CA2603454A1 - Protected carbon steel pipe for fire tube heat exchange devices, particularly boilers - Google Patents
Protected carbon steel pipe for fire tube heat exchange devices, particularly boilers Download PDFInfo
- Publication number
- CA2603454A1 CA2603454A1 CA002603454A CA2603454A CA2603454A1 CA 2603454 A1 CA2603454 A1 CA 2603454A1 CA 002603454 A CA002603454 A CA 002603454A CA 2603454 A CA2603454 A CA 2603454A CA 2603454 A1 CA2603454 A1 CA 2603454A1
- Authority
- CA
- Canada
- Prior art keywords
- corrosion
- resistant material
- pipe according
- pipe
- ribs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000975 Carbon steel Inorganic materials 0.000 title claims abstract description 23
- 239000010962 carbon steel Substances 0.000 title claims abstract description 23
- 230000007797 corrosion Effects 0.000 claims abstract description 38
- 238000005260 corrosion Methods 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 35
- 239000003546 flue gas Substances 0.000 claims description 30
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 229910000838 Al alloy Inorganic materials 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000016571 aggressive behavior Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000013529 heat transfer fluid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/003—Multiple wall conduits, e.g. for leak detection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/10—Secondary fins, e.g. projections or recesses on main fins
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Incineration Of Waste (AREA)
- Laminated Bodies (AREA)
Abstract
A protected carbon steel pipe (6) for fire tube heat exchange devices, particularly boilers, comprising internally, at least along a portion of its length, at least one bonded layer (7) of corrosion-resistant material.
Description
PROTECTED CARBON STEEL PIPE FOR FIRE TUBE HEAT
EXCHANGE DEVICES, PARTICULARLY BOILERS
Technical Field The present invention relates to a protected carbon steel pipe for fire tube heat exchange devices, particularly boilers.
Background Art It is known that fire tube heat exchange devices exist which provide pipes designed to convey flue gases generated by combustion in appropriate furnaces, such pipes being provided within a vessel which contains the fluid to be heated; among such devices, boilers for generating hot water or another heat transfer fluid are particularly important.
The pipes comprised within said devices are made of carbon steel in order to ensure optimum quality of the welded joints between the pipes and the structures of the devices, which are also made of carbon steel; however, in the case of devices, such as for example condensing boilers, in which the water vapor contained in the flue gases condenses inside the flue gas conveyance pipes, condensation forms which attacks strongly by corrosion the wall of the pipes.
Pipes of the described type are not typical only of boilers, but can be present also in other devices of industrial thermal cycles, such as for example condensers, economizers and heat exchangers.
Disclosure of the Invention The aim of the present invention is to provide a carbon steel pipe adapted to convey flue gases which is entirely protected against the danger of corrosion caused by condensation and further ensures high efficiency in the transmission of heat from the flue gases to the fluid, and in particular to the water, to be heated.
The proposed aim is achieved by a protected carbon steel pipe for fire tube heat exchange devices, particularly boilers, according to the invention, characterized in that it comprises the features disclosed in the appended claims Brief Description of the Drawings Further characteristics and advantages will become better apparent from the description of some preferred but not exclusive embodiments of the protected carbon steel pipe for fire tube heat exchange devices, particularly boilers according to the invention, illustrated by way of non-limiting example in the accompanying drawings, wherein:
Figure 1 is a longitudinal sectional view of a fire tube boiler with a pipe according to the present invention;
Figure 2 is a partial sectional view, taken along the line II-II of Figure 1;
Figures 3 to 25 show the same sectional view according to variations.
Ways of carrying out the Invention With reference to the Figures 1 and 2, the reference numeral 1 generally designates a fire tube boiler with a burner 2, a furnace 3, a flue gas reversal chamber 4a, a vessel 5 which contains the water to be heated with couplings 5a, 5b respectively for inflow and outflow, pipes 6 designed to convey the gases generated by combustion in the furnace which arrive from the reversal chamber 4a and are sent to the output chamber 4b according to the arrows shown in figure 1.
The boiler 1 is of the type known as condensing boiler, and therefore the water vapor contained in the flue gases condenses therein as they flow within the pipes such as 6; the structure of said boiler is made of carbon steel.
An important characteristic of the invention consists in that the pipe 6 is made of carbon steel and comprises internally, bonded thereto, a layer 7 made of a corrosion-resistant material, such as aluminum or stainless steel.
In this manner, the dual need to be able to weld the pipe to the carbon steel structure of the boiler and to protect said pipe against the aggression of the condensation generated in the flue gases is achieved in an optimum manner.
As can be seen from Figure 1, the layer 7 is present along the entire length of the pipe 6, but it should be clearly noted that such layer might be provided only in the part of the pipe toward the outlet of the flue gases.
An embodiment of the pipe according to the invention is shown in Figure 3: the carbon steel pipe 8 comprises, bonded thereto, a layer 9 made of corrosion-resistant material and accommodates internally a coaxial sleeve 10, which is closed by at least one plug 10a, likewise made of corrosion-resistant material.
An interspace 11 for conveying the flue gases in a reduced cross-section is thus provided: the consequent increase in speed effectively helps to increase heat exchange between the flue gases and the water to be heated.
A further increased efficiency of said exchange occurs in the variation of Figure 4, in which a carbon steel pipe 12 has, bonded thereto, a layer 13 of corrosion-resistant material, and a sleeve 14, closed by a plug 14a, has ribs 14b which extend monolithically from it and which, by entering an interspace 15 through which the flue gases flow, make contact with the layer 13, transmitting thereto, and ultimately to the water to be heated, heat by conduction.
An identical situation occurs in the variations of Figures 5, 6, 7, and 8, changing only the shape of the cross-section of the ribs: while the ribs of the solution of Figure 4 are shaped so as to have a cross-section with a rounded cusp, the ribs of the variations of said figures respectively have a rectangular cross-section 16, a triangular cross-section 17 in which the thickness decreases gradually toward the central region 18, and a rectangular cross-section with an end face 19.
The variation of Figure 9 provides, bonded to a carbon steel pipe 20, a first layer 21 made of corrosion-resistant material, and a second layer 22, also made of corrosion-resistant material, which provides ribs 22a adapted to make contact, by entering an interspace 23 through which the flue gases flow, with a sleeve 24 closed by a plug 24a, thus providing a situation which is similar to the one described earlier.
Variations of the cross-sections of the ribs identical to the ones shown in Figures 5, 6, 7, 8 are visible in Figures 10, 11, 12, 13: therefore, there is no need to deal with these variations.
The variations of Figures 14 to 18 replicate the constructive embodiments shown in Figures 9 to 13, with the only difference related to the fact that there is just one layer made of corrosion-resistant material bonded to the carbon steel pipe: thus, for example, the variation of Figure 14 provides, bonded to a carbon steel pipe 25, only a layer 26 made of corrosion-resistant material, which is provided with a ribs 26a which make contact with a sleeve 27.
Figure 19 illustrates an embodiment in which a first layer 29, made of corrosion-resistant material, and a second layer 30, also made of corrosion-resistant material, are bonded to a carbon steel pipe 28; ribs 30a protrude from said second layer and are alternated with ribs 31 a which protrude from a sleeve 31, leaving spaces 32 between said ribs for the flow of the flue gases: ribs 31a extend until they make contact with the layer 30 in the presence of references 31 b which ensure correct positioning.
A variation of the embodiment of Figure 19 is shown in Figure 20:
the only difference is the absence of the layer 29 bonded to a carbon steel pipe 33, and therefore only a layer 34 made of corrosion-resistant material and provided with the ribs as described above, is present.
The variation shown in Figure 21 is now described: it comprises, bonded to a carbon steel pipe 35, a layer 36 made of corrosion-resistant material, which is provided with variously shaped ribs 36a arranged alternately with respect to variously shaped ribs 37a which protrude from a sleeve 37 and are adapted to make contact in the presence of references 37b with the wall of the layer 36.
Another variation is described with reference to Figure 22, in which the reference numeral 38 designates a carbon steel pipe, which comprises internally two flue gas conveyance modules, designated generally by the reference numerals 39 and 40 respectively, which are delimited by a closed wall made of corrosion-resistant material.
5 The wall of the module 39 comprises a portion 41, which is bonded to the wall of the pipe 38 substantially along half of the circumferential extension thereof, and a straight portion 42, which extends transversely, and likewise the wall of the module 40 comprises a portion 43 bonded to the wall of the pipe 38 and a straight portion 44; the straight portions 42 and 44 are in mutual contact.
The described configuration allows to obtain the dual result of protecting the wall of the pipe 38 against contact with the flue gases, and this is done by the portions 41 and 43 of the walls of the modules, and of providing an intense transmission of heat from the flue gases to the water contained in the boiler which strikes the outer surface of the pipe 38, determined by the presence of the portions 42 and 44 of said walls which make contact with the flue gases at the region where said flue gases have a particularly high temperature.
Figure 23 illustrates another variation of the invention, which provides, inside the pipe 38, six flue gas conveyance modules which are substantially shaped like wedges and are designated respectively by the reference numerals 45, 46, 47, 48, 49, 50.
The walls of the module, which are made of corrosion-resistant material, are identical and comprise an arc-like portion, 45a for the module 45, bonded to the wall of the pipe 38, and two straight portions 45b, 45c for said module, which protrude from the ends of said arc-like portion toward the axis of said pipe; the straight portions of the individual modules are in mutual contact.
Of course, this embodiment, too, ensures the functional characteristics stated with reference to the embodiment shown in Figure 22.
EXCHANGE DEVICES, PARTICULARLY BOILERS
Technical Field The present invention relates to a protected carbon steel pipe for fire tube heat exchange devices, particularly boilers.
Background Art It is known that fire tube heat exchange devices exist which provide pipes designed to convey flue gases generated by combustion in appropriate furnaces, such pipes being provided within a vessel which contains the fluid to be heated; among such devices, boilers for generating hot water or another heat transfer fluid are particularly important.
The pipes comprised within said devices are made of carbon steel in order to ensure optimum quality of the welded joints between the pipes and the structures of the devices, which are also made of carbon steel; however, in the case of devices, such as for example condensing boilers, in which the water vapor contained in the flue gases condenses inside the flue gas conveyance pipes, condensation forms which attacks strongly by corrosion the wall of the pipes.
Pipes of the described type are not typical only of boilers, but can be present also in other devices of industrial thermal cycles, such as for example condensers, economizers and heat exchangers.
Disclosure of the Invention The aim of the present invention is to provide a carbon steel pipe adapted to convey flue gases which is entirely protected against the danger of corrosion caused by condensation and further ensures high efficiency in the transmission of heat from the flue gases to the fluid, and in particular to the water, to be heated.
The proposed aim is achieved by a protected carbon steel pipe for fire tube heat exchange devices, particularly boilers, according to the invention, characterized in that it comprises the features disclosed in the appended claims Brief Description of the Drawings Further characteristics and advantages will become better apparent from the description of some preferred but not exclusive embodiments of the protected carbon steel pipe for fire tube heat exchange devices, particularly boilers according to the invention, illustrated by way of non-limiting example in the accompanying drawings, wherein:
Figure 1 is a longitudinal sectional view of a fire tube boiler with a pipe according to the present invention;
Figure 2 is a partial sectional view, taken along the line II-II of Figure 1;
Figures 3 to 25 show the same sectional view according to variations.
Ways of carrying out the Invention With reference to the Figures 1 and 2, the reference numeral 1 generally designates a fire tube boiler with a burner 2, a furnace 3, a flue gas reversal chamber 4a, a vessel 5 which contains the water to be heated with couplings 5a, 5b respectively for inflow and outflow, pipes 6 designed to convey the gases generated by combustion in the furnace which arrive from the reversal chamber 4a and are sent to the output chamber 4b according to the arrows shown in figure 1.
The boiler 1 is of the type known as condensing boiler, and therefore the water vapor contained in the flue gases condenses therein as they flow within the pipes such as 6; the structure of said boiler is made of carbon steel.
An important characteristic of the invention consists in that the pipe 6 is made of carbon steel and comprises internally, bonded thereto, a layer 7 made of a corrosion-resistant material, such as aluminum or stainless steel.
In this manner, the dual need to be able to weld the pipe to the carbon steel structure of the boiler and to protect said pipe against the aggression of the condensation generated in the flue gases is achieved in an optimum manner.
As can be seen from Figure 1, the layer 7 is present along the entire length of the pipe 6, but it should be clearly noted that such layer might be provided only in the part of the pipe toward the outlet of the flue gases.
An embodiment of the pipe according to the invention is shown in Figure 3: the carbon steel pipe 8 comprises, bonded thereto, a layer 9 made of corrosion-resistant material and accommodates internally a coaxial sleeve 10, which is closed by at least one plug 10a, likewise made of corrosion-resistant material.
An interspace 11 for conveying the flue gases in a reduced cross-section is thus provided: the consequent increase in speed effectively helps to increase heat exchange between the flue gases and the water to be heated.
A further increased efficiency of said exchange occurs in the variation of Figure 4, in which a carbon steel pipe 12 has, bonded thereto, a layer 13 of corrosion-resistant material, and a sleeve 14, closed by a plug 14a, has ribs 14b which extend monolithically from it and which, by entering an interspace 15 through which the flue gases flow, make contact with the layer 13, transmitting thereto, and ultimately to the water to be heated, heat by conduction.
An identical situation occurs in the variations of Figures 5, 6, 7, and 8, changing only the shape of the cross-section of the ribs: while the ribs of the solution of Figure 4 are shaped so as to have a cross-section with a rounded cusp, the ribs of the variations of said figures respectively have a rectangular cross-section 16, a triangular cross-section 17 in which the thickness decreases gradually toward the central region 18, and a rectangular cross-section with an end face 19.
The variation of Figure 9 provides, bonded to a carbon steel pipe 20, a first layer 21 made of corrosion-resistant material, and a second layer 22, also made of corrosion-resistant material, which provides ribs 22a adapted to make contact, by entering an interspace 23 through which the flue gases flow, with a sleeve 24 closed by a plug 24a, thus providing a situation which is similar to the one described earlier.
Variations of the cross-sections of the ribs identical to the ones shown in Figures 5, 6, 7, 8 are visible in Figures 10, 11, 12, 13: therefore, there is no need to deal with these variations.
The variations of Figures 14 to 18 replicate the constructive embodiments shown in Figures 9 to 13, with the only difference related to the fact that there is just one layer made of corrosion-resistant material bonded to the carbon steel pipe: thus, for example, the variation of Figure 14 provides, bonded to a carbon steel pipe 25, only a layer 26 made of corrosion-resistant material, which is provided with a ribs 26a which make contact with a sleeve 27.
Figure 19 illustrates an embodiment in which a first layer 29, made of corrosion-resistant material, and a second layer 30, also made of corrosion-resistant material, are bonded to a carbon steel pipe 28; ribs 30a protrude from said second layer and are alternated with ribs 31 a which protrude from a sleeve 31, leaving spaces 32 between said ribs for the flow of the flue gases: ribs 31a extend until they make contact with the layer 30 in the presence of references 31 b which ensure correct positioning.
A variation of the embodiment of Figure 19 is shown in Figure 20:
the only difference is the absence of the layer 29 bonded to a carbon steel pipe 33, and therefore only a layer 34 made of corrosion-resistant material and provided with the ribs as described above, is present.
The variation shown in Figure 21 is now described: it comprises, bonded to a carbon steel pipe 35, a layer 36 made of corrosion-resistant material, which is provided with variously shaped ribs 36a arranged alternately with respect to variously shaped ribs 37a which protrude from a sleeve 37 and are adapted to make contact in the presence of references 37b with the wall of the layer 36.
Another variation is described with reference to Figure 22, in which the reference numeral 38 designates a carbon steel pipe, which comprises internally two flue gas conveyance modules, designated generally by the reference numerals 39 and 40 respectively, which are delimited by a closed wall made of corrosion-resistant material.
5 The wall of the module 39 comprises a portion 41, which is bonded to the wall of the pipe 38 substantially along half of the circumferential extension thereof, and a straight portion 42, which extends transversely, and likewise the wall of the module 40 comprises a portion 43 bonded to the wall of the pipe 38 and a straight portion 44; the straight portions 42 and 44 are in mutual contact.
The described configuration allows to obtain the dual result of protecting the wall of the pipe 38 against contact with the flue gases, and this is done by the portions 41 and 43 of the walls of the modules, and of providing an intense transmission of heat from the flue gases to the water contained in the boiler which strikes the outer surface of the pipe 38, determined by the presence of the portions 42 and 44 of said walls which make contact with the flue gases at the region where said flue gases have a particularly high temperature.
Figure 23 illustrates another variation of the invention, which provides, inside the pipe 38, six flue gas conveyance modules which are substantially shaped like wedges and are designated respectively by the reference numerals 45, 46, 47, 48, 49, 50.
The walls of the module, which are made of corrosion-resistant material, are identical and comprise an arc-like portion, 45a for the module 45, bonded to the wall of the pipe 38, and two straight portions 45b, 45c for said module, which protrude from the ends of said arc-like portion toward the axis of said pipe; the straight portions of the individual modules are in mutual contact.
Of course, this embodiment, too, ensures the functional characteristics stated with reference to the embodiment shown in Figure 22.
As regards the variation of Figure 24, it differs from the embodiment of Figure 23 only in that inside the pipe 38 there are twelve flue gas conveyance modules 51 instead of the six modules provided in the embodiment of Figure 23.
The variation shown in Figure 25 provides for the presence, inside the pipe 38, of a continuous layer 52, provided with protrusions such as 53 which protrude toward the axis of the pipe and thus provide, as in the previously described variations, optimum conditions both as regards the protection of the pipe 38 against corrosion and for high efficiency in heat transfer from the flue gases contained in the pipe 3 8 to the water to be heated.
The described invention is susceptible of numerous other modifications and variations, all of which are within the scope of the appended claims: thus, for example, it is important to stress the fact that the various means for protecting the carbon steel pipe made of corrosion-resistant material may cover different lengths within the described pipes.
The disclosures in Italian Patent Applications No. MN2005A000023 and No. MN2006A000012 from which this application claims priority are incorporated herein by reference.
The variation shown in Figure 25 provides for the presence, inside the pipe 38, of a continuous layer 52, provided with protrusions such as 53 which protrude toward the axis of the pipe and thus provide, as in the previously described variations, optimum conditions both as regards the protection of the pipe 38 against corrosion and for high efficiency in heat transfer from the flue gases contained in the pipe 3 8 to the water to be heated.
The described invention is susceptible of numerous other modifications and variations, all of which are within the scope of the appended claims: thus, for example, it is important to stress the fact that the various means for protecting the carbon steel pipe made of corrosion-resistant material may cover different lengths within the described pipes.
The disclosures in Italian Patent Applications No. MN2005A000023 and No. MN2006A000012 from which this application claims priority are incorporated herein by reference.
Claims (24)
1. A protected carbon steel pipe for fire tube heat exchange devices, particularly boilers, characterized in that it comprises internally, at least along a portion of its length, at least one bonded layer of corrosion-resistant material.
2. The pipe according to claim 1, characterized in that it comprises internally a single bonded layer of corrosion-resistant material.
3. The pipe according to claim 1, characterized in that it comprises internally a double bonded layer of corrosion-resistant material.
4. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a closed coaxial sleeve made of corrosion-resistant material, which is adapted to form an interspace for the flow of the flue gases.
5. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a closed coaxial sleeve made of corrosion-resistant material, which is adapted to form an interspace for the flow of the flue gases, the outer surface of the sleeve and the surface of the layer that faces it being both smooth.
6. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a closed coaxial sleeve made of corrosion-resistant material, which is adapted to form an interspace for the flow of the flue gases, ribs being provided which protrude monolithically from the sleeve and are adapted to make contact with the surface of the layer that faces it.
7. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a closed coaxial sleeve made of corrosion-resistant material, which is adapted to form an interspace for the flow of the flue gases, ribs being provided with protrude monolithically from the surface of the layer that faces the sleeve and are adapted to make contact with the surface of the sleeve.
8 8. The pipe according to one or more of the preceding claims, characterized in that the ribs have a cross-section shaped like a rounded cusp.
9. The pipe according to one or more of the preceding claims, characterized in that the ribs have a rectangular cross-section.
10. The pipe according to one or more of the preceding claims, characterized in that the ribs have a triangular cross-section.
11. The pipe according to one or more of the preceding claims, characterized in that the ribs have a cross-section which in terms of thickness decreases gradually toward the central region.
12. The pipe according to one or more of the preceding claims, characterized in that the ribs have a rectangular cross-section with an end face.
13. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a closed coaxial sleeve made of corrosion-resistant material, which is adapted to form an interspace for the flow of the flue gases, ribs being provided which protrude alternately from said sleeve and from the surface of the layer that faces it, the ribs that protrude from the sleeve being adapted to make contact in the presence of a reference with said surface.
14. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a coaxial sleeve made of corrosion-resistant material, which is provided with variously shaped ribs which are adapted to make contact in the presence of a reference with the surface of the layer that faces the sleeve, said ribs being arranged alternately with respect to variously shaped ribs which protrude from said surface.
15. The pipe according to one or more of the preceding claims, characterized in that the at least one layer of corrosion-resistant material and the sleeve cover the entire length of the pipe.
16. The pipe according to one or more of the preceding claims, characterized in that the at least one layer of corrosion-resistant material and the sleeve cover partially the inside of the pipe.
17. The pipe according to one or more of the preceding claims, characterized in that the various layers of corrosion-resistant material and the sleeve cover different lengths inside the pipe.
18. The pipe according to one or more of the preceding claims, characterized in that it comprises internally, at least in one portion of its length, a bonded layer made of corrosion-resistant material which is provided with protrusions which protrude toward the axis of said pipe.
19. The pipe according to one or more of the preceding claims, characterized in that it comprises internally at least two consecutive modules for conveying the flue gases, each module being delimited by a closed wall made of corrosion-resistant material which comprises a portion bonded to the wall of the pipe and at least one portion which protrudes toward the axis of said pipe.
20. The pipe according to one or more of the preceding claims, characterized in that it comprises internally two flue gas conveyance modules, each module being delimited by a closed wall made of corrosion-resistant material, which comprises a portion which is bonded to the wall of the pipe substantially along half of the circumferential extension thereof, and a straight portion which protrudes transversely, the straight portions of the wall of the two modules being in mutual contact.
21. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a plurality of flue gas conveyance modules, each module being delimited by a closed wall made of corrosion-resistant material which comprises a portion bonded to the wall of the pipe and two straight portions which protrude from the ends of said portion bonded to the wall toward the axis of said pipe, the straight portions of the wall of two consecutive modules being in mutual contact.
22. The pipe according to one or more of the preceding claims, characterized in that it comprises internally a continuous bonded layer of corrosion-resistant material, which is provided with straight protrusions which protrude toward the axis of said pipe.
23. The pipe according to one or more of the preceding claims, characterized in that the corrosion-resistant material is an aluminum alloy.
24. The pipe according to one or more of the preceding claims, characterized in that the corrosion-resistant material is stainless steel.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITMN2005A000023 | 2005-04-18 | ||
ITMN20050023 ITMN20050023A1 (en) | 2005-04-18 | 2005-04-18 | PROTECTED CARBON STEEL PIPE INCLUDED IN A SMOKE PIPE BOILER BOILER |
ITMN2006A000012 | 2006-02-22 | ||
ITMN20060012 ITMN20060012A1 (en) | 2006-02-22 | 2006-02-22 | PROTECTED CARBON STEEL PIPE, FOR HEAT EXCHANGERS PARTICULARLY BOILER WITH SMOKE PIPES |
PCT/EP2006/003381 WO2006111315A1 (en) | 2005-04-18 | 2006-04-12 | Protected carbon steel pipe for fire tube heat exchange devices, particularly boilers |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2603454A1 true CA2603454A1 (en) | 2006-10-26 |
Family
ID=36581553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002603454A Abandoned CA2603454A1 (en) | 2005-04-18 | 2006-04-12 | Protected carbon steel pipe for fire tube heat exchange devices, particularly boilers |
Country Status (5)
Country | Link |
---|---|
US (1) | US20090266529A1 (en) |
EP (1) | EP1872080A1 (en) |
CA (1) | CA2603454A1 (en) |
EA (1) | EA011432B1 (en) |
WO (1) | WO2006111315A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMN20060071A1 (en) | 2006-12-13 | 2008-06-14 | Unical Ag Spa | CARBON STEEL PIPE PROTECTED FOR THE CONVEYANCE OF FUMES IN HEAT EXCHANGE APPLIANCE. |
DK2167896T3 (en) * | 2007-05-31 | 2020-06-22 | Amerifab Inc | ADJUSTABLE HEAT EXCHANGER AND APPLICATION PROCEDURE |
KR100963423B1 (en) * | 2009-11-12 | 2010-06-15 | 현대하이스코 주식회사 | Method of manufacturing double-layer water pipe using hydro forming |
WO2013123239A1 (en) * | 2012-02-17 | 2013-08-22 | Ceramatec, Inc. | Advanced fischer tropsch system |
US10775040B2 (en) * | 2016-12-16 | 2020-09-15 | James Matthew Austin | Annular superheating element for firetube boilers |
US11703282B2 (en) * | 2016-12-22 | 2023-07-18 | Trinity Endeavors, Llc | Fire tube |
CN110462321A (en) | 2017-01-30 | 2019-11-15 | 艾美瑞法布有限公司 | Top for electric arc furnaces, metallurgical furnace or refining furnace carries furnace roof and its system |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1701617A (en) * | 1928-05-11 | 1929-02-12 | Mccord Radiator & Mfg Co | Metal tubing |
FR1146302A (en) * | 1956-03-27 | 1957-11-08 | tubular heat exchanger | |
US2960114A (en) * | 1957-04-26 | 1960-11-15 | Bell & Gossett Co | Innerfinned heat transfer tubes |
US3036818A (en) * | 1958-01-29 | 1962-05-29 | Foster Wheeler Francaise Soc | Heat exchanger |
GB1003013A (en) * | 1962-05-28 | 1965-09-02 | Patterson Kelley Co | Heat exchange device |
US3267564A (en) * | 1964-04-23 | 1966-08-23 | Calumet & Hecla | Method of producing duplex internally finned tube unit |
DE2027507A1 (en) * | 1970-05-30 | 1971-12-09 | Licentia Gmbh | Nozzle for accelerating two-phase flows |
US3735478A (en) * | 1971-01-06 | 1973-05-29 | Foster Co | Methods for making bi-metallic pipe |
US4054174A (en) * | 1974-03-18 | 1977-10-18 | The Babcock & Wilcox Company | Method of inhibiting deposition of internal corrosion products in tubes |
US4336958A (en) * | 1977-12-12 | 1982-06-29 | John Goetzinger | Pipe flange |
CA1139923A (en) * | 1979-02-28 | 1983-01-25 | Toshio Yoshida | Method of producing multiple-wall composite pipes |
JPH0631692B2 (en) * | 1985-07-04 | 1994-04-27 | 株式会社東芝 | Heat exchanger |
FR2697077B1 (en) * | 1992-10-16 | 1994-12-30 | Sofath | Device for improving the performance of heat pumps with an underground sensor. |
DE9405062U1 (en) * | 1994-03-24 | 1994-05-26 | Hoval Interliz Ag, Vaduz-Neugut | Heat exchanger tube for boilers |
JPH09292062A (en) * | 1996-04-24 | 1997-11-11 | Furukawa Electric Co Ltd:The | Inner face grooved pipe excellent in corrosion resistance |
JPH1046314A (en) * | 1996-08-06 | 1998-02-17 | Kubota Corp | Production of external corrosion resistant tube |
KR20010034712A (en) * | 1998-03-27 | 2001-04-25 | 칼 하인쯔 호르닝어 | Heat exchanger tube, method for the production of a heat exchanger tube and capacitor |
US6006741A (en) * | 1998-08-31 | 1999-12-28 | Carrier Corporation | Secondary heat exchanger for condensing furnace |
US6202418B1 (en) * | 1999-01-13 | 2001-03-20 | Abb Combustion Engineering | Material selection and conditioning to avoid brittleness caused by nitriding |
-
2006
- 2006-04-12 US US11/887,638 patent/US20090266529A1/en not_active Abandoned
- 2006-04-12 EA EA200702265A patent/EA011432B1/en not_active IP Right Cessation
- 2006-04-12 EP EP06724287A patent/EP1872080A1/en not_active Withdrawn
- 2006-04-12 WO PCT/EP2006/003381 patent/WO2006111315A1/en active Application Filing
- 2006-04-12 CA CA002603454A patent/CA2603454A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20090266529A1 (en) | 2009-10-29 |
EA200702265A1 (en) | 2008-02-28 |
EA011432B1 (en) | 2009-02-27 |
WO2006111315A1 (en) | 2006-10-26 |
EP1872080A1 (en) | 2008-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2852103C (en) | Combined gas-water tube hybrid heat exchanger | |
US20090266529A1 (en) | Protected Carbon Steel Pipe for Fire Tube Heat Exchange Devices, Particularly Boilers | |
JP5589062B2 (en) | Heat exchanger | |
US7686072B2 (en) | Heat exchanger and methods of producing the same | |
US8028746B2 (en) | Heat exchanger with finned tube and method of producing the same | |
EP1750069B1 (en) | Heat exchanger and methods of producing the same | |
JPH0613921B2 (en) | Heat transfer surface structure of multi-tube once-through boiler | |
EP3204698B1 (en) | Heat exchanger | |
US20170299274A1 (en) | Heat exchanger | |
RU2495336C2 (en) | Sectional heating boiler from cast iron or aluminium | |
US20080142205A1 (en) | Protected carbon steel pipe for conveying flue gases in a heat exchange apparatus | |
KR100858769B1 (en) | Gas fired quick-heating water boiler having improved heat exchanging property | |
US11300285B2 (en) | Package boiler with tandem furnace tubes | |
JP2003139400A (en) | Heat exchanger | |
JP2003194416A (en) | Heat exchanging system | |
JP5746850B2 (en) | Heat exchanger | |
JPH0579602A (en) | Structure of heat transfer surface in multitubular type once-through boiler | |
JPH0826964B2 (en) | Heat transfer surface structure of multi-tube once-through boiler | |
JP5645534B2 (en) | Heat exchanger for corrosive hot gas | |
JP4059702B2 (en) | Water tube for boiler water wall | |
JPH0412323Y2 (en) | ||
JPH0412324Y2 (en) | ||
JP2010091219A (en) | Heat exchanger for corrosive gas | |
EP2409105A1 (en) | Tube for conveying exhaust gases in heat exchange devices, particularly boilers for generating hot water or steam | |
JPS63189701A (en) | Vertical type boiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
FZDE | Discontinued |
Effective date: 20140325 |