US20110097411A1 - Carrier pellets, method for production thereof and use thereof - Google Patents
Carrier pellets, method for production thereof and use thereof Download PDFInfo
- Publication number
- US20110097411A1 US20110097411A1 US12/863,336 US86333609A US2011097411A1 US 20110097411 A1 US20110097411 A1 US 20110097411A1 US 86333609 A US86333609 A US 86333609A US 2011097411 A1 US2011097411 A1 US 2011097411A1
- Authority
- US
- United States
- Prior art keywords
- carrier
- acid
- regulator
- pellets
- liquid formulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/12—Carboxylic acids; Salts or anhydrides thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1682—Processes
- A61K9/1694—Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
Definitions
- the invention relates to a method for the production of carrier pellets for pharmaceutical active substances. Likewise, the invention relates to such carrier pellets and also to pharmaceutical formulations containing these.
- the carrier pellets according to the invention are used for transporting and releasing pharmaceutical active substances, in particular in the human body.
- compositions which can be applied in particular orally are intended to be formulated suitably for the respective application in order to effect release of the pharmaceutical active substances at the correct time and without disturbing side-effects.
- active substances which can be administered for example orally are intended to be released as far as possible such that an unpleasant, e.g. bitter, taste in the mouth is avoided since this can lead to reactions of repulsion in particular in children.
- the active substances must be released in the stomach or intestine as completely as possible and in a rapidly absorbable form if a systemic treatment is sought.
- the active substance In the case of oral administration of drugs, the active substance is released in the gastro-intestinal tract and a part of the active substance is absorbed. By controlling the release of the active substance, the degree of absorption and the effective duration can be influenced. Correspondingly, various proposals have been made for controlling release of the active substance by suitable galenic formulations of the active substance.
- One approach resides in providing administration forms with coatings, release of the active substance being able to be influenced as a function of the solubility or permeability of the coatings.
- Such coatings can be applied for example on tablets or capsules.
- a disadvantage exists however in that a faulty or damaged coating can lead to the fact that the release of the total active substance dose is not controlled in the desired manner.
- multiparticulate administration forms in which the total quantity of the active substance is apportioned to a larger number of smaller units, such as pellets. If the individual pellets are provided with coatings, then, in the case of a faulty coating in one pellet, only a correspondingly small proportion of the total active substance dose is not subjected to the desired release.
- a further advantage of such administration forms based on pellets resides in the fact that sufficiently small pellets pass into the intestine from the stomach relatively rapidly after ingestion.
- tablets, as long as they do not disintegrate, can also remain in the stomach for a fairly long time, the time in addition being very variable.
- a pH regulator which has a regulating effect in the physiological surroundings is used, such that the pH value is lowered or increased and hence the bioavailability of pharmaceutically effective components is made possible or increased.
- the pH regulator has a stabilising function, e.g. when using a buffer system as pH regulator.
- the pH regulator is an organic acid, this being selected particularly preferably from the group comprising C 1 -C 18 mono-, di- and tricarboxylic acids and also mixtures thereof.
- organic acid these being selected particularly preferably from the group comprising C 1 -C 18 mono-, di- and tricarboxylic acids and also mixtures thereof.
- Representatives of this group given by way of example, are citric acid, succinic acid, malic acid, fumaric acid, tartaric acid, sorbic acid, adipinic acid, salts and mixtures thereof. It is likewise possible that ascorbic acid or salts thereof are used as pH regulator.
- a further preferred embodiment provides that the at least one pH regulator is an acidic or basic salt.
- the pH regulator is a buffer system
- this preferably comprises an acidic or basic salt together with a corresponding caustic solution or acid.
- these are citric acid/citrate or tartaric acid/tartrate.
- the pH regulator is an organic base, e.g. a purine base or a pyrimidine base, or a mixture of these bases.
- the purine base is preferably selected from the group comprising adenine, guanine, hypoxanthine, xanthine and mixtures hereof.
- the pyrimidine base is preferably selected from the group comprising cytosine, uracil, thymine and mixtures hereof.
- the pH regulator is a basic inorganic salt
- this is preferably selected from the group comprising NaHCO 3 , K 2 CO 3 , Na 2 CO 3 , KHCO 3 , Ca(OH) 2 , CaO, phosphates and mixtures hereof.
- the formulation contains in addition at least one physiologically well-tolerated binder.
- This binder is thereby preferably selected from the group comprising methyl celluloses, hydroxymethyl celluloses, hydroxypropylmethyl celluloses, alginates, pectins, polyvinylpyrrolidones, xanthanes and also other hydrocolloids and mixtures hereof.
- organic solvents are used as solvents or emulsifiers.
- organic solvents particularly preferred are ethyl alcohol, isopropanol, n-propanol or mixtures thereof.
- the quantity ratio of pH regulator to binder in the liquid formulation is preferably in the range of 50:50 to 99:1.
- a preferred liquid formulation has 30 to 80% by weight of the at least one pH regulator, 0.5 to 5% by weight of the at least one binder and 15 to 69.5% by weight of the at least one solvent.
- the spray granulation can be effected both in a fluidised bed unit and in a spouted bed unit.
- the temperature in these units is thereby preferably in the range of 5 to 100° C.
- the drying gas flow entering the coating unit has, at the entrance into the unit, preferably a temperature in the range of 5 to 120°.
- drying gas in particular conditioned air, nitrogen or inert gases, e.g. noble gases.
- the drying gas is supplied via a sieve plate.
- the liquid formulation is introduced into the unit by nozzles disposed above the sieve plate.
- the drying gas is supplied through longitudinal gaps situated on the bottom.
- the liquid formulation is introduced via at least one nozzle disposed between the longitudinal gaps.
- introduction of the liquid formulation is effected through the nozzle from below to above.
- carrier pellets which contain at least one physiologically well-tolerated pH regulator are provided. These carrier pellets are produced according to the above-described method.
- the carrier pellets preferably have a diameter in the range of 50 ⁇ m to 1.5 mm, in particular of 90 ⁇ m to 1.2 mm.
- the carrier pellets are thereby preferably essentially spherical.
- the carrier pellets preferably have a sphericity of 0.8 to 1.0, in particular of 0.9 to 1.0.
- the sphericity is thereby calculated according to the following formula:
- the sphericity can be implemented with devices for particle size- and particle shape analysis with dynamic image analysis.
- a device suitable for this purpose is for example the CAMSIZER by Retsch Technology.
- the ratio of width to length of the carrier pellets is in the range of 0.8 to 1.0, in particular of 0.9 to 1.0.
- the ratio of width to length is thereby calculated according to the following formula:
- width-length ratio can be determined for example with the mentioned CAMSIZER.
- the carrier pellets according to the invention concern dense carrier pellets, which implies a weight reduction relative to extrusion pellets.
- the carrier pellets have essentially the same particle size, i.e. a narrow scatter range with respect to the particle size is present.
- the carrier pellets preferably contain at least one physiologically well-tolerated binder.
- This binder is thereby preferably selected from the group comprising methyl celluloses, hydroxymethyl celluloses, hydroxypropylmethyl celluloses, alginates, pectins, polyvinylpyrrolidones, xanthanes and also other hydrocolloids and also mixtures hereof.
- a pharmaceutical formulation containing the above-described carrier pellets and at least one active substance.
- the carrier pellets according to the invention are used as carrier structure for pharmaceutically effective components.
- the spray solution comprises purified water, methyl cellulose and malic acid.
- a 4% binder solution is produced from the purified water and methyl cellulose. This is temperature-controlled at 70° C. Thereafter, the addition of malic acid is effected with constant agitation until a complete solution is present (proportion of purified water corresponds to proportion of malic acid).
- the temperature-controlled spray solution is sprayed into the spouted bed apparatus (ProCell) in the bottom spray method.
- a constant particle formation is effected by atomising the solids solution in the main airflow.
- the latter comprises two partial flows which are produced through gap openings, leading along through the process chamber.
- the particle construction takes place by evaporation of the solvent water, malic acid and methyl cellulose remain in the airflow dried as particles.
- the particles in the upper process chamber separate from the central airflow and flow laterally, caused by gravity and the suction effect of the main airflow, back towards the process gas inlet. There, they are entrained again with the main airflow and coated continuously with solids from the spray solution.
- the process air is conditioned.
- the removal of acidic pellets is effected at the same time.
- the malic acid pellets are fractionated for the desired particle size.
- the end product is a homogeneous virtually spherical malic acid pellet with a uniform surface structure.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Preparation (AREA)
- Glanulating (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008004893.3 | 2008-01-17 | ||
DE102008004893A DE102008004893A1 (de) | 2008-01-17 | 2008-01-17 | Trägerpellets, Verfahren zu deren Herstellung und deren Verwendung |
PCT/EP2009/000124 WO2009090027A2 (fr) | 2008-01-17 | 2009-01-12 | Excipients sous forme de pastilles, procédés de production associés et utilisation exipients |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/000124 A-371-Of-International WO2009090027A2 (fr) | 2008-01-17 | 2009-01-12 | Excipients sous forme de pastilles, procédés de production associés et utilisation exipients |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/209,056 Continuation US11191726B2 (en) | 2008-01-17 | 2014-03-13 | Carrier pellets, method for production thereof and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110097411A1 true US20110097411A1 (en) | 2011-04-28 |
Family
ID=40473941
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/863,336 Abandoned US20110097411A1 (en) | 2008-01-17 | 2009-01-12 | Carrier pellets, method for production thereof and use thereof |
US14/209,056 Active US11191726B2 (en) | 2008-01-17 | 2014-03-13 | Carrier pellets, method for production thereof and use thereof |
US14/680,281 Abandoned US20150209286A1 (en) | 2008-01-17 | 2015-04-07 | Carrier pellets, method for production thereof and use thereof |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/209,056 Active US11191726B2 (en) | 2008-01-17 | 2014-03-13 | Carrier pellets, method for production thereof and use thereof |
US14/680,281 Abandoned US20150209286A1 (en) | 2008-01-17 | 2015-04-07 | Carrier pellets, method for production thereof and use thereof |
Country Status (12)
Country | Link |
---|---|
US (3) | US20110097411A1 (fr) |
EP (2) | EP2949320A1 (fr) |
CY (1) | CY1117126T1 (fr) |
DE (1) | DE102008004893A1 (fr) |
DK (1) | DK2244696T3 (fr) |
ES (1) | ES2552172T3 (fr) |
HR (1) | HRP20151132T1 (fr) |
HU (1) | HUE026364T2 (fr) |
PL (1) | PL2244696T3 (fr) |
PT (1) | PT2244696E (fr) |
SI (1) | SI2244696T1 (fr) |
WO (1) | WO2009090027A2 (fr) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5463100A (en) * | 1987-12-11 | 1995-10-31 | Hoechst Aktiengesellschaft | Process for the preparation of aminoaryl β-sulfatoethyl sulfone compounds |
US5902844A (en) * | 1998-02-02 | 1999-05-11 | Applied Analytical Industries, Inc. | Spray drying of pharmaceutical formulations containing amino acid-based materials |
US6056949A (en) * | 1995-10-27 | 2000-05-02 | Givaudan Roure (International) Sa | Aromatic granulated material |
US20020123465A1 (en) * | 1999-08-19 | 2002-09-05 | Stem Cell Pharmaceuticals, Inc. | TGF-alpha polypeptides, functional fragments and methods of use therefor |
WO2002080678A1 (fr) * | 2001-04-03 | 2002-10-17 | Schering Corporation | Composition antifongique a biodisponibilite accrue |
US6492024B1 (en) * | 1999-06-29 | 2002-12-10 | Aeromatic-Fielder Ag | Precision granulation |
US20020192290A1 (en) * | 2001-05-29 | 2002-12-19 | Pawan Seth | Composition with sustained release of levodopa and carbidopa |
US20030158206A1 (en) * | 1998-06-22 | 2003-08-21 | Anne Billotte | Intranasal formulations for treating sexual disorders |
US20030219489A1 (en) * | 1997-08-11 | 2003-11-27 | Pfizer Inc. | Solid pharmaceutical dispersions with enhanced bioavailability |
US20040228978A1 (en) * | 2003-05-15 | 2004-11-18 | Glatt Ingenieurtechnik Gmbh | Process and apparatus for depositing fluid in a solids flow of a fluidized bed apparatus |
US20050163855A1 (en) * | 2004-01-27 | 2005-07-28 | Cj Corporation | Method of preparing low-crystallinity oltipraz or amorphous oltipraz |
US20060115539A1 (en) * | 2003-06-07 | 2006-06-01 | Armin Prasch | Micropellets method for the production thereof, and use thereof |
US20070281927A1 (en) * | 2006-06-06 | 2007-12-06 | Shanthakumar Tyavanagimatt | Anti-inflammatory and analgesic compositions and related methods |
US20080199592A1 (en) * | 2007-02-09 | 2008-08-21 | Symrise Gmbh & Co. Kg | Fluidized-bed granulates that have a high proportion of fruit |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2880243B2 (ja) * | 1989-04-18 | 1999-04-05 | 武田薬品工業株式会社 | アスコルビン酸カルシウム造粒物 |
MY117538A (en) | 1997-05-28 | 2004-07-31 | Isegen South Africa Proprietary Ltd | Production of a food acid mixture containing fumaric acid |
DE19733094A1 (de) * | 1997-07-31 | 1999-02-04 | Merck Patent Gmbh | Formulierung auf der Basis von Ascorbinsäure mit verbesserter Farbstabilität |
JP4290792B2 (ja) * | 1999-01-11 | 2009-07-08 | カルピス株式会社 | 造粒物、その製法及びこれを用いた錠剤 |
GB0003782D0 (en) * | 2000-02-17 | 2000-04-05 | Dumex Ltd As | Process |
DE10012199A1 (de) * | 2000-03-13 | 2001-09-20 | Haarmann & Reimer Gmbh | Eingekapselte Substanzen mit kontrollierter Freisetzung |
JP2001294524A (ja) * | 2000-04-12 | 2001-10-23 | Taisho Pharmaceut Co Ltd | アセトアミノフェン配合内服固形製剤 |
ITMI20012572A1 (it) * | 2001-12-06 | 2003-06-06 | Istituto Biochimico Italiano | Microgranuli di acido ursodesossicolico |
DE10209982A1 (de) * | 2002-03-07 | 2003-09-25 | Boehringer Ingelheim Pharma | Oral zu applizierende Darreichungsform für schwerlösliche basische Wirkstoffe |
EP1809248A2 (fr) * | 2004-11-04 | 2007-07-25 | Merck & Co., Inc. | Procede de granulation de particules |
CA2600282A1 (fr) * | 2005-03-29 | 2006-10-05 | Roehm Gmbh | Forme pharmaceutique multiparticulaire constituee de pellets renfermant une substance ayant un effet modulaire sur la liberation de l'ingredient actif |
JP2007297313A (ja) * | 2006-04-28 | 2007-11-15 | Lion Corp | 生薬造粒粒子の製造方法および生薬造粒粒子、錠剤 |
WO2008019996A2 (fr) * | 2006-08-14 | 2008-02-21 | Boehringer Ingelheim International Gmbh | Formulations de flibansérine et leur procédé de fabrication |
-
2008
- 2008-01-17 DE DE102008004893A patent/DE102008004893A1/de not_active Ceased
-
2009
- 2009-01-12 PL PL09702374T patent/PL2244696T3/pl unknown
- 2009-01-12 EP EP15172814.4A patent/EP2949320A1/fr not_active Ceased
- 2009-01-12 DK DK09702374.1T patent/DK2244696T3/en active
- 2009-01-12 SI SI200931304T patent/SI2244696T1/sl unknown
- 2009-01-12 ES ES09702374.1T patent/ES2552172T3/es active Active
- 2009-01-12 US US12/863,336 patent/US20110097411A1/en not_active Abandoned
- 2009-01-12 WO PCT/EP2009/000124 patent/WO2009090027A2/fr active Application Filing
- 2009-01-12 EP EP09702374.1A patent/EP2244696B1/fr active Active
- 2009-01-12 PT PT97023741T patent/PT2244696E/pt unknown
- 2009-01-12 HU HUE09702374A patent/HUE026364T2/en unknown
-
2014
- 2014-03-13 US US14/209,056 patent/US11191726B2/en active Active
-
2015
- 2015-04-07 US US14/680,281 patent/US20150209286A1/en not_active Abandoned
- 2015-10-26 HR HRP20151132TT patent/HRP20151132T1/hr unknown
- 2015-11-03 CY CY20151100979T patent/CY1117126T1/el unknown
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5463100A (en) * | 1987-12-11 | 1995-10-31 | Hoechst Aktiengesellschaft | Process for the preparation of aminoaryl β-sulfatoethyl sulfone compounds |
US6056949A (en) * | 1995-10-27 | 2000-05-02 | Givaudan Roure (International) Sa | Aromatic granulated material |
US20030219489A1 (en) * | 1997-08-11 | 2003-11-27 | Pfizer Inc. | Solid pharmaceutical dispersions with enhanced bioavailability |
US5902844A (en) * | 1998-02-02 | 1999-05-11 | Applied Analytical Industries, Inc. | Spray drying of pharmaceutical formulations containing amino acid-based materials |
US20030158206A1 (en) * | 1998-06-22 | 2003-08-21 | Anne Billotte | Intranasal formulations for treating sexual disorders |
US6492024B1 (en) * | 1999-06-29 | 2002-12-10 | Aeromatic-Fielder Ag | Precision granulation |
US20020123465A1 (en) * | 1999-08-19 | 2002-09-05 | Stem Cell Pharmaceuticals, Inc. | TGF-alpha polypeptides, functional fragments and methods of use therefor |
WO2002080678A1 (fr) * | 2001-04-03 | 2002-10-17 | Schering Corporation | Composition antifongique a biodisponibilite accrue |
US20020192290A1 (en) * | 2001-05-29 | 2002-12-19 | Pawan Seth | Composition with sustained release of levodopa and carbidopa |
US20040228978A1 (en) * | 2003-05-15 | 2004-11-18 | Glatt Ingenieurtechnik Gmbh | Process and apparatus for depositing fluid in a solids flow of a fluidized bed apparatus |
US20060115539A1 (en) * | 2003-06-07 | 2006-06-01 | Armin Prasch | Micropellets method for the production thereof, and use thereof |
US20050163855A1 (en) * | 2004-01-27 | 2005-07-28 | Cj Corporation | Method of preparing low-crystallinity oltipraz or amorphous oltipraz |
US20070281927A1 (en) * | 2006-06-06 | 2007-12-06 | Shanthakumar Tyavanagimatt | Anti-inflammatory and analgesic compositions and related methods |
US20080199592A1 (en) * | 2007-02-09 | 2008-08-21 | Symrise Gmbh & Co. Kg | Fluidized-bed granulates that have a high proportion of fruit |
Also Published As
Publication number | Publication date |
---|---|
WO2009090027A2 (fr) | 2009-07-23 |
PL2244696T3 (pl) | 2016-01-29 |
US20150209286A1 (en) | 2015-07-30 |
EP2244696A2 (fr) | 2010-11-03 |
US11191726B2 (en) | 2021-12-07 |
US20140193509A1 (en) | 2014-07-10 |
CY1117126T1 (el) | 2017-04-05 |
PT2244696E (pt) | 2015-11-19 |
WO2009090027A3 (fr) | 2010-05-06 |
EP2949320A1 (fr) | 2015-12-02 |
EP2244696B1 (fr) | 2015-08-05 |
HUE026364T2 (en) | 2016-06-28 |
WO2009090027A8 (fr) | 2009-10-08 |
ES2552172T3 (es) | 2015-11-26 |
HRP20151132T1 (hr) | 2015-12-18 |
DK2244696T3 (en) | 2015-11-09 |
DE102008004893A1 (de) | 2009-07-23 |
SI2244696T1 (sl) | 2016-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2204109T3 (es) | Composicion farmaceutica de topiramato. | |
CN100591329C (zh) | 孟鲁司特颗粒制剂 | |
AU749751B2 (en) | Pulmonary and nasal delivery of raloxifene | |
US6872336B2 (en) | Process for producing a pharmaceutical solid preparation containing a poorly soluble drug | |
SK277898B6 (en) | Agent containing axetil cefuroxim in particle form and method of its production | |
US20060057073A1 (en) | Wet granulation process | |
JP2002506017A (ja) | ニコチン吸入器 | |
HRP20020119A2 (en) | Taste masked pharmaceutical liquid formulations | |
JP2023100657A (ja) | Aktプロテインキナーゼ阻害剤を含む薬学的組成物 | |
JP2008013480A (ja) | 薬物含有微粒子およびその製造方法 | |
JP2008007420A (ja) | 造粒物 | |
US20080085318A1 (en) | Coated compositions and methods for preparing same | |
JP2013006798A (ja) | 粒子製剤の製造方法 | |
ES2204517T3 (es) | Composiciones de capsula farmaceutica que contienen loratadina y pseudoefedrina. | |
KR20030081506A (ko) | H+, k+ -atp-아제 저해제를 함유하는 미립자의 제조방법 | |
US11191726B2 (en) | Carrier pellets, method for production thereof and use thereof | |
WO2002038126A2 (fr) | Procede de production de particules pour preparations pharmaceutiques presentant une biodisponibilite accrue | |
WO2011155451A1 (fr) | Particule enrobée et procédé pour la production de particule enrobée | |
JP5608681B2 (ja) | 活性成分の粒状物質を製造する新規の方法、及びそれにより得られた粒状物質 | |
JP2010200853A (ja) | コーティング粒子の製造方法 | |
JP4767492B2 (ja) | 高分子被覆粒子の製造方法、高分子被覆粒子、並びにこれを用いた圧縮成形品 | |
Pietiläinen | Spray drying particles from ethanol-water mixtures intended for inhalation | |
JPH02231419A (ja) | 流動性、貯蔵性および製剤性が改善された粒子の製法およびそれを含有する薬剤 | |
JP2022536415A (ja) | 担体ベースの製剤及び関連する方法 | |
CN114025800A (zh) | 药物组合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IPC PROCESS-CENTER GMBH & CO. KG., GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEIGT, ANTJE;KEMPE, WOLFGANG;REEL/FRAME:025464/0376 Effective date: 20100824 Owner name: ADD TECHNOLOGIES LTD., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHLUTERMANN, BURKHARD;REEL/FRAME:025464/0516 Effective date: 20100923 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: ADD ADVANCED DRUG DELIVERY TECHNOLOGIES LTD., SWIT Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 025464 FRAME 0516. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNEE SHOULD READ ADD ADVANCED DRUG DELIVERY TECHNOLOGIES LTD;ASSIGNOR:SCHLUETERMANN, BURKHARD;REEL/FRAME:032756/0090 Effective date: 20140307 |