US20120197007A1 - METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN - Google Patents

METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN Download PDF

Info

Publication number
US20120197007A1
US20120197007A1 US13/232,628 US201113232628A US2012197007A1 US 20120197007 A1 US20120197007 A1 US 20120197007A1 US 201113232628 A US201113232628 A US 201113232628A US 2012197007 A1 US2012197007 A1 US 2012197007A1
Authority
US
United States
Prior art keywords
erythropoietin
solution
ethylene glycol
poly
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/232,628
Other languages
English (en)
Inventor
Roberto Falkenstein
Wolfgang Koehnlein
Wolfgang Kuhne
Hartmut Schurig
Sibylle Schurig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Hoffmann La Roche Inc
Original Assignee
Hoffmann La Roche Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoffmann La Roche Inc filed Critical Hoffmann La Roche Inc
Publication of US20120197007A1 publication Critical patent/US20120197007A1/en
Assigned to F. HOFFMANN-LA ROCHE AG reassignment F. HOFFMANN-LA ROCHE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHURIG, HARTMUT, FALKENSTEIN, ROBERTO, KOEHNLEIN, WOLFGANG, KUHNE, WOLFGANG
Assigned to HOFFMANN-LA ROCHE INC. reassignment HOFFMANN-LA ROCHE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: F. HOFFMANN-LA ROCHE AG
Priority to US14/090,927 priority Critical patent/US20140163207A1/en
Priority to US15/048,689 priority patent/US10273277B2/en
Priority to US17/024,477 priority patent/US20210094993A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/26Cation exchangers for chromatographic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • Conjugates of therapeutic proteins have been reported, for example, for polyethylene glycol (PEG) and Interleukin-6 (EP 0 442 724), for PEG and erythropoietin (WO 01/02017), for chimeric molecules comprising Endostatin and immunoglobulins (US 2005/008649), for secreted antibody based fusion proteins (US 2002/147311), for fusion polypeptides comprising albumin (US 2005/0100991; human serum albumin U.S. Pat. No. 5,876,969), for PEGylated polypeptides (US 2005/0114037), and for erythropoietin fusions.
  • Necina, R., et al. (Biotechnol. Bioeng. 60 (1998) 689-698) reported the capture of human monoclonal antibodies directly from cell culture supernatants by ion exchange media exhibiting high charge density.
  • WO 89/05157 a method is reported for the purification of product immunoglobulins by directly subjecting the cell culture medium to a cation exchange treatment.
  • a one-step purification of monoclonal IgG antibodies from mouse ascites is described by Danielsson, A., et al., J. Immun. Meth. 115 (1988) 79-88.
  • a method for purifying a polypeptide by ion exchange chromatography is reported in WO 2004/024866 in which a gradient wash is used to resolve a polypeptide of interest from one or more contaminants.
  • EP 0 530 447 a process for purifying IgG monoclonal antibodies by a combination of three chromatographic steps is reported.
  • a facile purification of mono-PEGylated interleukin-1 receptor antagonist is reported by Yu, G., et al., Process Biotechnol. 42 (2007) 971-977. Wang, H., et al., Peptides 26 (2005) 1213-1218; reports the purification of hTFF3 expressed in E. coli by a two step cation exchange chromatography.
  • Yun, Q., et al. report the purification of PEGylated rhG-CSF by two consecutive ion-exchange chromatography steps.
  • a method for obtaining a fusion protein comprising erythropoietin and a single poly(ethylene glycol) residue comprising the following steps:
  • the solution with a conductivity of about 21 mS/cm is a solution with a pH value of from pH 2.5 to pH 3.5. In one embodiment the solution with a conductivity of about 21 mS/cm is a phosphate buffered solution with a pH value of from pH 2.5 to pH 3.5.
  • the solution applied in step d) has a pH value of from pH 2.5 to pH 3.5. In one embodiment the applying a solution with continuously and linearly increasing conductivity is up to a final conductivity value of about 70.0 mS/cm.
  • the solution with continuously and linearly increasing conductivity is a solution with continuously and linearly increasing sodium chloride concentration.
  • the erythropoietin is human erythropoietin. In one embodiment the human erythropoietin has the amino acid sequence of SEQ ID NO: 01 or SEQ ID NO: 02.
  • the single poly(ethylene glycol) residue has a molecular weight of from 20 kDa to 40 kDa.
  • the solution comprising a mixture of free erythropoietin and fusion proteins of erythropoietin and poly(ethylene glycol) with one or more poly (ethylene glycol) residues per erythropoietin molecule is applied to the chromatography material in a way that of from 1 mg up to 4 mg fusion protein is applied to 1 ml of chromatography material.
  • FIG. 1 Elution chromatogram of a purification of a PEGylated erythropoietin preparation with a method as reported herein.
  • FIG. 2 SEC analytical chromatograms of the peak fractions 1, 2 and 3 of FIG. 1 .
  • FIG. 3 SEC analytical chromatograms of the peak fractions 1, 2 and 3 of a separation wherein the chromatography column has been conditioned with a solution with higher conductivity.
  • FIG. 4 Elution chromatogram of a purification of a PEGylated erythropoietin preparation with a step elution method.
  • FIG. 6 Elution chromatogram of a purification of a PEGylated erythropoietin preparation with a method as reported herein with prior adjusting the conductivity of the sample solution to 20 mS/cm.
  • FIG. 7 SEC analytical chromatograms of the peak fractions 1, 2 and 3 of FIG. 6 .
  • a method for purifying a protein which comprises one erythropoietin molecule and one poly(ethylene glycol) residue, with a gradient elution method, wherein the gradient is a linear conductivity gradient on a SP SephacrylTM S 500 HR column, whereby a solution with a defined conductivity has been applied to the chromatography column prior to the application of the solution comprising the protein.
  • the term “applying to” denotes a partial step of a purification method in which a solution is brought in contact with a chromatography material. This denotes that either a) the solution is added to a chromatographic device in which the chromatography material is contained, or b) that the chromatography material is added to the solution. In case a) the solution passes through the device allowing for an interaction between the chromatography material and the substances contained in the solution. Depending on the conditions, such as e.g. pH, conductivity, salt concentration, temperature, and/or flow rate, some substances of the solution bind to the chromatography material and, thus, can be recovered from the chromatography material in a further step. The substances remaining in solution can be found in the flow-through.
  • the “flow-through” denotes the solution obtained after the passage of the device, which may either be the applied solution or a buffered solution, which is used to wash the column or to cause elution of substances bound to the chromatography material.
  • the device is a column or a cassette.
  • the chromatography material can be added, e.g. as a solid, to the solution, e.g. containing the substance of interest to be purified, allowing for an interaction between the chromatography material and the substances in solution. After the interaction the chromatography material is removed, e.g. by filtration, and substance bound to the chromatography material are also removed therewith from the solution, whereas substances not bound to the chromatography material remain in solution.
  • bind-and-elute mode denotes an operation mode of a chromatography step, in which a solution containing a substance of interest to be purified is applied to a chromatography material, whereby the substance of interest binds to the chromatography material.
  • the substance of interest is retained on the chromatography material, whereas substances not of interest are removed with the flow-through or the supernatant.
  • the substance of interest is afterwards recovered from the chromatography material in a second step with an elution solution.
  • the method as reported herein is operated in bind-and-elute mode.
  • buffered solutions denotes a solution in which changes of pH due to the addition or release of acidic or alkaline substances is leveled by the dissolved buffer substance. Any buffer substance with such properties can be used. Generally pharmaceutically acceptable buffer substances are used.
  • the buffered solution is selected from a phosphate buffered solution consisting of phosphoric acid and/or salts thereof, or an acetate buffered solution consisting of acetic acid and salts thereof, or a citrate buffered solution consisting of citric acid and/or salts thereof, or a morpholine buffered solution, or a 2-(N-morpholino) ethanesulfonic buffered solution, or a histidine buffered solution, or a glycine buffered solution, or a tris(hydroxymethyl)aminomethane (TRIS) buffered solution.
  • a phosphate buffered solution consisting of phosphoric acid and/or salts thereof
  • an acetate buffered solution consisting of acetic acid and salts thereof or a citrate buffered solution consisting of citric acid and/or salts thereof, or a morpholine buffered solution, or a 2-(N-morpholino) ethanesulfonic
  • the buffered solution is selected from a phosphate buffered solution, or an acetate buffered solution, or a citrate buffered solution, or a histidine buffered solution.
  • the buffered solution may comprise an additional salt, such as e.g. sodium chloride, sodium sulphate, potassium chloride, potassium sulfate, sodium citrate, or potassium citrate.
  • continuous elution and “continuous elution method”, which are used interchangeably within this application, denote a method wherein the conductivity of a solution causing elution, i.e. the recovery of a bound compound from a chromatography material, is changed, i.e. raised or lowered, continuously, i.e. the concentration is changed by a sequence of small steps each not bigger than a change of 2%, or of 1% of the concentration of the substance causing elution.
  • continuous elution one or more conditions, for example the pH, the ionic strength, concentration of a salt, and/or the flow of a chromatography, may be changed linearly or exponentially or asymptotically. In one embodiment the change is linear.
  • the term “ion exchange chromatography material” denotes an immobile high molecular weight matrix that carries covalently bound charged substituents used as stationary phase in ion exchange chromatography. For overall charge neutrality not covalently bound counter ions are bound thereto.
  • the “ion exchange chromatography material” has the ability to exchange its not covalently bound counter ions for similarly charged ions of the surrounding solution.
  • the “ion exchange resin” is referred to as cation exchange resin or as anion exchange resin.
  • the “ion exchange resin” is referred to as, e.g. in the case of cation exchange resins, sulfonic acid resin (S), or sulfopropyl resin (SP), or carboxymethyl resin (CM).
  • nucleic acid is characterized by its nucleic acid sequence consisting of individual nucleotides and likewise by the amino acid sequence of a polypeptide encoded thereby.
  • poly(ethylene glycol) or “poly(ethylene glycol) residue” denotes a non-proteinaceous residue containing poly(ethylene glycol) as essential part.
  • a poly(ethylene glycol) residue can contain further chemical groups which are necessary for binding reactions, which results from the chemical synthesis of the molecule, or which is a spacer for optimal distance of parts of the molecule. These further chemical groups are not used for the calculation of the molecular weight of the poly(ethylene glycol) residue.
  • such a poly(ethylene glycol) residue can consist of one or more poly(ethylene glycol) chains which are covalently linked together. Poly(ethylene glycol) residues with more than one PEG chain are called multiarmed or branched poly(ethylene glycol) residues.
  • Branched poly(ethylene glycol) residues can be prepared, for example, by the addition of polyethylene oxide to various polyols, including glycerol, pentaerythriol, and sorbitol. Branched poly(ethylene glycol) residues are reported in, for example, EP 0 473 084, U.S. Pat. No. 5,932,462.
  • the poly(ethylene glycol) residue has a molecular weight of 20 kDa to 35 kDa and is a linear poly(ethylene glycol) residue.
  • the poly(ethylene glycol) residue is a branched poly(ethylene glycol) residue with a molecular weight of 35 kDa to 40 kDa.
  • fusion of erythropoietin with a poly(ethylene glycol) residue denotes a covalent chemically introduced linkage of a poly(ethylene glycol) residue at the N-terminus or an internal lysine residue of erythropoietin.
  • the fusion results in a protein conjugate, which comprises one erythropoietin molecule and one or more poly(ethylene glycol) residue/residues.
  • the fusion process is also denoted as PEGylation and the product thereof as PEGylated erythropoietin.
  • poly(ethylene glycol) residues The fusion/conjugation of polypeptides with poly(ethylene glycol) residues is widely known in the state of the art and reviewed by, for example, Veronese, F. M., Biomaterials 22 (2001) 405-417.
  • the poly(ethylene glycol) residue can be linked using different functional groups. Poly(ethylene glycols) with different molecular weight, different form, as well as different linking groups can be used (see also Francis, G. E., et al., Int. J. Hematol. 68 (1998) 1-18; Delgado, C., et al., Crit. Rev. Ther. Drug Carrier Systems 9 (1992) 249-304).
  • the fusion of erythropoietin and a poly(ethylene glycol) residue can be performed in aqueous solution with poly (ethylene glycol) residue reagents as described, for example, in WO 00/44785.
  • the fusion can also be performed at the solid phase according to Lu, Y., et al., Reactive Polymers 22 (1994) 221-229. Not randomly, N-terminally fusion can also be produced according to WO 94/01451.
  • erythropoietin and poly(ethylene glycol) denote the formation of a covalent linkage between a poly(ethylene glycol) residue at the N-terminus of the erythropoietin and/or an internal lysine residue in order to obtain a protein conjugate, which comprises one erythropoietin molecule and one poly(ethylene glycol) residue.
  • PEGylation of erythropoietin is performed in aqueous solution using NHS-activated linear or branched PEG molecules of a molecular weight between 5 kDa and 40 kDa.
  • a substance of interest e.g. PEGylated erythropoietin
  • a stationary phase when brought in contact with it, e.g. an ion exchange material.
  • This does not necessarily denote that 100% of the substance of interest is bound but essentially 100% of the substance of interest is bound, i.e. at least 50% of the substance of interest is bound, at least 75% of the substance of interest is bound, at least 85% of the substance of interest is bound, or more than 95% of the substance of interest is bound to the stationary phase.
  • the chemical fusion or conjugation of erythropoietin and poly(ethylene glycol) generally results in a mixture of different compounds, such as poly-PEGylated erythropoietin, mono-PEGylated erythropoietin, not-PEGylated erythropoietin, hydrolysis products of the activated PEG ester, as well as hydrolysis products of the erythropoietin itself.
  • these substances In order to obtain a mono-PEGylated erythropoietin in substantially homogeneous form these substances have to be separated.
  • the SP SephacrylTM S 500 HR chromatography material is in a chromatography column.
  • This method is especially useful for the purification of PEGylated recombinant erythropoietin, which is glycosylated, i.e. which has been produced by a mammalian cell, in one embodiment by a CHO cell, or a HEK293 cell, or a BHK cell, or a Per.C6® cell, or a HeLa cell and is afterwards chemically PEGylated.
  • the erythropoietin is PEGylated.
  • the poly(ethylene glycol) (PEG) polymer molecules used in the PEGylation reaction have a molecular weight of about 20 kDa to 40 kDa (the term “molecular weight” as used herein is to be understood as the mean molecular weight of the PEG because PEG as polymeric compound is not obtained with a defined molecular weight but in fact has a molecular weight distribution; the term “about” indicates that in the PEG preparations, some molecules will weigh more and some less than the indicated molecular weight, i.e the term about refers to a molecular weight distribution in which 95% of the PEG molecules have a molecular weight within +/ ⁇ 10% of the indicated molecular weight. For example, a molecular weight of 30 kDa denotes a range of from 27 kDa to 33 kDa).
  • erythropoietin and its abbreviation “EPO” refer to a protein having the amino acid sequence of SEQ ID NO: 1 or of SEQ ID NO: 2, or a protein or polypeptide substantially homologous thereto, whose biological properties relate to the stimulation of red blood cell production and the stimulation of the division and differentiation of committed erythroid progenitors in the bone marrow.
  • Recombinant erythropoietin may be prepared via expression in eukaryotic cells, for example in CHO cells, or BHK cells, or HeLa cells by recombinant DNA technology or by endogenous gene activation, i.e.
  • the erythropoietin glycoprotein is expressed by endogenous gene activation, see for example U.S. Pat. No. 5,733,761, U.S. Pat. No. 5,641,670, U.S. Pat. No. 5,733,746, WO 93/09222, WO 94/12650, WO 95/31560, WO 90/11354, WO 91/06667, and WO 91/09955.
  • the erythropoietin is human EPO.
  • the human erythropoietin has the amino acid sequence set out in SEQ ID NO: 1 or SEQ ID NO: 2.
  • the human erythropoietin has the amino acid sequence set out in SEQ ID NO: 1.
  • the term “erythropoietin” also denotes variants of the protein of SEQ ID NO: 1 or of SEQ ID NO: 2, in which one or more amino acid residues have been changed, deleted, or inserted, and which has comparable biological activity as the not modified protein, such as e.g. reported in EP 1 064 951 or U.S. Pat. No. 6,583,272.
  • a variant may have the amino acid sequence of human erythropoietin having from 1 to 6 additional sites for glycosylation.
  • the specific activity of PEGylated erythropoietin can be determined by various assays known in the art.
  • the biological activity of the purified PEGylated erythropoietin are such that administration of the protein by injection to human patients results in bone marrow cells increasing production of reticulocytes and red blood cells compared to non-injected or control groups of subjects.
  • the biological activity of the PEGylated erythropoietin obtained and purified in accordance with the method as reported herein can be tested by methods according to Bristow, A., Pharmeuropa Spec. Issue Biologicals BRP Erythropoietin Bio 97-2 (1997) 31-48.
  • Amino acid sequence variants of erythropoietin can be prepared by introducing appropriate modifications into the nucleotide sequence encoding the erythropoietin, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into, and/or substitutions of residues within the amino acid sequences of the erythropoietin. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses comparable biological activity to the human erythropoietin.
  • amino acid substitutions are shown in Table 1 under the heading of “preferred substitutions”. More substantial changes are provided in Table 1 under the heading of “exemplary substitutions”, and as described below in reference to amino acid side chain classes. Amino acid substitutions may be introduced into human erythropoietin and the products screened for retention of the biological activity of human erythropoietin.
  • Amino acids may be grouped according to common side-chain properties:
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
  • the chemical PEGylation of erythropoietin generally result in a protein preparation comprising erythropoietin which is PEGylated at one or more ⁇ -amino groups of lysine residues and/or at the N-terminal amino group.
  • Selective PEGylation at the N-terminal amino acid can be performed according to Felix, A. M., et al., ACS Symp. Ser. 680 (Poly(ethylene glycol)) (1997) 218-238.
  • Selective N-terminal PEGylation can be achieved during solid-phase synthesis by coupling of a N ⁇ —PEGylated amino acid derivative to the N ⁇ 1 terminal amino acid of the peptide chain.
  • Side chain PEGylation can be performed during solid-phase synthesis by coupling of N ⁇ -PEGylated lysine derivatives to the growing chain.
  • Combined N-terminal and side chain PEGylation is feasible either as described above within solid-phase synthesis or by solution phase synthesis by applying activated PEG reagents to an amino deprotected peptide.
  • Suitable PEG derivatives are activated PEG molecules with as in one embodiment an average molecular weight of from about 5 kDa to about 40 kDa, in another embodiment of from about 20 kDa to about 40 kDa, and in a further embodiment of about 30 kDa to about 35 kDa.
  • the PEG derivatives can be linear or branched PEGs.
  • a wide variety of PEG derivatives suitable for use in the preparation of PEG-protein and PEG-peptide conjugates are available.
  • Activated PEG derivatives are known in the art and are described in, for example, Morpurgo, M., et al., J. Bioconjug. Chem. 7 (1996) 363-368, for PEG-vinylsulfone.
  • Linear chain and branched chain PEG species are suitable for the preparation of the PEGylated fragments.
  • reactive PEG reagents are iodo-acetyl-methoxy-PEG, or methoxy-PEG-vinylsulfone (m is in one embodiment an integer from about 450 to about 900 and R is lower alkyl, linear or branched, having one to six carbon atoms such as methyl, ethyl, isopropyl, etc. whereby methyl is preferred):
  • the PEG species is an activated PEG ester, e.g., N-hydroxysuccinimidyl propionate, or N-hydroxysuccinimidyl butanoate, or N-hydroxysuccinimide such as PEG-NHS (Monfardini, C., et al., Bioconjugate Chem. 6 (1995) 62-69).
  • PEG-NHS Monfardini, C., et al., Bioconjugate Chem. 6 (1995) 62-69.
  • the PEG is activated by N-hydroxysuccinimide ester
  • alkoxy-PEG-N-hydroxysuccinimide such as methoxy-PEG-N-hydroxysuccinimide (MW 30000), wherein R and m are as defined above.
  • the PEG species is the N-hydroxysuccinimidyl ester of methoxy poly (ethylene glycol)-butyric acid.
  • alkoxy refers to an alkyl ether group in which the term ‘alkyl’ means a straight-chain or branched-chain alkyl group containing a maximum of four carbon atoms, such as methoxy, ethoxy, n-propoxy and the like, preferably methoxy.
  • substantially homogeneous form denotes that the erythropoietin protein fusion or conjugate obtained, contained, or used is one having a defined number of PEG residues attached.
  • the PEGylated erythropoietin is a mono-PEGylated erythropoietin.
  • the preparation may contain unreacted (i.e., PEG group lacking) erythropoietin, poly-PEGylated erythropoietin, as well as fragments of the polypeptide generated during the PEGylation reaction.
  • substantially homogeneous form denotes that a preparation of a mono-PEGylated erythropoietin contains at least 50% (w/w) of the mono-PEGylated erythropoietin, or at least 75% of the mono-PEGylated erythropoietin, or at least 90% of the mono-PEGylated erythropoietin, or more than 95% of the mono-PEGylated erythropoietin.
  • the percent values are based on the area-% of the chromatogram corresponding to the chromatography method with which the mono-PEGylated erythropoietin is obtained.
  • chromatography material has to be condition prior to the application of the PEGylated erythropoietin preparation by a solution with a conductivity of about 21 mS/cm. If the chromatography material is conditioned with a lower conductivity the separation of the different species of the PEGylated erythropoietin preparation is less efficient.
  • the current invention provides a method for the obtaining a mono-PEGylated erythropoietin using an SP SephacrylTM S 500 HR chromatography material in a single step by first applying a solution with a conductivity of about 21 mS/cm to the chromatography material and afterwards applying the solution comprising the PEGylated erythropoietin preparation to the chromatography material. It has been found that the conductivity of the first solution has to be precisely controlled in order to ensure a separation of the individual components of the crude protein preparation.
  • the method for obtaining a protein conjugate, which comprises erythropoietin and a single poly(ethylene glycol) residue, as reported herein comprises the following steps:
  • the method is a column chromatography method.
  • a solution with a conductivity of about 21 mS/cm is applied for up to 8 column volumes to the chromatography material.
  • the solution with a conductivity of about 21 mS/cm is a solution with a pH value of from pH 2.5 to pH 3.5.
  • the solution with a conductivity of about 21 mS/cm is a phosphate buffered solution with a pH value of from pH 2.5 to pH 3.5.
  • a solution with a conductivity of about 21 mS/cm is applied to the column and thereby free poly(ethylene glycol) and fusion proteins (i.e. protein conjugates) comprising two or more poly(ethylene glycol) residues are recovered from the chromatography material.
  • the solution with a conductivity of about 21 mS/cm is applied for up to 8 column volumes to the chromatography material.
  • a continuous elution with a linear conductivity gradient is started.
  • the conductivity of the mobile phase passing the chromatography material is continuously and linearly increased to at least a conductivity of about 62.5 mS/cm.
  • the increase in the conductivity is in one embodiment by applying a solution with an increasing sodium chloride concentration.
  • the solution applied to increase the conductivity has a pH value of from pH 2.5 to pH 3.5.
  • the increase of the conductivity from a value of about 21 mS/cm to the final value of at least 62.5 mS/cm is within an applied volume of the mobile phase of 10 column volumes.
  • the solution with a conductivity of about 21 mS/cm is a sodium or potassium phosphate buffered solution of about 100 mM with a pH value of about pH 3.0 with (i.e. containing) about 120 mM sodium chloride.
  • the linear gradient is a sodium chloride concentration gradient from about 120 mM to about 1000 mM sodium chloride in a sodium or potassium phosphate buffered solution of about 100 mM with a pH value of about pH 3.0.
  • the solution comprising a mixture of free erythropoietin and free poly(ethylene glycol) as well as fusion proteins (i.e. protein conjugates) of erythropoietin and poly(ethylene glycol) with one or more poly(ethylene glycol) residues per erythropoietin molecule is applied to the chromatography material that of from 1 mg/ml up to 4 mg/ml protein is applied to 1 ml of chromatography material.
  • fusion proteins i.e. protein conjugates
  • SP SephacrylTM S 500 HR chromatography material denotes a cation exchange chromatography material also denotes as MacroCap SP (both available from GE Healthcare).
  • the SP SephacrylTM S 500 HR chromatography material is in one embodiment a cross-linked copolymer of allyl dextran and N,N-methylene bisacrylamide with sulfonic acid as chromatographical functional group and is, thus, a strong cation exchange chromatography material.
  • SEQ ID NO: 01 Amino acid sequence of human erythropoietin.
  • SEQ ID NO: 02 Amino acid sequence of human erythropoietin.
  • FIG. 1 The analytical size exclusion chromatograms of the oligo-PEGylated erythropoietin peak fraction 1 and the mono-PEGylated peak fraction 2 and non-PEGylated peak fraction 3 is shown in FIG. 2 A-C.
  • the analytical size exclusion chromatograms of the oligo-PEGylated erythropoietin peak fraction 1 and the mono-PEGylated peak fraction 2 and non-PEGylated peak fraction 3 is shown in FIG. 3 A-C.
  • the elution chromatogram for this method is shown in FIG. 4 .
  • the analytical size exclusion chromatograms of the oligo-PEGylated erythropoietin peak fraction 1 and the mono-PEGylated peak fraction 2 and non-PEGylated peak fraction 3 is shown in FIG. 5 A-C. It has to be pointed out that non-PEGylated erythropoietin could only be recovered during the regeneration of the column and not with the step elution method.
  • the elution chromatogram for this method is shown in FIG. 6 .
  • the analytical size exclusion chromatograms of the oligo-PEGylated erythropoietin peak fraction 1 and the mono-PEGylated peak fraction 2 and non-PEGylated peak fraction 3 is shown in FIG. 7 A-C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
US13/232,628 2010-09-14 2011-09-14 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN Abandoned US20120197007A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/090,927 US20140163207A1 (en) 2010-09-14 2013-11-26 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN
US15/048,689 US10273277B2 (en) 2010-09-14 2016-02-19 Method for purifying PEGylated erythropoietin
US17/024,477 US20210094993A1 (en) 2010-09-14 2020-09-17 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP10176616.0 2010-09-14
EP10176616 2010-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/090,927 Continuation US20140163207A1 (en) 2010-09-14 2013-11-26 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN

Publications (1)

Publication Number Publication Date
US20120197007A1 true US20120197007A1 (en) 2012-08-02

Family

ID=43385653

Family Applications (4)

Application Number Title Priority Date Filing Date
US13/232,628 Abandoned US20120197007A1 (en) 2010-09-14 2011-09-14 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN
US14/090,927 Abandoned US20140163207A1 (en) 2010-09-14 2013-11-26 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN
US15/048,689 Active US10273277B2 (en) 2010-09-14 2016-02-19 Method for purifying PEGylated erythropoietin
US17/024,477 Abandoned US20210094993A1 (en) 2010-09-14 2020-09-17 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN

Family Applications After (3)

Application Number Title Priority Date Filing Date
US14/090,927 Abandoned US20140163207A1 (en) 2010-09-14 2013-11-26 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN
US15/048,689 Active US10273277B2 (en) 2010-09-14 2016-02-19 Method for purifying PEGylated erythropoietin
US17/024,477 Abandoned US20210094993A1 (en) 2010-09-14 2020-09-17 METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN

Country Status (15)

Country Link
US (4) US20120197007A1 (ja)
EP (1) EP2616101B1 (ja)
JP (1) JP5735650B2 (ja)
KR (1) KR101578586B1 (ja)
CN (1) CN103118708B (ja)
BR (1) BR112013005890B1 (ja)
CA (1) CA2808748C (ja)
DK (1) DK2616101T3 (ja)
ES (1) ES2500048T3 (ja)
HK (1) HK1181661A1 (ja)
MX (1) MX342444B (ja)
PL (1) PL2616101T3 (ja)
RU (1) RU2566267C2 (ja)
SI (1) SI2616101T1 (ja)
WO (1) WO2012035037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026759A (ko) * 2016-07-15 2019-03-13 에프. 호프만-라 로슈 아게 Peg화 에리트로포이에틴을 정제하기 위한 방법
US20200323993A1 (en) * 2017-12-29 2020-10-15 Hoffmann-La Roche Inc. Process for providing pegylated protein composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816227A (zh) * 2012-08-30 2012-12-12 深圳赛保尔生物药业有限公司 回收促红细胞生成素的方法
DE102016210647B3 (de) 2016-06-15 2017-09-14 Schaeffler Technologies AG & Co. KG Keilkupplung-Synchronisation
US10695402B2 (en) 2017-03-16 2020-06-30 University Of Rochester Erythropoietin for gastrointestinal dysfunction
JP7227633B2 (ja) 2017-12-29 2023-02-22 エフ. ホフマン-ラ ロシュ エージー. Peg化タンパク質組成物を提供するための方法
EP3731872B1 (en) 2017-12-29 2021-11-24 F. Hoffmann-La Roche AG Process for providing pegylated protein composition
WO2022159414A1 (en) 2021-01-22 2022-07-28 University Of Rochester Erythropoietin for gastroinfestinal dysfunction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118476A1 (en) * 2007-07-17 2009-05-07 Josef Burg Purification of pegylated polypeptides

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118796A (en) 1987-12-09 1992-06-02 Centocor, Incorporated Efficient large-scale purification of immunoglobulins and derivatives
FR2646438B1 (fr) 1989-03-20 2007-11-02 Pasteur Institut Procede de remplacement specifique d'une copie d'un gene present dans le genome receveur par l'integration d'un gene different de celui ou se fait l'integration
JPH04505104A (ja) 1989-11-06 1992-09-10 セル ジェネシス,インコーポレイティド 相同組換え法を用いてのタンパク質の生成
DE69034135T3 (de) 1989-12-22 2012-08-23 Laboratoires Serono S.A. DNS-Konstrukten zur Aktivierung und Veränderung der Expression von endogenen Genen
JPH04218000A (ja) 1990-02-13 1992-08-07 Kirin Amgen Inc 修飾ポリペプチド
JP3051145B2 (ja) 1990-08-28 2000-06-12 住友製薬株式会社 新規なポリエチレングリコール誘導体修飾ペプチド
DE4118912C1 (ja) 1991-06-08 1992-07-02 Biotest Pharma Gmbh, 6072 Dreieich, De
US5968502A (en) 1991-11-05 1999-10-19 Transkaryotic Therapies, Inc. Protein production and protein delivery
NZ245015A (en) 1991-11-05 1995-12-21 Transkaryotic Therapies Inc Delivery of human growth hormone through the administration of transfected cell lines encoding human growth hormone, which are physically protected from host immune response; the transfected cells and their production
US5641670A (en) 1991-11-05 1997-06-24 Transkaryotic Therapies, Inc. Protein production and protein delivery
FR2686899B1 (fr) 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur preparation et compositions pharmaceutiques les contenant.
JPH07509128A (ja) 1992-07-13 1995-10-12 バイオネブラスカ・インコーポレーテッド 組換型ポリペプチドの修飾方法
TW402639B (en) 1992-12-03 2000-08-21 Transkaryotic Therapies Inc Protein production and protein delivery
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
HU228488B1 (en) 1999-01-29 2013-03-28 Amgen Inc Gcsf conjugates
PE20010288A1 (es) 1999-07-02 2001-03-07 Hoffmann La Roche Derivados de eritropoyetina
CZ299516B6 (cs) 1999-07-02 2008-08-20 F. Hoffmann-La Roche Ag Konjugát erythropoetinového glykoproteinu, zpusobjeho výroby a použití a farmaceutická kompozice sjeho obsahem
US7091321B2 (en) 2000-02-11 2006-08-15 Emd Lexigen Research Center Corp. Enhancing the circulating half-life of antibody-based fusion proteins
US20050100991A1 (en) 2001-04-12 2005-05-12 Human Genome Sciences, Inc. Albumin fusion proteins
ES2629602T5 (es) * 2002-09-11 2021-06-08 Genentech Inc Purificación de proteínas
US7610156B2 (en) 2003-03-31 2009-10-27 Xencor, Inc. Methods for rational pegylation of proteins
WO2005021710A2 (en) 2003-06-02 2005-03-10 University Of Miami Chimeric molecules and methods of use
SE0401951D0 (sv) 2004-07-29 2004-07-29 Amersham Biosciences Ab Chromatography method
AU2005323106B2 (en) 2004-12-22 2010-07-29 Ambrx, Inc. Methods for expression and purification of recombinant human growth hormone
WO2007010552A2 (en) 2005-03-17 2007-01-25 Serum Institute Of India Limited N- terminal peg conjugate of erythropoietin
CL2008002054A1 (es) * 2007-07-17 2009-05-29 Hoffmann La Roche Metodo para la regeneracion de una columna de cromatografia de intercambio cationico despues de la elusion de eritropoyetina monopeguilada y metodo para obtener una eritropoyetina monopeguilada, incorporando el metodo de regeneracion de la columna de intercambio cationico.
CA2736141C (en) 2008-09-23 2018-03-20 F. Hoffmann-La Roche Ag Purification of erythropoietin
BRPI1013227A2 (pt) 2009-03-05 2016-03-29 Ascendis Pharma As pró-fármacos transportadores de interferon alfa

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090118476A1 (en) * 2007-07-17 2009-05-07 Josef Burg Purification of pegylated polypeptides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GE Healthcare Bio-Sciences. MacroCap SP Instructions, 2005, GE Healthcare, 1-16. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190026759A (ko) * 2016-07-15 2019-03-13 에프. 호프만-라 로슈 아게 Peg화 에리트로포이에틴을 정제하기 위한 방법
US20190300567A1 (en) * 2016-07-15 2019-10-03 Hoffmann-La Roche Inc. Method for purifying PEGylated erythropoietin
KR102470282B1 (ko) 2016-07-15 2022-11-24 에프. 호프만-라 로슈 아게 Peg화 에리트로포이에틴을 정제하기 위한 방법
US11993630B2 (en) 2016-07-15 2024-05-28 Hoffmann-La Roche Inc Method for purifying PEGylated erythropoietin
US20200323993A1 (en) * 2017-12-29 2020-10-15 Hoffmann-La Roche Inc. Process for providing pegylated protein composition

Also Published As

Publication number Publication date
US10273277B2 (en) 2019-04-30
BR112013005890A2 (pt) 2020-04-14
CN103118708A (zh) 2013-05-22
US20210094993A1 (en) 2021-04-01
ES2500048T3 (es) 2014-09-29
HK1181661A1 (en) 2013-11-15
RU2566267C2 (ru) 2015-10-20
BR112013005890B1 (pt) 2022-02-08
CN103118708B (zh) 2015-08-26
MX2013002554A (es) 2013-05-28
CA2808748A1 (en) 2012-03-22
MX342444B (es) 2016-09-29
US20140163207A1 (en) 2014-06-12
KR20130073964A (ko) 2013-07-03
SI2616101T1 (sl) 2014-10-30
WO2012035037A1 (en) 2012-03-22
EP2616101B1 (en) 2014-07-09
KR101578586B1 (ko) 2015-12-17
PL2616101T3 (pl) 2015-01-30
JP5735650B2 (ja) 2015-06-17
DK2616101T3 (da) 2014-08-04
US20170008941A1 (en) 2017-01-12
RU2013113724A (ru) 2014-10-20
JP2013537208A (ja) 2013-09-30
CA2808748C (en) 2018-09-11
EP2616101A1 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
US20210094993A1 (en) METHOD FOR PURIFYING PEGylated ERYTHROPOIETIN
US8138317B2 (en) Purification of pegylated polypeptides
US7846336B2 (en) Chromatographic methods
US11993630B2 (en) Method for purifying PEGylated erythropoietin

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOFFMANN-LA ROCHE INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:F. HOFFMANN-LA ROCHE AG;REEL/FRAME:029020/0897

Effective date: 20111110

Owner name: F. HOFFMANN-LA ROCHE AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FALKENSTEIN, ROBERTO;KOEHNLEIN, WOLFGANG;KUHNE, WOLFGANG;AND OTHERS;SIGNING DATES FROM 20111014 TO 20120828;REEL/FRAME:029020/0761

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION