US20090266529A1 - Protected Carbon Steel Pipe for Fire Tube Heat Exchange Devices, Particularly Boilers - Google Patents
Protected Carbon Steel Pipe for Fire Tube Heat Exchange Devices, Particularly Boilers Download PDFInfo
- Publication number
- US20090266529A1 US20090266529A1 US11/887,638 US88763806A US2009266529A1 US 20090266529 A1 US20090266529 A1 US 20090266529A1 US 88763806 A US88763806 A US 88763806A US 2009266529 A1 US2009266529 A1 US 2009266529A1
- Authority
- US
- United States
- Prior art keywords
- corrosion
- pipe
- resistant material
- pipe according
- internally
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/003—Multiple wall conduits, e.g. for leak detection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/10—Secondary fins, e.g. projections or recesses on main fins
Definitions
- the present invention relates to a protected carbon steel pipe for fire tube heat exchange devices, particularly boilers.
- fire tube heat exchange devices which provide pipes designed to convey flue gases generated by combustion in appropriate furnaces, such pipes being provided within a vessel which contains the fluid to be heated; among such devices, boilers for generating hot water or another heat transfer fluid are particularly important.
- the pipes comprised within said devices are made of carbon steel in order to ensure optimum quality of the welded joints between the pipes and the structures of the devices, which are also made of carbon steel; however, in the case of devices, such as for example condensing boilers, in which the water vapor contained in the flue gases condenses inside the flue gas conveyance pipes, condensation forms which attacks strongly by corrosion the wall of the pipes.
- Pipes of the described type are not typical only of boilers, but can be present also in other devices of industrial thermal cycles, such as for example condensers, economizers and heat exchangers.
- the aim of the present invention is to provide a carbon steel pipe adapted to convey flue gases which is entirely protected against the danger of corrosion caused by condensation and further ensures high efficiency in the transmission of heat from the flue gases to the fluid, and in particular to the water, to be heated.
- FIG. 1 is a longitudinal sectional view of a fire tube boiler with a pipe according to the present invention
- FIG. 2 is a partial sectional view, taken along the line II-II of FIG. 1 ;
- FIGS. 3 to 25 show the same sectional view according to variations.
- the reference numeral 1 generally designates a fire tube boiler with a burner 2 , a furnace 3 , a flue gas reversal chamber 4 a, a vessel 5 which contains the water to be heated with couplings 5 a, 5 b respectively for inflow and outflow, pipes 6 designed to convey the gases generated by combustion in the furnace which arrive from the reversal chamber 4 a and are sent to the output chamber 4 b according to the arrows shown in FIG. 1 .
- the boiler 1 is of the type known as condensing boiler, and therefore the water vapor contained in the flue gases condenses therein as they flow within the pipes such as 6 ; the structure of said boiler is made of carbon steel.
- the pipe 6 is made of carbon steel and comprises internally, bonded thereto, a layer 7 made of a corrosion-resistant material, such as aluminum or stainless steel.
- the layer 7 is present along the entire length of the pipe 6 , but it should be clearly noted that such layer might be provided only in the part of the pipe toward the outlet of the flue gases.
- the carbon steel pipe 8 comprises, bonded thereto, a layer 9 made of corrosion-resistant material and accommodates internally a coaxial sleeve 10 , which is closed by at least one plug 10 a , likewise made of corrosion-resistant material.
- An interspace 11 for conveying the flue gases in a reduced cross-section is thus provided: the consequent increase in speed effectively helps to increase heat exchange between the flue gases and the water to be heated.
- a further increased efficiency of said exchange occurs in the variation of FIG. 4 , in which a carbon steel pipe 12 has, bonded thereto, a layer 13 of corrosion-resistant material, and a sleeve 14 , closed by a plug 14 a, has ribs 14 b which extend monolithically from it and which, by entering an interspace 15 through which the flue gases flow, make contact with the layer 13 , transmitting thereto, and ultimately to the water to be heated, heat by conduction.
- FIGS. 5 , 6 , 7 , and 8 change only the shape of the cross-section of the ribs: while the ribs of the solution of FIG. 4 are shaped so as to have a cross-section with a rounded cusp, the ribs of the variations of said figures respectively have a rectangular cross-section 16 , a triangular cross-section 17 in which the thickness decreases gradually toward the central region 18 , and a rectangular cross-section with an end face 19 .
- FIG. 9 provides, bonded to a carbon steel pipe 20 , a first layer 21 made of corrosion-resistant material, and a second layer 22 , also made of corrosion-resistant material, which provides ribs 22 a adapted to make contact, by entering an interspace 23 through which the flue gases flow, with a sleeve 24 closed by a plug 24 a, thus providing a situation which is similar to the one described earlier.
- FIGS. 14 to 18 replicate the constructive embodiments shown in FIGS. 9 to 13 , with the only difference related to the fact that there is just one layer made of corrosion-resistant material bonded to the carbon steel pipe: thus, for example, the variation of FIG. 14 provides, bonded to a carbon steel pipe 25 , only a layer 26 made of corrosion-resistant material, which is provided with a ribs 26 a which make contact with a sleeve 27 .
- FIG. 19 illustrates an embodiment in which a first layer 29 , made of corrosion-resistant material, and a second layer 30 , also made of corrosion-resistant material, are bonded to a carbon steel pipe 28 ; ribs 30 a protrude from said second layer and are alternated with ribs 31 a which protrude from a sleeve 31 , leaving spaces 32 between said ribs for the flow of the flue gases: ribs 31 a extend until they make contact with the layer 30 in the presence of references 31 b which ensure correct positioning.
- FIG. 20 A variation of the embodiment of FIG. 19 is shown in FIG. 20 : the only difference is the absence of the layer 29 bonded to a carbon steel pipe 33 , and therefore only a layer 34 made of corrosion-resistant material and provided with the ribs as described above, is present.
- FIG. 21 comprises, bonded to a carbon steel pipe 35 , a layer 36 made of corrosion-resistant material, which is provided with variously shaped ribs 36 a arranged alternately with respect to variously shaped ribs 37 a which protrude from a sleeve 37 and are adapted to make contact in the presence of references 37 b with the wall of the layer 36 .
- the reference numeral 38 designates a carbon steel pipe, which comprises internally two flue gas conveyance modules, designated generally by the reference numerals 39 and 40 respectively, which are delimited by a closed wall made of corrosion-resistant material.
- the wall of the module 39 comprises a portion 41 , which is bonded to the wall of the pipe 38 substantially along half of the circumferential extension thereof, and a straight portion 42 , which extends transversely, and likewise the wall of the module 40 comprises a portion 43 bonded to the wall of the pipe 38 and a straight portion 44 ; the straight portions 42 and 44 are in mutual contact.
- the described configuration allows to obtain the dual result of protecting the wall of the pipe 38 against contact with the flue gases, and this is done by the portions 41 and 43 of the walls of the modules, and of providing an intense transmission of heat from the flue gases to the water contained in the boiler which strikes the outer surface of the pipe 38 , determined by the presence of the portions 42 and 44 of said walls which make contact with the flue gases at the region where said flue gases have a particularly high temperature.
- FIG. 23 illustrates another variation of the invention, which provides, inside the pipe 38 , six flue gas conveyance modules which are substantially shaped like wedges and are designated respectively by the reference numerals 45 , 46 , 47 , 48 , 49 , 50 .
- the walls of the module which are made of corrosion-resistant material, are identical and comprise an arc-like portion, 45 a for the module 45 , bonded to the wall of the pipe 38 , and two straight portions 45 b, 45 c for said module, which protrude from the ends of said arc-like portion toward the axis of said pipe; the straight portions of the individual modules are in mutual contact.
- FIG. 24 differs from the embodiment of FIG. 23 only in that inside the pipe 38 there are twelve flue gas conveyance modules 51 instead of the six modules provided in the embodiment of FIG. 23 .
- the variation shown in FIG. 25 provides for the presence, inside the pipe 38 , of a continuous layer 52 , provided with protrusions such as 53 which protrude toward the axis of the pipe and thus provide, as in the previously described variations, optimum conditions both as regards the protection of the pipe 38 against corrosion and for high efficiency in heat transfer from the flue gases contained in the pipe 38 to the water to be heated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Incineration Of Waste (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMN2005A000023 | 2005-04-18 | ||
ITMN20050023 ITMN20050023A1 (it) | 2005-04-18 | 2005-04-18 | Tubo in acciaio al carbonio protetto compreso in caldaia a tubi di fumo |
ITMN2006A000012 | 2006-02-22 | ||
ITMN20060012 ITMN20060012A1 (it) | 2006-02-22 | 2006-02-22 | Tubo in acciaio al carbonio protetto, per apparecchi di scambio termico particolarmente caldaie a tubi di fumo |
PCT/EP2006/003381 WO2006111315A1 (en) | 2005-04-18 | 2006-04-12 | Protected carbon steel pipe for fire tube heat exchange devices, particularly boilers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090266529A1 true US20090266529A1 (en) | 2009-10-29 |
Family
ID=36581553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/887,638 Abandoned US20090266529A1 (en) | 2005-04-18 | 2006-04-12 | Protected Carbon Steel Pipe for Fire Tube Heat Exchange Devices, Particularly Boilers |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090266529A1 (de) |
EP (1) | EP1872080A1 (de) |
CA (1) | CA2603454A1 (de) |
EA (1) | EA011432B1 (de) |
WO (1) | WO2006111315A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120204992A1 (en) * | 2009-11-12 | 2012-08-16 | Hyundai Hysco | Water pipe for which hydroforming is employed, and a production method therefor |
WO2018111730A3 (en) * | 2016-12-16 | 2018-08-02 | Austin James Matthew | Annular superheating element for firetube boilers |
US11703282B2 (en) * | 2016-12-22 | 2023-07-18 | Trinity Endeavors, Llc | Fire tube |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMN20060071A1 (it) | 2006-12-13 | 2008-06-14 | Unical Ag Spa | Tubo in acciaio al carbonio protetto per il convogliamento di fumi in apparecchio di scambio termico. |
DK2167896T3 (da) * | 2007-05-31 | 2020-06-22 | Amerifab Inc | Justerbart varmevekslingsapparat og anvendelsesfremgangsmåde |
WO2013123239A1 (en) * | 2012-02-17 | 2013-08-22 | Ceramatec, Inc. | Advanced fischer tropsch system |
CN110462321A (zh) | 2017-01-30 | 2019-11-15 | 艾美瑞法布有限公司 | 用于电弧炉、冶金炉或精炼炉的顶载炉顶及其系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3735478A (en) * | 1971-01-06 | 1973-05-29 | Foster Co | Methods for making bi-metallic pipe |
US4332073A (en) * | 1979-02-28 | 1982-06-01 | Kawasaki Jukogyo Kabushiki Kaisha | Method of producing multiple-wall composite pipes |
US4336958A (en) * | 1977-12-12 | 1982-06-29 | John Goetzinger | Pipe flange |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1701617A (en) * | 1928-05-11 | 1929-02-12 | Mccord Radiator & Mfg Co | Metal tubing |
FR1146302A (fr) * | 1956-03-27 | 1957-11-08 | échangeur de chaleur tubulaire | |
US2960114A (en) * | 1957-04-26 | 1960-11-15 | Bell & Gossett Co | Innerfinned heat transfer tubes |
US3036818A (en) * | 1958-01-29 | 1962-05-29 | Foster Wheeler Francaise Soc | Heat exchanger |
GB1003013A (en) * | 1962-05-28 | 1965-09-02 | Patterson Kelley Co | Heat exchange device |
US3267564A (en) * | 1964-04-23 | 1966-08-23 | Calumet & Hecla | Method of producing duplex internally finned tube unit |
DE2027507A1 (de) * | 1970-05-30 | 1971-12-09 | Licentia Gmbh | Düse zur Beschleunigung zweiphasiger Strömungen |
US4054174A (en) * | 1974-03-18 | 1977-10-18 | The Babcock & Wilcox Company | Method of inhibiting deposition of internal corrosion products in tubes |
JPH0631692B2 (ja) * | 1985-07-04 | 1994-04-27 | 株式会社東芝 | 熱交換器 |
FR2697077B1 (fr) * | 1992-10-16 | 1994-12-30 | Sofath | Dispositif pour améliorer les performances des pompes à chaleur à capteur enterré. |
DE9405062U1 (de) * | 1994-03-24 | 1994-05-26 | Hoval Interliz Ag, Vaduz-Neugut | Wärmetauscherrohr für Heizkessel |
JPH09292062A (ja) * | 1996-04-24 | 1997-11-11 | Furukawa Electric Co Ltd:The | 耐食性に優れた内面溝付管 |
JPH1046314A (ja) * | 1996-08-06 | 1998-02-17 | Kubota Corp | 外面耐食管の製造方法 |
KR20010034712A (ko) * | 1998-03-27 | 2001-04-25 | 칼 하인쯔 호르닝어 | 열교환기 관, 열교환기 관의 제조 방법 및 복수기 |
US6006741A (en) * | 1998-08-31 | 1999-12-28 | Carrier Corporation | Secondary heat exchanger for condensing furnace |
US6202418B1 (en) * | 1999-01-13 | 2001-03-20 | Abb Combustion Engineering | Material selection and conditioning to avoid brittleness caused by nitriding |
-
2006
- 2006-04-12 US US11/887,638 patent/US20090266529A1/en not_active Abandoned
- 2006-04-12 EA EA200702265A patent/EA011432B1/ru not_active IP Right Cessation
- 2006-04-12 EP EP06724287A patent/EP1872080A1/de not_active Withdrawn
- 2006-04-12 WO PCT/EP2006/003381 patent/WO2006111315A1/en active Application Filing
- 2006-04-12 CA CA002603454A patent/CA2603454A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3735478A (en) * | 1971-01-06 | 1973-05-29 | Foster Co | Methods for making bi-metallic pipe |
US4336958A (en) * | 1977-12-12 | 1982-06-29 | John Goetzinger | Pipe flange |
US4332073A (en) * | 1979-02-28 | 1982-06-01 | Kawasaki Jukogyo Kabushiki Kaisha | Method of producing multiple-wall composite pipes |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120204992A1 (en) * | 2009-11-12 | 2012-08-16 | Hyundai Hysco | Water pipe for which hydroforming is employed, and a production method therefor |
US9101972B2 (en) * | 2009-11-12 | 2015-08-11 | Hyundai Hysco | Water pipe for which hydroforming is employed, and a production method therefor |
WO2018111730A3 (en) * | 2016-12-16 | 2018-08-02 | Austin James Matthew | Annular superheating element for firetube boilers |
GB2572906A (en) * | 2016-12-16 | 2019-10-16 | Matthew Austin James | Annular superheating element for firetube boilers |
US10775040B2 (en) | 2016-12-16 | 2020-09-15 | James Matthew Austin | Annular superheating element for firetube boilers |
GB2572906B (en) * | 2016-12-16 | 2021-11-03 | Matthew Austin James | Annular superheating element for firetube boilers |
US11703282B2 (en) * | 2016-12-22 | 2023-07-18 | Trinity Endeavors, Llc | Fire tube |
Also Published As
Publication number | Publication date |
---|---|
EA200702265A1 (ru) | 2008-02-28 |
EA011432B1 (ru) | 2009-02-27 |
WO2006111315A1 (en) | 2006-10-26 |
CA2603454A1 (en) | 2006-10-26 |
EP1872080A1 (de) | 2008-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090266529A1 (en) | Protected Carbon Steel Pipe for Fire Tube Heat Exchange Devices, Particularly Boilers | |
CA2852103C (en) | Combined gas-water tube hybrid heat exchanger | |
US7686072B2 (en) | Heat exchanger and methods of producing the same | |
US8028746B2 (en) | Heat exchanger with finned tube and method of producing the same | |
KR100691029B1 (ko) | 이중관이 구비된 온수공급장치 | |
EP1750069B1 (de) | Wärmetauscher und dessen Herstellungsmethode | |
US9927146B2 (en) | Heat exchanger | |
JPH0613921B2 (ja) | 多管式貫流ボイラ−の伝熱面構造 | |
US20170299274A1 (en) | Heat exchanger | |
US20080142205A1 (en) | Protected carbon steel pipe for conveying flue gases in a heat exchange apparatus | |
RU2495336C2 (ru) | Секционный отопительный котел из чугуна или алюминия | |
CN209909887U (zh) | 同轴传热管、热交换器及流化床锅炉 | |
KR100858769B1 (ko) | 열교환 성능이 향상된 난방 및 급탕 가스 보일러 | |
JP2003194416A (ja) | 熱交換システム | |
JP2003139400A (ja) | 熱交換装置 | |
US11300285B2 (en) | Package boiler with tandem furnace tubes | |
JP2006317023A (ja) | 管整列装置 | |
JPH0579602A (ja) | 多管式貫流ボイラーの伝熱面構造 | |
JPH0826964B2 (ja) | 多管式貫流ボイラーの伝熱面構造 | |
JPH0412323Y2 (de) | ||
JP5645534B2 (ja) | 腐食性高温ガス用熱交換器 | |
JP2010091219A (ja) | 腐食性ガス用熱交換器 | |
JPH0412324Y2 (de) | ||
JPS63189701A (ja) | 竪型ボイラ | |
JPS60142151A (ja) | 水管式ボイラ− |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNICAL AG S.P.A., ITALY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAHIER, GIOVANNI;REEL/FRAME:019952/0850 Effective date: 20070920 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |