal Imaging Sa Method for production of f-18 labeled amyloid beta ligands
US9308284B2 (en) 2011-06-21 2016-04-12 Piramal Imaging Sa Formulations of fluorinated stilbene suitable for PET imaging
WO2018089491A1 (en) * 2016-11-08 2018-05-17 The Regents Of The University Of California Methods for multi-dose synthesis of [f-18]fddnp for clinical settings

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012030935B1 (pt) 2010-04-06 2020-11-17 Life Molecular Imaging Sa método para a produção de ligantes de beta-amiloide marcados com f-18
AU2011351550B2 (en) * 2010-12-29 2017-02-02 Ge Healthcare Limited Eluent solution
IN2014MN00875A (da) * 2011-10-19 2015-04-17 Piramal Imaging Sa
KR101326000B1 (ko) * 2012-01-30 2013-11-07 재단법인 아산사회복지재단 수소이온 농도가 조절된 플루오린-18의 용리액 제조 및 이를 이용한 플루오린-18의 표지방법
GB201318450D0 (en) * 2013-10-18 2013-12-04 Ge Healthcare Ltd Closed evaporation system
WO2018168643A1 (ja) * 2017-03-17 2018-09-20 日本メジフィジックス株式会社 イオフルパンの製造方法
CN111868062B (zh) * 2018-01-24 2023-07-07 Ac免疫有限公司 制备显像化合物的方法
CN109867591B (zh) * 2019-03-12 2020-11-06 浙江大学 18f标记的aie荧光/pet双模态探针及其制备方法和应用
WO2024107620A1 (en) * 2022-11-14 2024-05-23 Eli Lilly And Company Polymorphic forms of florbetapir precursor av-105

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723103A (en) * 1994-12-09 1998-03-03 Vanderbilt University Substituted benzamides and radioligand analogs and methods of use
US20100113763A1 (en) * 2004-12-15 2010-05-06 Futurechem Co., Ltd. Method for preparation of organofluoro compounds in alcohol solvents

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE473019T1 (de) 2002-11-05 2010-07-15 Ion Beam Applic Sa Stabilisierung von wässerigen zusammensetzungen von 18f-markiertem 2-fluoro-2-deoxy-d-glukose mit ethanol
SI2213652T1 (sl) * 2004-12-17 2015-03-31 The Trustees Of The University Of Pennsylvania Derivati stilbena in njihova uporaba za vezavo in prikaz amiloidnih plakov
JP4738419B2 (ja) * 2005-11-30 2011-08-03 富士フイルムRiファーマ株式会社 アミロイドの凝集及び/又は沈着に起因する疾患の診断薬及び治療薬
EP2363392B1 (en) 2006-03-30 2017-05-03 The Trustees Of The University Of Pennsylvania Styrylpyridine derivatives and their use for binding and imaging amyloid plaques
WO2008009444A1 (en) 2006-07-19 2008-01-24 Van Dulmen, Adrianus, A. Use of ethanol for stabilizing a single-vial liquid formulation of a radiolabeled peptide
AU2008324186B2 (en) 2007-11-07 2014-02-13 Ge Healthcare Bv Stabilization of radiopharmaceuticals
PE20120007A1 (es) 2008-12-31 2012-01-16 Avid Radiopharmaceuticals Inc Sintesis de estirilpiridinas radiomarcadas con 18f a partir de precursores de tosilato y composiciones farmaceuticas estables de estas
WO2011003591A1 (en) * 2009-07-10 2011-01-13 Bayer Schering Pharma Aktiengesellschaft Usage of low to medium-pressure liquid chromatography for the purification of radiotracers
BR112012030935B1 (pt) 2010-04-06 2020-11-17 Life Molecular Imaging Sa método para a produção de ligantes de beta-amiloide marcados com f-18

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5723103A (en) * 1994-12-09 1998-03-03 Vanderbilt University Substituted benzamides and radioligand analogs and methods of use
US20100113763A1 (en) * 2004-12-15 2010-05-06 Futurechem Co., Ltd. Method for preparation of organofluoro compounds in alcohol solvents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ribeiro et al., "Reevaluation of Ethanol as Organic Modifier for Use in HPLC-RP Mobile Phases", J. Braz. Chem, Soc., Vol. 15, 300-306, 2004 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130217920A1 (en) * 2010-06-04 2013-08-22 Piramal Imaging Sa Method for production of f-18 labeled amyloid beta ligands
US9308284B2 (en) 2011-06-21 2016-04-12 Piramal Imaging Sa Formulations of fluorinated stilbene suitable for PET imaging
WO2018089491A1 (en) * 2016-11-08 2018-05-17 The Regents Of The University Of California Methods for multi-dose synthesis of [f-18]fddnp for clinical settings
US10377701B2 (en) 2016-11-08 2019-08-13 The Regents Of The University Of California Methods for multi-dose synthesis of [F-18]FDDNP for clinical settings
US10626083B2 (en) 2016-11-08 2020-04-21 The Regents Of The University Of California Methods for multi-dose synthesis of [F-18]FDDNP for clinical settings

Also Published As

Publication number Publication date
TW201204395A (en) 2012-02-01
SI2579902T2 (sl) 2019-10-30
CN103269724B (zh) 2017-06-23
WO2011151283A1 (en) 2011-12-08
BR112012030935B1 (pt) 2020-11-17
CA2801530C (en) 2017-09-12
EP2579902A1 (en) 2013-04-17
US9592308B2 (en) 2017-03-14
EP2579902B2 (en) 2019-08-14
AU2011260421B2 (en) 2015-06-04
EP2579902B1 (en) 2017-07-12
ES2642086T3 (es) 2017-11-15
LT2579902T (lt) 2017-09-25
PT2579902T (pt) 2017-08-17
TWI583397B (zh) 2017-05-21
CN103269724A (zh) 2013-08-28
PL2579902T5 (pl) 2020-08-10
US20160184465A1 (en) 2016-06-30
MX345069B (es) 2017-01-16
HRP20171397T1 (hr) 2017-11-03
AU2011260421A1 (en) 2013-01-10
SI2579902T1 (sl) 2017-10-30
JP5869562B2 (ja) 2016-02-24
IL223358A (en) 2015-09-24
ES2642086T5 (es) 2020-04-13
JP2016047831A (ja) 2016-04-07
KR20130136423A (ko) 2013-12-12
JP2013532137A (ja) 2013-08-15
PL2579902T3 (pl) 2017-12-29
EA201201645A1 (ru) 2013-05-30
DK2579902T4 (da) 2019-10-21
CA2801530A1 (en) 2011-12-08
KR101761451B1 (ko) 2017-07-25
HUE033237T2 (hu) 2017-11-28
BR112012030935A2 (pt) 2016-11-01
MX2012014117A (es) 2013-07-03
HRP20171397T4 (hr) 2019-11-15
DK2579902T3 (da) 2017-08-28
EA022897B1 (ru) 2016-03-31
SG185782A1 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
US9592308B2 (en) Method for production of F-18 labeled amyloid beta ligands
JP2016028103A (ja) F−18標識アミロイド・ベータ・リガンドの製造方法
EP2575898B1 (en) Method for production of f-18 labeled amyloid beta ligand
US20140243533A1 (en) Method for production of f-18 labeled a-beta ligands

Legal Events

Date Code Title Description
AS Assignment

Owner name: PIRAMAL IMAGING SA, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BERNDT, MATHIAS;FRIEBE, MATTHIAS;SAMSON, FABRICE;AND OTHERS;SIGNING DATES FROM 20130114 TO 20130211;REEL/FRAME:030338/0180

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION