US20110186420A1 - Method for rapid deposition of a coating on a substrate - Google Patents

Method for rapid deposition of a coating on a substrate Download PDF

Info

Publication number
US20110186420A1
US20110186420A1 US12/993,354 US99335409A US2011186420A1 US 20110186420 A1 US20110186420 A1 US 20110186420A1 US 99335409 A US99335409 A US 99335409A US 2011186420 A1 US2011186420 A1 US 2011186420A1
Authority
US
United States
Prior art keywords
substrate
layer
deposition
deposited
fcva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/993,354
Other languages
English (en)
Inventor
Xu Shi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanofilm Technologies International Ltd
Original Assignee
Nanofilm Technologies International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanofilm Technologies International Ltd filed Critical Nanofilm Technologies International Ltd
Priority to US12/993,354 priority Critical patent/US20110186420A1/en
Assigned to NANOFILM TECHNOLOGIES INTERNATIONAL PTE LTD reassignment NANOFILM TECHNOLOGIES INTERNATIONAL PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHI, XU
Publication of US20110186420A1 publication Critical patent/US20110186420A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]

Definitions

  • the present invention generally relates t to a method of rapidly depositing a coating on a substrate.
  • Vapor deposition technology is typically used to form thin film deposition layers in various types of applications, including microelectronic applications and plastic coating applications.
  • vapor deposition of metallic compounds on the surfaces of glass, ceramic, metal or plastic substrates is a commonly employed technology in the field of microelectronic systems, for example in Micro-Electro-Mechanical Systems (MEMS).
  • MEMS Micro-Electro-Mechanical Systems
  • the common forms of metallic compounds deposited include soft metals such as aluminum (Al), zinc (Zn), tin (Sn) and alloys thereof.
  • vapor deposition is used to form uniform, thin metal coatings on the covers of devices such as mobile phones, PDAs and hand-held gaming consoles.
  • CVD Chemical Vapor Deposition
  • CVD processes include electro-deposition, epitaxy and thermal oxidation.
  • the underlying concept behind CVD lies in the creation of solid materials as a result of direct chemical reactions occurring in the CVD environment. The reactions are typically between gaseous reactants and the solid products thus formed are slowly deposited and built up on the surface of a substrate for a pre-determined amount of time to control the thickness of said deposition.
  • PVD Physical Vapor Deposition
  • PVD by sputtering may be relatively faster as compared to other PVD processes, is not suitable for use in the deposition of metals and metal compounds onto plastic substrates for generating an image, for the reasons disclosed above.
  • metals deposited on the substrate need to be deposited at a relatively low temperature, otherwise the plastic substrate will melt or deform in shape. Accordingly, in PVD methods, most of the metals and alloys employed have relatively low temperatures and are relatively “soft metals”. Examples of relatively soft metals include such metals as aluminum (Al), Zinc (Zn), Tin (Sn) and copper (Cu).
  • relatively soft metals include such metals as aluminum (Al), Zinc (Zn), Tin (Sn) and copper (Cu).
  • a particular problem with soft metals is that they tend to be readily subject to scratching and deformation when impacted with hard surfaces. Such surface scratching and deformation degrades the overall aesthetics of the metal layer deposited on the plastic substrate. This imparts significant limitations on the deposition of harder metals on plastic substrates, which may be less readily subject to scratching.
  • a process of depositing a coating on a substrate comprising the steps of:
  • CVA cathodic vacuum arc
  • step (b) depositing material on a substrate by performing at least one of a chemical vapor deposition (CVD) step and a physical deposition (PVD) step that excludes CVA deposition, wherein the thickness of the material deposited in step (b) is greater than the thickness of material deposited in step (a).
  • CVD chemical vapor deposition
  • PVD physical deposition
  • the CVA process in step (a) of the above process may be a filtered cathodic vacuum arc (FCVA) deposition step.
  • the PVD process in step (b) of the above process may be a sputtering step.
  • the PVD process in step (b) may deposit material at a faster rate than the FCVA process in step (a).
  • the process may further comprise the step of alternating steps (a) and (b) to form subsequent layers of material.
  • the material may be a hard metal, a hard metal compound and carbon and carbon derivatives.
  • the hard metal compounds may be selected from a list comprising of hard metal oxides, hard metal carbides, hard metal carbonitrides, hard metal silicides and hard metal borides.
  • the process may comprise depositing a first layer of material directly on the substrate by performing a FCVA deposition step.
  • the first FCVA layer has good adhesion to the substrate and can be applied at low temperatures (i.e. less than 200 degrees centigrade, typically about 50 to 150 degrees centigrade) which is particular advantageous for substrates which may be of a heat sensitive material, such as plastic.
  • the sputtered layer is applied very quickly and hence, the combination of depositing FCVA and sputtered layers results in a rapidly applied coating which overcomes the problems associated with coatings applied by sputtering only or any other PVD or CVD process in which the coating is not hard or which is not dense.
  • the method provides a hard and dense coating which can be rapidly applied to a substrate surface.
  • a process of depositing a coating on a substrate comprising the steps of:
  • a process of depositing a coating of hard metal on a substrate comprising the steps of:
  • the resulting metallic coating therefore comprises of hard metal layers that are wear resistant and do not deform or chip off easily under external impact.
  • the FCVA deposition step may also include applying a negative voltage pulse to a conductive substrate, e.g. metallic substrates.
  • the negative voltage pulse may be from about ⁇ 1800 V to about ⁇ 4500V, having a frequency of about 1 kHz to about 50 kHz for a pulse duration ranging from about 1 ⁇ s to about 50 ⁇ s.
  • the layer of material deposited by each FCVA cycle may have a thickness ranging from about 0.01 microns to about 0.2 microns.
  • the layer of material deposited by each sputtering cycle may have a thickness ranging from about 0.1 microns to about 0.5 microns.
  • a coating having at least one layer deposited by filtered vacuum cathodic arc deposition and another layer deposited by sputtering.
  • a substrate having a coating having at least one layer deposited by filtered vacuum cathodic arc deposition and another layer deposited by sputtering.
  • the coating may be comprised of one or more nanofilm material layers.
  • hard material refers to a material such as a pure hard metal, hard metal compound or diamond-like carbon, which has as a characteristic of great hardness and a high resistance to wear.
  • the term encompasses materials having a Vickers hardness of more than 500 kg/mm 2 , typically more than 800 kg/mm 2 or more than 900 kg/mm 2 or more than 1,000 kg/mm 2 , for a given Vickers load of 50 mg.
  • hard metal refers to a metal, generally a metal such as Cr, Ti or W, which has a relatively high hardness and resistance to wear compared to a soft metal such as Al or Zn, and characterized in having a Vickers hardness of at least 500 kg/mm 2 for a given Vickers load of 50 milligrams. It should be realized that the more than one type of metal may be encompassed by the term, that is, the term also encompasses hard metal alloys.
  • hard metal compound means oxides, carbides, nitrides, carbonitrides, silicides and borides of a hard metal as defined above, and mixtures thereof which have a Vickers hardness of 1,000 kg/mm 2 , for a given Vickers load of 50 milligrams.
  • soft material refers to a material such as a pure soft metal, metal compound or amorphous carbon such as graphite, which has as a characteristic of low hardness.
  • the term encompasses materials having a Vickers hardness of less than 500 kg/mm 2 for a given Vickers load of 50 mg.
  • soft metal refers to a metal, generally a metal such as Al or Zn, which has a relatively low hardness and resistance to wear compared to a hard metal such as Cr, Ti or W, and characterized in having a Vickers hardness of less than 500 kg/mm 2 for a given Vickers load of 50 milligrams. It should be realized that the more than one type of metal may be encompassed by the term, that is, the term also encompasses soft metal alloys.
  • soft metal compound means oxides, carbides, nitrides, carbonitrides, silicides and borides of a hard metal as defined above, and mixtures thereof which have a Vickers hardness of less than 500 kg/mm 2 , for a given Vickers load of 50 milligrams.
  • diamond-like carbon and abbreviation thereof, “DLC”, as used herein relates to hard carbon that is chemically similar to diamond, but with the absence of a well-defined crystal structure.
  • Diamond-like carbon are mostly metastable amorphous material but can include a microcrystalline phase.
  • Examples of diamond like carbon include amorphous diamond (a-D), amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C) and diamond-like hydrocarbon and the like.
  • Ta—C is the most preferred diamond like carbon.
  • nanofilm refers to a film having a thickness dimension in the nano-sized range of about 1 nm to less than about 1 micron.
  • microfilm refers to a film having a thickness dimension in the micro-sized range of about 1 micron to about 10 micron. It should be realized that a microfilm may be comprised of multiple nanofilm layers.
  • FCVA Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based Fluoride-based on tungsten oxide.
  • WO 96/26531 which is incorporated herein in its entirety for reference.
  • the plasma generated in a cathodic arc beam are “filtered” in that they are substantially free of macroparticles.
  • macroparticles refers to, in the context of this specification, contaminant particles in a cathodic arc beam.
  • the macroparticles typically have a neutral charge and are large relative to, the ions and/or atoms of the plasma. More typically, they are particles that are multi-atom clusters and are visible under an optical microscope in a deposited film using cathodic arc methods.
  • sputtering or “sputter deposition” describes a mechanism in which atoms are ejected from a surface of a target material upon being hit by sufficiently energetic particles.
  • Exemplary sputtering deposition is taught by, for example, U.S. Pat. No. 4,361,472 (Morrison, Jr.) and U.S. Pat. No. 4,963,524 (Yamazaki).
  • the term “about”, in the context of concentrations of components of the formulations, typically means +/ ⁇ 5% of the stated value, more typically +/ ⁇ 4% of the stated value, more typically +/ ⁇ 3% of the stated value, more typically, +/ ⁇ 2% of the stated value, even more typically +/ ⁇ 1% of the stated value, and even more typically +/ ⁇ 0.5% of the stated value.
  • range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the disclosed ranges. Accordingly, the description of a range should be considered to have specifically disclosed all the possible sub-ranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed sub-ranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
  • the substrate may be a plastic substrate, a glass substrate, a ceramic substrate or a metallic substrate.
  • the PVD process may comprise of ion plating, thermal evaporation, sputtering, cathodic arc vapor (CAV) deposition and filtered vacuum cathodic arc (FCVA) deposition.
  • CAV cathodic arc vapor
  • FCVA filtered vacuum cathodic arc
  • the PVD process may further comprise employing said sputtering and said FCVA deposition processes in alternation, in succession or a combination of both to form a coating comprised of multiple layers formed by sputtering and PVD.
  • the PVD process may also include other suitable forms of chemical or physical vapor deposition methods, to be used in combination with the FCVA and sputtering processes.
  • the deposited patterned layer may comprise of alternating layers of metal or metal compounds such as metal carbides, metal nitrides, metal silicides, metal borides or combinations thereof, deposited via either sputtering or FCVA respectively.
  • the deposited patterned layer may be comprised of a repeating layer, wherein the repeating layer may be comprised of a first layer of material deposited via sputtering and a second layer of material deposited via FCVA.
  • the repeating layer may also comprise of more than 2 layers.
  • the repeating layer may be duplicated as desired to achieve a target thickness required, resulting in a multi-layered arrangement.
  • the ions/atoms may be positively charged ions(cations)/atoms of elements chosen from the group consisting of: Scandium (Sc), Titanium (Ti), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Technetium (Tc), Rubidium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag), Cadmium (Cd), Hafnium (Hf), Tantalum (Ta), Tungsten (W), Rhenium (Re), Osmium (Os), Iridium (Ir), Platinum (Pt), Gold (Au), Mercury (Hg), Rutherfordium (Rf), Dubnium (Db), Seaborgium (Sg), Bohrium (Bh), Hassium (Hs) and Meitnerium (Mt).
  • the ions/atoms may also be positively charged ions(cations)/atoms of elements chosen from the group consisting of: Aluminium (Al), Zinc (Al), Copper (Cu), Lead (Pb), Tin (Sb), Gold (Au), Silver (Ag), Magnesium (Mg), Antimony (Sb), Cadmium (Cd), Thallium (Tl), Bismuth (Bi), Indium (In), Gallium (Ga), Mercury (Hg), Manganese (Mn) and alloys thereof.
  • elements chosen from the group consisting of: Aluminium (Al), Zinc (Al), Copper (Cu), Lead (Pb), Tin (Sb), Gold (Au), Silver (Ag), Magnesium (Mg), Antimony (Sb), Cadmium (Cd), Thallium (Tl), Bismuth (Bi), Indium (In), Gallium (Ga), Mercury (Hg), Manganese (Mn) and alloys thereof.
  • the deposited material may have a Vickers hardness ranging from about 500 kg/mm 2 to about 2000 kg/mm 2 , from about 500 to about 1800 kg/mm 2 , from about 500 to about 1,500 kg/mm 2 , from about 500 to about 1300 kg/mm 2 , from about 500 to 1100 kg/mm 2 , from about 500 to about 1000 kg/mm 2 , from about 500 to about 900 kg/mm 2 , from about 500 to about 800 kg/mm 2 , for a Vickers load of 50 milligrams.
  • the disclosed deposited material may have a Vickers hardness of at least about 1000 kg/mm 2 , conferring the deposited material with wear resistance and durability.
  • the deposited material may be a hard metal compound.
  • the hard metal compound may be comprised of oxides, carbides, nitrides, carbonitrides, silicides and borides of hard metals, and/or composite mixtures thereof which have a Vickers hardness of between 500 kg/mm 2 to more than 1,000 kg/mm 2 .
  • the hard metals used to form the hard metal compounds may be chosen from the group consisting of: Scandium (Sc), Titanium (Ti), Vanadium (V), Chromium (Cr), Manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), Yttrium (Y), Zirconium (Zr), Niobium (Nb), Molybdenum (Mo), Technetium (Tc), Rubidium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag), Cadmium (Cd), Hafnium (Hf), Tantalum (Ta), Tungsten (W), Rhenium (Re), Osmium (Os), Iridium (Ir), Platinum (Pt), Gold (Au), Mercury (Hg), Rutherfordium (Rf), Dubnium (Db), Seaborgium (Sg), Bohrium (Bh), Hassium (Hs) and Meitnerium (Mt).
  • the deposited material may be also be at least one of a soft metal, soft metal compound and carbon.
  • the soft metal compound is at least one of a soft metal oxide, a soft metal carbide, a soft metal nitride, a soft metal carbon nitride, a soft metal silicide and a soft metal boride.
  • the soft metal compound may be comprised of oxides, carbides, nitrides, carbonitrides, silicides and borides of metals, and/or composite mixtures thereof which have a Vickers hardness of less than 500 kg/mm 2 , preferably less than 100 kg/mm 2 for a given Vickers load of 50 mg.
  • the soft metals may be chosen from the group consisting of: Aluminium (Al), Zinc (Al), Copper (Cu), Lead (Pb), Tin (Sb), Gold (Au), Silver (Ag), Magnesium (Mg), Antimony (Sb), Cadmium (Cd), Thallium (Tl), Bismuth (Bi), Indium (In), Gallium (Ga), Mercury (Hg), Manganese (Mn) and alloys thereof.
  • the filtered vacuum cathodic deposition step may be comprised of applying a negative voltage pulse to a substrate that is electrically conductive, such as metal.
  • the negative voltage pulse may be ranging from about ⁇ 1800V to about ⁇ 4500V, from about ⁇ 2500V to about ⁇ 4500V, from about ⁇ 3500V to about ⁇ 4500V.
  • the negative voltage pulse may have a frequency ranging from about 1 kHz to about 50 kHz, from about 10 kHz to about 50 kHz, from about 20 kHz to about 50 kHz from about 30 kHz to about 50 kHz, from about 40 kHz to about 50 kHz.
  • the negative voltage pulse has pulse durations of about 1 ⁇ s to about 50 ⁇ s, from about 5 ⁇ s to about 45 ⁇ s, from about 10 ⁇ s to about 40 ⁇ s and from about 15 ⁇ s to about 35 ⁇ s.
  • the sputtering step may deposit a thicker layer of material than the FCVA step.
  • the layer of material deposited using the sputtering step may be about 2 to 15 times thicker than the layer of material deposited using the FCVA step.
  • the material layer deposited by the sputtering step may be ranging from about 0.1 microns to about 1 micron, 0.1 microns to about 0.5 microns, from about 0.1 microns to about 0.2 microns, from about 0.1 micron to about 0.3 microns, from about 0.1 microns to about 0.4 microns, from about 0.2 microns to about 0.3 microns and from about 0.2 microns to about 0.4 microns, in thickness.
  • the material layer deposited by the FCVA step ranging from about 0.01 microns to about 0.2 microns, from about 0.01 micron to about 0.12 micron, from about 0.02 micron to about 0.12 micron, from about 0.04 micron to about 0.12 micron, in thickness.
  • FIG. 1 shows a metal coating layer of a multi-layered film formed by both FCVA and sputtering on a plastic substrate
  • FIG. 2 shows a metal coating layer of a multi-layer film formed by both FCVA and sputtering on a metal substrate.
  • FIG. 1 there is shown a schematic diagram of a deposited patterned layer 33 .
  • the schematic diagram shows alternating layers of chromium (Cr) and chromium nitride (CrN) deposited in succession of one another.
  • An innermost Cr layer 42 is deposited via FCVA deposition directly onto the surface of the plastic substrate 12 .
  • the thickness of the Cr layer 42 is typically about 0.02 microns.
  • the heat sensitive plastic substrate will be partially insulated from the high temperatures arising as a result of the subsequent sputtering deposition of succeeding layers.
  • the FCVA layer has strong adhesion to the substrate surface 12 a .
  • the compact and uniform particle arrangement of the innermost Cr layer 42 provides an ideal seeding layer for subsequent deposition of Cr or CrN.
  • a penultimate CrN layer 44 is then deposited on top of the innermost Cr layer 42 , also via FCVA deposition.
  • Repeating layers 45 are then deposited on top of said CrN layer 44 . While only one repeating layer 45 is shown in the Figure, it should be realized that it is merely for the convenience of illustration and in practice, a plurality of “n” repeating layers 45 can be deposited, wherein n range from about 2 to 4.
  • Each repeating layer 45 is comprised of a sputtered-CrN layer 46 (deposited through a sputtering process) and a FCVA-CrN layer 48 (deposited through a FCVA process).
  • the sputtered-CrN layer 46 is of a much greater thickness relative to the Cr/CrN layers that were deposited using the FCVA process.
  • the thickness of the sputtered-CrN layer 46 is typically from about 0.3 micron while the coupling FCVA-CrN layer is about 0.04 micron.
  • the resulting coating 33 enjoys both the benefits of high quality FCVA deposition, the relatively short deposition time as a result of the sputtering of thicker layers, and at the same time minimizing the defects associated with conventional sputtering processes.
  • the deposited patterned layer 33 is comprised of a hard metal composite CrN which confers a high degree of wear resistance to the resulting image deposited.
  • the outermost layer 50 is a shiny, attractive Cr layer deposited using FCVA deposition.
  • FCVA deposition a shiny, attractive Cr layer deposited using FCVA deposition.
  • FIG. 2 there is shown another embodiment of the patterned layer 33 a deposited on a metallic substrate surface 12 b .
  • the patterned layer 33 a has a multi-layered arrangement, wherein sputtered-CrN layers ( 46 a , 46 b , 46 c ) are alternated with FCVA-deposited CrN layers ( 48 a , 48 b , 48 c ).
  • the innermost Cr layer 42 a is similarly deposited on the metal substrate using the FCVA process.
  • the alternating design advantageously ensures that the resulting patterned layer possesses desirable qualities such as good adhesion, low voidage, high strength, and relatively short deposition time.
  • An optional CrN layer 44 a can be deposited adjacent and on top of said innermost layer 42 a .
  • the outermost layer 50 a is a FCVA-deposited Cr layer to give it a lustrous and aesthetically pleasing finish. Furthermore, as the outermost layer 50 a is deposited via the FCVA process, it does not chip readily upon external impact.
  • Non-limiting examples of the invention including the best mode, and a comparative example will be further described in greater detail by reference to specific Examples, which should not be construed as in any way limiting the scope of the invention.
  • the disclosed process may be used to rapidly deposit hard metals and hard metallic compounds onto various substrate surfaces, such as plastic substrates, metal substrates, glass substrates, ceramic substrates and plastic substrates.
  • multiple nanofilm layer coatings of hard materials can be applied to surfaces.
  • these nanofilm coatings can be applied to plastic substrates to without damaging the plastic through heat degradation.
  • multiple nanofilm layers can be applied to a substrate to form a microfilm.
  • the nanofilm or microfilm layers on the substrate appear, to the naked eye, to be integrally formed with the surface to which they are attached. This provides a good overall aesthetic appeal to the coated article.
  • the disclosed process allows for the deposition of hard metals, DLC and hard compounds onto plastic substrates, without causing any deformation or damage to the plastic substrates.
  • the disclosed process employs both sputtering and FCVA processes for the physical vapor deposition step.
  • the disclosed process is able to deposit hard metals onto the plastic substrate without the need for high operating temperatures which would otherwise damage or deform the substrate.
  • the FCVA deposited layer is also substantially free of voids within the metallic layers, thus allowing the formation of a denser and higher quality coat.
  • the hard metal coating is also resistant to surface scratching and deformation arising from external impact, which would otherwise compromise the overall aesthetics of the deposited coating.
  • the disclosed process enjoys the benefit of a relatively short overall deposition time as a result of employing the sputtering method to deposit some of the layers of the metallic coating in combination with FCVA. As a result, the coatings can be rapidly deposited on the substrates.
  • FCVA deposition when used with sputtering boasts of considerable advantages over the use of sputtering alone. Specifically, thin metal films deposited via the FCVA process enjoy better adhesion with the substrate surface. The deposited film is also considerably more closely packed and compact, containing little or no voids therein, as compared to films that were deposited via sputtering processes only.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
US12/993,354 2008-06-09 2009-06-09 Method for rapid deposition of a coating on a substrate Abandoned US20110186420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/993,354 US20110186420A1 (en) 2008-06-09 2009-06-09 Method for rapid deposition of a coating on a substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6002108P 2008-06-09 2008-06-09
US12/993,354 US20110186420A1 (en) 2008-06-09 2009-06-09 Method for rapid deposition of a coating on a substrate
PCT/SG2009/000206 WO2009151403A1 (en) 2008-06-09 2009-06-09 A method for rapid deposition of a coating on a substrate

Publications (1)

Publication Number Publication Date
US20110186420A1 true US20110186420A1 (en) 2011-08-04

Family

ID=41416948

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/993,354 Abandoned US20110186420A1 (en) 2008-06-09 2009-06-09 Method for rapid deposition of a coating on a substrate
US12/993,348 Abandoned US20110177460A1 (en) 2008-06-09 2009-06-09 process for producing an image on a substrate
US12/993,369 Abandoned US20110140367A1 (en) 2008-06-09 2009-06-09 Novel coating having reduced stress and a method of depositing the coating on a substrate

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/993,348 Abandoned US20110177460A1 (en) 2008-06-09 2009-06-09 process for producing an image on a substrate
US12/993,369 Abandoned US20110140367A1 (en) 2008-06-09 2009-06-09 Novel coating having reduced stress and a method of depositing the coating on a substrate

Country Status (5)

Country Link
US (3) US20110186420A1 (zh)
JP (2) JP2011522965A (zh)
CN (2) CN102046844A (zh)
SG (1) SG177183A1 (zh)
WO (3) WO2009151402A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130064536A1 (en) * 2011-09-14 2013-03-14 Nikon Corporation Composite plastic member and method for producing the same
RU2548346C1 (ru) * 2013-12-30 2015-04-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Алмазный гальванический инструмент с износостойким покрытием
US9719164B2 (en) 2013-05-15 2017-08-01 Nikon Corporation Method of manufacturing compound film
US9894817B2 (en) 2011-11-30 2018-02-13 Seiji Kagawa Composite electromagnetic-wave-absorbing sheet
US20200013589A1 (en) * 2018-07-05 2020-01-09 Applied Materials, Inc. Protection of aluminum process chamber components
US11926890B2 (en) 2019-03-15 2024-03-12 Nanofilm Technologies International Limited Cathode arc source

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8663806B2 (en) 2009-08-25 2014-03-04 Apple Inc. Techniques for marking a substrate using a physical vapor deposition material
JP2012202522A (ja) 2011-03-28 2012-10-22 Tpr Co Ltd ピストンリング
EP2702303A4 (en) * 2011-04-25 2014-10-29 Waters Technologies Corp VALVES WITH PROTECTIVE COATINGS
KR20130091053A (ko) * 2012-02-07 2013-08-16 현대자동차주식회사 나노 다층의 코팅층을 갖는 자동차용 피스톤링
RU2494170C1 (ru) * 2012-04-06 2013-09-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" Способ получения износостойкого многослойного покрытия
US20160042198A1 (en) 2012-10-19 2016-02-11 Pearson Education, Inc. Deidentified access of content
RU2669421C2 (ru) * 2013-08-30 2018-10-11 Х.Э.Ф. Поршневой палец и способ нанесения противозадирного покрытия на этот палец
US10087513B2 (en) 2014-01-31 2018-10-02 Nippon Piston Ring Co., Ltd Piston ring and manufacturing method therefor
JP2016024838A (ja) * 2014-07-24 2016-02-08 株式会社東芝 磁気記録媒体の製造方法
JP2016211057A (ja) * 2015-05-12 2016-12-15 イビデン株式会社 自動車用外板パネル及び自動車用外板パネルの製造方法
WO2017031393A1 (en) * 2015-08-19 2017-02-23 University Of Cincinnati Patterned plasmonic nanoparticle arrays for multiplexed, microfluidic biosensing assays
JP6880652B2 (ja) * 2016-10-26 2021-06-02 富士フイルムビジネスイノベーション株式会社 転写装置及び画像形成装置
JP6922184B2 (ja) * 2016-10-26 2021-08-18 富士フイルムビジネスイノベーション株式会社 クリーニングブレード及び画像形成装置
US11047478B2 (en) * 2017-06-02 2021-06-29 Mahle International Gmbh Piston ring and method of manufacture
US10353123B2 (en) 2017-08-08 2019-07-16 Apple Inc. Electronic Devices with glass layer coatings
WO2020188313A2 (en) * 2018-07-10 2020-09-24 Next Biometrics Group Asa Thermally conductive and protective coating for electronic device
EP3636795A1 (en) 2018-10-09 2020-04-15 Nanofilm Technologies International Pte Ltd Thick, low-stress tetrahedral amorphous carbon coatings
CN109136852B (zh) * 2018-10-10 2020-10-09 中国原子能科学研究院 一种在金属基衬上镀制钨膜的方法
EP3650582A1 (en) * 2018-11-08 2020-05-13 Nanofilm Technologies International Pte Ltd Temperature resistant amorphous carbon coatings
EP3670696A1 (en) 2018-12-21 2020-06-24 Nanofilm Technologies International Pte Ltd Corrosion resistant carbon coatings
US20220162739A1 (en) * 2019-03-15 2022-05-26 Nanofilm Technologies International Limited Improved coating processes
CN110777341B (zh) * 2019-07-22 2021-06-15 浙江工业大学 一种DLC/CNx/MeN/CNx纳米多层膜及其制备方法
CN111101104A (zh) * 2020-01-10 2020-05-05 安徽纯源镀膜科技有限公司 一种绝缘材料表面金属化的方法
WO2022101416A1 (en) 2020-11-13 2022-05-19 Nanofilm Vacuum Coating (Shanghai) Co., Ltd. Piston rings and methods of manufacture
WO2022253859A1 (en) * 2021-06-04 2022-12-08 Nanofilm Technologies International Limited Anti-static coating
CN114717515A (zh) * 2022-04-06 2022-07-08 北京理工大学 一种硬质涂层增韧结构及韧性评估方法
WO2024094872A1 (en) 2022-11-03 2024-05-10 Nanofilm Technologies International Limited Coated solar cell
WO2024094870A1 (en) 2022-11-03 2024-05-10 Nanofilm Technologies International Limited Sealed electrical devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937094A (en) * 1988-05-26 1990-06-26 Energy Conversion Devices, Inc. Method of creating a high flux of activated species for reaction with a remotely located substrate
US5250367A (en) * 1990-09-17 1993-10-05 Kennametal Inc. Binder enriched CVD and PVD coated cutting tool
US5346600A (en) * 1992-08-14 1994-09-13 Hughes Aircraft Company Plasma-enhanced magnetron-sputtered deposition of materials
US20040168637A1 (en) * 2000-04-10 2004-09-02 Gorokhovsky Vladimir I. Filtered cathodic arc deposition method and apparatus
US7033682B1 (en) * 2001-12-28 2006-04-25 Ues, Inc. Coating solutions for titanium and titanium alloy machining
US20070202344A1 (en) * 2004-07-02 2007-08-30 Rehau Ag + Co Multilayer Structure For Polymers
US20090088325A1 (en) * 2006-08-03 2009-04-02 Amit Goyal High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045594A (en) * 1975-12-31 1977-08-30 Ibm Corporation Planar insulation of conductive patterns by chemical vapor deposition and sputtering
US4084985A (en) * 1977-04-25 1978-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing solar energy panels by automation
US4361472A (en) * 1980-09-15 1982-11-30 Vac-Tec Systems, Inc. Sputtering method and apparatus utilizing improved ion source
US4963524A (en) * 1987-09-24 1990-10-16 Semiconductor Energy Laboratory Co., Ltd. Sputtering device for manufacturing superconducting oxide material and method therefor
US5055424A (en) * 1989-06-29 1991-10-08 The United States Of America As Represented By The Secretary Of The Navy Method for fabricating ohmic contacts on semiconducting diamond
JP3561611B2 (ja) * 1997-09-25 2004-09-02 三洋電機株式会社 硬質炭素系被膜
US5902462A (en) * 1997-03-27 1999-05-11 Krauss; Alan R. Filtered cathodic arc deposition apparatus and method
US5890428A (en) * 1997-06-02 1999-04-06 Hetz; Mary B. Static cling stencil method
JP4331292B2 (ja) * 1998-10-30 2009-09-16 株式会社リケン 低摩耗性と優れた密着性を有する複合ダイヤモンドライクカーボン皮膜
GB9910842D0 (en) * 1999-05-10 1999-07-07 Univ Nanyang Composite coatings
JP4793531B2 (ja) * 2001-07-17 2011-10-12 住友電気工業株式会社 非晶質炭素被膜と非晶質炭素被膜の製造方法および非晶質炭素被膜の被覆部材
JP4720052B2 (ja) * 2001-09-10 2011-07-13 住友電気工業株式会社 非晶質炭素被膜の形成装置及び形成方法
CH695807A5 (de) * 2001-11-20 2006-08-31 Unaxis Balzers Ag Quelle für Vakuumbehandlungsprozess.
TWI268813B (en) * 2002-04-24 2006-12-21 Sipix Imaging Inc Process for forming a patterned thin film conductive structure on a substrate
CN100419117C (zh) * 2004-02-02 2008-09-17 株式会社神户制钢所 硬质叠层被膜、其制造方法及成膜装置
JP4718797B2 (ja) * 2004-06-08 2011-07-06 昭和電工株式会社 磁気記録媒体および磁気記録装置
WO2006085063A1 (en) * 2005-02-09 2006-08-17 Breath Limited Sealing of plastic containers
ES2695024T3 (es) * 2005-08-18 2018-12-28 Oerlikon Surface Solutions Ag, Pfäffikon Sustrato recubierto con una estructura en capas que comprende un recubrimiento de carbono tetraédrico
WO2007048098A2 (en) * 2005-10-18 2007-04-26 Southwest Research Institute Erosion resistant coatings
JP5138892B2 (ja) * 2006-01-20 2013-02-06 株式会社神戸製鋼所 硬質皮膜
JP2008116612A (ja) * 2006-11-02 2008-05-22 Fuji Xerox Co Ltd ベルト及び画像形成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937094A (en) * 1988-05-26 1990-06-26 Energy Conversion Devices, Inc. Method of creating a high flux of activated species for reaction with a remotely located substrate
US5250367A (en) * 1990-09-17 1993-10-05 Kennametal Inc. Binder enriched CVD and PVD coated cutting tool
US5346600A (en) * 1992-08-14 1994-09-13 Hughes Aircraft Company Plasma-enhanced magnetron-sputtered deposition of materials
US20040168637A1 (en) * 2000-04-10 2004-09-02 Gorokhovsky Vladimir I. Filtered cathodic arc deposition method and apparatus
US7033682B1 (en) * 2001-12-28 2006-04-25 Ues, Inc. Coating solutions for titanium and titanium alloy machining
US20070202344A1 (en) * 2004-07-02 2007-08-30 Rehau Ag + Co Multilayer Structure For Polymers
US20090088325A1 (en) * 2006-08-03 2009-04-02 Amit Goyal High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130064536A1 (en) * 2011-09-14 2013-03-14 Nikon Corporation Composite plastic member and method for producing the same
US9341923B2 (en) * 2011-09-14 2016-05-17 Nikon Corporation Composite plastic member and method for producing the same
US9894817B2 (en) 2011-11-30 2018-02-13 Seiji Kagawa Composite electromagnetic-wave-absorbing sheet
US9719164B2 (en) 2013-05-15 2017-08-01 Nikon Corporation Method of manufacturing compound film
RU2548346C1 (ru) * 2013-12-30 2015-04-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Алмазный гальванический инструмент с износостойким покрытием
US20200013589A1 (en) * 2018-07-05 2020-01-09 Applied Materials, Inc. Protection of aluminum process chamber components
US11810766B2 (en) * 2018-07-05 2023-11-07 Applied Materials, Inc. Protection of aluminum process chamber components
US11926890B2 (en) 2019-03-15 2024-03-12 Nanofilm Technologies International Limited Cathode arc source

Also Published As

Publication number Publication date
CN102046845A (zh) 2011-05-04
JP2011522964A (ja) 2011-08-04
WO2009151403A1 (en) 2009-12-17
US20110177460A1 (en) 2011-07-21
US20110140367A1 (en) 2011-06-16
WO2009151402A1 (en) 2009-12-17
JP2011522965A (ja) 2011-08-04
WO2009151404A1 (en) 2009-12-17
CN102046844A (zh) 2011-05-04
CN102046845B (zh) 2013-08-28
SG177183A1 (en) 2012-01-30

Similar Documents

Publication Publication Date Title
US20110186420A1 (en) Method for rapid deposition of a coating on a substrate
JP5096371B2 (ja) 相対的に柔らかい支持材と相対的に硬い装飾層を有する物品およびその製造方法
JP6854241B2 (ja) 多層pvdコーティングを有する切削工具
Martin et al. Review of the filtered vacuum arc process and materials deposition
JPH048503B2 (zh)
CN110643939B (zh) 铜基抗菌pvd涂层
EP1705162A1 (en) Coated substrate and process for the manufacture of a coated substrate
US5409782A (en) Composite film
JP7382124B2 (ja) 改良されたコーティングプロセス
WO2009065545A1 (en) The use of a binary coating comprising first and second different metallic elements
EP1866149B1 (en) Coated article with dark color
Akhtar et al. Review on thin film coatings for precision glass molding
CN102452193A (zh) 具有硬质涂层的被覆件及其制备方法
US20040256214A1 (en) Process for forming decorative films and resulting products
CN112458417A (zh) 一种多元层状加硬涂层生长工艺
CN113621914B (zh) 银白色涂层及其制备方法
CN102345095A (zh) 涂层、具有该涂层的被覆件及该被覆件的制备方法
CN117385336A (zh) 镀膜件及其制备方法
JP2921853B2 (ja) 保護層を有する銀部材の製造方法
CN113817984A (zh) 纳米多层复合陶瓷涂层及其制备方法和应用
CN110894605A (zh) 耐腐蚀碳基涂层
WO2003053685A1 (en) Low pressure coated article with polymeric basecoat
JPH01279744A (ja) 複合混合多層膜
JPH06306645A (ja) 耐摩耗性硬質被膜付き金型

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANOFILM TECHNOLOGIES INTERNATIONAL PTE LTD, SINGA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHI, XU;REEL/FRAME:025410/0520

Effective date: 20090609

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION