US20120211736A1 - Compound for organic photoelectric device and organic photoelectric device including the same - Google Patents

Compound for organic photoelectric device and organic photoelectric device including the same Download PDF

Info

Publication number
US20120211736A1
US20120211736A1 US13/463,211 US201213463211A US2012211736A1 US 20120211736 A1 US20120211736 A1 US 20120211736A1 US 201213463211 A US201213463211 A US 201213463211A US 2012211736 A1 US2012211736 A1 US 2012211736A1
Authority
US
United States
Prior art keywords
group
substituted
unsubstituted
compound
photoelectric device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/463,211
Other languages
English (en)
Inventor
Hyung-Sun Kim
Eun-Sun Yu
Soo-Hyun Min
Ho-Jae Lee
Eui-Su Kang
Mi-Young Chae
Young-Hoon Kim
Ja-Hyun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Assigned to CHEIL INDUSTRIES, INC. reassignment CHEIL INDUSTRIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHAE, MI-YOUNG, KANG, EUI-SU, KIM (DECEASED), YOUNG-HOON, KIM (LEGAL REPRESENTATIVE), JA-HYUN, KIM, HYUNG-SUN, LEE, HO-JAE, MIN, SOO-HYUN, YU, EUN-SUN
Priority to US13/555,558 priority Critical patent/US8828561B2/en
Publication of US20120211736A1 publication Critical patent/US20120211736A1/en
Priority to US14/262,135 priority patent/US9478755B2/en
Priority to US14/518,912 priority patent/US9450193B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • Embodiments relate to a compound for organic photoelectric device and an organic photoelectric device including the same.
  • a photoelectric device is, in a broad sense, a device for transforming photo-energy to electrical energy, or conversely, for transforming electrical energy to photo-energy.
  • An organic photoelectric device may be classified as follows in accordance with its driving principles.
  • a first organic photoelectric device is an electron device driven as follows: excitons are generated in an organic material layer by photons from an external light source, the excitons are separated into electrons and holes, and the electrons and holes are transferred to different electrodes as a current source (voltage source).
  • a second organic photoelectric device is an electron device driven as follows: a voltage or a current is applied to at least two electrodes to inject holes and/or electrons into an organic material semiconductor positioned at an interface of the electrodes, and the device is driven by the injected electrons and holes.
  • the organic photoelectric device includes an organic light emitting diode (OLED), an organic solar cell, an organic photo-conductor drum, an organic transistor, an organic memory device, etc.
  • the organic photoelectric device may use a hole injecting or transporting material, an electron injecting or transporting material, or a light emitting material.
  • organic light emitting diode has recently drawn attention due to an increase in demand for flat panel displays.
  • organic light emission refers to transformation of electrical energy to photo-energy.
  • the organic light emitting diode transforms electrical energy into light by applying a voltage or current to an organic light emitting material.
  • the organic light emitting diode may have a functional organic material layer interposed between an anode and a cathode.
  • the organic material layer may be formed as a multi-layer including different materials, e.g., a hole injection layer (HIL), a hole transport layer (HTL), an emission layer, an electron transport layer (ETL), and an electron injection layer (EIL), in order to improve efficiency and stability of the organic light emitting diode.
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • EIL electron injection layer
  • an organic light emitting diode when a voltage is applied between an anode and a cathode, holes from the anode and electrons from the cathode are injected to an organic material layer.
  • the generated excitons generate light having certain wavelengths while shifting to a ground state.
  • An organic light emitting diode may include a low molecular aromatic diamine and aluminum complex as an emission layer-forming material.
  • the organic layer may have a structure in which a thin film (hole transport layer (HTL)) of a diamine derivative and a thin film of tris(8-hydroxy-quinolate)aluminum (Alq 3 ) are laminated.
  • HTL hole transport layer
  • a phosphorescent light emitting material may be used for a light emitting material of an organic light emitting diode in addition to a fluorescent light emitting material.
  • the phosphorescent material may emit light by transitioning electrons from a ground state to an excited state, non-radiative transitioning of a singlet exciton to a triplet exciton through intersystem crossing, and transitioning the triplet exciton to a ground state to emit light.
  • an organic material layer may include a light emitting material and a charge transport material, e.g., a hole injection material, a hole transport material, an electron transport material, an electron injection material, etc.
  • a charge transport material e.g., a hole injection material, a hole transport material, an electron transport material, an electron injection material, etc.
  • the light emitting material may be classified as blue, green, and red light emitting materials according to emitted colors, and yellow and orange light emitting materials to emit colors approaching natural colors.
  • Embodiments are directed to a compound for an organic photoelectric device, the compound being represented by the following Chemical Formula (“CF”) 1:
  • Ar1 and Ar2 may each be independently selected from the group of a substituted or unsubstituted C6 to C30 aryl group and a substituted or unsubstituted C2 to C30 heteroaryl group,
  • Ar3 and Ar4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group, and
  • R1 to R4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • the compound represented by CF 1 may be represented by the following CF 3:
  • Ar1 and Ar2 may each be independently selected from the group of a substituted or unsubstituted C6 to C30 aryl group and a substituted or unsubstituted C2 to C30 heteroaryl group,
  • Ar3 and Ar4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group, and
  • R1 to R4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • the compound represented by CF 3 may be represented by the following CF 5:
  • Ar2 and Ar5 may each be independently selected from the group of a substituted or unsubstituted C6 to C30 aryl group and a substituted or unsubstituted C2 to C30 heteroaryl group,
  • Ar3, Ar4 and Ar6 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group, and
  • R1 to R6 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar5 may be a C6 to C12 aryl group, and Ar2 may be a C10 to C20 fused polycyclic group.
  • Ar5 may be a C6 to C12 aryl group
  • Ar2 may be selected from the group of a C6 to C30 substituted or unsubstituted an arylamine group, C6 to C30 substituted or unsubstituted aminoaryl group, a substituted or unsubstituted carbazole group, a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, and a substituted or unsubstituted triazine group.
  • the compound represented by CF 1 may be represented by the following CF 2:
  • Ar1 and Art may each be independently selected from the group of a substituted or unsubstituted C6 to C30 aryl group and a substituted or unsubstituted C2 to C30 heteroaryl group,
  • Ar3 and Ar4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group, and
  • R1 to R4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • the compound represented by CF 2 may be represented by the following CF 4:
  • Ar2 and Ar5 may each be independently selected from the group of a substituted or unsubstituted C6 to C30 aryl group and a substituted or unsubstituted C2 to C30 heteroaryl group,
  • Ar3, Ar4 and Ar6 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group, and
  • R1 to R6 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar5 may be a C6 to C12 aryl group, and Ar2 may be a C10 to C20 fused polycyclic group.
  • Ar5 may be a C6 to C12 aryl group
  • Ar2 may be selected from the group of a C6 to C30 substituted or unsubstituted an arylamine group, C6 to C30 substituted or unsubstituted aminoaryl group, a substituted or unsubstituted carbazole group, a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, and a substituted or unsubstituted triazine group.
  • the compound represented by CF 1 may be represented by one or more of the following CF 6 to 37:
  • the compound represented by CF 1 may be represented by one or more of the following CF 38 and 42 to 72.
  • the compound represented by CF 1 may be represented by one or more of the following CF 73 to 83.
  • the compound represented by CF 1 may be represented by one or more of the following CF N-3 to N-54, A-2 to A-26, B-3 to B-22, and C-1 to C-18:
  • Embodiments are also directed to an organic photoelectric device, including an anode, a cathode, and at least one organic thin layer, the at least one organic thin layer being disposed between the anode and cathode, and including a compound according to an embodiment.
  • the organic thin layer may be selected from the group of an emission layer, a hole transport layer (HTL), a hole injection layer (HIL), an electron transport layer (ETL), an electron injection layer (EIL), a hole blocking layer, and a combination thereof.
  • HTL hole transport layer
  • HIL hole injection layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the compound may be included in an electron transport layer (ETL) or an electron injection layer (EIL).
  • ETL electron transport layer
  • EIL electron injection layer
  • the compound may be included in an emission layer.
  • the compound may be used as a phosphorescent or fluorescent host material in an emission layer.
  • the compound may be used as a fluorescent blue dopant material in an emission layer.
  • Embodiments are also directed to a display device including an organic photoelectric device according to an embodiment.
  • FIGS. 1 to 5 illustrate cross-sectional views showing organic light emitting diodes including compounds according to various embodiments.
  • organic photoelectric device 110 cathode 120: anode 105: organic thin layer 130: emission layer 140: hole transport layer (HTL) 150: electron transport layer (ETL) 160: electron injection layer (EIL) 170: hole injection layer (HIL) 230: emission layer + electron transport layer (ETL)
  • hetero refers to one including 1 to 3 of N, O, S, or P, and remaining carbons in one ring.
  • the term “combination thereof” refers to at least two substituents bound to each other by a linker, or at least two substituents condensed to each other.
  • alkyl refers to an aliphatic hydrocarbon group.
  • the alkyl may be a saturated alkyl group that does not include any alkene or alkyne.
  • the alkyl may be branched, linear, or cyclic.
  • alkene refers to a group in which at least two carbon atoms are bound in at least one carbon-carbon double bond
  • alkyne refers to a group in which at least two carbon atoms are bound in at least one carbon-carbon triple bond
  • the alkyl group may have 1 to 20 carbon atoms.
  • the alkyl group may be a medium-sized alkyl having 1 to 10 carbon atoms.
  • the alkyl group may be a lower alkyl having 1 to 6 carbon atoms.
  • a C1-C4 alkyl may have 1 to 4 carbon atoms and may be selected from the group of methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and t-butyl.
  • Examples of an alkyl group may be selected from the group of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, ethenyl, propenyl, butenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or the like, which may be individually and independently substituted.
  • aryl refers to an aryl group including a carbocyclic aryl (e.g., phenyl) having at least one ring having a covalent pi electron system.
  • carbocyclic aryl e.g., phenyl
  • the term also refers to monocyclic or fused polycyclic (i.e., rings sharing adjacent pairs of carbon atoms) groups.
  • this term also refers to a spiro compound having a contact point of one carbon.
  • substituted refers to one substituted with at least one selected from the group of a C1 to C30 alkyl group, a C1 to C10 alkylsilyl group, a C3 to C30 cycloalkyl group, a C6 to C30 aryl group, a C2 to C30 heteroaryl group, a C1 to C10 alkoxy group, a fluoro group, a C1 to C10 trifluoroalkyl group such as a trifluoromethyl group, and the like, a C12 to C30 carbazole group, a C6 to C30 arylamine group, a C6 to C30 substituted or unsubstituted aminoaryl group, or a cyano group.
  • a compound according to an embodiment for an organic photoelectric device is represented by the following Chemical Formula (“CF”) 1.
  • Ar1 and Ar2 may each be independently selected from the group of a substituted or unsubstituted C6 to C30 aryl group and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • Ar3 and Ar4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • a ⁇ -conjugation length of Art to Ar4 may be adjusted to enlarge a triplet energy bandgap, and thereby the compound may be usefully applied to the emission layer of an organic photoelectric device as a phosphorescent host.
  • R1 to R4 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • improved thermal stability and/or oxidation resistance may be provided, and the life-span characteristic of an organic photoelectric device may be improved.
  • two carbazole groups may be bound to each other at the 3 position or 4 position of each carbazole group, as shown in the following CF 2 or 3.
  • the two carbazole groups are bound to each other at the 3 position.
  • the compound may be synthesized easily and may provide improved oxidation stability by substituting hydrogen at the 3 position of the carbazole group.
  • the two carbazole groups are bound to each other at the 4 position.
  • the two carbazole groups may not occupy the same plane, and thus crystallization may be suppressed and solubility may be improved.
  • the ⁇ -conjugation length may become very short, and thus triplet bandgap may become high.
  • the Ar1 to Ar4 and R1 to R4 are the same as described above.
  • Ar1 may be another carbazole. Examples thereof are represented by the following CF 4 and 5.
  • Ar2 and Ar5 may each be independently selected from the group of a substituted or unsubstituted C6 to C30 aryl group and a substituted or unsubstituted C2 to C30 heteroaryl group
  • Ar3, Ar4 and Ar6 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • a triplet energy bandgap may be enlarged due to adjustment of ⁇ -conjugation length of Ar2 to Ar6, and thereby the compound may be applied to an emission layer of an organic photoelectric device as a phosphorescent host. Also, due to an increase of carbazole, hole injection and transport properties may be improved.
  • R1 to R6 may each be independently selected from the group of hydrogen, a substituted or unsubstituted C1 to C30 alkyl group, a substituted or unsubstituted C6 to C30 aryl group, and a substituted or unsubstituted C2 to C30 heteroaryl group.
  • improved thermal stability and/or oxidation resistance may be provided, and the life-span characteristic of an organic photoelectric device may be improved.
  • Ar5 may be a C6 to C12 aryl group
  • Ar2 may be a C10 to C20 fused polycyclic group.
  • the substituent is a fused polycyclic group, thermal stability, electron transporting, and injection properties may increase.
  • Ar5 may be a C6 to C12 aryl group
  • Ar2 may be selected from the group of a C6 to C30 substituted or unsubstituted arylamine group, a C6 to C30 substituted or unsubstituted aminoaryl group, a substituted or unsubstituted carbazole group, a substituted or unsubstituted pyridine group, a substituted or unsubstituted pyrimidine group, and a substituted or unsubstituted triazine group.
  • substituents are an arylamine group, aminoaryl group, or carbazole group that increases hole transport properties, hole injection and transport properties of the compound may be improved.
  • substituents are a pyrimidine group or a triazine group that increase electron transport properties, electron injection and transporting properties of the compound may be improved.
  • Numbers of the substituents may control electron transporting properties of the compound.
  • the compound may have a bulky structure due to adjustment of the substituents, and thereby crystallinity may be decreased.
  • the decreased crystallinity of the compound may lengthen the life-span of a device.
  • the compound for an organic photoelectric device may be represented by, e.g., the following CF 6 to 38 and 42 to 83.
  • the compound for an organic photoelectric device may be represented by, e.g., the following CF N-3 to N-54.
  • the compound for an organic photoelectric device may be represented by, e.g., the following CF A-2 to A-26.
  • the compound for an organic photoelectric device may be represented by, e.g., the following CF B-3 to B-22.
  • the compound for an organic photoelectric device may be represented by, e.g., the following CF C-1 to C-18.
  • the compound for an organic photoelectric device may have a glass transition temperature of higher than or equal to 110° C., and/or a thermal decomposition temperature of higher than or equal to 400° C., so as to improve thermal stability. Thereby, it may be possible to produce an organic photoelectric device having a high efficiency.
  • the compound according to an embodiment may have an appropriate HOMO energy level, and hole injection may be realized smoothly, and holes and electrons may be transported well.
  • the compound according to an embodiment for an organic photoelectric device may play a role for emitting light or injecting and/or transporting electrons, and it may act as a light emitting host together with a suitable dopant.
  • the compound may be applied as, e.g., a phosphorescent or fluorescent host material, a blue light emitting dopant material, or an electron transport material.
  • the compound for an organic photoelectric device according to an embodiment is used for an organic thin layer. Thus, it may improve the life-span characteristic, efficiency characteristics, electrochemical stability, and thermal stability of an organic photoelectric device, and may decrease the driving voltage.
  • an organic photoelectric device may be provided that includes the compound for an organic photoelectric device.
  • the organic photoelectric device may include an organic light emitting diode, an organic solar cell, an organic transistor, an organic photosensitive drum, an organic memory device, or the like.
  • the compound for an organic photoelectric device according to an embodiment may be included in an electrode or an electrode buffer layer in the organic solar cell to improve the quantum efficiency, or it may be used as an electrode material for a gate, a source-drain electrode, or the like in the organic transistor.
  • the organic photoelectric device includes an anode, a cathode, and at least one organic thin layer interposed between the anode and the cathode.
  • the at least one organic thin layer may provide an organic photoelectric device including the compound for an organic photoelectric device according to an embodiment.
  • the organic thin layer that may include the compound for an organic photoelectric device may include a layer selected from the group of an emission layer, a hole transport layer (HTL), a hole injection layer (HIL), an electron transport layer (ETL), an electron injection layer (EIL), a hole blocking film, and a combination thereof.
  • the electron transport layer (ETL) or the electron injection layer (EIL) may include the compound for an organic photoelectric device according to an embodiment.
  • the compound for an organic photoelectric device when the compound for an organic photoelectric device is included in the emission layer, the compound for an organic photoelectric device may be included as a phosphorescent or fluorescent host, and particularly, as a fluorescent blue dopant material.
  • FIGS. 1 to 5 illustrate cross-sectional views showing an organic photoelectric device including the compound for an organic photoelectric device according to an embodiment.
  • organic photoelectric devices 100, 200, 300, 400, and 500 may include at least one organic thin layer 105 interposed between an anode 120 and a cathode 110.
  • the anode 120 may include an anode material laving a large work function to help hole injection into an organic thin layer.
  • the anode material may include: a metal such as nickel, platinum, vanadium, chromium, copper, zinc, and gold, or alloys thereof; a metal oxide such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); a combined metal and oxide such as ZnO:Al or SnO 2 :Sb; or a conductive polymer such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole, polyaniline, etc. It is preferable to include a transparent electrode including indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the cathode 110 may include a cathode material having a small work function to help electron injection into an organic thin layer.
  • the cathode material may include: a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; or a multi-layered material such as LiF/Al, Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al, BaF 2 /Ca, etc. It is preferable to include a metal electrode including aluminum as a cathode.
  • the organic photoelectric device 100 includes an organic thin layer 105 including only an emission layer 130.
  • a double-layered organic photoelectric device 200 includes an organic thin layer 105 including an emission layer 230 including an electron transport layer (ETL), and a hole transport layer (HTL) 140.
  • the emission layer 230 also functions as an electron transport layer (ETL), and the hole transport layer (HTL) 140 layer has an excellent binding property with a transparent electrode such as ITO or an excellent hole transporting property.
  • a three-layered organic photoelectric device 300 includes an organic thin layer 105 including an electron transport layer (ETL) 150, an emission layer 130, and a hole transport layer (HTL) 140.
  • the emission layer 130 is independently installed, and layers having an excellent electron transporting property or an excellent hole transporting property are separately stacked.
  • a four-layered organic photoelectric device 400 includes an organic thin layer 105 including an electron injection layer (EIL) 160, an emission layer 130, a hole transport layer (HTL) 140, and a hole injection layer (HIL) 170 for binding with the cathode of ITO.
  • EIL electron injection layer
  • HTL hole transport layer
  • HIL hole injection layer
  • a five layered organic photoelectric device 500 includes an organic thin layer 105 including an electron transport layer (ETL) 150, an emission layer 130, a hole transport layer (HTL) 140, and a hole injection layer (HIL) 170, and further includes an electron injection layer (EIL) 160 to achieve a low voltage.
  • ETL electron transport layer
  • HTL hole transport layer
  • HIL hole injection layer
  • EIL electron injection layer
  • the organic thin layer 105 including at least one selected from the group of an electron transport layer (ETL) 150, an electron injection layer (EIL) 160, an emission layer 130 and 230, a hole transport layer (HTL) 140, a hole injection layer (HIL) 170, and combinations thereof includes a compound for an organic photoelectric device according to an embodiment.
  • the material for the organic photoelectric device may be used for an electron transport layer (ETL) 150 including the electron transport layer (ETL) 150 or electron injection layer (EIL) 160.
  • ETL electron transport layer
  • the material for the organic photoelectric device may be included as a phosphorescent or fluorescent host or a fluorescent blue dopant.
  • the organic photoelectric device may be fabricated by, e.g.: forming an anode on a substrate, forming an organic thin layer in accordance with a dry coating method such as evaporation, sputtering, plasma plating, and ion plating or a wet coating method such as spin coating, dipping, and flow coating, and providing a cathode thereon.
  • a dry coating method such as evaporation, sputtering, plasma plating, and ion plating
  • a wet coating method such as spin coating, dipping, and flow coating
  • Another embodiment provides a display device including the organic photoelectric device according to an embodiment.
  • the compound represented by CF 12 was synthesized as in Reaction Scheme 1.
  • the compound represented by CF 12 was element-analyzed. The result is provided as follows.
  • the compound represented by CF 26 was synthesized as in Reaction Scheme 2.
  • the compound represented by CF 26 was element-analyzed. The result is provided as follows.
  • the compound represented by CF 10 was synthesized as in Reaction Scheme 3.
  • the compound represented by CF 10 was element-analyzed. The result is provided as follows.
  • the compound represented by CF N-4 was synthesized as in Reaction Scheme 4.
  • the compound represented by CF N-4 was element-analyzed. The result is provided as follows.
  • the compound represented by CF N-5 was synthesized as in Reaction Scheme 5.
  • the compound represented by CF N-5 was element-analyzed. The result is provided as follows.
  • the compound represented by CF N-14 was synthesized as in Reaction Scheme 6.
  • the compound represented by CF N-14 was element-analyzed. The result is provided as follows.
  • the compound represented by CF A-2 was synthesized as in Reaction Scheme 7.
  • the compound represented by CF A-10 was synthesized as in Reaction Scheme 8.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • the compound represented by CF A-12 was synthesized as in Reaction Scheme 9.
  • the mixture was agitated for 12 hours under a nitrogen flow at 150° C.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • the compound represented by CF B-5 was synthesized as in Reaction Scheme 10.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • the compound represented by CF B-8 was synthesized as in Reaction Scheme 11.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • the compound represented by CF B-21 was synthesized as in Reaction Scheme 12.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • the compound represented by CF N-3 was synthesized as in Reaction Scheme 13.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • the compound represented by CF N-54 was synthesized as in Reaction Scheme 14.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • the compound represented by CF C-13 was synthesized as in Reaction Scheme 15.
  • the mixture was heated at 110° C. and agitated for 12 hours under a nitrogen flow.
  • An organic photoelectric device was fabricated by using a host of the compound represented by CF 11 obtained from Example 1, and a dopant of Ir(PPy) 3 .
  • the anode was ITO having a thickness of 1000 ⁇
  • the cathode was aluminum (Al) having a thickness of moo A.
  • the organic photoelectric device was fabricated by cutting an ITO glass substrate having a sheet resistance of 15 ⁇ /cm 2 to a size of 50 mm ⁇ 50 mm ⁇ 0.7 mm, ultrasonic wave cleaning the same in acetone, isopropyl alcohol, and pure water for 15 minutes for each, and UV ozone cleaning the same for 30 minutes to provide an anode.
  • N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine (NPB) (70 nm) and 4,4′,4′′-tri(N-carbazolyl)triphenylamine (TCTA) (10 nm) were deposited on the upper surface of the substrate under the conditions of a vacuum degree of 650 ⁇ 10 ⁇ 7 Pa and a deposition speed of 0.1 to 0.3 nm/s to provide a hole transport layer (HTL) having a thickness of 900 ⁇ .
  • HTL hole transport layer
  • a 300 ⁇ -thick emission layer was prepared by using the compound synthesized in Example 1 under the same vacuum deposition conditions, and a phosphorescence dopant of Ir(PPy) 3 was simultaneously deposited.
  • a deposition rate of phosphorescent dopant was adjusted so that the phosphorescent dopant was present in an amount of 7 wt % based on 100 wt % of emission layer.
  • Bis(8-hydroxy-2-methylquinolato)-aluminumbiphenoxide (BAlq) was deposited on the emission layer under the same vacuum deposition conditions to form a hole blocking layer having a thickness of 50 ⁇ .
  • Alq 3 was deposited under the same vacuum deposition conditions to provide an electron transport layer (ETL) having a thickness of 200 ⁇ .
  • ETL electron transport layer
  • LiF and Al were sequentially deposited on the upper surface of the electron transport layer (ETL) to fabricate an organic photoelectric device.
  • ETL electron transport layer
  • the organic photoelectric device had a structure of ITO/NPB (70 nm)/TCTA (10 nm)/EML (compound of Example 1 (93 wt %)+Ir(PPy) 3 (7 wt %), 30 nm)/BAlq (5 nm)/Alq 3 (20 nm)/LiF (1 nm)/Al (100 nm).
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example 2 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example 3 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-1 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-2 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-4 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-6 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-7 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-10 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-11 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that the compound synthesized in Example N-12 was used as a host of the emission layer.
  • An organic photoelectric device was fabricated in accordance with the same procedure as in Example 4, except that 4,4-N,N-dicarbazolebiphenyl (CBP) was used as a host of the emission layer instead of the compound synthesized in Example 1.
  • CBP 4,4-N,N-dicarbazolebiphenyl
  • Comparative Example 1 was measured for luminance change, current density change depending upon voltage, and luminous efficiency.
  • the specific measurement methods were as follows and the results are shown in the following Table 1.
  • the obtained organic photoelectric device was measured for current value flowing in the unit device while increasing the voltage from 0 V to 10 V using a current-voltage meter (Keithley 2400), and the measured current value was divided by area to provide the result.
  • the obtained organic photoelectric device was measured for luminance using a luminance meter (Minolta Cs-1000A) while increasing the voltage from 0 V to 10 V.
  • the current efficiency (cd/A) and electric power efficiency (lm/W) at the same luminance (1000 cd/m 2 ) were calculated by using luminance and current density from (1) and (2), and voltage
  • Examples 4 to 6 showed better driving voltage and efficiency compared to the reference material, CBP. These results showed that the compounds prepared in Examples 1 to 3 were applied as a material for an organic photoelectric device.
  • a maximum light emitting wavelength may be shifted to a long wavelength or color purity may decrease because of interactions between molecules, or device efficiency may decrease because of a light emitting quenching effect. Therefore, a host/dopant system may be used as a light emitting material in order to improve color purity and increase luminous efficiency and stability through energy transfer.
  • a material constituting an organic material layer for example a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, and a light emitting material such as a host and/or a dopant, should be stable and have good efficiency. Such a material may also be useful other organic photoelectric devices.
  • a compound according to an embodiment may have excellent electrochemical and thermal stability, and may provide an organic photoelectric device having an excellent life span and high luminous efficiency at a low driving voltage.
  • a compound according to an embodiment may act as an electron injection and/or transport material, and may also act as a light emitting host along with an appropriate dopant.
  • a compound for an organic photoelectric device may have a structure in which two carbazole groups are bound to a core and a substituent is selectively bound to the core.
  • the compound for an organic photoelectric device may be a compound having various energy bandgaps by including the core and by introducing various substituents to the core, and thus may provide a compound satisfying conditions required for the emission layer as well as the electron injection layer (EIL) and transport layer.
  • EIL electron injection layer
  • an organic photoelectric device includes a compound having the appropriate energy level depending upon the substituents, and electron transporting properties may be controlled to provide excellent efficiency and driving voltage. Further, electrochemical and thermal stability may be improved to enhance the life-span characteristic while driving the organic photoelectric device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
US13/463,211 2009-11-03 2012-05-03 Compound for organic photoelectric device and organic photoelectric device including the same Abandoned US20120211736A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/555,558 US8828561B2 (en) 2009-11-03 2012-07-23 Compound for organic photoelectric device and organic photoelectric device including the same
US14/262,135 US9478755B2 (en) 2009-11-03 2014-04-25 Compound for organic photoelectric device and organic photoelectric device including the same
US14/518,912 US9450193B2 (en) 2009-11-03 2014-10-20 Compound for organic photoelectric device and organic photoelectric device including the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2009-0105576 2009-11-03
KR1020090105576A KR101506999B1 (ko) 2009-11-03 2009-11-03 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
PCT/KR2010/007550 WO2011055934A2 (fr) 2009-11-03 2010-10-29 Composé pour dispositif photoélectrique organique et dispositif photoélectrique organique en contenant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007550 Continuation-In-Part WO2011055934A2 (fr) 2009-11-03 2010-10-29 Composé pour dispositif photoélectrique organique et dispositif photoélectrique organique en contenant

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/555,558 Continuation-In-Part US8828561B2 (en) 2009-11-03 2012-07-23 Compound for organic photoelectric device and organic photoelectric device including the same
US14/518,912 Continuation US9450193B2 (en) 2009-11-03 2014-10-20 Compound for organic photoelectric device and organic photoelectric device including the same

Publications (1)

Publication Number Publication Date
US20120211736A1 true US20120211736A1 (en) 2012-08-23

Family

ID=43970508

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/463,211 Abandoned US20120211736A1 (en) 2009-11-03 2012-05-03 Compound for organic photoelectric device and organic photoelectric device including the same
US14/518,912 Active 2030-11-13 US9450193B2 (en) 2009-11-03 2014-10-20 Compound for organic photoelectric device and organic photoelectric device including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/518,912 Active 2030-11-13 US9450193B2 (en) 2009-11-03 2014-10-20 Compound for organic photoelectric device and organic photoelectric device including the same

Country Status (6)

Country Link
US (2) US20120211736A1 (fr)
EP (2) EP3460024B1 (fr)
JP (1) JP2013510141A (fr)
KR (1) KR101506999B1 (fr)
CN (2) CN105670610B (fr)
WO (1) WO2011055934A2 (fr)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
US20120071668A1 (en) * 2010-09-21 2012-03-22 Semiconductor Energy Laboratory Co., Ltd. Carbazole Derivative, Light-Emitting Element Material and Organic Semiconductor Material
US20120205636A1 (en) * 2009-10-21 2012-08-16 Young-Hoon Kim Compound for organic photoelectric device and organic photoelectric device including the same
WO2013191177A1 (fr) * 2012-06-18 2013-12-27 東ソー株式会社 Composé azine cyclique, son procédé de fabrication, et élément électroluminescent organique le contenant
US20140001446A1 (en) * 2011-12-05 2014-01-02 Yumiko Mizuki Material for organic electroluminescence device and organic electroluminescence device
US8652654B2 (en) 2010-04-20 2014-02-18 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US20140084270A1 (en) * 2012-08-17 2014-03-27 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20140131665A1 (en) * 2012-11-12 2014-05-15 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence
KR101447961B1 (ko) 2013-02-01 2014-10-13 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
JP2014196251A (ja) * 2013-03-29 2014-10-16 出光興産株式会社 ヘテロアレーン誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
US20140367667A1 (en) * 2012-01-10 2014-12-18 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element, and element using same
US20150014657A1 (en) * 2013-07-15 2015-01-15 Samsung Display Co., Ltd. Organic light emitting device
WO2015011924A1 (fr) * 2013-07-23 2015-01-29 出光興産株式会社 Nouveau composé et élément organique électroluminescent produit avec celui-ci
WO2015142036A1 (fr) * 2014-03-17 2015-09-24 Rohm And Haas Electronic Materials Korea Ltd. Matériau tampon de confinement d'électrons et dispositif électroluminescent organique comportant de matériau
US20150325794A1 (en) * 2012-12-07 2015-11-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element
US20150364696A1 (en) * 2014-06-13 2015-12-17 Samsung Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
US20160087223A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light-emitting device
US20160126471A1 (en) * 2014-10-31 2016-05-05 Samsung Sdi Co., Ltd. Organic optoelectric device and display device
US20160126472A1 (en) * 2013-09-06 2016-05-05 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
US20160141511A1 (en) * 2014-11-13 2016-05-19 Samsung Display Co., Ltd. Organic light-emitting device
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US9406891B2 (en) 2012-12-12 2016-08-02 Samsung Electronics Co., Ltd. Compound for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
US20160260901A1 (en) * 2015-03-06 2016-09-08 Samsung Display Co., Ltd. Organic light-emitting device
US9472768B2 (en) 2011-06-20 2016-10-18 Cheil Industries, Inc. Material for an organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US20160308145A1 (en) * 2013-11-12 2016-10-20 Kyulux, Inc. Light-emitting material, and delayed fluorescent emitter and organic light-emitting device using same
CN106068267A (zh) * 2014-03-17 2016-11-02 罗门哈斯电子材料韩国有限公司 电子缓冲材料和包含其的有机电致发光装置
US9530969B2 (en) 2011-12-05 2016-12-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
US9543530B2 (en) 2010-05-03 2017-01-10 Cheil Industries, Inc. Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
US9559309B2 (en) 2010-12-02 2017-01-31 Cheil Industries, Inc. Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US9590184B2 (en) 2012-12-27 2017-03-07 Samsung Display Co., Ltd. Organic light-emitting diode
US20170084845A1 (en) * 2015-09-21 2017-03-23 Samsung Sdi Co., Ltd. Organic optoelectronic device and display device
US20170149007A1 (en) * 2011-03-25 2017-05-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US9670185B2 (en) 2012-12-07 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9705091B2 (en) 2010-12-20 2017-07-11 Idemitsu Kosan Co., Ltd. Aromatic heterocycle derivative and organic electroluminescent element using same
CN107325050A (zh) * 2012-12-28 2017-11-07 出光兴产株式会社 有机电致发光元件
US20170373255A1 (en) * 2016-06-23 2017-12-28 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US9911925B2 (en) 2014-02-11 2018-03-06 Samsung Electronics Co., Ltd. Carbazole-based compound and organic light-emitting device including the same
US9966541B2 (en) 2012-06-14 2018-05-08 Idemitsu Kosan Co. Ltd. Biscarbazole derivative host materials and green emitter for OLED emissive region
US20180277769A1 (en) * 2017-03-24 2018-09-27 Idemitsu Kosan Co., Ltd. Composition, organic-electroluminescence-device material, composition film, organic electroluminescence device, and electronic device
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10253016B2 (en) 2013-07-29 2019-04-09 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
US20200044163A1 (en) * 2014-06-03 2020-02-06 Universal Display Corporation Organic electroluminescent materials and devices
US10651392B2 (en) 2015-09-30 2020-05-12 Samsung Electronics Co., Ltd. Organic light-emitting device
CN112592333A (zh) * 2019-10-02 2021-04-02 三星Sdi株式会社 用于有机光电装置的化合物、有机光电装置及显示装置
US11316124B2 (en) 2014-05-02 2022-04-26 Samsung Display Co., Ltd. Organic light-emitting device
US11552256B2 (en) 2014-07-25 2023-01-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US12010913B2 (en) 2019-10-02 2024-06-11 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, organic optoelectronic device and display device

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471771B1 (fr) * 2009-08-28 2016-11-16 Hodogaya Chemical Co., Ltd. Élément électroluminescent organique et composé ayant une structure à cycle carbazole
KR101506999B1 (ko) 2009-11-03 2015-03-31 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
US8828561B2 (en) 2009-11-03 2014-09-09 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
DE112010005815B4 (de) 2010-08-20 2020-12-10 Universal Display Corp. Bicarbazolverbindungen für OLEDs
KR101478000B1 (ko) * 2010-12-21 2015-01-05 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP6051864B2 (ja) * 2011-03-14 2016-12-27 東レ株式会社 発光素子材料および発光素子
WO2012128298A1 (fr) * 2011-03-24 2012-09-27 出光興産株式会社 Dérivé de bis-carbazole et élément électroluminescent organique l'utilisant
JP6197265B2 (ja) * 2011-03-28 2017-09-20 東レ株式会社 発光素子材料および発光素子
EP2709181B1 (fr) 2011-05-12 2016-08-10 Toray Industries, Inc. Matériau d'élément électroluminescent et élément électroluminescent
KR101443756B1 (ko) * 2011-05-26 2014-09-23 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20130011955A (ko) * 2011-07-21 2013-01-30 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
WO2013012298A1 (fr) * 2011-07-21 2013-01-24 Rohm And Haas Electronic Materials Korea Ltd. Composés 9h-carbazole et dispositifs électroluminescents comprenant ces derniers
JP6034005B2 (ja) * 2011-08-03 2016-11-30 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
KR101474797B1 (ko) 2011-08-08 2014-12-19 제일모직 주식회사 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
JP6129075B2 (ja) * 2011-08-18 2017-05-17 出光興産株式会社 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
KR20130020398A (ko) * 2011-08-19 2013-02-27 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
JP6212391B2 (ja) * 2011-09-09 2017-10-11 出光興産株式会社 有機エレクトロルミネッセンス素子
TW201326120A (zh) * 2011-10-26 2013-07-01 Idemitsu Kosan Co 有機電致發光元件及有機電致發光元件用材料
WO2013077362A1 (fr) * 2011-11-22 2013-05-30 出光興産株式会社 Dérivé hétérocyclique aromatique, matière pour élément électroluminescent organique et élément électroluminescent organique
KR20130062583A (ko) * 2011-12-05 2013-06-13 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
WO2013084484A1 (fr) * 2011-12-07 2013-06-13 出光興産株式会社 Matériau pour élément électroluminescent organique et élément électroluminescent organique utilisant ledit matériau
KR101497133B1 (ko) * 2011-12-23 2015-02-27 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
US9627625B2 (en) * 2012-02-15 2017-04-18 Toray Industries, Inc. Light-emitting device material and light-emitting device
JP2015526886A (ja) * 2012-06-14 2015-09-10 ユニバーサル ディスプレイ コーポレイション Oled発光領域のためのビスカルバゾール誘導体ホスト物質及び赤色発光体
WO2014007022A1 (fr) * 2012-07-06 2014-01-09 東レ株式会社 Matériau d'élément électroluminescent et élément électroluminescent
WO2014013936A1 (fr) * 2012-07-19 2014-01-23 新日鉄住金化学株式会社 Élément électroluminescent organique
JP6299223B2 (ja) 2012-07-25 2018-03-28 東レ株式会社 発光素子材料および発光素子
KR101497138B1 (ko) * 2012-08-21 2015-02-27 제일모직 주식회사 유기광전자소자 및 이를 포함하는 표시장치
CN103524497B (zh) * 2012-11-20 2015-08-05 Tcl集团股份有限公司 双极性磷光主体化合物、制备方法和应用及电致发光器件
KR102104633B1 (ko) * 2013-02-15 2020-04-27 에스에프씨주식회사 신규한 유기 화합물 및 이를 포함하는 유기 발광 소자
JP6381874B2 (ja) * 2013-07-18 2018-08-29 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6627508B2 (ja) * 2013-08-14 2020-01-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置及び蛍光発光性化合物
KR101577121B1 (ko) * 2013-12-27 2015-12-14 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101846436B1 (ko) * 2014-01-29 2018-04-06 제일모직 주식회사 전자수송보조층용 조성물, 전자수송보조층을 포함하는 유기 광전자 소자 및 표시 장치
KR20150099192A (ko) * 2014-02-21 2015-08-31 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR102253443B1 (ko) * 2014-05-13 2021-05-20 삼성디스플레이 주식회사 유기 발광 소자
KR102430648B1 (ko) * 2014-09-05 2022-08-09 롬엔드하스전자재료코리아유한회사 정공 전달 재료 및 이를 포함하는 유기 전계 발광 소자
KR102507371B1 (ko) * 2015-12-03 2023-03-08 솔루스첨단소재 주식회사 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR101872349B1 (ko) * 2016-04-29 2018-06-28 제일모직 주식회사 유기광전자소자용 조성물, 유기 광전자 소자 및 표시 장치
KR101693744B1 (ko) * 2016-05-11 2017-02-06 희성소재 (주) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
CN108276325A (zh) * 2017-10-25 2018-07-13 吉林奥来德光电材料股份有限公司 有机电致发光材料及其制备方法和有机电致发光器件
JP2019116461A (ja) * 2017-12-27 2019-07-18 三星電子株式会社Samsung Electronics Co.,Ltd. 化合物、有機エレクトロルミネッセンス素子用液状組成物、有機エレクトロルミネッセンス素子用インク組成物、有機エレクトロルミネッセンス素子用薄膜、及び有機エレクトロルミネッセンス素子
CN110854293B (zh) * 2018-12-10 2021-04-20 广州华睿光电材料有限公司 氮杂环化合物、组合物、高聚物及有机电致发光器件
WO2023208899A1 (fr) 2022-04-28 2023-11-02 Merck Patent Gmbh Matériaux pour dispositifs électroluminescents organiques
KR20240010669A (ko) * 2022-07-15 2024-01-24 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090912A1 (fr) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. Procédé de fabrication de dispositif électroluminescent organique, dispositif électroluminescent organique fabriqué par le procédé, dispositif d'affichage et dispositif illuminateur
JP2008294161A (ja) * 2007-05-23 2008-12-04 Toray Ind Inc 発光素子
US20090302745A1 (en) * 2006-04-19 2009-12-10 Konica Minolta Holdings, Inc. Organic Electroluminescence Element Material, Organic Electroluminescence Element, Display Device and Lighting Apparatus

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124242A (ja) 1985-11-22 1987-06-05 Mitsubishi Alum Co Ltd 高強度アルミニウム合金部材の製造方法
JPH05114329A (ja) 1991-10-21 1993-05-07 Nissha Printing Co Ltd 表示柄付き透明タツチパネル
JP3139321B2 (ja) * 1994-03-31 2001-02-26 東レ株式会社 発光素子
JPH11329737A (ja) * 1998-03-13 1999-11-30 Taiho Ind Co Ltd 有機多層型エレクトロルミネッセンス素子及び有機多層型エレクトロルミネッセンス素子用構造体の合成方法
KR100346984B1 (ko) * 2000-02-08 2002-07-31 삼성에스디아이 주식회사 열안정성이 우수한 유기 전기발광 소자용 정공수송성화합물 및 그 제조방법
TW532048B (en) * 2000-03-27 2003-05-11 Idemitsu Kosan Co Organic electroluminescence element
JP4060802B2 (ja) 2002-03-15 2008-03-12 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP4707082B2 (ja) 2002-11-26 2011-06-22 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子および表示装置
JP4580342B2 (ja) * 2003-01-24 2010-11-10 出光興産株式会社 有機エレクトロルミネッセンス素子
CN1748017A (zh) 2003-02-12 2006-03-15 皇家飞利浦电子股份有限公司 咔唑化合物及其在有机电致发光器件中的应用
US7329722B2 (en) 2004-08-30 2008-02-12 Samsung Electronics Co., Ltd Polymeric charge transport materials having carbazolyl repeating units
WO2006025186A1 (fr) * 2004-09-01 2006-03-09 Hirose Engineering Co., Ltd. Composé de type dicarbazyle, procédé de synthèse de ce composé, polymère de dicarbazyle, et composant luminescent
CN101087776B (zh) 2004-12-24 2012-07-04 先锋公司 有机化合物、电荷传输材料和有机电致发光元件
CN101346408A (zh) 2005-12-20 2009-01-14 皇家飞利浦电子股份有限公司 聚合咔唑化合物
US7935434B2 (en) 2006-01-05 2011-05-03 Konica Minolta Holdings, Inc. Organic electroluminescent device, display, and illuminating device
JP2008135498A (ja) * 2006-11-28 2008-06-12 Toray Ind Inc 発光素子
US7381985B1 (en) * 2006-12-13 2008-06-03 General Electric Company Bis-carbazole monomers and polymers
US7723722B2 (en) 2007-03-23 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Organic compound, anthracene derivative, and light-emitting element, light-emitting device, and electronic device using anthracene derivative
WO2008156105A1 (fr) * 2007-06-21 2008-12-24 Konica Minolta Holdings, Inc. Matériau d'élément électroluminescent organique, élément électroluminescent organique, dispositif d'affichage et dispositif d'éclairage
WO2009060780A1 (fr) 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. Elément électroluminescent organique, dispositif d'affichage, et système d'éclairage
JP5018891B2 (ja) 2007-11-08 2012-09-05 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20090153034A1 (en) 2007-12-13 2009-06-18 Universal Display Corporation Carbazole-containing materials in phosphorescent light emittinig diodes
WO2009084413A1 (fr) 2007-12-28 2009-07-09 Konica Minolta Holdings, Inc. Dispositif électroluminescent organique et procédé de fabrication de dispositif électroluminescent organique
DE102009023155A1 (de) * 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR101431644B1 (ko) * 2009-08-10 2014-08-21 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101506999B1 (ko) 2009-11-03 2015-03-31 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
JP5261611B2 (ja) 2010-03-31 2013-08-14 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP5074627B2 (ja) 2010-04-20 2012-11-14 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US8227801B2 (en) 2010-04-26 2012-07-24 Universal Display Corporation Bicarbzole containing compounds for OLEDs
EP2674429B1 (fr) 2011-02-07 2020-12-23 Idemitsu Kosan Co., Ltd. Dérivé de biscarbazole ainsi qu'élément électroluminescent organique utilisant celui-ci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090302745A1 (en) * 2006-04-19 2009-12-10 Konica Minolta Holdings, Inc. Organic Electroluminescence Element Material, Organic Electroluminescence Element, Display Device and Lighting Apparatus
WO2008090912A1 (fr) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. Procédé de fabrication de dispositif électroluminescent organique, dispositif électroluminescent organique fabriqué par le procédé, dispositif d'affichage et dispositif illuminateur
JP2008294161A (ja) * 2007-05-23 2008-12-04 Toray Ind Inc 発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Grazulevicius et al., Well-defined [3,3'] bicarbazolyl-based electroactive compounds for optoelectronics, 2008, Synthetic Metals, Vol. 158, pages 383-390. *

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120205636A1 (en) * 2009-10-21 2012-08-16 Young-Hoon Kim Compound for organic photoelectric device and organic photoelectric device including the same
US8530063B2 (en) * 2009-10-21 2013-09-10 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
US8940414B2 (en) 2010-04-20 2015-01-27 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8877352B2 (en) 2010-04-20 2014-11-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8865323B2 (en) 2010-04-20 2014-10-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US10193077B2 (en) 2010-04-20 2019-01-29 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8652654B2 (en) 2010-04-20 2014-02-18 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US9543530B2 (en) 2010-05-03 2017-01-10 Cheil Industries, Inc. Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
JP2012049518A (ja) * 2010-07-27 2012-03-08 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、化合物、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
US10071993B2 (en) 2010-09-21 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light-emitting element material and organic semiconductor material
US8642782B2 (en) * 2010-09-21 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light-emitting element material and organic semiconductor material
US9450188B2 (en) 2010-09-21 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light-emitting element material and organic semiconductor material
US20120071668A1 (en) * 2010-09-21 2012-03-22 Semiconductor Energy Laboratory Co., Ltd. Carbazole Derivative, Light-Emitting Element Material and Organic Semiconductor Material
US9559309B2 (en) 2010-12-02 2017-01-31 Cheil Industries, Inc. Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US9705091B2 (en) 2010-12-20 2017-07-11 Idemitsu Kosan Co., Ltd. Aromatic heterocycle derivative and organic electroluminescent element using same
US9373802B2 (en) 2011-02-07 2016-06-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US9818958B2 (en) 2011-02-07 2017-11-14 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10230057B2 (en) 2011-02-07 2019-03-12 Idemitsu Kosan Co., Ltd. Biscarbazole derivatives and organic electroluminescence device employing the same
US10147888B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10147889B2 (en) 2011-02-07 2018-12-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US11271171B2 (en) 2011-02-07 2022-03-08 Idemitsu Kosan Co., Ltd. Biscarbazole derivative and organic electroluminescent element using same
US10879482B2 (en) * 2011-03-25 2020-12-29 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20170149007A1 (en) * 2011-03-25 2017-05-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US9472768B2 (en) 2011-06-20 2016-10-18 Cheil Industries, Inc. Material for an organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US9530969B2 (en) 2011-12-05 2016-12-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
US20140001446A1 (en) * 2011-12-05 2014-01-02 Yumiko Mizuki Material for organic electroluminescence device and organic electroluminescence device
US9306171B2 (en) * 2011-12-05 2016-04-05 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
US20140367667A1 (en) * 2012-01-10 2014-12-18 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element, and element using same
US9685614B2 (en) * 2012-01-10 2017-06-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element, and element using same
US9966541B2 (en) 2012-06-14 2018-05-08 Idemitsu Kosan Co. Ltd. Biscarbazole derivative host materials and green emitter for OLED emissive region
WO2013191177A1 (fr) * 2012-06-18 2013-12-27 東ソー株式会社 Composé azine cyclique, son procédé de fabrication, et élément électroluminescent organique le contenant
US20140084270A1 (en) * 2012-08-17 2014-03-27 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20140131665A1 (en) * 2012-11-12 2014-05-15 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence
US9670185B2 (en) 2012-12-07 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US11716902B2 (en) 2012-12-07 2023-08-01 Universal Display Corporation Organic electroluminescent materials and devices
US20150325794A1 (en) * 2012-12-07 2015-11-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element
US10910564B2 (en) 2012-12-07 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10069081B2 (en) 2012-12-07 2018-09-04 Universal Display Corporation Organic electroluminescent materials and devices
US9954178B2 (en) * 2012-12-07 2018-04-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element
US9406891B2 (en) 2012-12-12 2016-08-02 Samsung Electronics Co., Ltd. Compound for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
US9590184B2 (en) 2012-12-27 2017-03-07 Samsung Display Co., Ltd. Organic light-emitting diode
CN107325050A (zh) * 2012-12-28 2017-11-07 出光兴产株式会社 有机电致发光元件
KR101447961B1 (ko) 2013-02-01 2014-10-13 (주)피엔에이치테크 새로운 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
JP2014196251A (ja) * 2013-03-29 2014-10-16 出光興産株式会社 ヘテロアレーン誘導体、有機エレクトロルミネッセンス素子用材料、及び有機エレクトロルミネッセンス素子
US20150014657A1 (en) * 2013-07-15 2015-01-15 Samsung Display Co., Ltd. Organic light emitting device
WO2015011924A1 (fr) * 2013-07-23 2015-01-29 出光興産株式会社 Nouveau composé et élément organique électroluminescent produit avec celui-ci
US9508939B2 (en) 2013-07-23 2016-11-29 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescent element produced using same
US10253016B2 (en) 2013-07-29 2019-04-09 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
US11111231B2 (en) 2013-07-29 2021-09-07 Lg Chem, Ltd. Heterocyclic compound and organic light-emitting device comprising same
US20160126472A1 (en) * 2013-09-06 2016-05-05 Samsung Sdi Co., Ltd. Composition for organic optoelectronic device, organic optoelectronic device, and display device
US20160308145A1 (en) * 2013-11-12 2016-10-20 Kyulux, Inc. Light-emitting material, and delayed fluorescent emitter and organic light-emitting device using same
US11101433B2 (en) * 2013-11-12 2021-08-24 Kyulux, Inc. Light-emitting material, and delayed fluorescent emitter and organic light-emitting device using same
US9911925B2 (en) 2014-02-11 2018-03-06 Samsung Electronics Co., Ltd. Carbazole-based compound and organic light-emitting device including the same
WO2015142036A1 (fr) * 2014-03-17 2015-09-24 Rohm And Haas Electronic Materials Korea Ltd. Matériau tampon de confinement d'électrons et dispositif électroluminescent organique comportant de matériau
CN106068267A (zh) * 2014-03-17 2016-11-02 罗门哈斯电子材料韩国有限公司 电子缓冲材料和包含其的有机电致发光装置
US11882714B2 (en) 2014-05-02 2024-01-23 Samsung Display Co., Ltd. Organic light-emitting device
US11316124B2 (en) 2014-05-02 2022-04-26 Samsung Display Co., Ltd. Organic light-emitting device
US20200044163A1 (en) * 2014-06-03 2020-02-06 Universal Display Corporation Organic electroluminescent materials and devices
KR102300023B1 (ko) * 2014-06-13 2021-09-09 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
US20150364696A1 (en) * 2014-06-13 2015-12-17 Samsung Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
KR20150143963A (ko) * 2014-06-13 2015-12-24 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
US10825993B2 (en) * 2014-06-13 2020-11-03 Samsung Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
US11552256B2 (en) 2014-07-25 2023-01-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US11800799B2 (en) 2014-07-25 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US9793494B2 (en) * 2014-09-19 2017-10-17 Samsung Display Co., Ltd. Organic light-emitting device
US20160087223A1 (en) * 2014-09-19 2016-03-24 Samsung Display Co., Ltd. Organic light-emitting device
US10074810B2 (en) * 2014-10-31 2018-09-11 Samsung Sdi Co., Ltd. Organic optoelectric device and display device
US20160126471A1 (en) * 2014-10-31 2016-05-05 Samsung Sdi Co., Ltd. Organic optoelectric device and display device
US20160141511A1 (en) * 2014-11-13 2016-05-19 Samsung Display Co., Ltd. Organic light-emitting device
US9755158B2 (en) * 2014-11-13 2017-09-05 Samsung Display Co., Ltd. Organic light-emitting device
US9896621B2 (en) * 2015-03-06 2018-02-20 Samsung Display Co., Ltd. Organic light-emitting device
US20160260901A1 (en) * 2015-03-06 2016-09-08 Samsung Display Co., Ltd. Organic light-emitting device
US20170084845A1 (en) * 2015-09-21 2017-03-23 Samsung Sdi Co., Ltd. Organic optoelectronic device and display device
US10651392B2 (en) 2015-09-30 2020-05-12 Samsung Electronics Co., Ltd. Organic light-emitting device
US10672990B2 (en) * 2016-06-23 2020-06-02 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US20170373255A1 (en) * 2016-06-23 2017-12-28 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
US20180277769A1 (en) * 2017-03-24 2018-09-27 Idemitsu Kosan Co., Ltd. Composition, organic-electroluminescence-device material, composition film, organic electroluminescence device, and electronic device
US10862049B2 (en) * 2017-03-24 2020-12-08 Idemitsu Kosan Co., Ltd. Composition, organic-electroluminescence-device material, composition film, organic electroluminescence device, and electronic device
CN112592333A (zh) * 2019-10-02 2021-04-02 三星Sdi株式会社 用于有机光电装置的化合物、有机光电装置及显示装置
US12010913B2 (en) 2019-10-02 2024-06-11 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, organic optoelectronic device and display device

Also Published As

Publication number Publication date
CN105670610B (zh) 2019-03-19
US20150069368A1 (en) 2015-03-12
CN102597158A (zh) 2012-07-18
EP2497811A2 (fr) 2012-09-12
JP2013510141A (ja) 2013-03-21
EP2497811A4 (fr) 2013-09-11
EP3460024B1 (fr) 2021-04-28
KR20110048840A (ko) 2011-05-12
WO2011055934A3 (fr) 2011-11-03
EP3460024A1 (fr) 2019-03-27
WO2011055934A2 (fr) 2011-05-12
EP2497811B1 (fr) 2018-12-19
US9450193B2 (en) 2016-09-20
CN105670610A (zh) 2016-06-15
KR101506999B1 (ko) 2015-03-31
WO2011055934A9 (fr) 2012-10-26

Similar Documents

Publication Publication Date Title
US9450193B2 (en) Compound for organic photoelectric device and organic photoelectric device including the same
US10121973B2 (en) Compound for organic optoelectronic device, organic light-emitting diode including same, and display device including organic light-emitting diode
US9543530B2 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
US9136481B2 (en) Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
US8697257B2 (en) Compound for organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
US8530063B2 (en) Compound for organic photoelectric device and organic photoelectric device including the same
US9419230B2 (en) Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US9559309B2 (en) Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US9548460B2 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
US9199966B2 (en) Compound for an organic photoelectric device, organic photoelectric device, and display device including the same
US9478755B2 (en) Compound for organic photoelectric device and organic photoelectric device including the same
US8815418B2 (en) Compound including fluorenyl group for organic photoelectric device and organic photoelectric device including the same
US9012039B2 (en) Compound for organic photoelectric device and organic photoelectric device including the same
US20160163995A1 (en) Organic optoelectric device and display device
US20130256644A1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
US9444054B2 (en) Compound for organic optoelectronic device and organic light emitting diode including the same
US20140027750A1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
US20140346483A1 (en) Compound for an organic optoelectronic element, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
US20140042412A1 (en) Compound for organic optoelectronic device, organic light-emitting diode including the same and display device including the organic light-emitting diode
US9793488B2 (en) Compound for organic optoelectronic element, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
US20120273771A1 (en) Compound for organic photoelectric device and organic photoelectric device including the same
US20140209884A1 (en) Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
US20170229659A1 (en) Compounds and organic electronic device using the same
US20130285030A1 (en) Compound for organic optoelectronic device, organic light emitting diode including the same, and display device including the organic light emitting diode
US20160056391A1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, display device including organic light-emitting diode

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEIL INDUSTRIES, INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, HYUNG-SUN;YU, EUN-SUN;KIM (LEGAL REPRESENTATIVE), JA-HYUN;AND OTHERS;REEL/FRAME:028150/0816

Effective date: 20120502

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION