US20130000327A1 - Ice-making machine with air sterilization feature - Google Patents

Ice-making machine with air sterilization feature Download PDF

Info

Publication number
US20130000327A1
US20130000327A1 US13/336,496 US201113336496A US2013000327A1 US 20130000327 A1 US20130000327 A1 US 20130000327A1 US 201113336496 A US201113336496 A US 201113336496A US 2013000327 A1 US2013000327 A1 US 2013000327A1
Authority
US
United States
Prior art keywords
ice
bulkhead
forming mold
space
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/336,496
Other languages
English (en)
Inventor
William E. Olson, Jr.
Richard T. Miller
Brad A. Blaha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerson Automation Solutions GmbH
Original Assignee
Manitowoc Foodservice Companies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manitowoc Foodservice Companies LLC filed Critical Manitowoc Foodservice Companies LLC
Priority to US13/336,496 priority Critical patent/US20130000327A1/en
Assigned to MANITOWOC FOODSERVICE COMPANIES, LLC reassignment MANITOWOC FOODSERVICE COMPANIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLAHA, BRAD A., MILLER, RICHARD T., OLSON, WILLIAM E., JR.
Publication of US20130000327A1 publication Critical patent/US20130000327A1/en
Assigned to PENTAIR FLOW SERVICES AG reassignment PENTAIR FLOW SERVICES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENODIS CORPORATION, MANITOWOC FOODSERVICE COMPANIES, LLC, MANITOWOC FSG OPERATIONS, LLC, WELBILT (CHINA) FOODSERVICE CO., LTD., Welbilt (Halesowen) Limited, WELBILT FSG U.S. HOLDING, LLC, WELBILT, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0417Treating air flowing to refrigeration compartments by purification using an UV-lamp
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/061Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation through special compartments

Definitions

  • the present invention relates to an ice-making machines, and particularly to automatic ice-making machine with an air sterilizing feature, and methods of operation of ice-making machines with an air sterilization feature.
  • Automatic ice-making machines have a tendency to foster the growth of microbiological contaminates such as bacteria, yeast, and mold due to their nature as a wet environment with thermally cyclic conditions.
  • particle-generating devices have been developed that deliver ions, ozone, or a mixture of the two into the food zone of an automatic ice-making machine to help sterilize the air in the device and prolong the periods between sanitizing of the device.
  • ions, ozone, or a mixture of the two into the food zone of an automatic ice-making machine to help sterilize the air in the device and prolong the periods between sanitizing of the device.
  • such devices and methods of operation have not been entirely successful in the past, in part because not all areas of the food zone have been treated.
  • equipment such as electrical components and often a compressor are contained within an equipment compartment.
  • the space outside of the equipment compartment, and particularly the space where ice is formed, is known as the food zone, because anything within that zone may come into contact with the ice, which will later come into contact with food.
  • a bulkhead wall is typically used in the ice-making machine to divide the equipment compartment from the food zone.
  • ice-making machines form ice on an ice-forming mold that is in thermal contact with the evaporator portion of the refrigeration system.
  • the evaporator and ice-forming mold are mounted near the bulkhead wall.
  • the space between the bulkhead wall and the evaporator/ice-forming mold (hereinafter called the bulkhead space) is part of the food zone.
  • previous designs for sterilizing air inside of the ice-making machine have not recognized or dealt with the air that is found in the bulkhead space.
  • a method of inhibiting growth of microbiological contaminates in the bulkhead space of an ice-making machine has been invented.
  • the invention is a method of inhibiting growth of microbiological contaminates in a food zone within an ice-making machine, wherein the ice-making machine comprises an ice-forming mold in the food zone; a refrigeration system including a compressor, a condenser, an expansion device, and an evaporator in thermal contact with said ice-forming mold, thus producing a combined evaporator and ice-forming mold; a bulkhead wall separating an equipment compartment from the food zone; and a bulkhead space located between the bulkhead wall and the combined evaporator and ice-forming mold, the bulkhead space being a part of the food zone, such that air in contact with ice being formed by the ice-making machine can circulate to the bulkhead space; the method comprising: providing a source of an antimicrobially active gas; and directing the antimicrobially active gas to flow though the bulkhead space to thereby distribute the antimicrobially active gas throughout the bulkhead space.
  • the invention is an ice-making machine comprising an ice-forming mold in a food zone of the ice-making machine; a refrigeration system including a compressor, a condenser, an expansion device, and an evaporator in thermal contact with said ice-forming mold, thus producing a combined evaporator and ice-forming mold; a bulkhead wall separating an equipment compartment from the food zone; a bulkhead space located between the bulkhead wall and the combined evaporator and ice-forming mold, the bulkhead space being a part of the food zone, such that air in contact with ice being formed by the ice-making machine can circulate to the bulkhead space; a source of antimicrobially active gas; and an air circulation system that causes the antimicrobially active gas to circulate through the bulkhead space.
  • the preferred embodiment of the invention uses an ionizing or ozone generating device housed within the equipment compartment. Antimicrobially active gas is directed from that device into the food zone. The device also withdraws air out of the bulkhead space, creating a negative pressure. Antimicrobially active gas from the rest of the food zone then migrates into the bulkhead space where the antimicrobially active gas inhibits growth of microbiological contaminates.
  • FIG. 1 is a top, front perspective view of an automatic ice-making machine incorporating a preferred embodiment of the invention, with the one side cabinet wall, the front cabinet door and the top cabinet wall removed for sake of clarity.
  • FIG. 2 is a top, rear perspective view of the automatic ice-making machine of FIG. 1 .
  • FIG. 3 is a cross-sectional view taken along line 3 - 3 of FIG. 1 .
  • FIG. 4 is a schematic drawing of the water system of the ice-making machine of FIG. 1 .
  • FIG. 5 is a schematic diagram of the refrigeration system of the ice-making machine of FIG. 1 .
  • FIG. 6 is a cross-sectional view like FIG. 3 , but of an ice-making machine using an alternate embodiment of the invention.
  • FIG. 7 is a perspective view of the ionizing device located in the automatic ice-making machine of FIG. 1 .
  • FIG. 8 is a side view of the ionizing device of FIG. 7 .
  • FIG. 9 is a cross-sectional view taken along line 9 - 9 of FIG. 8 .
  • FIG. 10 is a cross-sectional view taken along line 9 - 9 of FIG. 8 with the bulb, housing and ballast hidden.
  • FIG. 11 is an exploded of the ionizing device of FIG. 7 .
  • the term “food zone” means the areas inside of the ice-making machine that are contacted by ice made by the machine, or by water that is converted into ice or splashes onto ice made by the machine.
  • the food zone also includes the space where air readily circulates that comes into contact with the surfaces that are used to form ice or contact water used to form ice.
  • equipment compartment is meant to designate the portions of the ice-making machine where mechanical and electrical components that are not intended to contact water are housed.
  • electronic controls, refrigerant valves, refrigerant tubing, a pump motor, a water inlet valve and a water dump valve are housed within the equipment compartment.
  • a compressor, a condenser and a condenser fan are also located in the equipment compartment.
  • the term “bulkhead wall” means the interior divider that separates the equipment compartment from the food zone.
  • the bulkhead wall is typically made from one or more vertical dividers, but the floor of the equipment compartment may also constitute a bulkhead wall where a portion of the equipment compartment extends over a water trough in the food zone.
  • ice-forming mold means the structure on which ice is formed during normal operation of an ice-making machine. Typically water in contact with the ice-forming mold is frozen into a desired shape. For example, many ice-forming molds include a grid structure, and ice cubes are formed within the grid cells. Other ice-forming molds may make rounded or pillow shaped pieces of ice, or even slab ice shapes which are thereafter divided. The ice-forming mold is cooled by losing heat to the evaporator portion of the refrigeration system in the ice-making machine. Thus the evaporator is in thermal contact with the ice-forming mold.
  • tubing downstream of a thermal expansion valve forming the evaporator section of a refrigeration system may be brazed onto the back of an ice-forming mold, opposite of the ice-forming surface, to make a combined evaporator and ice-forming mold.
  • the ice-forming surface is oriented in a vertical fashion, and water flows over the surface.
  • Some ice-forming molds are oriented so that water is sprayed up into cups in which the ice cubes are formed.
  • the term “bulkhead space” means the space located between the bulkhead wall and the combined evaporator and ice-forming mold.
  • the bulkhead space is typically a part of the food zone because air in contact with ice being formed by the ice-making machine can circulate to the bulkhead space.
  • the bulkhead walls may be wider or taller than the combined evaporator and ice-forming mold.
  • the bulkhead space includes the portion of the space next to the bulkhead wall that is contiguous with the space directly between the bulkhead wall and the combined evaporator and ice-forming mold.
  • Most ice-making machines have been designed to segregate the bulkhead space from the rest of the food zone.
  • the combined evaporator and ice-forming mold may extend to one or both cabinet side walls, and be sealed at the side walls to prevent water from migrating behind the ice-forming mold.
  • a trim piece may be used to separate the area at the top of the ice-forming mold between the bulkhead space and the rest of the food zone.
  • typically the bulkhead space at the bottom of the ice-forming mold is not closed off from the rest of the food zone, and air in the vicinity of the water trough can migrate upwardly into the bulkhead space.
  • antimicrobially active gas means a gas (typically air) that contains one or more chemical species at concentrations effective to impede the growth of microbiological contaminates. Many such species result from treating air containing oxygen and possibly water vapor with a U.V. light or high voltage electrical charge, and include ozone (triatomic oxygen), hydroxyl radicals, hydroxyl ions, hydrogen peroxide, atomic oxygen, atomic oxygen ions, diatomic oxygen ions, H+ ions, HOO— (hydroperoxyl radicals) and nitrogen ions.
  • Other chemical species that can be used to make antimicrobially active gas include chlorine, chlorine dioxide and ammonia.
  • the preferred ice-making machine of the present invention is very similar to a model S-0450 ice machine sold by Manitowoc Ice, Inc., Manitowoc, Wis. Many parts of the machine are the same as those shown in U.S. Pat. No. 6,681,580; No. 6,907,744; No. 6,993,929; No. 7,032,406, No. 7,284,391 and No. 7,340,913 (each of which are incorporated herein by reference), and are therefore not shown or discussed in detail.
  • the preferred ice-making machine 10 of the present invention has three major systems: a refrigeration system, a water system and an air sterilization system. These systems are housed in a cabinet 40 . Components and systems of a first embodiment of an automatic ice-making machine 10 utilizing the present invention are shown in FIGS. 1-5 .
  • FIG. 4 is a schematic drawing of the water system.
  • FIG. 5 is a schematic diagram of the refrigeration system.
  • the preferred water system which is conventional for Manitowoc-brand cube ice machines, includes a water supply or inlet 1 .
  • a water level probe 2 is used to control the depth of water in a sump or water trough 3 .
  • a circulating pump 4 draws water out of the sump and pumps it up to a distributor 7 .
  • Water falls from the distributor 7 over the ice-forming mold, sometimes also known as an evaporator plate 6 .
  • a water curtain 5 keeps water from splashing out of the front of the water compartment and directs water that does not freeze back into the sump 3 .
  • An ice thickness sensor or probe 8 is used to monitor the build-up of the ice bridge on the front of the ice-forming mold 6 .
  • a solenoid valve 9 When the machine goes into a harvest mode, a solenoid valve 9 is opened to allow water from the sump to enter a drain line.
  • the drain line and solenoid 9 can be located after the pump, so that the water in the sump is pumped out to the drain.
  • FIG. 1 shows several of these components, although the water level probe 2 , water line and circulating pump 4 are obscured in the perspective view of FIG. 1 .
  • the preferred refrigeration system is also conventional in its overall components and arrangement, as shown in FIG. 5 .
  • the refrigeration system includes a compressor 14 , a condenser 11 (which may be air or water cooled), an expansion device 13 , such as an expansion valve, an evaporator 12 and interconnecting lines 15 , 20 and 26 therefore.
  • the evaporator 12 is preferably made with refrigerant channels formed in a serpentine shape, such as serpentine coils of tubing 38 .
  • a hot gas solenoid valve 30 , drier 21 and, on water cooled units, a receiver 17 are also preferably included in the refrigeration system.
  • FIGS. 1 and 2 show several of these components, although the compressor 14 and expansion device 13 are obscured in the perspective view of FIG.
  • FIGS. 1 and 2 also show the location of the electrical controls housed in the equipment compartment 41 .
  • An air baffle 51 is shown installed on the back of the machine, used to prevent air from the condenser fan from recirculating.
  • the present invention can also be used on an ice-making machine utilizing cool vapor defrost.
  • the refrigeration system for such a machine is shown in U.S. Pat. No. 6,196,007. In that machine, the compressor is located in a separate machine cabinet.
  • the ice-forming mold is preferably part of a combined evaporator and ice-forming mold, also referred to as an evaporator assembly 36 , best seen in FIGS. 1 and 3 .
  • the ice-forming mold itself is made up of an evaporator pan 32 and dividers 34 .
  • the evaporator tubing coils 38 are attached in thermal contact to the back side of the evaporator pan 32 , which is preferably flat, to make up the evaporator assembly 36 .
  • the back side of the evaporator pan forms the back surface of the ice-forming mold 6 ( FIG. 3 ).
  • the dividers 34 also sometimes referred to as grids, divide the area inside of the evaporator pan into pockets 33 in which individual ice cubes are frozen.
  • the ice-forming mold has an open front face. Water runs down over this front face and wicks to the inside of the pockets 33 during the freeze mode. Water freezing over the edges of the dividers 34 forms ice bridges between the cubes frozen in the individual pockets.
  • the thickness of the ice bridges and the ice cubes themselves are monitored by the ice thickness sensor 8 in a conventional manner.
  • the ice machine control system which is also conventional, triggers the ice machine to enter the harvest mode.
  • the horizontal dividers are sloped so that the pockets 33 have a bottom surface that is sloped downwardly at the front, open face of the ice-forming mold 6 . This is conventional, and in this regard gravity is used to release ice cube slabs from the ice-forming mold 6 during the defrost cycle.
  • FIG. 3 shows the bulkhead space 45 , in between bulkhead wall 44 and evaporator assembly 36 .
  • air in contact with ice being formed on ice-forming mold 6 can circulate to the bulkhead space 45 .
  • the bulkhead space is generally closed off from the remainder of the food zone along at least one side of the ice-forming mold. In this case, as is typical, it is closed off from the remainder of the food zone along three sides: the top and both vertical sides.
  • a trim piece 48 detachably connected to the ice-forming mold 6 generally closes off the bulkhead space from the remainder of the food zone along the top side of the ice-forming mold 6 .
  • the air sterilization system used in ice machine 10 includes a source of antimicrobially active gas; and an air circulation system that causes the air containing antimicrobially active gas to circulate through the bulkhead space. While the source of antimicrobially active gas could be located outside of the cabinet, in the ice machine 10 the source of antimicrobially active gas comprises an ionizing device 50 located in the ice-making machine. The preferred ionization device creates antimicrobially active gas in air that passes through the device.
  • the first is by withdrawing air from the bulkhead space near the at least one side that the bulkhead space is generally closed off from the remainder of the food zone while providing a source of antimicrobially active gas adjacent the bulkhead space opposite the at least one side, and allowing the antimicrobially active gas to flow into the bulkhead space as air is withdrawn.
  • the second method is by introducing the antimicrobially active gas into a region of the bulkhead space distant from an outlet of the bulkhead space and causing the incoming air containing antimicrobially active gas to displace air already in the bulkhead space.
  • the first method is preferably accomplished with the embodiment of FIGS. 1-5 , with the ionizing device 50 located in the equipment compartment 41 , and using an intake tube 56 connected to the ionizing device 50 to withdraws air out of the bulkhead space 45 , with the intake tube 56 penetrating through the bulkhead wall 44 .
  • a discharge tube 52 from the ionizing device 50 is used to discharge antimicrobially active gas from the ionizing device 50 . That discharge tube 52 also penetrates through the bulkhead wall 44 .
  • the discharge tube from the ionizing device also passes through the trim piece 48 to discharge the antimicrobially active gas on the side of the combined evaporator and ice-forming mold 6 opposite the bulkhead space 45 .
  • the air circulation system comprises a housing containing a fan, tubing 52 for discharging antimicrobially active gas, and tubing 56 connected to the housing through which air is drawn into the housing.
  • the tubing 52 has an outlet 54 into the food zone 43
  • tubing 56 has an inlet 58 located in the bulkhead space 45 .
  • the fan in the housing causes air to be drawn in from the bulkhead space 45 , and discharges antimicrobially active gas into the food zone 43 .
  • the antimicrobially active gas travels as shown by arrows 60 to where it can enter the bottom of the bulkhead space 45 .
  • the air sterilization system directs the antimicrobially active gas to flow though the bulkhead space 45 to thereby distribute the antimicrobially active gas throughout the bulkhead space 45 .
  • the embodiment of FIG. 6 also uses the first method of directing antimicrobially active gas to circulate through the bulkhead space.
  • the ice machine 110 is very similar to the ice machine 10 of FIGS. 1-5 .
  • the same reference numbers with an addend of 100 are thus used in FIG. 6 to designate the corresponding parts of ice machine 110 .
  • the major difference in the embodiment of ice machine 110 is that the ionizing device 150 is located in the food zone 143 , and the tube 156 that withdraws air out of the bulkhead space 145 into an ionizing device 150 penetrates through the trim piece 148 .
  • the antimicrobially active gas is discharged from the ionizing device from port 152 directly into the food zone 143 , as shown by arrows 160 .
  • ionizing device 50 comprises a housing 70 (which includes a port cover 71 ), an ion generator 72 and a fan 74 (including a combined fan housing and intake port 73 ).
  • the fan 74 forces air to i) be drawn into the housing 70 through intake 75 , ii) pass the ion generator 72 and iii) discharge from the housing 70 though exhaust 76 .
  • the ion generator may be in the form of a bulb that produces U.V. light, surrounded by a U.V. chamber 77 through which the fan directs the flow of air.
  • the ionizing device 50 may also include a ballast 78 , as well as bulb fitting 81 and bulb mounts 82 and 83 , a fan mount 84 , and power source leads 85 .
  • the air is drawn from the bulkhead space 45 into the ionizing device 50 via a tube 56 , and the ionizing device ionizes the air in the ionizing device and then discharges that air into the food zone.
  • the ionizing device is connected to the bulkhead space by intake tube 56 that penetrates through the bulkhead wall, and discharges antimicrobially active gas through a discharge tube 52 that penetrates through the bulkhead wall 44 .
  • tube and tubing include not only a hollow body of material used for conveying gases, but any fitting that includes a passageway that continues the passageway in the tubing proper.
  • the tubes 52 and 56 can penetrate through the bulkhead wall 44 by connecting to a fitting mounted in the bulkhead wall that includes passageways though the bulkhead wall, with the tubing 52 and 56 fit over barbed connectors (not shown) on the fitting.
  • Another possible ion generator comprises a pair of opposite-polarity electrodes and produces hydroperoxyl radicals.
  • One of the electrodes is a negative electrode and the other electrode is an electrode that is cycled at positive electrical potential.
  • water molecules in the airflow are split into O 2 molecules and H+ ions, and as the air further moves past the negative electrode, electrons are absorbed by the airflow and convert the O 2 molecules and H+ ions into O 2 ⁇ ions and H atoms, which then join to form HOO ⁇ (hydroperoxyl radicals).
  • One electrode is a ceramic plate electrode that is cycled at positive electrical potential from 0 kV to approximately +2.95 kV at a frequency of 230 Hz.
  • One electrode is a metal pin electrode that is at a constant negative potential of approximately ⁇ 4.0 kV.
  • the antimicrobially active gas can be made by generating ozone in air or adding chlorine gas to air.
  • a number of patents describe ways of generating ozone in air passing through a housing, such as U.S. Pat. No. 6,428,756; and U.S. Patent Publications No. 2007/0163283 and No. 2009/0142225, each of which is hereby incorporated by reference.
  • a ozone generating device that can be used in the present invention is sold by BioZone Scientific International Inc., Linnoitustie 4 B, 02600 Espoo Finland under the trademark “ICEZONE”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
US13/336,496 2010-12-28 2011-12-23 Ice-making machine with air sterilization feature Abandoned US20130000327A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/336,496 US20130000327A1 (en) 2010-12-28 2011-12-23 Ice-making machine with air sterilization feature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201061427763P 2010-12-28 2010-12-28
US13/336,496 US20130000327A1 (en) 2010-12-28 2011-12-23 Ice-making machine with air sterilization feature

Publications (1)

Publication Number Publication Date
US20130000327A1 true US20130000327A1 (en) 2013-01-03

Family

ID=46383482

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/336,496 Abandoned US20130000327A1 (en) 2010-12-28 2011-12-23 Ice-making machine with air sterilization feature

Country Status (5)

Country Link
US (1) US20130000327A1 (zh)
EP (1) EP2659202A4 (zh)
CN (2) CN202757367U (zh)
AU (1) AU2011352369A1 (zh)
WO (1) WO2012092187A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD745580S1 (en) 2014-09-10 2015-12-15 Leer, Inc. Merchandiser
USD775882S1 (en) 2014-10-24 2017-01-10 Leer, Inc. Merchandiser
USD783063S1 (en) 2014-10-24 2017-04-04 Leer, Inc. Door with handle for merchandiser
USD789714S1 (en) 2014-10-24 2017-06-20 Leer, Inc. Merchandiser
US10206525B2 (en) 2014-10-24 2019-02-19 Leer, Inc. Ice merchandiser with on-product financial payment system
USD917570S1 (en) * 2018-09-28 2021-04-27 Hitachi Industrial Equipment Systems Co., Ltd. Compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130000327A1 (en) * 2010-12-28 2013-01-03 Manitowoc Foodservice Companies, Llc Ice-making machine with air sterilization feature

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129237A (en) * 1989-06-26 1992-07-14 Servend International, Inc. Ice making machine with freeze and harvest control
US5722244A (en) * 1995-09-27 1998-03-03 Mile High Equipment Co. Modular ice cube maker and method of manufacture
US6907744B2 (en) * 2002-03-18 2005-06-21 Manitowoc Foodservice Companies, Inc. Ice-making machine with improved water curtain
US20070196244A1 (en) * 2006-02-22 2007-08-23 Croft Carlton R Air/water sterilization system for ice machine
US20090142225A1 (en) * 2007-12-03 2009-06-04 Biozone Scientific International Oy Ice Bins, Ice Makers, and Methods for Cleaning Ice Bins and Ice Makers
US20090162255A1 (en) * 2007-12-21 2009-06-25 Yiu Wai Chan Air purification system
US20090183523A1 (en) * 2008-01-22 2009-07-23 Willette Christopher C Ice maker contamination control system
US20100095844A1 (en) * 2008-10-17 2010-04-22 Steril-Aire, Inc. Portable room air purifier

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130921A (ja) * 1988-11-11 1990-05-18 Taiyo Sanso Co Ltd 固体表面洗浄装置
JPH03291482A (ja) * 1990-04-06 1991-12-20 Matsushita Refrig Co Ltd 冷蔵庫
JPH04143580A (ja) * 1990-10-04 1992-05-18 Matsushita Refrig Co Ltd 冷蔵庫
US5289691A (en) * 1992-12-11 1994-03-01 The Manitowoc Company, Inc. Self-cleaning self-sterilizing ice making machine
US6182453B1 (en) * 1996-04-08 2001-02-06 Worldwide Water, Inc. Portable, potable water recovery and dispensing apparatus
US6109043A (en) * 1998-05-15 2000-08-29 Imi Cornelius Inc. Low profile ice maker
US6681580B2 (en) * 2001-09-12 2004-01-27 Manitowoc Foodservice Companies, Inc. Ice machine with assisted harvest
DE102008042786A1 (de) * 2008-10-13 2010-04-15 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
US20130000327A1 (en) * 2010-12-28 2013-01-03 Manitowoc Foodservice Companies, Llc Ice-making machine with air sterilization feature

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129237A (en) * 1989-06-26 1992-07-14 Servend International, Inc. Ice making machine with freeze and harvest control
US5722244A (en) * 1995-09-27 1998-03-03 Mile High Equipment Co. Modular ice cube maker and method of manufacture
US6907744B2 (en) * 2002-03-18 2005-06-21 Manitowoc Foodservice Companies, Inc. Ice-making machine with improved water curtain
US20070196244A1 (en) * 2006-02-22 2007-08-23 Croft Carlton R Air/water sterilization system for ice machine
US20090142225A1 (en) * 2007-12-03 2009-06-04 Biozone Scientific International Oy Ice Bins, Ice Makers, and Methods for Cleaning Ice Bins and Ice Makers
US20090162255A1 (en) * 2007-12-21 2009-06-25 Yiu Wai Chan Air purification system
US20090183523A1 (en) * 2008-01-22 2009-07-23 Willette Christopher C Ice maker contamination control system
US20100095844A1 (en) * 2008-10-17 2010-04-22 Steril-Aire, Inc. Portable room air purifier

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD745580S1 (en) 2014-09-10 2015-12-15 Leer, Inc. Merchandiser
USD775882S1 (en) 2014-10-24 2017-01-10 Leer, Inc. Merchandiser
USD783063S1 (en) 2014-10-24 2017-04-04 Leer, Inc. Door with handle for merchandiser
USD789714S1 (en) 2014-10-24 2017-06-20 Leer, Inc. Merchandiser
US10206525B2 (en) 2014-10-24 2019-02-19 Leer, Inc. Ice merchandiser with on-product financial payment system
US10674841B2 (en) 2014-10-24 2020-06-09 Leer, Inc. Merchandiser with on-product financial payment system
US10849442B2 (en) 2014-10-24 2020-12-01 Leer, Inc. Ice merchandiser with sensing capabilities
US11076710B2 (en) 2014-10-24 2021-08-03 Leer, Inc. Merchandiser with on-product financial payment system
US11419435B2 (en) 2014-10-24 2022-08-23 Leer, Inc. Merchandiser with sensing capabilities
US12016472B2 (en) 2014-10-24 2024-06-25 Leer, Inc. Merchandiser with on-product financial payment system
USD917570S1 (en) * 2018-09-28 2021-04-27 Hitachi Industrial Equipment Systems Co., Ltd. Compressor

Also Published As

Publication number Publication date
EP2659202A1 (en) 2013-11-06
EP2659202A4 (en) 2016-11-16
AU2011352369A1 (en) 2013-08-01
CN102721244A (zh) 2012-10-10
CN202757367U (zh) 2013-02-27
WO2012092187A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
US20130000327A1 (en) Ice-making machine with air sterilization feature
EP2144022A1 (en) Refrigerator, and electric device
ES2637646T3 (es) Refrigerador
EP1538409A3 (en) Refrigerator and method
JP2003269830A (ja) 冷蔵庫
EP2213969B1 (en) Refrigerator
JP2008128629A (ja) 冷蔵庫
JP6226708B2 (ja) 減酸素装置と冷蔵庫
JP2010151334A (ja) 冷蔵庫
JP2006112737A (ja) 冷蔵庫
JP5138519B2 (ja) 冷蔵庫
KR20110136917A (ko) 냉장고
JP5180009B2 (ja) 冷蔵庫
JP5978527B2 (ja) 冷蔵庫
JP5767051B2 (ja) 冷蔵庫
JP6139286B2 (ja) 冷蔵庫
JP2009174722A (ja) 冷却貯蔵庫
JP2004286335A (ja) 冷凍冷蔵庫
JP2021116932A (ja) 冷蔵庫
JP5833375B2 (ja) 冷蔵庫
KR20000000951U (ko) 냉장고의 음료수 급속 냉각장치
JP2010281526A (ja) 冷蔵庫
KR20070070432A (ko) 식품 저장고
JP2010054160A (ja) 冷蔵庫
KR20040073083A (ko) 김치냉장고

Legal Events

Date Code Title Description
AS Assignment

Owner name: MANITOWOC FOODSERVICE COMPANIES, LLC, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OLSON, WILLIAM E., JR.;MILLER, RICHARD T.;BLAHA, BRAD A.;SIGNING DATES FROM 20110901 TO 20110906;REEL/FRAME:027442/0038

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: PENTAIR FLOW SERVICES AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WELBILT, INC.;MANITOWOC FOODSERVICE COMPANIES, LLC;MANITOWOC FSG OPERATIONS, LLC;AND OTHERS;REEL/FRAME:061432/0350

Effective date: 20220728