US20120095158A1 - Ethylenic polymer and its use - Google Patents
Ethylenic polymer and its use Download PDFInfo
- Publication number
- US20120095158A1 US20120095158A1 US13/376,047 US201013376047A US2012095158A1 US 20120095158 A1 US20120095158 A1 US 20120095158A1 US 201013376047 A US201013376047 A US 201013376047A US 2012095158 A1 US2012095158 A1 US 2012095158A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- polymers
- ethylenic polymer
- ethylenic
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 [3*]C1=C([21*])C2=C(C([21*])=C1[3*])[O+]1C[O+]3C4=C(C([21*])=C([3*])C([3*])=C4[21*])C4=C(O[C-2]13(*[2H])(*[2H])OC1=C(C)C([21*])=C([21*])C([21*])=C12)C(C)=C([21*])C([21*])=C4[21*] Chemical compound [3*]C1=C([21*])C2=C(C([21*])=C1[3*])[O+]1C[O+]3C4=C(C([21*])=C([3*])C([3*])=C4[21*])C4=C(O[C-2]13(*[2H])(*[2H])OC1=C(C)C([21*])=C([21*])C([21*])=C12)C(C)=C([21*])C([21*])=C4[21*] 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B25/00—Layered products comprising a layer of natural or synthetic rubber
- B32B25/04—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B25/06—Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/22—Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/306—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/327—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/022—Non-woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/08—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0207—Elastomeric fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0223—Vinyl resin fibres
- B32B2262/023—Aromatic vinyl resin, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0253—Polyolefin fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/12—Conjugate fibres, e.g. core/sheath or side-by-side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/31—Heat sealable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/72—Density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2405/00—Adhesive articles, e.g. adhesive tapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2437/00—Clothing
- B32B2437/02—Gloves, shoes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2471/00—Floor coverings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2553/00—Packaging equipment or accessories not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2555/00—Personal care
- B32B2555/02—Diapers or napkins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2581/00—Seals; Sealing equipment; Gaskets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2597/00—Tubular articles, e.g. hoses, pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2605/00—Vehicles
- B32B2605/003—Interior finishings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/12—Melt flow index or melt flow ratio
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/17—Viscosity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/24—Graft or block copolymers according to groups C08L51/00, C08L53/00 or C08L55/02; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
Definitions
- Metallocene-catalyzed polymers have been commercial for several years, and are used in many end-use applications, such as packaging, personal hygiene, automotive, flooring, adhesives, fibers, nonwovens, films, sheets, and fabrics.
- the metallocene-catalyzed polymers have certain advantages, such as narrow molecular weight distributions. Some of the metallocene-catalyzed polymers are homogeneous polymers that have long chain branching which enhances their processability. However, metallocene-catalyzed polymers are still subject to degradation under ultraviolet light and have cross-linking characteristics that make their use in certain applications more challenging. Further, those metallocene-catalyzed polymers which have relatively high levels of long chain branching typically exhibit poor hot tack strength and/or a narrow sealing window, which renders them less useful in certain film applications.
- SLEP homogeneous-branched, substantially linear ethylene polymers
- CGC Catalyst constrained geometry catalysts
- LEP homogeneous linear ethylene polymers
- Various grades of SLEPs, having a variety of densities and melt flow rates, are commercially available from The Dow Chemical Company as ENGAGETM polyolefin elastomers or AFFINITYTM plastomers.
- Various grades of LEPs are commercially available from ExxonMobil Chemical Company as EXACTM or EXCEEDTM polymers.
- metallocene-catalyzed polymers have a significant level (typically in excess of 300 wppm) of residual unsaturation, with that unsaturation being in various combinations and amounts of one or more of the following unsaturated groups:
- Such residual unsaturations, and particularly the vinyl-3 groups, are believed to contribute to long-term polymer degradation, as well as to difficulties in controlling either or both of desired cross-linking in some applications or undesired cross-linking (such as the formation of gels) in other end-use applications (such as films).
- thermal bonding window temperature range
- relatively low hot tack initiation temperature it is desirable to have a broad thermal bonding window (temperature range) as well as relatively low hot tack initiation temperature.
- This invention is related to new essentially linear polyethylene resins having a very low level of long chain branching.
- Such resins have 110/12 (measured at 190° C.) from about 5.8 to about 6.5, preferably from about 5.9 to about 6.5; a zero shear viscosity (ZSV) ratio of from about 1.3 to about 2.3, preferably from about 1.4 to about 2.2, most preferably from about 1.5 to about 2.1 and Mw/Mn of from about 2.0 to about 2.4, preferably from about 2.1 to about 2.3.
- Such resins can have melt index (190° C., 2.16 kg load) from about 0.5 to about 15 grams/10 minutes, preferably from about 0.7 to about 12.
- Such resins can also have a DSC melting point defined by the relationship,
- the density of the polymers can be from about 0.857 g/cc to 0.905 g/cc, preferably from about 0.865 g/cc to 0.905 g/cc, most preferably from about 0.885 g/cc to 0.905 g/cc.
- an ethylenic polymer comprising.
- FIG. 1 shows hot tack data for two ethylenic polymers of the invention made into film layers and for a comparative example.
- Composition includes a mixture of materials which comprise the composition, as well as reaction products and decomposition products formed from the materials of the composition.
- a blend may or may not be miscible (not phase separated at molecular level).
- a blend may or may not be phase separated.
- a blend may or may not contain one or more domain configurations, as determined from transmission electron spectroscopy, light scattering, x-ray scattering, and other methods known in the art.
- the blend may be effected by physically mixing the two or more polymers on the macro level (for example, melt blending resins or compounding) or the micro level (for example, simultaneous forming within the same reactor).
- Linear refers to polymers where the polymer backbone of the polymer lacks measurable or demonstrable long chain branches, for example, the polymer is substituted with an average of less than 0.01 long branch per 1000 carbons.
- Polymer refers to a polymeric composition prepared by polymerizing monomers, whether of the same or a different type.
- the generic term “polymer” thus embraces the term “homopolymer,” usually employed to refer to polymers prepared from only one type of monomer, and the term “interpolymer” as defined.
- the terms “ethylene/ ⁇ -olefin polymer” is indicative of interpolymers as described.
- Interpolymer refers to polymers prepared by the polymerization of at least two different types of monomers.
- the generic term interpolymer includes copolymers (usually employed to refer to polymers prepared from two different monomers) and polymers prepared from more than two different types of monomers.
- Ethylenic polymer refers to a polymer that contains more than 50 mole percent polymerized ethylene monomer (based on the total amount of polymerizable monomers) and, optionally, may contain one or more comonomers.
- ethylene/ ⁇ -olefin interpolymer refers to an interpolymer that contains more than 50 mole percent polymerized ethylene monomer (based on the total amount of polymerizable monomers) and at least one ⁇ -olefin.
- Density The density of a polymer (g/cm 3 ) is measured according to ASTM-D 792-03, Method B, in isopropanol. Specimens are measured within 1 hour of molding after conditioning in the isopropanol bath at 23° C. for 8 min to achieve thermal equilibrium prior to measurement. The specimens are compression molded according to ASTM D-4703-00 Annex A with a 5 min initial heating period at about 190° C. and a 15° C./min cooling rate per Procedure C. The specimen is cooled to 45° C. in the press with continued cooling until “cool to the touch.”
- melt index (I 2 ) of a polymer is measured in accordance with ASTM D 1238, Condition 190° C./2.16 kg, and is reported in grams eluted per 10 minutes
- melt index (I 10 ) is measured in accordance with ASTM D 1238, Condition 190° C./10 kg, and is reported in grams eluted per 10 minutes.
- the melt index ratio (I 10 /I 2 ) is a ratio of these two melt indices.
- Differential Scanning calorimetry can be used to measure the melting and crystallization behavior of a polymer over a wide range of temperature.
- the TA Instruments Q1000 DSC equipped with an RCS (refrigerated cooling system) and an autosampler is used to perform this analysis.
- RCS refrigerated cooling system
- a nitrogen purge gas flow of 50 ml/min is used.
- Each sample is melt pressed into a thin film at about 175° C.; the melted sample is then air-cooled to room temperature ( ⁇ 25° C.).
- a 3-10 mg, 6 mm diameter specimen is extracted from the cooled polymer, weighed, placed in a light aluminum pan (ca 50 mg), and crimped shut.
- the thermal behavior of the sample is determined by ramping the sample temperature up and down to create a heat flow versus temperature profile. First, the sample is rapidly heated to 180° C. and held isothermal for 3 minutes in order to remove its thermal history. Next, the sample is cooled to ⁇ 40° C. at a 10° C./minute cooling rate and held isothermal at ⁇ 40° C. for 3 minutes. The sample is then heated to 150° C. (this is the “second heat” ramp) at a 10° C./minute heating rate. The cooling and second heating curves are recorded. The cool curve is analyzed by setting baseline endpoints from the beginning of crystallization to ⁇ 20° C.
- the heat curve is analyzed by setting baseline endpoints from ⁇ 20° C. to the end of melt.
- the values determined are peak melting temperature (T m ), peak crystallization temperature (T c ), heat of fusion (H f ) (in Joules per gram), and the calculated % crystallinity for polyethylene samples using:
- %Crystallinity (( H f )/(292 J/g)) ⁇ 100.
- the 3D-GPC system consists of a Polymer Laboratories (Shropshire, UK) Model 210 equipped with an on-board differential refractometer (RI). Additional detectors can include Precision Detectors (Amherst, Mass.) 2-angle laser light scattering detector Model 2040, and a Viscotek (Houston, Tex.) 150R 4-capillary solution viscometer. The 15-degree angle of the light scattering detector is used for calculation purposes. Data collection can be performed using Viscotek TriSEC software, Version 3, and a 4-channel Viscotek Data Manager DM400. The system is also equipped with an on-line solvent degassing device from Polymer Laboratories (Shropshire, UK).
- Suitable high temperature GPC columns such as 30 cm Polymer Labs columns of 10-micron mixed-pore-size packing (Mixed-B).
- the sample carousel compartment is operated at 145° C. and the column compartment is operated at 145° C.
- the samples are prepared at a concentration of 0.025 g of polymer in 20 mL of solvent.
- the chromatographic solvent contains 100 ppm and the sample preparation solvent contains 200 ppm of butylated hydroxytoluene (BHT). Both solvents are sparged with nitrogen.
- BHT butylated hydroxytoluene
- Both solvents are sparged with nitrogen.
- the polyethylene samples are gently shaken every 30 minutes while maintaining 160° C. for 2.5-3.0 hours.
- the injection volume is 200 microliters.
- the flow rate through the GPC is set at 1 mL/minute.
- the GPC column set is calibrated before running the polymer by running twenty narrow molecular weight distribution polystyrene standards.
- the molecular weight (MW) of the standards ranges from 580 to 8,400,000 g/mol, and the standards are contained in 6 “cocktail” mixtures. Each standard mixture has at least a decade of separation between individual molecular weights.
- the standards are purchased from Polymer Laboratories (Shropshire, UK).
- the polystyrene standards are prepared at 0.005 g in 20 mL of solvent for molecular weights equal to or greater than 1,000,000 g/mol and 0.001 g in 20 mL of solvent for molecular weights less than 1,000,000 g/mol.
- the polystyrene standards were dissolved at room temperature with gentle agitation for four hours.
- the narrow standards mixtures are run first and in order of decreasing highest molecular weight component to minimize degradation.
- a logarithmic molecular weight calibration is generated using a fifth-order polynomial fit as a function of elution volume.
- the absolute molecular weights were obtained in a manner consistent with that published by Zimm (Zimm, B. H., J. Chem. Phys., 16, 1099 (1948)) and Kratochvil (Kratochvil, P., Classical Light Scattering from Polymer Solutions, Page 113-136, Elsevier, Oxford, N.Y. (1987)).
- the mass constant of the differential refractive index detector was determined using the area under the curve, concentration, and injection volume of the broad polyethylene homopolymer. The chromatographic concentrations were assumed low enough to eliminate addressing 2nd Virial coefficient effects (concentration effects on molecular weight).
- the g′ was defined as the ratio of measured intrinsic viscosity [ ⁇ ] of polymer divided by the intrinsic viscosity [ ⁇ ] linear of a linear polymer having the same molecular weight. A value of g′ is often used for indication of branching in a polymer. For the purpose of this invention, g′ is defined as the same comonomer level for the inventive polymer and the linear polymer.
- a value of g′(HMW)/g′(LMW) is a measure of the branching level difference between the highest and lowest molecular weight ranges.
- the g′(HMW)/g′(LMW) value equals 1.0 and for branched polymer this value is less than 1.0.
- the g′(HMW)/g′(LMW) value was calculated using 3D-GPC.
- a value of g′ 1 , the g′ value at i th fraction in the polymer molecular weight distribution was calculated.
- the polymer molecular weight distribution curve was normalized and weight fraction at i th molecular weight was calculated.
- the g′(HMW) was calculated by the weighted mean value of g′ calculated for the 30% of polymer with highest molecular weight
- w i is the i th fraction of polymers within the 30% of polymers with highest molecular weight
- g′ is the [ ⁇ ]/[ ⁇ ] linear value in the same i th fraction.
- the g′(LMW) was calculated in the same way, where w i is the i th fraction of polymers within the 30% of polymers with lowest molecular weight.
- Specimens for creep measurements were prepared on a programmable Tetrahedron bench top press. The program held the melt at 177° C. for 5 minutes at a pressure of 10 7 Pa. The chase was then removed to the benchtop to cool down to room temperature. Round test specimens were then die-cut from the plaque using a punch press and a handheld die with a diameter of 25 mm. The specimen is about 1.8 mm thick.
- Zero-shear viscosities are obtained via creep tests that are conducted on an AR-G2 stress controlled rheometer (TA Instruments; New Castle, Del.) using 25-mm-diameter parallel plates at 190° C.
- the rheometer oven is set to test temperature for at least 30 minutes prior to zeroing fixtures.
- a compression molded sample disk is inserted between the plates and allowed to come to equilibrium for 5 minutes.
- the upper plate is then lowered down to 50 ⁇ m above the desired testing gap (1.5 mm). Any superfluous material is trimmed off and the upper plate is lowered to the desired gap. Measurements are done under nitrogen purging at a flow rate of 5 L/min. Default creep time is set for 2 hours.
- a constant low shear stress of 20 Pa is applied for all of the samples to ensure that the steady state shear rate is low enough to be in the Newtonian region.
- the resulting steady state shear rates are in the order of 10 ⁇ 3 s ⁇ 1 for the samples in this study.
- Steady state is determined by taking a linear regression for all the data in the last 10% time window of the plot of log(J(t)) vs. log(t), where J(t) is creep compliance and t is creep time. If the slope of the linear regression is greater than 0.97, steady state is considered to be reached, then the creep test is stopped. In all cases in this study the slope meets the criterion within 30 minutes.
- the steady state shear rate is determined from the slope of the linear regression of all of the data points in the last 10% time window of the plot of ⁇ vs. t, where ⁇ is strain.
- the zero-shear viscosity is determined from the ratio of the applied stress to the steady state shear rate.
- a small amplitude oscillatory shear test is conducted before and after the creep test on the same specimen from 0.1 to 100 rad/s at 10% strain.
- the complex viscosity values of the two tests are compared. If the difference of the viscosity values at 0.1 rad/s is greater than 5%, the sample is considered to have degraded during the creep test, and the result is discarded.
- Zero-shear viscosity ratio is defined as the ratio of the zero-shear viscosity (ZSV) of the inventive polymer to the ZSV of a linear polyethylene material at the equivalent weight average molecular weight (M w-gpc ) as shown in the equation below.
- the ⁇ 0 value (in Pa ⁇ s) is obtained from creep test at 190° C. via the method described above. It is known that ZSV of linear polyethylene ⁇ 0L has a power law dependence on its M w when the M w is above the critical molecular weight M c . An example of such a relationship is described in Karjala et al. (Annual Technical Conference—Society of Plastics Engineers (2008), 66 th , 887-891) as shown in the equation below and it is used in the present invention to calculate the ZSVR values.
- the M w-gpc value in the equation (in g/mol) is determined by using the GPC method as defined in the next section.
- the chromatographic system consisted of either a Polymer Laboratories Model PL-210 or a Polymer Laboratories Model PL-220.
- the column and carousel compartments were operated at 140° C.
- Three Polymer Laboratories 10- ⁇ m Mixed-B columns were used with a solvent of 1,2,4-trichlorobenzene.
- the samples were prepared at a concentration of 0.1 g of polymer in 50 mL of solvent.
- the solvent used to prepare the samples contained 200 ppm of the antioxidant butylated hydroxytoluene (BHT). Samples were prepared by agitating lightly for 4 hours at 160° C.
- the injection volume used was 100 microliters and the flow rate was 1.0 mL/min.
- Calibration of the GPC column set was performed with twenty one narrow molecular weight distribution polystyrene standards purchased from Polymer Laboratories.
- the polystyrene standard peak molecular weights were converted to polyethylene molecular weights using
- M polyethylene A ( M polystyrene ) B (3)
- M is the molecular weight
- A has a value of 0.4316 and B is equal to 1.0.
- a third order polynomial was determined to build the logarithmic molecular weight calibration as a function of elution volume. Polyethylene equivalent molecular weight calculations were performed using Viscotek TriSEC software Version 3.0. The precision of the weight-average molecular weight ⁇ M w,2s was excellent at ⁇ 2.6%.
- Cast Film Die ribbon die, 150 ⁇ 0.5 mm, available from OCS Optical Control Systems GmbH, or equivalent.
- Air Knife OCS air knife to pin the film on the chill roll, available from OCS Optical Control Systems GmbH, or equivalent.
- Cast Film Chill Rolls and Winding Unit OCS Model CR-8, available from OCS Optical Control Systems GmbH, or equivalent.
- OCS FS-3 line gel counter consisting of a lighting unit, a CCD detector and an image processor with the Gel counter software version 3.65e 1991-1999, available from OCS Optical Control Systems GmbH, or equivalent.
- the OCS FS-5 gel counter is equivalent.
- Instantaneous GI200 Note: GI stands for “gel index”. GI200 includes all gels ⁇ 200 ⁇ m in diameter.
- the instantaneous GI200 is the sum of the area of all the size classes in one analysis cycle:
- GI200 is defined as the trailing average of the last twenty instantaneous G1200 values:
- ⁇ X> GI 200(mm 2 /24.6 cm 3 )
- One analysis cycle inspects 24.6 cm 3 of film.
- the corresponding area is 0.324 m 2 for a film thickness of 76 ⁇ m and 0.647 m 2 for a film thickness of 38 ⁇ m.
- the degree of crosslinking may be measured by dissolving the composition in a solvent for specified duration, and calculating the percent gel or unextractable component. The percent gel normally increases with increasing crosslinking levels.
- Long chain branching per 1000 carbons The presence of long chain branching can be determined in ethylene homopolymers by using 13 C nuclear magnetic resonance (NMR) spectroscopy and is quantified using the method described by Randall (Rev. Macromol. Chem. Phys., C29, V. 2&3, 285-297).
- NMR nuclear magnetic resonance
- Randall Rev. Macromol. Chem. Phys., C29, V. 2&3, 285-297.
- Two such exemplary methods are gel permeation chromatography coupled with a low angle laser light scattering detector (GPC-LALLS) and gel permeation chromatography coupled with a differential viscometer detector (GPC-DV).
- Hot Tack Testing of Films can be determined in accordance to Strength (Hot Tack) of Thermoplastic Polymers and Blends Comprising the Sealing Surfaces of Flexible Webs as referenced in ASTM F-1921 — 04.
- the ethylenic polymers of this invention are relatively high molecular weight, relatively low density polymers that have a unique combination of (A) a relatively low total amount of unsaturation, and (B) a relatively high ratio of vinyl groups to total unsaturated groups in the polymer chain, as compared to known metallocene-catalyzed ethylenic polymers. This combination is believed to result in lower gels for end-use applications (such as films) where low gels are important, better long-term polymer stability and, for end-use applications requiring cross-linking, better control of that cross-linking, in each case while maintaining a good balance of other performance properties.
- novel polymers of this invention are interpolymers of ethylene with at least 0.1 mole percent of one or more comonomers, preferably at least one ⁇ -olefin comonomer.
- the ⁇ -olefin comonomer(s) may have, for example, from 3 to 20 carbon atoms.
- the ⁇ -olefin comonomer may have 3 to 8 carbon atoms.
- Exemplary ⁇ -olefin comonomers include, but are not limited to, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 4,4-dimethyl-1-pentene, 3-ethyl-1-pentene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicosene.
- a solution-phase polymerization process may be used.
- a process occurs in a well-stirred reactor such as a loop reactor or a sphere reactor at temperature from about 150 to about 300° C., preferably from about 160 to about 180° C., and at pressures from about 30 to about 1000 psi, preferably from about 30 to about 750 psi.
- the residence time in such a process is typically from about 2 to about 20 minutes, preferably from about 10 to about 20 minutes.
- Ethylene, solvent, catalyst, and one or more comonomers are fed continuously to the reactor.
- Exemplary solvents include, but are not limited to, isoparaffins.
- solvents are commercially available under the name ISOPAR E from ExxonMobil Chemical Co., Houston, Tex.
- ISOPAR E from ExxonMobil Chemical Co., Houston, Tex.
- the resultant mixture of ethylene-based polymer and solvent is then removed from the reactor and the polymer is isolated.
- Solvent is typically recovered via a solvent recovery unit, that is, heat exchangers and vapor liquid separator drum, and is recycled back into the polymerization system.
- Suitable catalysts for use in preparing the novel polymers of this invention include any compound or combination of compounds that is adapted for preparing such polymers in the particular type of polymerization process, such as solution-polymerization, slurry-polymerization or gas-phase-polymerization processes.
- an ethylenic polymer of this invention is prepared in a solution-polymerization process using a polymerization catalyst that is a metal complex of a polyvalent aryloxyether corresponding to the formula:
- M 3 is Ti, Hf or Zr, preferably Zr;
- Ar 4+ independently each occurrence is a substituted C 9-20 aryl group, wherein the substituents, independently each occurrence, are selected from the group consisting of alkyl; cycloalkyl; and aryl groups; and halo-, trihydrocarbylsilyl- and halohydrocarbyl-substituted derivatives thereof, with the proviso that at least one substituent lacks co-planarity with the aryl group to which it is attached;
- T 4 independently each occurrence is a C 2-20 alkylene, cycloalkylene or cycloalkenylene group, or an inertly substituted derivative thereof;
- R 21 independently each occurrence is hydrogen, halo, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylsilylhydrocarbyl, alkoxy or di(hydrocarbyl)amino group of up to 50 atoms not counting hydrogen;
- R 3 independently each occurrence is hydrogen, halo, hydrocarbyl, trihydrocarbylsilyl, trihydrocarbylsilylhydrocarbyl, alkoxy or amino of up to 50 atoms not counting hydrogen, or two R 3 groups on the same arylene ring together or an R 3 and an R 21 group on the same or different arylene ring together form a divalent ligand group attached to the arylene group in two positions or join two different arylene rings together; and
- R D independently each occurrence is halo or a hydrocarbyl or trihydrocarbylsilyl group of up to 20 atoms not counting hydrogen, or 2 R D groups together are a hydrocarbylene, hydrocarbadiyl, diene, or poly(hydrocarbyl)silylene group.
- polyvalent aryloxyether metal complexes and their synthesis are described in WO 2007/136496 or WO 2007/136497, using the synthesis procedures disclosed in US-A-2004/0010103.
- preferred polyvalent aryloxyether metal complexes are those disclosed as example 1 in WO 2007/136496 and as example A10 in WO 2007/136497.
- Suitable cocatalysts and polymerization conditions for use of the preferred polyvalent aryloxyether metal complexes are also disclosed in WO 2007/136496 or WO 2007/136497.
- the metal complex polymerization catalyst may be activated to form an active catalyst composition by combination with one or more cocatalysts, preferably a cation forming cocatalyst, a strong Lewis acid, or a combination thereof.
- cocatalysts for use include polymeric or oligomeric aluminoxanes, especially methyl aluminoxane, as well as inert, compatible, noncoordinating, ion forming compounds.
- So-called modified methyl aluminoxane (MMAO) or triethyl aluminum (TEA) is also suitable for use as a cocatalyst.
- MMAO modified methyl aluminoxane
- TAA triethyl aluminum
- Aluminoxanes can also be made as disclosed in U.S. Pat. Nos. 5,542,199 (Lai et al.); 4,544,762 (Kaminsky et al.); 5,015,749 (Schmidt et al.); and 5,041,585 (Deavenport et al.).
- Polymeric Blends or Compounds of this invention Various natural or synthetic polymers, and/or other components, may be blended or compounded with the novel polymers of this invention to form the polymeric compositions of this invention.
- Suitable polymers for blending with the embodiment ethylenic polymer include thermoplastic and non-thermoplastic polymers including natural and synthetic polymers.
- Suitable synthetic polymers include both ethylene-based polymers, such as high pressure, free-radical low density polyethylene (LDPE), and ethylene-based polymers prepared with Ziegler-Natta catalysts, including high density polyethylene (HDPE) and heterogeneous linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), and very low density polyethylene (VLDPE), as well as multiple-reactor ethylenic polymers (“in reactor” blends of Ziegler-Natta PE and metallocene PE, such as products disclosed in U.S. Pat. Nos.
- ethylene-based polymers such as high pressure, free-radical low density polyethylene (LDPE), and ethylene-based polymers prepared with Ziegler-Natta catalysts, including high density polyethylene (HDPE) and heterogeneous linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), and very low density polyethylene (VLDPE), as well as multiple-reactor ethylenic polymers (“in reactor” blends of
- linear ethylene-based polymers include ATTANETM Ultra Low Density Linear Polyethylene Copolymer, DOWLEXTM Polyethylene Resins, and FLEXOMERTM Very Low Density Polyethylene, all available from The Dow Chemical Company.
- Suitable synthetic polymers include polypropylene, (both impact modifying polypropylene, isotactic polypropylene, atactic polypropylene, and random ethylene/propylene copolymers), ethylene/diene interpolymers, ethylene-vinyl acetate (EVA), ethylene/vinyl alcohol copolymers, polystyrene, impact modified polystyrene, ABS, styrene/butadiene block copolymers and hydrogenated derivatives thereof (SBS and SEBS), and thermoplastic polyurethanes.
- polypropylene both impact modifying polypropylene, isotactic polypropylene, atactic polypropylene, and random ethylene/propylene copolymers
- EVA ethylene-vinyl acetate
- EVA ethylene/vinyl alcohol copolymers
- polystyrene impact modified polystyrene
- ABS styrene/butadiene block copolymers and hydrogenated derivatives
- Homogeneous olefin-based polymers such as ethylene-based or propylene-based plastomers or elastomers can also be useful as components in blends or compounds made with the ethylenic polymers of this invention.
- Commercial examples of homogeneous metallocene-catalyzed, ethylene-based plastomers or elastomers include AFFINITYTM polyolefin plastomers and ENGAGETM polyolefin elastomers, both available from The Dow Chemical Company, and commercial examples of homogeneous propylene-based plastomers and elastomers include VERSIFYTM performance polymers, available from The Dow Chemical Company, and VISTAMAXTM polymers available from ExxonMobil Chemical Company.
- the polymeric compositions of this invention include compositions comprising, or made from, the ethylenic polymer of this invention in combination (such as blends or compounds, including reaction products) with one or more other components, which other components may include, but are not limited to, natural or synthetic materials, polymers, additives, reinforcing agents, ignition resistant additives, fillers, waxes, tackifiers, antioxidants, stabilizers, colorants, extenders, crosslinkers, blowing agents, and/or plasticizers.
- Such polymeric compositions may include thermoplastic polyolefins (TPO), thermoplastic elastomers (TPE), thermoplastic vulcanizates (TPV) and/or styrenic/ethylenic polymer blends.
- TPEs and TPVs may be prepared by blending or compounding one or more ethylenic polymers of this invention (including functionalized derivatives thereof) with an optional elastomer (including conventional block copolymers, especially an SBS or SEBS block copolymer, or EPDM, or a natural rubber) and optionally a crosslinking or vulcanizing agent.
- a TPO polymeric composition of this invention would be prepared by blending or compounding one or more of the ethylenic polymers of this invention with one or more polyolefins (such as polypropylene).
- a TPE polymeric composition of this invention would be prepared by blending or compounding one or more of the ethylenic polymers of this invention with one or more elastomers (such as a styrenic block copolymer or an olefin block copolymer, such as disclosed in U.S. Pat. No. 7,355,089 (Chang et al.)).
- a TPV polymeric composition of this invention would be prepared by blending or compounding one or more of the ethylenic polymers of this invention with one or more other polymers and a vulcanizing agent.
- polymeric compositions may be used in forming a molded object, and optionally crosslinking the resulting molded article.
- a similar procedure using different components has been previously disclosed in U.S. Pat. No. 6,797,779 (Ajbani, et al.).
- processing aids such as plasticizers
- plasticizers can also be included in the polymeric composition.
- these aids include, but are not limited to, the phthalates (such as dioctyl phthalate and diisobutyl phthalate), natural oils (such as lanolin, and paraffin, naphthenic and aromatic oils obtained from petroleum refining), and liquid resins from rosin or petroleum feedstocks.
- exemplary classes of oils useful as processing aids include white mineral oil such as KAYDOL® oil (Chemtura Corp.; Middlebury, Conn.) and SHELLFLEX® 371 naphthenic oil (Shell Lubricants; Houston, Tex.).
- Another suitable oil is TUFFLO® oil (Lyondell Lubricants; Houston, Tex.).
- the ethylenic polymers are treated with one or more stabilizers, for example, antioxidants, such as IRGANOX® 1010 and IRGAFOS® 168 (Ciba Specialty Chemicals; Glattbrugg, Switzerland).
- antioxidants such as IRGANOX® 1010 and IRGAFOS® 168 (Ciba Specialty Chemicals; Glattbrugg, Switzerland).
- polymers are treated with one or more stabilizers before an extrusion or other melt processes.
- the compounded polymeric composition may comprise from 200 to 600 wppm of one or more phenolic antioxidants, and/or from 800 to 1200 wppm of a phosphite-based antioxidant, and/or from 300 to 1250 wppm of calcium stearate.
- polymeric additives are blended or compounded into the polymeric compositions, such as ultraviolet light absorbers, antistatic agents, pigments, dyes, nucleating agents, fillers, slip agents, fire retardants, plasticizers, processing aids, lubricants, stabilizers, smoke inhibitors, viscosity control agents, and/or anti-blocking agents.
- the polymeric composition may, for example, comprise less than 10 percent by the combined weight of one or more of such additives, based on the weight of the ethylenic polymer.
- additives may be blended or compounded with the ethylenic polymers of this invention to form polymeric compositions, including fillers (such as organic or inorganic particles, including nano-size particles, such as clays, talc, titanium dioxide, zeolites, powdered metals), organic or inorganic fibers (including carbon fibers, silicon nitride fibers, steel wire or mesh, and nylon or polyester cording), tackifiers, waxes, and oil extenders (including paraffinic or naphthelenic oils), sometimes in combination with other natural and/or synthetic polymers.
- fillers such as organic or inorganic particles, including nano-size particles, such as clays, talc, titanium dioxide, zeolites, powdered metals
- organic or inorganic fibers including carbon fibers, silicon nitride fibers, steel wire or mesh, and nylon or polyester cording
- tackifiers including paraffinic or naphthelenic oils
- Cross-linking Agents For those end-use applications in which it is desired to fully or partially cross-link the ethylenic polymer of this invention, any of a variety of cross-linking agents may be used. Some suitable cross-linking agents are disclosed in Zweifel Hans et al., “Plastics Additives Handbook,” Hanser Gardner Publications, Cincinnati, Ohio, 5th edition, Chapter 14, pages 725-812 (2001); Encyclopedia of Chemical Technology, Vol. 17, 2nd edition, Interscience Publishers (1968); and Daniel Seem, “Organic Peroxides,” Vol. 1, Wiley-Interscience, (1970).
- Non-limiting examples of suitable cross-linking agents include peroxides, phenols, azides, aldehyde-amine reaction products, substituted ureas, substituted guanidines; substituted xanthates; substituted dithiocarbamates; sulfur-containing compounds, such as thiazoles, sulfenamides, thiuramidisulfides, paraquinonedioxime, dibenzoparaquinonedioxime, sulfur; imidazoles; silanes and combinations thereof.
- Non-limiting examples of suitable organic peroxide cross-linking agents include alkyl peroxides, aryl peroxides, peroxyesters, peroxycarbonates, diacylperoxides, peroxyketals, cyclic peroxides and combinations thereof.
- the organic peroxide is dicumyl peroxide, t-butylisopropylidene peroxybenzene, 1,1-di-t-butyl peroxy-3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di(t-butyl peroxy)hexane, t-butyl-cumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di-(t-butyl peroxy)hexyne or a combination thereof.
- the organic peroxide is dicumyl peroxide. Additional teachings regarding organic peroxide cross-linking agents are disclosed in C. P.
- azide cross-linking agents include azidoformates, such as tetramethylenebis(azidoformate); aromatic polyazides, such as 4,4′-diphenylmethane diazide; and sulfonazides, such as p,p′-oxybis(benzene sulfonyl azide).
- azide cross-linking agents can be found in U.S. Pat. Nos. 3,284,421 and 3,297,674.
- the cross-linking agents are silanes. Any silane that can effectively graft to and/or cross-link the ethylene/ ⁇ -olefin interpolymer or the polymer blend disclosed herein can be used.
- suitable silane cross-linking agents include unsaturated silanes that comprise an ethylenically unsaturated hydrocarbyl group, such as a vinyl, allyl, isopropenyl, butenyl, cyclohexenyl or gamma-(meth)acryloxy allyl group, and a hydrolyzable group such as a hydrocarbyloxy, hydrocarbonyloxy, and hydrocarbylamino group.
- Non-limiting examples of suitable hydrolyzable groups include methoxy, ethoxy, formyloxy, acetoxy, proprionyloxy, alkyl and arylamino groups.
- the silanes are the unsaturated alkoxy silanes which can be grafted onto the interpolymer. Some of these silanes and their preparation methods are more fully described in U.S. Pat. No. 5,266,627.
- the amount of the cross-linking agent can vary widely, depending upon the nature of the ethylenic polymer or the polymeric composition to be cross-linked, the particular cross-linking agent employed, the processing conditions, the amount of grafting initiator, the ultimate application, and other factors.
- VTMOS vinyltrimethoxysilane
- the amount of VTMOS is generally at least about 0.1 weight percent, at least about 0.5 weight percent, or at least about 1 weight percent, based on the combined weight of the cross-linking agent and the ethylenic polymer or the polymeric composition.
- the ethylenic polymer of this invention may be employed in a variety of conventional thermoplastic fabrication processes to produce useful articles, including objects comprising at least one film layer, such as a monolayer film, or at least one layer in a multilayer film, which films may be prepared by cast, blown, calendered, or extrusion coating processes; molded articles, such as blow molded, injection molded, or rotomolded articles; extrusions; fibers; woven or non-woven fabrics; and composite or laminate structures made with any of the foregoing articles.
- molded articles such as blow molded, injection molded, or rotomolded articles
- extrusions fibers
- woven or non-woven fabrics and composite or laminate structures made with any of the foregoing articles.
- the ethylenic polymers of this invention may be used in producing fibers, such as staple fibers, tow, multicomponent, sheath/core, twisted, and monofilament fibers.
- Suitable fiber-forming processes include spunbonded and melt blown techniques, as disclosed in U.S. Pat. Nos. 4,340,563 (Appel et al.), 4,663,220 (Wisneski et al.), 4,668,566 (Nohr et al.), and 4,322,027 (Reba), gel spun fibers as disclosed in U.S. Pat. No. 4,413,110 (Kavesh et al.), woven and nonwoven fabrics, as disclosed in U.S. Pat.
- the ethylenic polymers of this invention may be used in a variety of films, including but not limited to clarity shrink films, collation shrink films, cast stretch films, silage films, stretch hooder films, sealants (including heat sealing films), stand-up-pouch films, liner films, and diaper backsheets.
- the ethylenic polymers are especially useful for making films or film layers, preferably wherein the film or film layer is subsequently heat sealed to form a thermally welded bond.
- the ethylenic polymers preferably have a peak hot tack in (N/inch) is greater than or equal to the quantity (13 ⁇ 0.395*12) at a seal bar temperature of from 90 to 140 C.
- the ethylenic polymers of this invention are also useful in other direct end-use applications, such as for wire and cable coatings, in sheet extrusion for vacuum forming operations, and forming molded articles, including articles made via any of the known thermoplastic molding technologies, including injection molding, blow molding, or rotomolding processes.
- the polymeric compositions of this invention can also be formed into fabricated articles using other conventional polyolefin processing techniques.
- ethylenic polymers of this invention include films and fibers; soft touch goods, such as tooth brush handles and appliance handles; gaskets and profiles; adhesives (including hot melt adhesives and pressure sensitive adhesives); footwear (including shoe soles and shoe liners); auto interior or exterior parts and profiles; foam goods (both open and closed cell); impact modifiers for other thermoplastic polymers such as high density polyethylene, isotactic polypropylene, or other olefin polymers; coated fabrics (such as artificial leather); hoses; tubing; weather stripping; cap liners; flooring (such as hard or soft flooring and artificial turf); and viscosity index modifiers, as well as pour point modifiers, for lubricants.
- ethylenic polymers or polymeric compositions of this invention may be performed to render them more suitable for other end uses.
- dispersions both aqueous and non-aqueous
- ethylenic polymers or polymeric compositions of this invention can also be formed using ethylenic polymers or polymeric compositions of this invention, such as by a dispersion-manufacturing process.
- Frothed foams comprising the embodiment ethylenic polymer can also be formed, as disclosed in PCT Publication No. 2005/021622.
- the ethylenic polymers or polymeric compositions of this invention may also be crosslinked by any known means, such as the use of peroxide, electron beam, silane, azide, or other cross-linking technique.
- ethylenic polymers or polymeric compositions of this invention can also be chemically modified, such as by grafting (for example by use of maleic anhydride (MAH), silanes, or other grafting agent), halogenation, amination, sulfonation, or other chemical modification.
- grafting for example by use of maleic anhydride (MAH), silanes, or other grafting agent
- halogenation for example by use of maleic anhydride (MAH), silanes, or other grafting agent
- halogenation for example by use of maleic anhydride (MAH), silanes, or other grafting agent
- amination for example by use of halogenation, amination, sulfonation, or other chemical modification.
- All raw materials ethylene, 1-octene
- the process solvent a narrow boiling range high-purity isoparaffinic solvent trademarked Isopar E and commercially available from Exxon Mobil Corporation
- Hydrogen is supplied in pressurized cylinders as a high purity grade and is not further purified.
- the reactor monomer feed (ethylene) stream is pressurized via mechanical compressor to above reaction pressure at 525 psig.
- the solvent and comonomer (1-octene) feed is pressurized via mechanical positive displacement pump to above reaction pressure at 525 psig.
- the individual catalyst components are manually batch diluted to specified component concentrations with purified solvent (Isopar E) and pressured to above reaction pressure at 525 psig. All reaction feed flows are measured with mass flow meters and independently controlled with computer automated valve control systems.
- the continuous solution polymerization reactor consists of a liquid full, non-adiabatic, isothermal, circulating, and independently controlled loop.
- the reactor has independent control of all fresh solvent, monomer, comonomer, hydrogen, and catalyst component feeds.
- the combined solvent, monomer, comonomer and hydrogen feed to the reactor is temperature controlled to anywhere between 5° C. to 50° C. and typically 25° C. by passing the feed stream through a heat exchanger.
- the fresh comonomer feed to the polymerization reactor is fed in with the solvent feed.
- the total fresh feed to each polymerization reactor is injected into the reactor at two locations with roughly equal reactor volumes between each injection location.
- the fresh feed is controlled typically with each injector receiving half of the total fresh feed mass flow.
- the catalyst components are injected into the polymerization reactor through specially designed injection stingers and are each separately injected into the same relative location in the reactor with no contact time prior to the reactor.
- the primary catalyst component feed is computer controlled to maintain the reactor monomer concentration at a specified target.
- the two cocatalyst components are fed based on calculated specified molar ratios to the primary catalyst component.
- the feed streams are mixed with the circulating polymerization reactor contents with Kenics static mixing elements.
- the contents of each reactor are continuously circulated through heat exchangers responsible for removing much of the heat of reaction and with the temperature of the coolant side responsible for maintaining isothermal reaction environment at the specified temperature. Circulation around each reactor loop is provided by a screw pump.
- the effluent from the first polymerization reactor exits the first reactor loop and passes through a control valve (responsible for maintaining the pressure of the first reactor at a specified target). As the stream exits the reactor it is contacted with water to stop the reaction. In addition, various additives such as anti-oxidants, can be added at this point. The stream then goes through another set of Kenics static mixing elements to evenly disperse the catalyst kill and additives.
- the effluent (containing solvent, monomer, comonomer, hydrogen, catalyst components, and molten polymer) passes through a heat exchanger to raise the stream temperature in preparation for separation of the polymer from the other lower boiling reaction components.
- the stream then enters a two stage separation and devolatization system where the polymer is removed from the solvent, hydrogen, and unreacted monomer and comonomer.
- the recycled stream is purified before entering the reactor again.
- the separated and devolatized polymer melt is pumped through a die specially designed for underwater pelletization, cut into uniform solid pellets, dried, and transferred into a hopper. After validation of initial polymer properties the solid polymer pellets are manually dumped into a box for storage. Each box typically holds ⁇ 1200 pounds of polymer pellets.
- the non-polymer portions removed in the devolatilization step pass through various pieces of equipment which separate most of the ethylene which is removed from the system to a vent destruction unit (it is recycled in manufacturing units). Most of the solvent is recycled back to the reactor after passing through purification beds. This solvent can still have unreacted co-monomer in it that is fortified with fresh co-monomer prior to re-entry to the reactor. This fortification of the co-monomer is an essential part of the product density control method. This recycle solvent can still have some hydrogen which is then fortified with fresh hydrogen to achieve the polymer molecular weight target. A very small amount of solvent leaves the system as a co-product due to solvent carrier in the catalyst streams and a small amount of solvent that is part of commercial grade co-monomers.
- Comparative Sample E and Examples 6 and 7 Ethylenic polymers are prepared in order to compare the properties of ethylene-octene polymers (Comparative Example E) prepared using a known metallocene catalyst to the properties of ethylene-octene polymers (Examples 6 and 7) of this invention. Each ethylenic polymer is prepared in plant operating substantially in accordance with the resin production section above.
- Table 1 describes the polymerization conditions used to produce each of the copolymers.
- Table 2 lists various properties of those polymers.
- Example 60 C. 70 C. 80 C. 90 C. 100 C. 110 C. 120 C. 130 C. 140 C. 150 C.
- Comparative Sample E and Examples 6 and 7 Three ethylenic polymers are prepared in order to compare the hot tack strength and sealing window properties of a ethylene-octene polymer (Comparative Samples E) prepared using a known constrained geometry metallocene catalyst to the properties of two ethylene-octene polymers (Examples 6 and 7) of this invention when fabricated into a sealant layer in a multilayer film. Each ethylenic polymer is prepared in the same pilot plant as described above for Examples 1 through 5.
- the polymers of Comparative Sample E and of Examples 6 and 7 are then fabricated into sealant-layer A of a three-layer film of the structure A/B/C.
- Layers B and C are the same for each case, with layer B comprising a 90/10 blend of ATTANETM ULDPE polymer with AMPLIFYTM GR 205 functionalized polymer (both available from The Dow Chemical Company), and layer C comprising ULTRAMID® C 33L 01 polyamide made by BASF Corporation is a Nylon 66/6 (Polyamide 66/6 Copolymer) plastic material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Sealing Material Composition (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/376,047 US20120095158A1 (en) | 2009-07-01 | 2010-07-01 | Ethylenic polymer and its use |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22236709P | 2009-07-01 | 2009-07-01 | |
US13/376,047 US20120095158A1 (en) | 2009-07-01 | 2010-07-01 | Ethylenic polymer and its use |
PCT/US2010/040759 WO2011002986A1 (en) | 2009-07-01 | 2010-07-01 | Ethylenic polymer and its use |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/040759 A-371-Of-International WO2011002986A1 (en) | 2009-07-01 | 2010-07-01 | Ethylenic polymer and its use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/903,358 Continuation US10875947B2 (en) | 2009-07-01 | 2018-02-23 | Ethylenic polymer and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120095158A1 true US20120095158A1 (en) | 2012-04-19 |
Family
ID=43017110
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/376,047 Abandoned US20120095158A1 (en) | 2009-07-01 | 2010-07-01 | Ethylenic polymer and its use |
US15/903,358 Active 2030-09-02 US10875947B2 (en) | 2009-07-01 | 2018-02-23 | Ethylenic polymer and its use |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/903,358 Active 2030-09-02 US10875947B2 (en) | 2009-07-01 | 2018-02-23 | Ethylenic polymer and its use |
Country Status (9)
Country | Link |
---|---|
US (2) | US20120095158A1 (ja) |
EP (1) | EP2448757B1 (ja) |
JP (2) | JP2012532231A (ja) |
KR (1) | KR101742832B1 (ja) |
CN (2) | CN106939057B (ja) |
BR (1) | BRPI1010092B1 (ja) |
ES (1) | ES2589766T3 (ja) |
SG (2) | SG177446A1 (ja) |
WO (1) | WO2011002986A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120129417A1 (en) * | 2009-07-01 | 2012-05-24 | Dow Global Technologies Llc | Ethylenic polymer and its use |
US20160333124A1 (en) * | 2014-12-15 | 2016-11-17 | Lg Chem, Ltd. | OLEFIN BASED POLYMER HAVING EXCELLENT PROCESSABILITY (As amended) |
US9862734B2 (en) | 2013-12-19 | 2018-01-09 | Dow Global Technologies Llc | Metal-ligand complex, olefin polymerization catalyst derived therefrom, and olefin polymerization method utilizing the catalyst |
US9926441B2 (en) | 2012-06-26 | 2018-03-27 | Dow Global Technologies Llc | Polyethylene blend-composition suitable for blown films, and films made therefrom |
US10239974B2 (en) * | 2014-06-30 | 2019-03-26 | Dow Global Technologies Llc | Ethylene-based polymers |
US10301412B2 (en) | 2014-12-04 | 2019-05-28 | Dow Global Technologies Llc | Five-coordinate bis-phenylphenoxy catalysts for the preparation of ethylene-based polymers |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8629214B2 (en) | 2009-07-01 | 2014-01-14 | Dow Global Technologies Llc. | Ethylene-based polymer compositions for use as a blend component in shrinkage film applications |
US20110003940A1 (en) * | 2009-07-01 | 2011-01-06 | Dow Global Technologies Inc. | Ethylene-based polymer compositions for use as a blend component in shrinkage film applications |
SG177446A1 (en) * | 2009-07-01 | 2012-02-28 | Dow Global Technologies Llc | Ethylenic polymer and its use |
KR101861399B1 (ko) | 2010-12-21 | 2018-05-28 | 다우 글로벌 테크놀로지스 엘엘씨 | 올레핀 기재 중합체 및 분산 중합 |
JP6170049B2 (ja) * | 2011-09-12 | 2017-07-26 | ダウ グローバル テクノロジーズ エルエルシー | 組成物およびそれらから形成される物品 |
BR112014008021B1 (pt) * | 2011-10-05 | 2021-04-27 | Dow Global Technologies Llc | Fibra bicomponente e pano |
KR20140107260A (ko) * | 2011-12-19 | 2014-09-04 | 다우 글로벌 테크놀로지스 엘엘씨 | 분산 중합에 의해 제조된 에틸렌 기재 중합체 |
BR112014014855B1 (pt) | 2011-12-20 | 2022-01-11 | Dow Global Technologies Llc | Processo de polimerização em solução para formar um interpolímero de etileno/aolefina/polieno não conjugado |
CN104640921A (zh) * | 2012-07-20 | 2015-05-20 | 陶氏环球技术有限责任公司 | 适合用于流延膜的线性低密度聚乙烯组合物 |
JP6211088B2 (ja) | 2012-10-09 | 2017-10-11 | ダウ グローバル テクノロジーズ エルエルシー | シーラント組成物 |
SG11201504578XA (en) | 2013-01-18 | 2015-08-28 | Dow Global Technologies Llc | Polymerization processes for high molecular weight polyolefins |
US10618799B2 (en) * | 2015-02-13 | 2020-04-14 | Dow Global Technologies Llc | Cushioning network structures, and methods of manufacturing thereof |
EP3303427B1 (en) | 2015-05-28 | 2023-11-29 | Dow Global Technologies LLC | Process to form ethylene/alpha-olefin/diene interpolymers |
EP3341083B1 (en) * | 2015-08-18 | 2021-03-24 | L'Oréal | Oil-in-water emulsion composition |
KR101692346B1 (ko) * | 2016-04-27 | 2017-01-03 | 한화케미칼 주식회사 | 혼성 담지 메탈로센 촉매를 이용한 고밀도 에틸렌계 중합체 및 제조방법 |
EP3238938A1 (en) | 2016-04-29 | 2017-11-01 | Borealis AG | Machine direction oriented films comprising multimodal copolymer of ethylene and at least two alpha-olefin comonomers |
BR112019001264B1 (pt) * | 2016-07-28 | 2022-09-27 | Dow Global Technologies Llc | Espuma de polietileno não reticulada formada a partir de uma composição de polietileno |
WO2024079363A1 (en) * | 2022-10-14 | 2024-04-18 | Combipac Bv | Polyethylene stretch film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007136496A2 (en) * | 2006-05-17 | 2007-11-29 | Dow Global Technologies Inc. | High temperature polyethylene solution polymerization process |
WO2007146875A2 (en) * | 2006-06-15 | 2007-12-21 | Dow Global Technologies Inc. | Functionalized olefin interpolymers, compositions and articles prepared therefrom, and methods for making the same |
US7355089B2 (en) * | 2004-03-17 | 2008-04-08 | Dow Global Technologies Inc. | Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3284421A (en) | 1962-02-12 | 1966-11-08 | Hercules Inc | Modifying polymers |
GB1009771A (ja) | 1964-04-01 | |||
US3485706A (en) | 1968-01-18 | 1969-12-23 | Du Pont | Textile-like patterned nonwoven fabrics and their production |
US4340563A (en) | 1980-05-05 | 1982-07-20 | Kimberly-Clark Corporation | Method for forming nonwoven webs |
US4322027A (en) | 1980-10-02 | 1982-03-30 | Crown Zellerbach Corporation | Filament draw nozzle |
US4413110A (en) | 1981-04-30 | 1983-11-01 | Allied Corporation | High tenacity, high modulus polyethylene and polypropylene fibers and intermediates therefore |
DE3240383A1 (de) | 1982-11-02 | 1984-05-03 | Hoechst Ag, 6230 Frankfurt | Verfahren zur herstellung von oligomeren aluminoxanen |
US4663220A (en) | 1985-07-30 | 1987-05-05 | Kimberly-Clark Corporation | Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers |
US4668566A (en) | 1985-10-07 | 1987-05-26 | Kimberly-Clark Corporation | Multilayer nonwoven fabric made with poly-propylene and polyethylene |
US5015749A (en) | 1987-08-31 | 1991-05-14 | The Dow Chemical Company | Preparation of polyhydrocarbyl-aluminoxanes |
US5041584A (en) | 1988-12-02 | 1991-08-20 | Texas Alkyls, Inc. | Modified methylaluminoxane |
US5041585A (en) | 1990-06-08 | 1991-08-20 | Texas Alkyls, Inc. | Preparation of aluminoxanes |
US5272236A (en) | 1991-10-15 | 1993-12-21 | The Dow Chemical Company | Elastic substantially linear olefin polymers |
US5266627A (en) | 1991-02-25 | 1993-11-30 | Quantum Chemical Corporation | Hydrolyzable silane copolymer compositions resistant to premature crosslinking and process |
US5278272A (en) | 1991-10-15 | 1994-01-11 | The Dow Chemical Company | Elastic substantialy linear olefin polymers |
EP0619827B1 (en) | 1991-12-30 | 1996-06-12 | The Dow Chemical Company | Ethylene interpolymer polymerizations |
US6545088B1 (en) | 1991-12-30 | 2003-04-08 | Dow Global Technologies Inc. | Metallocene-catalyzed process for the manufacture of EP and EPDM polymers |
US6448341B1 (en) | 1993-01-29 | 2002-09-10 | The Dow Chemical Company | Ethylene interpolymer blend compositions |
ATE195538T1 (de) | 1993-01-29 | 2000-09-15 | Dow Chemical Co | Äthylen copolymerisation |
US5542199A (en) | 1995-07-19 | 1996-08-06 | Hoffman/New Yorker, Inc. | Garment pressing apparatus with garment end rotator |
US5869575A (en) | 1995-08-02 | 1999-02-09 | The Dow Chemical Company | Ethylene interpolymerizations |
JP2000507645A (ja) * | 1996-11-13 | 2000-06-20 | ザ・ダウ・ケミカル・カンパニー | 均衡の取れたシーラント特性と向上した引張り応力を示すポリオレフィン組成物およびそれの方法 |
SK15792001A3 (sk) | 1999-05-05 | 2002-10-08 | Bp Chemicals Limited | Etylénové kopolyméry a fólie vyrobené z týchto kopolymérov |
DE60335459D1 (de) * | 2002-04-24 | 2011-02-03 | Symyx Solutions Inc | Verbrückte bi-aromatische liganden, komplexe, katalysatoren, verfahren zur polymerisierung und entstehende polymere |
US6797779B1 (en) | 2003-03-28 | 2004-09-28 | The Goodyear Tire & Rubber Company | Thermoplastic composition |
JP2005053997A (ja) * | 2003-08-08 | 2005-03-03 | Japan Polyolefins Co Ltd | 易引裂性フィルム用樹脂材料、積層体およびその製造方法 |
TW200517426A (en) | 2003-08-25 | 2005-06-01 | Dow Global Technologies Inc | Aqueous dispersion, its production method, and its use |
AU2005224259B2 (en) | 2004-03-17 | 2010-09-09 | Dow Global Technologies Inc. | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
US20050288461A1 (en) * | 2004-06-25 | 2005-12-29 | Jensen Michael D | Polymerization catalysts for producing polymers with low levels of long chain branching |
BRPI0609850B1 (pt) * | 2005-03-17 | 2022-09-27 | Dow Global Technologies Inc | Mistura polimérica, perfil, gaxeta, espuma e artigo termoformado |
US7393916B2 (en) | 2005-11-01 | 2008-07-01 | Univation Technologies, Llc | Method of reducing gels in polyolefins |
JP4931403B2 (ja) * | 2005-11-15 | 2012-05-16 | 旭化成ケミカルズ株式会社 | ポリエチレン系樹脂組成物及びその組成物からなるシーラントフィルム |
SG177446A1 (en) * | 2009-07-01 | 2012-02-28 | Dow Global Technologies Llc | Ethylenic polymer and its use |
-
2010
- 2010-07-01 SG SG2011097490A patent/SG177446A1/en unknown
- 2010-07-01 SG SG10201403765WA patent/SG10201403765WA/en unknown
- 2010-07-01 CN CN201611025632.9A patent/CN106939057B/zh not_active Expired - Fee Related
- 2010-07-01 KR KR1020117031464A patent/KR101742832B1/ko active IP Right Grant
- 2010-07-01 US US13/376,047 patent/US20120095158A1/en not_active Abandoned
- 2010-07-01 WO PCT/US2010/040759 patent/WO2011002986A1/en active Application Filing
- 2010-07-01 BR BRPI1010092-0A patent/BRPI1010092B1/pt active IP Right Grant
- 2010-07-01 EP EP10730331.5A patent/EP2448757B1/en active Active
- 2010-07-01 CN CN201080038781.3A patent/CN102481770B/zh active Active
- 2010-07-01 ES ES10730331.5T patent/ES2589766T3/es active Active
- 2010-07-01 JP JP2012518605A patent/JP2012532231A/ja active Pending
-
2014
- 2014-11-27 JP JP2014240239A patent/JP6006281B2/ja active Active
-
2018
- 2018-02-23 US US15/903,358 patent/US10875947B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7355089B2 (en) * | 2004-03-17 | 2008-04-08 | Dow Global Technologies Inc. | Compositions of ethylene/α-olefin multi-block interpolymer for elastic films and laminates |
WO2007136496A2 (en) * | 2006-05-17 | 2007-11-29 | Dow Global Technologies Inc. | High temperature polyethylene solution polymerization process |
WO2007146875A2 (en) * | 2006-06-15 | 2007-12-21 | Dow Global Technologies Inc. | Functionalized olefin interpolymers, compositions and articles prepared therefrom, and methods for making the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120129417A1 (en) * | 2009-07-01 | 2012-05-24 | Dow Global Technologies Llc | Ethylenic polymer and its use |
US9926441B2 (en) | 2012-06-26 | 2018-03-27 | Dow Global Technologies Llc | Polyethylene blend-composition suitable for blown films, and films made therefrom |
US9862734B2 (en) | 2013-12-19 | 2018-01-09 | Dow Global Technologies Llc | Metal-ligand complex, olefin polymerization catalyst derived therefrom, and olefin polymerization method utilizing the catalyst |
US10239974B2 (en) * | 2014-06-30 | 2019-03-26 | Dow Global Technologies Llc | Ethylene-based polymers |
US10301412B2 (en) | 2014-12-04 | 2019-05-28 | Dow Global Technologies Llc | Five-coordinate bis-phenylphenoxy catalysts for the preparation of ethylene-based polymers |
US20160333124A1 (en) * | 2014-12-15 | 2016-11-17 | Lg Chem, Ltd. | OLEFIN BASED POLYMER HAVING EXCELLENT PROCESSABILITY (As amended) |
US9587056B2 (en) * | 2014-12-15 | 2017-03-07 | Lg Chem, Ltd. | Olefin based polymer having excellent processability |
Also Published As
Publication number | Publication date |
---|---|
KR20120104494A (ko) | 2012-09-21 |
ES2589766T3 (es) | 2016-11-16 |
US20180179311A1 (en) | 2018-06-28 |
KR101742832B1 (ko) | 2017-06-01 |
CN102481770B (zh) | 2016-12-21 |
BRPI1010092B1 (pt) | 2022-05-03 |
CN106939057B (zh) | 2021-04-23 |
CN102481770A (zh) | 2012-05-30 |
JP2012532231A (ja) | 2012-12-13 |
SG10201403765WA (en) | 2014-09-26 |
CN106939057A (zh) | 2017-07-11 |
JP6006281B2 (ja) | 2016-10-12 |
BRPI1010092A2 (pt) | 2016-03-15 |
US10875947B2 (en) | 2020-12-29 |
WO2011002986A1 (en) | 2011-01-06 |
EP2448757B1 (en) | 2016-06-29 |
JP2015078377A (ja) | 2015-04-23 |
EP2448757A1 (en) | 2012-05-09 |
SG177446A1 (en) | 2012-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10875947B2 (en) | Ethylenic polymer and its use | |
EP2448979B1 (en) | Ethylenic polymer and its use | |
EP2414410B1 (en) | Film made from heterogeneous ethylene/alpha-olefin interpolymer | |
US8372931B2 (en) | Ethylene-based polymer compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DOW GLOBAL TECHNOLOGIES INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PATEL, RAJEN M.;COTTON, ROBERT N.;BAKER, SHARON;AND OTHERS;SIGNING DATES FROM 20100707 TO 20100729;REEL/FRAME:032866/0968 Owner name: DOW GLOBAL TECHNOLOGIES LLC, MICHIGAN Free format text: CHANGE OF NAME;ASSIGNOR:DOW GLOBAL TECHNOLOGIES INC.;REEL/FRAME:032867/0126 Effective date: 20101231 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |