US20100077782A1 - Heat exchanger assembly - Google Patents

Heat exchanger assembly Download PDF

Info

Publication number
US20100077782A1
US20100077782A1 US12/517,442 US51744207A US2010077782A1 US 20100077782 A1 US20100077782 A1 US 20100077782A1 US 51744207 A US51744207 A US 51744207A US 2010077782 A1 US2010077782 A1 US 2010077782A1
Authority
US
United States
Prior art keywords
pipeline
heat exchanger
throttle point
evaporator
exchanger assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/517,442
Other languages
English (en)
Inventor
Matthias Mrzyglod
Walter Woldenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Assigned to BSH BOSCH UND SIEMENS HAUSGERAETE GMBH reassignment BSH BOSCH UND SIEMENS HAUSGERAETE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MRZYGLOD, MATTHIAS, WOLDENBERG, WALTER
Publication of US20100077782A1 publication Critical patent/US20100077782A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/023Evaporators consisting of one or several sheets on one face of which is fixed a refrigerant carrying coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/045Condensers made by assembling a tube on a plate-like element or between plate-like elements

Definitions

  • the present invention relates to a heat exchanger assembly comprising a pipeline which extends on a thermally conductive substrate.
  • Heat exchangers with a design of this type are common in refrigeration construction as evaporators for cooling an interior of a refrigerator by coolant that evaporates in the pipeline at low pressure.
  • a second type of heat exchanger used in a refrigerator is the condenser in which, at high pressure, the coolant condenses to the environment while dissipating heat.
  • the aim of the present invention is to create a heat exchanger assembly for a refrigerator which allows the construction of a coolant circuit with reduced complexity.
  • the object is achieved in that in a heat exchanger assembly comprising a pipeline which extends on a thermally conductive substrate, the pipeline is divided by a throttle point into an evaporator and a condenser.
  • the substrate preferably comprises two plate-like sections joined by a curved coupling piece, the evaporator being arranged on a first section and the condenser on a second section.
  • the individual sections can therefore be made so as to have the same large size and, if necessary, each individual one of them can have the dimensions of a housing wall of the refrigerator.
  • the plate-like sections meet each other at a right angle on the coupling piece. It is thereby possible to place the sections on different walls of the refrigerator housing respectively, in particular on a back wall and a side wall. In the surroundings of the coupling piece the plate expediently extends through an insulating layer of the refrigerator housing, so the evaporator comes to rest on the inside and the condenser on the outside of the insulating layer.
  • the coupling piece is expediently locally perforated to limit heat exchange between condenser and evaporator.
  • the throttle point then expediently extends over the coupling piece.
  • the pipeline can be locally indented.
  • a uniform, contiguous pipeline in particular can therefore be used for the evaporator and condenser.
  • a downstream pipe section of the condenser and/or a pipe section in which the throttle point is formed preferably run(s) adjacent to a downstream pipe section of the evaporator. Coolant circulating in the downstream pipe section of the evaporator can thus pre-cool in the downstream pipe section of the condenser or coolant circulating [in] the pipe section of the throttle point can pre-cool before it enters the evaporator.
  • the invention also relates to a refrigerator comprising a housing and a heat exchanger assembly of the type defined above.
  • a refrigerator of this kind the evaporator and the condenser are arranged on adjacent walls of the housing or on an identical wall.
  • FIG. 1 shows a schematic perspective view of a refrigerator comprising a heat exchanger assembly according to the invention
  • FIG. 2 shows an enlarged section through a corner of the refrigerator housing
  • FIG. 3 shows a section through the throttle point of a heat exchanger assembly according to the invention.
  • FIG. 4 shows a plan view of a second embodiment of a heat exchanger assembly according to the invention.
  • FIG. 1 shows a refrigerator in a design that is known per se, comprising a body 1 , a door 2 and a recess 3 , relieved in a lower back region of the body 1 , in which a compressor is accommodated.
  • a heat exchanger assembly comprises a condenser 4 , which is exposed at the back of the body 1 and for the most part fills this back above the recess 3 , as well as an evaporator 5 which extends along a side wall of the body 1 in the immediate vicinity of its interior.
  • the heat exchanger assembly has a one-piece sheet metal substrate 15 in the form of a plate bent along one vertical edge 6 and made, for example, from aluminum.
  • a pipeline 7 extends in one piece over this sheet metal substrate from an inlet 8 of the condenser to an outlet 9 of the evaporator 5 .
  • the pipeline 7 crosses the vertical edge 6 in the vicinity of its upper end.
  • the pipeline 7 forms a throttle 10 at this point, at which the pressure of the circulating coolant drops abruptly.
  • this part acts as a condenser, while the part located downstream and subject to low pressure acts as the evaporator.
  • FIG. 2 shows a horizontal section through the throttle 10 and its surroundings in two mutually parallel planes I, II. A boundary between the two planes is indicated by a dash-dot line in FIG. 2 .
  • the throttle 10 is produced by firstly securing the pipeline to the initially still level sheet metal substrate by gluing or soldering and then bending the sheet metal substrate together with the pipeline 7 secured thereto in order to form the vertical edge 6 . This shaping inevitably leads to flattening of the pipe 7 at the edge 6 and to a narrowing of its cross-section.
  • an edge strip 13 of the evaporator 5 that adjoins the vertical edge 6 extends through this insulating material layer 12 , so the main part of the evaporator 5 runs on the inside of the insulating material layer, in direct contact with an inner receptacle wall 14 .
  • FIG. 3 shows a section through a throttle point 10 which is obtained by flattening the pipeline 7 with the aid of a die or in this case a narrow blade running parallel to the pipeline 7 .
  • the drop in pressure at such a throttle point 10 can be precisely controlled by varying its length. In particular it is easily possible to subsequently lengthen such a throttle point 10 on a finished heat exchanger assembly if the drop in pressure attained at it proves to be inadequate.
  • Such a throttle point 10 obtained by flattening can be formed in particular at the section of the pipeline 7 that crosses the edge strip 13 in FIG. 2 .
  • FIG. 4 shows a plan view of a modified embodiment of a heat exchanger assembly according to the present invention in a planar state prior to installation in a refrigerator.
  • the sheet metal substrate 15 of this heat exchanger assembly is divided by two groups of cutouts 11 into condenser 4 , evaporator 5 and a coupling piece in the form of a narrow strip 16 extending between condenser 4 and evaporator 5 .
  • the pipeline 7 runs from the inlet 8 in the bottom left-hand corner of the sheet metal substrate 15 initially in meanders from top to bottom across the entire condenser 4 and then crosses to the strip 16 , runs upwards over the entire length thereof and then in meanders from top to bottom across the evaporator 5 .
  • the pipeline 7 then runs upwards again in order to switch back to the strip 16 in the vicinity of the upper end thereof and to run downwards on the strip to the outlet 9 . Therefore two parallel pipeline sections 17 , 18 run on the strip 16 , insulated from both the condenser 4 and evaporator 5 by the cutouts 11 . Coolant, which in section 17 aspires to the throttle 10 formed at the entrance to the evaporator 5 , is thus pre-cooled in counter flow by coolant flowing out of the evaporator 5 via section 18 .
  • a low temperature at the downstream end of the throttle 10 is therefore achieved on the one hand, and on the other hand it is ensured that coolant issuing from the heat exchanger assembly at outlet 9 is sufficiently warm that there need be no concern about dew forming on a pipeline extending from the outlet 9 to the compressor.
  • a vertical edge 6 can be formed by right-angled bending of the sheet metal substrate 15 along a group of cutouts 11 , which edge allows the heat exchanger assembly to be installed as shown in FIG. 1 . Bending the sheet metal substrate along the two groups of cutouts 11 produces mutually parallel condenser and evaporator, which for example can both be placed on the back wall of the refrigerator, the gap between condenser 4 and evaporator 5 then being filled with the foam of the insulating material 12 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
US12/517,442 2006-12-22 2007-11-22 Heat exchanger assembly Abandoned US20100077782A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006061154.3 2006-12-22
DE102006061154A DE102006061154A1 (de) 2006-12-22 2006-12-22 Wärmetauscheraggregat
PCT/EP2007/062713 WO2008077699A1 (de) 2006-12-22 2007-11-22 Wärmetauscheraggregat

Publications (1)

Publication Number Publication Date
US20100077782A1 true US20100077782A1 (en) 2010-04-01

Family

ID=39060205

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/517,442 Abandoned US20100077782A1 (en) 2006-12-22 2007-11-22 Heat exchanger assembly

Country Status (6)

Country Link
US (1) US20100077782A1 (ru)
EP (1) EP2126484A1 (ru)
CN (1) CN101568774B (ru)
DE (1) DE102006061154A1 (ru)
RU (1) RU2451883C2 (ru)
WO (1) WO2008077699A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1398991B1 (it) * 2010-02-23 2013-03-28 Mondial Group Srl Apparecchio frigorifero ad alta efficienza.
DE102010040340A1 (de) 2010-09-07 2012-03-08 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit Skin-Verflüssiger
WO2019020175A1 (en) * 2017-07-26 2019-01-31 Electrolux Appliances Aktiebolag COOLING APPARATUS COMPRISING A CONDENSER
CN109269156B (zh) * 2018-11-08 2024-04-05 珠海格力电器股份有限公司 一种蒸发冷凝集成装置及制冷系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US222513A (en) * 1879-12-09 Improvement in nut-locks
US1987422A (en) * 1934-06-14 1935-01-08 Gen Electric Method of making heat exchange apparatus
US2225513A (en) * 1936-06-01 1940-12-17 Gen Motors Corp Method of forming restrictors
US4184342A (en) * 1977-11-04 1980-01-22 General Electric Company Variable restrictor for a refrigeration system
US20040144129A1 (en) * 2003-01-29 2004-07-29 Lee Tae Hee Direct cooling type refrigerator and evaporating pipe fixing method in the refrigerator
KR20060039166A (ko) * 2004-11-02 2006-05-08 엘지전자 주식회사 냉장고

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU538313B2 (en) * 1980-05-06 1984-08-09 John Lysaght (Australia) Limited Plate and tube heat exchanger
NL8502473A (nl) * 1985-09-10 1987-04-01 Jacobus Maria Joannus Kochx Koelkast met gebruikmaking van een eutectische plaat, een condensor met ingebouwde afsmeltelementen, een thermostaatklok die ervoor zorgt dat de compressor slechts enkele malen per etmaal aanslaat.
DK165426C (da) * 1989-12-20 1993-04-05 Gram Brdr As Koeleskab
DE4420842A1 (de) * 1994-06-15 1995-12-21 Schmoele Gmbh Km Verdampfer
IT246294Y1 (it) * 1998-01-09 2002-04-08 Whirlpool Co Frigorifero domestico
JP3699623B2 (ja) * 2000-01-31 2005-09-28 株式会社荏原製作所 ヒートポンプ及び除湿装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US222513A (en) * 1879-12-09 Improvement in nut-locks
US1987422A (en) * 1934-06-14 1935-01-08 Gen Electric Method of making heat exchange apparatus
US2225513A (en) * 1936-06-01 1940-12-17 Gen Motors Corp Method of forming restrictors
US4184342A (en) * 1977-11-04 1980-01-22 General Electric Company Variable restrictor for a refrigeration system
US20040144129A1 (en) * 2003-01-29 2004-07-29 Lee Tae Hee Direct cooling type refrigerator and evaporating pipe fixing method in the refrigerator
KR20060039166A (ko) * 2004-11-02 2006-05-08 엘지전자 주식회사 냉장고

Also Published As

Publication number Publication date
CN101568774A (zh) 2009-10-28
WO2008077699A1 (de) 2008-07-03
RU2451883C2 (ru) 2012-05-27
RU2009125198A (ru) 2011-01-27
EP2126484A1 (de) 2009-12-02
DE102006061154A1 (de) 2008-06-26
CN101568774B (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
US9459053B2 (en) Heat exchanger and air-conditioning apparatus
US9664461B2 (en) Multi-poise condensate drain pan
US9328973B2 (en) Heat exchanger and air conditioner
CN101995115B (zh) 多通道热交换器散热片
US5097897A (en) Heat exchanging device
JP5405011B2 (ja) 冷凍装置
US20200166278A1 (en) Heat exchanger
JP4796800B2 (ja) 蒸発器
JP5936297B2 (ja) 熱交換器
US20100077782A1 (en) Heat exchanger assembly
JP2007046868A (ja) 蒸発器
JP2009002549A (ja) ヒートポンプ給湯機
RU2259519C2 (ru) Холодильник с испарителем
US11384997B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
EP3550247B1 (en) Heat exchanger and air conditioner
JP6584635B2 (ja) 冷蔵庫
JP2006343023A (ja) 冷却器
JP5963958B2 (ja) 空気調和機の室外機、及び空気調和機の室外機の製造方法
JP6493023B2 (ja) 空気調和機の室外機
KR100331806B1 (ko) 냉장고용 압축기 냉각장치
JP2018059710A (ja) 冷凍装置
WO2023095537A1 (ja) 冷蔵庫
WO2023065761A1 (zh) 在底部散热机仓布置预留空间的冰箱
EP2317252A2 (en) Evaporator unit
JPH0666458A (ja) 冷媒蒸発器

Legal Events

Date Code Title Description
AS Assignment

Owner name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MRZYGLOD, MATTHIAS;WOLDENBERG, WALTER;REEL/FRAME:022777/0932

Effective date: 20090602

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION