US2225513A - Method of forming restrictors - Google Patents

Method of forming restrictors Download PDF

Info

Publication number
US2225513A
US2225513A US82723A US8272336A US2225513A US 2225513 A US2225513 A US 2225513A US 82723 A US82723 A US 82723A US 8272336 A US8272336 A US 8272336A US 2225513 A US2225513 A US 2225513A
Authority
US
United States
Prior art keywords
tubing
restrictors
cross
forming
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US82723A
Inventor
Otto M Summers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US82723A priority Critical patent/US2225513A/en
Application granted granted Critical
Publication of US2225513A publication Critical patent/US2225513A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49359Cooling apparatus making, e.g., air conditioner, refrigerator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49428Gas and water specific plumbing component making
    • Y10T29/49446Ferrule making or reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • Y10T29/49776Pressure, force, or weight determining

Definitions

  • This invention relates to refrigerating apparatus and more-particularly torestrictors for controlling the flow of liquid refrigerant to evaporators and the method and machine for making 5 and gauging said restrictors.
  • An object of the invention is to improve upon restrictors and the method and machine for making and gauging said restrictors whereby greater accuracy and uniformity may be had at a greatly in reduced cost.
  • One object of this invention is to make use of this regular commercial tubing in the manufacture of restrictors having the necessary. uniformity throughout.
  • a still further object of this invention is to provide new and improved means for gauging the resistance to the flow of fluid through the restrictor.
  • Fig. 1 shows a diagrammatic view of a refrigerating device employing one form of applicants 40 restrictor
  • Fig. 2 is a cross-sectional view of tubing used in the manufacture of applicant's device
  • Fig. 3 is a cross-sectional view showing the same tubing with the inside area reduced and showing the roller means for reducing the area;
  • Fig. 4 is a cross-sectional view of the apparatus used in the manufacture and gauging of the restric'tor.
  • a conventional compressor unit 8 condenser 9, restrictor l0 and evaporator II.
  • the reference numeral l2 desi nates the usual vapor line leading from the evaporator to the compressor and reference numeral l3 designates the usual high side line leading from the compressor to the condenser 9.
  • a very fine balance is neces sary and the length and cross-section of the restricter is critical. 5
  • Fig. 2 is shown a section of commercial copper or other metal tubing ll which has a cross-sectional area of greater diameter than required for restriction purposes.
  • Fig. 3 shows the same tubing after having been 10 deformed by passing between a plurality of rollers i8 which are old and well known in mechanical arts and need no further description.
  • tubing of any desired economical size and shape may be used.
  • the cross- 15 section of the tubing is uniformly reduced throughout the length of the tubing to any desired limit in the manner disclosed in Fig. 3, so as to increase the restriction.
  • Applicant has devised the precisionmechanism shown in Fig. 4 20 whereby the tube after having been deformed as described above, may be twisted or stretched to further'increase the restriction by very small increments.
  • a The mechanism comprises two arms [8 and i9 mounted on a support [1, one of 5 which rotatively supports a hollow member 20 which can be rotated by means of worm wheel 2
  • may be rotated by means of warm 22, which worm may be either manually 30 rotated or mechanically rotated.
  • the tubing to be used is supported between the arm [8 and the rotatable member-20 as shown in the drawing. The left end of the tubing is held from rotation by the-arm 18, whereas the right end of 5 the tubing is secured to the rotatable member 20 by means of a chuck 23. The left'end of the tubing is connected .to the source of fluid maintained at a constant predetermined pressure.
  • the vertical mem-- '45 ber 29 provided with gauge marks 30 is mounted a short distance away from the outlet of the rotatable member 20 so that as the tubing is twisting it is possible to determine the point where no further twisting is necessary by ob- 50 serving the height at which the jet 3
  • the thumb nut 32 is loosened so that in place of stretching the tubing, the arm I may move closer tothe arm It.
  • the spring member 33 has just enough resiliency to hold the tubing taut, but not resiliency enough to cause the tubing to stretch. In the event that one would want to stretch the tubing without twisting the tubing, all that would be necessary would-be to loosen the thumb nut 32 and tighten the thumb screw Ill until it would bear against the arm l8 and force it away from .the arm IS.
  • the preferred manner of increasing the restriction of the tubing is to keep the thumb nut 32 tightened at all times so that by simply rotating the member 2
  • the means for supplying fluid at a constant predetermined pressure generally designated by the numeral II is all conventional structure. The fluid under pressure passes through the constantpressure valve 21 into the valve 26 through thegauge 25 and the constant flow restrictor 24 in the usual manner,
  • the tubing used is purchased in long lengths andv passed through the reducing rollers, as shown in Fig. 3, before cutting into the desired lengths.
  • the ends of the tubing are closed and the tubing is fully annealed.
  • a hydrogen atmosphere may be provided for theannealing operation, inwhich case the ends need not be closed.
  • the tubing. is then cut into the proper lengths, fitting I5 is attached and the tubing is inserted in the precision mechanism as shown in Fig. 4 where it is further deformed.
  • An advantage of my method of manufacturing av restrictor is that commercial tubing of nonuniform cross-sectional.area may be inserted in my novel machine in such a manner that fluid may be supplied to the tubing at one end and discharged through the tubing at the other end during the deformationperiod.
  • Another advantage of the device shown in Fig. 4 is that by applying a localized force to the one end of the tubing an increment of resistance is added through the entire length of the tube.
  • the restrictors manufactured in accordance with applicant's invention have a proportionately large inside surface area in comparison to the cross-section of the tube.
  • Theshape of the opening, which is substantially triangular without any sharp corners, together with the large inside surfaoe'area combine to oifer resistance to the flow of liquid through the tubing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

Dec. 17, 1940. 0. M SUMMERS METHOD OF FORMING RESTRIGTORS Filed Juh'e 1, i956 9 WW 7 Z 6 m 2 a a 2 ENTOI? BY 941461 ATTORNEY Patented Dec. 1" 7, 1940 PATENT OFFICE 2 2,225,513 METHOD or FORMING nas 'rnrcroas Otto M. Summers, Dayton,
Ohio, assignor to General Motors Corporation, Dayton, Ohio, a
corporation of Delaware Application June 1, 1936, Serial No. 82,723
' 2Claims.
- This invention relates to refrigerating apparatus and more-particularly torestrictors for controlling the flow of liquid refrigerant to evaporators and the method and machine for making 5 and gauging said restrictors.
An object of the invention is to improve upon restrictors and the method and machine for making and gauging said restrictors whereby greater accuracy and uniformity may be had at a greatly in reduced cost.
In the past, efforts have been made to utilize the regular commercial copper or. other metal tubing of small diameter for restrictor purposes, but due to the lack of uniformity in the tubing,
it has been impossible to utilize the commercial tubing, and efior'ts to secure special tubing of the proper cross-section and necessary uniformity throughout have failed.
One object of this invention is to make use of this regular commercial tubing in the manufacture of restrictors having the necessary. uniformity throughout.
It is also an object of this invention to devise means whereby resistance to flow of fluid through the tubing may be increased by adding an increment of resistance throughout the entire length of the tubing.
A still further object of this invention is to provide new and improved means for gauging the resistance to the flow of fluid through the restrictor.
Further objects and advantages of the present invention will be apparent from the following description, reference being had to the accompanying drawing wherein preferred forms of the present invention are clearly shown.
In'the drawing:
Fig. 1 shows a diagrammatic view of a refrigerating device employing one form of applicants 40 restrictor;
Fig. 2 is a cross-sectional view of tubing used in the manufacture of applicant's device;
Fig. 3 is a cross-sectional view showing the same tubing with the inside area reduced and showing the roller means for reducing the area; and
Fig. 4 is a cross-sectional view of the apparatus used in the manufacture and gauging of the restric'tor.
1 Referring now to the drawing, andmore particularly to Fig. 1, there is shown a conventional compressor unit 8, condenser 9, restrictor l0 and evaporator II. The reference numeral l2 desi nates the usual vapor line leading from the evaporator to the compressor and reference numeral l3 designates the usual high side line leading from the compressor to the condenser 9. In units of this type, a very fine balance is neces sary and the length and cross-section of the restricter is critical. 5
In Fig. 2 is shown a section of commercial copper or other metal tubing ll which has a cross-sectional area of greater diameter than required for restriction purposes.
Fig. 3 shows the same tubing after having been 10 deformed by passing between a plurality of rollers i8 which are old and well known in mechanical arts and need no further description.
In this invention, tubing of any desired economical size and shape may be used. The cross- 15 section of the tubing is uniformly reduced throughout the length of the tubing to any desired limit in the manner disclosed in Fig. 3, so as to increase the restriction. Applicant has devised the precisionmechanism shown in Fig. 4 20 whereby the tube after having been deformed as described above, may be twisted or stretched to further'increase the restriction by very small increments. A The mechanism comprises two arms [8 and i9 mounted on a support [1, one of 5 which rotatively supports a hollow member 20 which can be rotated by means of worm wheel 2| attached thereto in any convenient manner. The worm wheel 2| may be rotated by means of warm 22, which worm may be either manually 30 rotated or mechanically rotated. The tubing to be used is supported between the arm [8 and the rotatable member-20 as shown in the drawing. The left end of the tubing is held from rotation by the-arm 18, whereas the right end of 5 the tubing is secured to the rotatable member 20 by means of a chuck 23. The left'end of the tubing is connected .to the source of fluid maintained at a constant predetermined pressure.
It has been found that by twisting the 'de- 40 formed tubing M, the restriction to the flow of fluid therethrough is increased throughout the length of the tubing subjected to the twisting operation. In order to determine the proper amount of twisting necessary, the vertical mem-- '45 ber 29 provided with gauge marks 30 is mounted a short distance away from the outlet of the rotatable member 20 so that as the tubing is twisting it is possible to determine the point where no further twisting is necessary by ob- 50 serving the height at which the jet 3| passes the gauged member 28. Sometimes it may be considered expedient to twist the tube without stretching the tube, in which case the thumb nut 32 is loosened so that in place of stretching the tubing, the arm I may move closer tothe arm It. The spring member 33 has just enough resiliency to hold the tubing taut, but not resiliency enough to cause the tubing to stretch. In the event that one would want to stretch the tubing without twisting the tubing, all that would be necessary would-be to loosen the thumb nut 32 and tighten the thumb screw Ill until it would bear against the arm l8 and force it away from .the arm IS. The preferred manner of increasing the restriction of the tubing, however, is to keep the thumb nut 32 tightened at all times so that by simply rotating the member 2| the tubing will be twisted and stretched. The means for supplying fluid at a constant predetermined pressure generally designated by the numeral II is all conventional structure. The fluid under pressure passes through the constantpressure valve 21 into the valve 26 through thegauge 25 and the constant flow restrictor 24 in the usual manner,
The tubing used is purchased in long lengths andv passed through the reducing rollers, as shown in Fig. 3, before cutting into the desired lengths. In the next step, the ends of the tubing are closed and the tubing is fully annealed.
A hydrogen atmosphere may be provided for theannealing operation, inwhich case the ends need not be closed. The tubing. is then cut into the proper lengths, fitting I5 is attached and the tubing is inserted in the precision mechanism as shown in Fig. 4 where it is further deformed.
An advantage of my method of manufacturing av restrictor is that commercial tubing of nonuniform cross-sectional.area may be inserted in my novel machine in such a manner that fluid may be supplied to the tubing at one end and discharged through the tubing at the other end during the deformationperiod.
Another advantage of the device shown in Fig. 4 is that by applying a localized force to the one end of the tubing an increment of resistance is added through the entire length of the tube.
The restrictors manufactured in accordance with applicant's invention, have a proportionately large inside surface area in comparison to the cross-section of the tube. Theshape of the opening, which is substantially triangular without any sharp corners, together with the large inside surfaoe'area combine to oifer resistance to the flow of liquid through the tubing.
While the form of embodiment of the present invention as herein disclosed constitutes a preferred form, it.is to be understood that other forms might be adopted, all coming within the scope of the claims which follow.
the length of a tube and rotating one clamped portion relative to the other clamped portion to uniformly twist and restrict the entire length of tubing between the clamped portions, simultaneously gauging the flow of fluid therethrough and discontinuing relative rotation when the gauging indicated proper'restriction to the flow 35 of fluid therethrough.
OTTO .M. SUMMERS.
US82723A 1936-06-01 1936-06-01 Method of forming restrictors Expired - Lifetime US2225513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US82723A US2225513A (en) 1936-06-01 1936-06-01 Method of forming restrictors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US82723A US2225513A (en) 1936-06-01 1936-06-01 Method of forming restrictors

Publications (1)

Publication Number Publication Date
US2225513A true US2225513A (en) 1940-12-17

Family

ID=22173017

Family Applications (1)

Application Number Title Priority Date Filing Date
US82723A Expired - Lifetime US2225513A (en) 1936-06-01 1936-06-01 Method of forming restrictors

Country Status (1)

Country Link
US (1) US2225513A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2532452A (en) * 1945-06-14 1950-12-05 Albert Wittlin Externally adjustable tubular fluid flow restrictor for refrigeration systems
US2663188A (en) * 1949-09-22 1953-12-22 American Viscose Corp Liquid metering and flow indicating device
US2712237A (en) * 1951-08-14 1955-07-05 Frederick J Margolis Clinical thermometer
US2881517A (en) * 1956-09-06 1959-04-14 American Radiator & Standard Method for twisting tubing
US3343340A (en) * 1964-12-28 1967-09-26 Gen Electric Metering device for controlling low rates of flow between regions of widely-different pressures
US3505843A (en) * 1967-05-26 1970-04-14 Becton Dickinson Co Air gage master and method for making same
US3818945A (en) * 1972-03-17 1974-06-25 Precision Parts Co Inc Fluid dispensing nipple construction
US3866448A (en) * 1973-01-02 1975-02-18 Gen Electric Apparatus for constructing air cooled turbomachinery blading
US3921271A (en) * 1973-01-02 1975-11-25 Gen Electric Air-cooled turbine blade and method of making same
US4031745A (en) * 1976-02-20 1977-06-28 General Electric Company Method of forming constriction in tubing
US4150558A (en) * 1977-11-04 1979-04-24 General Electric Company Method for forming a variable restrictor
WO2008077699A1 (en) * 2006-12-22 2008-07-03 BSH Bosch und Siemens Hausgeräte GmbH Heat exchanger assembly
US20150314406A1 (en) * 2009-09-29 2015-11-05 Koninklijke Philips N.V. Heat exchange sytem and method of producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2532452A (en) * 1945-06-14 1950-12-05 Albert Wittlin Externally adjustable tubular fluid flow restrictor for refrigeration systems
US2663188A (en) * 1949-09-22 1953-12-22 American Viscose Corp Liquid metering and flow indicating device
US2712237A (en) * 1951-08-14 1955-07-05 Frederick J Margolis Clinical thermometer
US2881517A (en) * 1956-09-06 1959-04-14 American Radiator & Standard Method for twisting tubing
US3343340A (en) * 1964-12-28 1967-09-26 Gen Electric Metering device for controlling low rates of flow between regions of widely-different pressures
US3505843A (en) * 1967-05-26 1970-04-14 Becton Dickinson Co Air gage master and method for making same
US3818945A (en) * 1972-03-17 1974-06-25 Precision Parts Co Inc Fluid dispensing nipple construction
US3866448A (en) * 1973-01-02 1975-02-18 Gen Electric Apparatus for constructing air cooled turbomachinery blading
US3921271A (en) * 1973-01-02 1975-11-25 Gen Electric Air-cooled turbine blade and method of making same
US4031745A (en) * 1976-02-20 1977-06-28 General Electric Company Method of forming constriction in tubing
FR2342802A1 (en) * 1976-02-20 1977-09-30 Gen Electric PROCESS FOR FORMING A HAIR TUBE
US4150558A (en) * 1977-11-04 1979-04-24 General Electric Company Method for forming a variable restrictor
WO2008077699A1 (en) * 2006-12-22 2008-07-03 BSH Bosch und Siemens Hausgeräte GmbH Heat exchanger assembly
US20100077782A1 (en) * 2006-12-22 2010-04-01 BSH Bosch und Siemens Hausgeräte GmbH Heat exchanger assembly
CN101568774B (en) * 2006-12-22 2011-09-21 Bsh博世和西门子家用器具有限公司 Heat exchanger assembly
US20150314406A1 (en) * 2009-09-29 2015-11-05 Koninklijke Philips N.V. Heat exchange sytem and method of producing the same

Similar Documents

Publication Publication Date Title
US2225513A (en) Method of forming restrictors
US2732591A (en) whittum
DE112017000638B4 (en) Tire uniformity test device and tire inflation method
US2532019A (en) Pressure reducing device for refrigerating apparatus
US2568123A (en) Pressure reducing device for refrigerating apparatus
US2114272A (en) Adjustable trimmer for collapsible tube making machines
GB303161A (en) Improvements in or relating to finned tubing
US2075921A (en) Treatment of restricted flow tubing and apparatus therefor
US2020860A (en) Refrigerating apparatus
US1131953A (en) Apparatus for drawing glass.
US2277921A (en) Heat exchange unit
US2248262A (en) Grinding valve stems and tappets
US2176719A (en) Method and machine for making springs
USRE19201E (en) Air service device
US4679423A (en) Method and apparatus for measuring the pore size of enhanced tubes
US2519461A (en) Strand distributing apparatus
US2674105A (en) Tube joint in refrigeration system
US1910658A (en) Abrasive reamer
US2061501A (en) Method and apparatus for rolling bellows
US3427838A (en) Automatic length adjustment of helical springs during coiling
US3064506A (en) Grooving tool for finned heat exchanger tubes
US10955198B2 (en) Fin-assembled tube
US2132976A (en) Machine for sizing, truing, and polishing bars and tubes
US1671983A (en) Spring-coiling tool
US2021856A (en) Heat exchanger