US20090253907A1 - Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions - Google Patents

Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions Download PDF

Info

Publication number
US20090253907A1
US20090253907A1 US12/375,869 US37586907A US2009253907A1 US 20090253907 A1 US20090253907 A1 US 20090253907A1 US 37586907 A US37586907 A US 37586907A US 2009253907 A1 US2009253907 A1 US 2009253907A1
Authority
US
United States
Prior art keywords
radicals
group
radical
substituted
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/375,869
Other languages
English (en)
Inventor
Herbert Plenio
Christoph Fleckenstein
Renat Kadyrov
Juan Almena
Axel Monsees
Thomas Riermeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALMENA, JUAN, RIERMEIER, THOMAS, FLECKENSTEIN, CHRISTOPH, KADYROV, RENAT, MONSEES, AXEL, PLENIO, HERBERT
Publication of US20090253907A1 publication Critical patent/US20090253907A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/88Growth and elimination reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/73Unsubstituted amino or imino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/301,4-Oxazines; Hydrogenated 1,4-oxazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5022Aromatic phosphines (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5442Aromatic phosphonium compounds (P-C aromatic linkage)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • B01J2231/4227Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group with Y= Cl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4266Sonogashira-type, i.e. RY + HC-CR' triple bonds, in which R=aryl, alkenyl, alkyl and R'=H, alkyl or aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • B01J2231/4283C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues using N nucleophiles, e.g. Buchwald-Hartwig amination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Definitions

  • the present invention relates to new phosphine ligands, to their preparation and to their use in catalytic reactions, especially organic coupling reactions employing aryl, heteroaryl or vinyl halides and pseudohalides as educts.
  • Suitable reactants for the coupling reactions are aryl, heteroaryl and vinyl halides, triflates, and other pseudohalides.
  • the coupling reactions are catalyzed by transition metal compounds, typically palladium or nickel compounds.
  • Palladium catalysts are generally advantageous in terms of the breadth of applicability of coupling substrates and in some cases the catalyst activity, while nickel catalysts have advantages in the area of the conversion of chloroaromatics and vinyl chlorides and the price of the metal.
  • Palladium and nickel catalysts used to activate the aryl, heteroaryl and vinyl halides/pseudohalides are palladium(II) and/or nickel(II) as well as palladium(0) and/or nickel(0) complexes, although it is known that palladium(0)/nickel(0) compounds are the actual reaction catalysts.
  • palladium(0)/nickel(0) compounds are the actual reaction catalysts.
  • coordinatively unsaturated 14-electron and 16-electron palladium(0)/nickel(0) complexes stabilized with donor ligands such as phosphines are formulated as active species.
  • the iodides are the most reactive ones. It is even possible to use palladium or nickel compounds that are not stabilized by a phosphine or a similar donor ligand when iodides are employed as educts in coupling reactions.
  • aryl and vinyl iodides are very expensive starting compounds and moreover produce stoichiometric amounts of iodine salt waste.
  • the remaining educts, i.e. the aryl, heteroaryl and vinyl bromides, chlorides, triflates and other pseudohalides require the use of stabilizing and activating ligands in order to become effective in catalytic production.
  • the catalyst systems described for coupling reactions often have satisfactory catalytic turnover numbers (TONs) only with uneconomic starting materials such as iodides and activated bromides. Otherwise, in the case of deactivated bromides and especially in the case of chlorides, it is generally necessary to add large amounts of catalyst, usually more than 1 mol %, to achieve industrially useful yields (>90%). In addition, because of the complexity of the reaction mixtures, simple catalyst recycling is not possible, so the recycling of the catalyst also incurs high costs, which are normally an obstacle to realization on the industrial scale. Furthermore, particularly in the preparation of active substances or active substance precursors, it is undesirable to work with large amounts of catalyst because of the catalyst residues left behind in the product.
  • TONs catalytic turnover numbers
  • More recent active catalyst systems are based on cyclopalladized phosphines (W. A. Herrmann, C. Brossmer, K. ⁇ fele, C.-P. Reisinger, T. Priermeier, M. Beller, H. Fischer, Angew. Chem. 1995, 107, 1989; Angew. Chem. Int. Ed. Engl. 1995, 34, 1844) or mixtures of bulky arylphosphines (J. P. Wolfe, S. L. Buchwald, Angew. Chem. 1999, 111, 2570; Angew. Chem. Int. Ed. Engl. 1999, 38, 2413) or tri-tert.-butylphosphine (A. F. Littke, G. C. Fu, Angew. Chem. 1998, 110, 3586; Angew. Chem. Int. Ed. Engl. 1998, 37, 3387) with palladium salts or palladium complexes.
  • transition metal catalyst complexes are recognized to be influenced by both the characteristics of the metal and those of the ligands associated with the metal atom. For example, structural features of the ligands can influence reaction rate, regioselectivity, and stereoselectivity.
  • Trialkylphosphines with bulky substituents are highly useful ligands for transition metal complexes, especially palladium complexes, as catalysts in various types of coupling reactions.
  • the main reasons for the favorable catalytic properties of trialkylphosphine palladium complexes are the electron-richness and the steric bulk of trialkylphosphine ligands, which favor the formation of low coordinate and highly active Pd complexes also observed with N-heterocyclic carbenes as Pd ligands in cross-coupling reactions.
  • Ad 1-adamantyl, R ⁇ CH 2 Ph, n-Bu
  • PtBu 3 is highly useful; its utility for a wide range of different coupling reactions has been established.
  • One object of the present invention is to provide new phosphines preferably exhibiting crucial properties for good ligands such as electron-richness and efficient-donation as perfectly met in trialkylphosphines, but lacking the disadvantages of the trialkylphosphines, i.e. they should have a variable ligand backbone.
  • the new phosphines should be useful as ligands in new catalyst systems that possess greater substrate flexibility, e.g., the ability to utilize cost-effective organic chlorides as educts, and are suitable for a great variety of industrial scale reactions, preferably coupling reactions, that produce the desired products in high yield, with high catalytic productivity, and/or with high purity.
  • R′ and R′′ independently are selected from alkyl, cycloalkyl and 2-furyl radicals, or R′ and R′′ are joined together to form with the phosphorous atom a carbon-phosphorous monocycle comprising at least 3 carbon atoms or a carbon-phosphorous bicycle; the alkyl radicals, cycloalkyl radicals, and carbon-phosphorous monocycle being unsubstituted or substituted by at least one radical selected from the group of alkyl, cycloalkyl, aryl, alkoxy, and aryloxy radicals; Cp s is a partially substituted or completely substituted cyclopentadien-1-yl group, including substitutions resulting in a fused ring system, and wherein a substitution at the 1-position of the cyclopentadien-1-yl group is mandatory when the cyclopentadien-1-yl group is not part of a fused ring system or is part of an indenyl group; and Y ⁇ represents an anion
  • the present invention is also directed to a coordination compound comprising (i) a phosphine compound represented by the general formula (1) wherein R′, R′′, and Cp s are defined as above, and (ii) a transition metal selected from groups 8, 9, 10 and 11 of the Periodic Table of the Elements.
  • a further aspect of the present invention is the use of said coordination compound as a catalyst or a part of a catalyst system for the preparation of an organic compound.
  • Yet another aspect of the present invention is the use of a phosphine compound represented by the general formula (1) or a corresponding phosphonium salt represented by the general formula (Ia) wherein R′, R′′, Cp s and Y ⁇ are defined as above, in combination with a transition metal compound as a catalyst or a part of a catalyst system for the preparation of an organic compound wherein the transition metal is selected from groups 8, 9, 10, and 11 of the Periodic Table of the Elements.
  • the present invention is further directed to process for the preparation of said phosphine compound comprising the steps of: deprotonating a compound according to the formula HCp s by the use of a strong base and reacting the resulting anion with a phosphinous halide according to the formula R′R′′PX to form the phosphine compound R′R′′PCp s , wherein Cp s , R′ and R′′ are defined as above and X is Cl or Br.
  • the present invention is also directed to an alternative process for the preparation of said phosphine compound comprising the steps of: deprotonating a compound according to the formula HCp s by the use of a strong base and reacting the resulting anion with a phosphonous dihalide according to the formula R′PX 2 to form the phosphinous halide according to the formula Cp s R′PX, and alkylating the phosphinous halide with an appropriate organometallic alkylation agent to introduce the R′′ group and to form the phosphine compound R′R′′PCp s , wherein Cp s , R′ and R′′ are defined as above and X is Cl or Br.
  • the Cp s group is a monocycle (i.e. a cyclopentadienyl group) or a multicycle (e.g. an indenyl group when one benzene ring is fused to the cyclopentadienyl group or a fluorenyl group when two benzene rings are fused to the cyclopentadienyl group).
  • Phosphine compounds comprising an unsubstituted cyclopentadienyl group or an unsubstituted indenyl group as one substituent as well as transition metal complexes comprising those phosphines as ligands are known from the literature (Kolodyazhnyi, O. I, “Reaction of phosphorylated phosphorus(III) carbon acids with carbon tetrahalides” in Zhurnal Obshchei Khimii (1980), 50(8), 1885-6; Kolodyazhnyi, O.
  • a ferrocene type coordination compound wherein one or two cyclopentadienyl dialkyl or diarylphosphine ligands are bound to the metal atom, e.g. Fe, via their delocalized ⁇ -electrons in an ⁇ 5 -bonding mode and their use as part of a catalyst system are disclosed in the prior art (Dubbaka, Srinivas Reddy; Vogel, Pierre, “Palladium-Catalyzed Suzuki-Miyaura Cross-Couplings of Sulfonyl Chlorides and Boronic Acids” in Organic Letters (2004), 6(1), 95-98; Kawatsura, Motoi; Hartwig, John F., “Simple, Highly Active Palladium Catalysts for Ketone and Malonate Arylation Dissecting the Importance of Chelation and Steric Hindrance” in Journal of the American Chemical Society (1999), 121(7), 1473-1478; Hamann, Blake C.; Hartwig, John F., “Ster
  • the cyclopentadienyl dialkyl or diaryl phosphine ligands formally are aromatic anions; hence, the electronic structure of those compounds is completely different to that in a coordination compound according to the present invention.
  • a phosphine compound according to formula (A) above comprising a pentamethylcyclopentadienyl group as one substituent is also known from the prior art (Jutzi, Peter; Saleske, Hartmut; Nadler, Doris, “The synthesis of thermally stable pentamethylcyclopentadienyl-substituted phosphorus compounds” in Journal of Organometallic Chemistry (1976), 118(1), C8-C10; and Jutzi, Peter; Saleske, Hartmut, “Synthesis and dynamic behavior of pentamethylcyclopentadienylphosphines” in Chemische Berichte (1984), 117(1), 222-33).
  • phosphine ligand in transition metal complexes nor its use in catalytic reactions has been mentioned.
  • phosphine compounds according to the present invention can be used as ligands in transition metal complexes that may function as highly efficient catalysts.
  • R′ and R′′ may independently be selected from alkyl, preferably C 1 to C 18 alkyl, more preferably C 1 to C 5 alkyl, most preferably C 3 to C 5 alkyl; cycloalkyl, preferably C 5 to C 12 cycloalkyl, more preferably C 5 to C 10 cycloalkyl, most preferably C 6 to C 8 cycloalkyl; and 2-furyl.
  • the alkyl radicals may be branched or unbranched.
  • Preferred alkyl radicals are selected from isopropyl, n-butyl, t-butyl, and neopentyl. Most preferred is isopropyl.
  • the cycloalkyl radicals may be monocyclic or multicyclic, such as adamantyl and norbornyl.
  • Preferred cycloalkyl radicals are cyclohexyl and adamantly.
  • R′ and R′′ represent the same radicals, more preferably both are isopropyl or cyclohexyl. All the foregoing radicals represented by R′ and R′′ are unsubstituted or may be substituted by at least one radical selected from the group of alkyl, cycloalkyl, aryl, alkoxy, and aryloxy radicals. Preferably, the radicals represented by R′ and R′′ are unsubstituted.
  • R′ and R′′ are joined together to form with the phosphorous atom a carbon-phosphorous monocycle comprising at least 3 carbon atoms or a carbon-phosphorous bicycle.
  • the carbon-phosphorous monocycle is typically unsubstituted, but may also be substituted by at least one radical selected from the group of alkyl, cycloalkyl, aryl, alkoxy, and aryloxy radicals.
  • R′ and R′′ are joined together to form a [3.3.1]- or [4.2.1]-phobyl radical with the phosphorous atom as depicted below.
  • Cp s in formulae (1) and (1a) is a monocycle, i.e. a partially substituted or completely substituted cyclopentadien-1-yl group.
  • the phosphine compound and its corresponding phosphonium salt according to this embodiment are represented by formulae (2) and (2a):
  • R is selected from the group consisting of aliphatic, heteroaliphatic, aromatic, alicyclic, heterocyclic radicals, heteroatom-containing radicals comprising an aromatic, alicyclic, or heterocyclic radical and an additional heteroatom linking the aromatic, alicyclic, or heterocyclic radical atom with the carbon atom of the cyclopentadienyl group, all the foregoing radicals being unsubstituted or substituted by further carbon and/or heteroatoms; and organosilyl radicals; R 1 , R 2 , R 3 , and R 4 independently are selected from the group consisting of hydrogen; aliphatic, heteroaliphatic, aromatic, alicyclic, heterocyclic radicals, heteroatom-containing radicals comprising an aromatic, alicyclic, or heterocyclic radical and an additional heteroatom linking the aromatic, alicyclic, or heterocyclic radical atom with the carbon atom of the cyclopentadienyl group, all the foregoing radicals being unsubstituted or substituted
  • aliphatic radicals include alkyl, alkenyl, and alkynyl radicals; the radicals may be branched or unbranched.
  • Heteroaliphatic radicals include alkyl, alkenyl, and alkynyl radicals additionally comprising at least one heteroatom, e.g. oxygen or sulfur, within their backbone or as linking atom; the radicals may be branched or unbranched.
  • Alicyclic radicals include cycloalkyl, cycloalkenyl, and cycloalkynyl radicals; the term “alicyclic” also encompasses multicyclic systems.
  • Aromatic radicals include monocyclic and multicyclic systems.
  • Heterocyclic radicals include alicyclic radicals containing at least one heteroatom within the ring structure and aromatic radicals containing at least one heteroatom within the ring structure. “Unsubstituted” means substituted by only hydrogen atoms. “Substituted by further carbon atoms” means that at least one further carbon atom is bonded to the radical. Said carbon atom may be part of a hydrocarbyl group, e.g. aliphatic radicals may be substituted by aromatic radicals forming aralkyl radicals, and vice versa aromatic radicals may be substituted by aliphatic radicals forming alkylaryl radicals. Said carbon atom may also be part of a group comprising heteroatom(s), e.g.
  • heteroatom-containing group is any group that comprises at least one heteroatom, including groups that impart functionality and/or water-solubility to the molecule.
  • heteroatom-containing groups are —SO 3 H, —OSO 2 Ph, —CN, —PO 3 H 2 , —OP(O)Ph 2 , —NO 2 , organosilyl, e.g. —SiMe 3 and SiPhMe 2 .
  • R is preferably selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, alkenyl, alkynyl, alkoxy, and alkylsilyl radicals that are unsubstituted or substituted by further carbon and/or heteroatoms. More preferably, R is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-octadecyl, benzyl, and phenyl radicals that are unsubstituted or substituted, preferably unsubstituted. Even more preferably, R is an unbranched alkyl radical or a benzyl radical. Most preferably R is a methyl or ethyl radical with methyl being even more preferred.
  • R 1 , R 2 , R 3 , and R 4 are preferably independently selected from the group consisting of hydrogen; alkyl, cycloalkyl, aryl, and alkoxy radicals that are unsubstituted or substituted; halogens; and heteroatom-containing groups. More preferably, R 1 , R 2 , R 3 and R 4 are independently selected from the group consisting of hydrogen, a methyl radical, a methoxy radical, and —SO 3 H. Even more preferably, R 1 , R 2 , R 3 , and R 4 are independently selected from hydrogen and methyl radicals. Most preferably R 1 , R 2 , R 3 , and R 4 are each a methyl radical.
  • cyclopentadienyl-substituted phosphine compounds according to formulae (2) and (2a) are compounds wherein the radicals R, R′, R′′, R 1 , R 2 , R 3 , and R 4 are defined as in the following table:
  • cyclopentadienyl-substituted phosphine compounds according to formulae (2) and (2a) are those wherein R, R 1 , R 2 , R 3 , and R 4 are each a methyl radical.
  • Examples of these pentamethylcycopentadienyl-substituted phosphine compounds are:
  • Cp s in formulae (1) and (1a) is a bicycle, i.e. a partially substituted or completely substituted ind-2-en-1-yl or ind-2-en-2-yl group, preferably a partially substituted or completely substituted ind-2-en-1-yl group. More preferably, the phosphine compound and its corresponding phosphonium salt according to this embodiment are represented by formulae (3) and (3a):
  • R is selected from the group consisting of aliphatic, heteroaliphatic, aromatic, alicyclic, heterocyclic radicals, and aromatic, alicyclic, and heteroatom-containing radicals comprising an aromatic, alicyclic, or heterocyclic radical and an additional heteroatom linking the aromatic, alicyclic, or heterocyclic radical atom with the carbon atom of the indenyl group, all the foregoing radicals being unsubstituted or substituted by further carbon or heteroatoms; and organosilyl radicals; R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 independently are selected from the group consisting of hydrogen; aliphatic, heteroaliphatic, aromatic, alicyclic, heterocyclic radicals, heteroatom-containing radicals comprising an aromatic, alicyclic, or heterocyclic radical and an additional heteroatom linking the aromatic, alicyclic, or heterocyclic radical atom with the carbon atom of the indenyl group, all the foregoing radicals being unsubstid
  • R is preferably selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, alkenyl, alkynyl, alkoxy, and alkylsilyl radicals that are unsubstituted or substituted by further carbon and/or heteroatoms. More preferably, R is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-octadecyl, benzyl, and phenyl radicals that are unsubstituted or substituted, preferably unsubstituted. Even more preferably, R is an unbranched alkyl radical or a benzyl radical. Most preferably R is a methyl or ethyl radical with methyl being even more preferred.
  • R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are preferably independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, and alkoxy radicals that are unsubstituted or substituted; halogens, and heteroatom-containing groups. More preferably, R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are independently selected from the group consisting of hydrogen, a methyl radical, a methoxy radical, and —SO 3 H. Most preferably, R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are independently selected from the group consisting of hydrogen, a methyl radical, and a methoxy radical.
  • indenyl-substituted phosphine compounds according to formulae (3) and (3a) are compounds wherein the radicals R, R′, R′′, R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 are defined as in the following table:
  • R, R 5 and R 6 in formulae (3) or (3a) are each a methyl radical, more preferably R 7 , R 8 , R 9 and R 10 are independently selected from the group consisting of hydrogen, a methyl radical and a methoxy radical.
  • R 7 , R 8 , R 9 and R 10 are either each hydrogen or R 8 and R 9 are each hydrogen and R 7 and R 10 are non-hydrogen radicals.
  • Examples of this embodiment of indenyl-substituted phosphine compounds are: (1,2,3-trimethylind-2-en-1-yl)dicyclohexylphosphine (1,2,3-Me 3 IndPCy 2 ) (16),
  • Ind represents an ind-2-en-1-yl radical and Cy, iPr, and Me have the meanings defined above.
  • Cp s in formulae (1) and (1a) is a tricycle, i.e. an unsubstituted, partially substituted or completely substituted fluoren-9-yl group, including substitutions resulting in an enlarged fused ring system.
  • the phosphine compound and its corresponding phosphonium salt according to this embodiment are represented by formulae (4) and (4a):
  • R is selected from the group consisting of hydrogen; aliphatic, heteroaliphatic, aromatic, alicyclic, heterocyclic radicals, and heteroatom-containing radicals comprising an aromatic, alicyclic, or heterocyclic radical and an additional heteroatom linking the aromatic, alicyclic, or heterocyclic radical atom with the carbon atom of the fluorenyl group, all the foregoing radicals being unsubstituted or substituted by further carbon and/or heteroatoms; and organosilyl radicals; R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 independently are selected from the group consisting of hydrogen; aliphatic, heteroaliphatic, aromatic, alicyclic, heterocyclic radicals, heteroatom-containing radicals comprising an aromatic, alicyclic, or heterocyclic radical and an additional heteroatom linking the aromatic, alicyclic, or heterocyclic radical atom with the carbon atom of the fluorenyl group, all the foregoing
  • R is preferably selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, alkenyl, alkynyl, alkoxy, and alkylsilyl radicals that are unsubstituted or substituted by further carbon and/or heteroatoms. More preferably, R is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-octadecyl, benzyl, and phenyl radicals that are unsubstituted or substituted, preferably unsubstituted. Even more preferably, R is an unbranched alkyl radical or a benzyl radical. Most preferably R is a methyl or ethyl radical with ethyl being even more preferred
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 are preferably independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, and alkoxy radicals that are unsubstituted or substituted; halogens, and heteroatom-containing groups. More preferably, R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 are independently selected from the group consisting of hydrogen, a methyl radical, a methoxy radical, and —SO 3 H.
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 are independently selected from the group consisting of hydrogen, a methyl radical, and a methoxy radical. Still more preferably, R 14 and R 15 are each hydrogen and R 11 , R 12 , R 13 , R 16 , R 17 , and R 18 are independently selected from hydrogen and methyl radicals. Still more preferably R 13 , R 14 , R 15 , and R 16 are each hydrogen. Most preferably R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 are each hydrogen.
  • R 12 and/or R 17 in formulae (4) or (4a) are a halogen or a heteroatom-containing group, preferably both are Br or one of them is —SO 3 H, the remaining radicals of R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 are each hydrogen.
  • fluorenyl-substituted phosphine compounds according to formulae (4) and (4a) are compounds wherein the radicals R, R′, R′′, R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 are defined as in the following table:
  • the bromine radicals (e.g. in phosphine compound no. 31) allow an easy introduction of additional functional groups.
  • Flu represents a fluoren-9-yl radical
  • Et, Bn, Cy, iPr, and Me have the meanings defined above.
  • Y ⁇ represents an anion, preferably a non-coordinating, non-basic anion such as BF 4 ⁇ .
  • a general route for the preparation of the new phosphine compounds is as follows: A compound according to the formula HCp s having the desired substitutions, typically a substituted cyclopentadiene, a substituted indene, or an unsubstituted or substituted fluorene, is first reacted with a strong base, typically n-BuLi, to abstract a proton and a resonance stabilized carbanion is formed.
  • a strong base typically n-BuLi
  • phosphinous halide according to the formula R′R′′PX, wherein R′ and R′′ are defined as above and X is Cl or Br, preferably Cl, to result in the respective Cp s -substituted phosphine which is conveniently converted into the respective phosphonium salts for easier storage and handling (e.g. by reacting with HBF 4 ).
  • This method is advantageously used to prepare phosphine compounds wherein R′ and R′′ in formulae (1) or (1a) are the same radicals as the corresponding phosphinous halides are easily available.
  • a cyclopentadienyl-, indenyl- or fluorenyl-substituted phosphine compound it is required in some cases to prepare first a cyclopentadienyl-, indenyl- or fluorenyl-substituted phosphine compound and then perform the appropriate reactions to result in the desired substitutions at the Cp s ring system.
  • An example is the preparation of a sulfonated fluorenyl-substituted phosphine wherein a fluorenyl-substituted phosphonium salt is reacted with sulfuric acid to introduce an —SO 3 group at the fluorenyl radical.
  • R′ and R′′ radicals are different and the corresponding phosphinous halide R′R′′PX is not readily available.
  • a compound according to the formula HCp s having the desired substitutions typically a substituted cyclopentadiene, a substituted indene, or an unsubstituted or substituted fluorene, is first reacted with a strong base, typically n-BuLi, to abstract a proton and a resonance stabilized carbanion is formed.
  • a strong base typically n-BuLi
  • Cp s R′PX can easily be converted to the desired phosphine R′R′′PCp s by simple alkylation with an appropriate organometallic reagent, such as R′′MgX or R′′Li wherein R′′ is a defined above.
  • One aspect of the present invention is a coordination compound comprising a phosphine compound as described before (including phosphine compounds according to formulae (A) and (B)) and a transition metal selected from groups 8, 9, 10, and 11 of the Periodic Table of the Elements.
  • Said coordination compounds are effective catalysts or effective parts of catalyst systems for organic synthesis.
  • Said coordination compounds can either be prepared in advance and then used for catalytic reactions or can be formed in situ by adding the phosphine compound or its corresponding phosphonium salt in combination with an appropriate transition metal precursor compound.
  • another aspect of the present invention is the use the phosphine compound (including phosphine compounds according to formulae (A) and (B)) or its corresponding phosphonium salt (including phosphonium salts according to formulae (Aa) and (Ba)) in combination with a transition metal compound as a catalyst or a part of a catalyst system for the preparation of an organic compound, wherein the transition metal is selected from groups 8, 9, 10, and 11 of the Periodic Table of the Elements.
  • the in situ formation of the catalytically active coordination compound comprising the phosphine compound according to the invention as ligand is often more convenient; however it may also be advantageous to prepare the catalytically active coordination compound comprising the phosphine compound according to the invention as ligand directly and then use it for catalytic applications as this increases the initial catalytic activity in some instances. If it is referred to the “present catalyst” or “catalyst according to the invention” both alternative routes are included.
  • the transition metal is preferably selected from Pd, Ni, Pt, Rh, Ir, Ru, Co, Fe, Cu, and Au, more preferably it is Pd or Ni and most preferably it is Pd.
  • palladium compounds that can be used together with the phosphine compounds according to the invention in order to form in situ the catalytically active coordination compound comprising the phosphine compound as a ligand are palladium(II) acetate, palladium(II) chloride, palladium(II) bromide, sodium tetrachloropalladate (II), palladium (II) acetylacetonate, palladium(0) dibenzylidenacetone complexes, palladium(0) tetrakis(triphenylphosphine), palladium(0) bis(tri-o-tolylphosphine), palladium(II) propionate, palladium(II) (cyclooctadiene-1,5) dichloride, palladium(0)-diallyl ether complexes, palladium(II) nitrate, palladium(II) chloride bis(acetonitrile), palladium(II) chloride
  • the phosphine ligand is used in excess relative to the transition metal.
  • the ratio of transition metal to ligand is preferably from 1:1 to 1:1000. Ratios of transition metal to ligand of 1:1 to 1:100 are particularly preferred.
  • the exact transition metal/ligand ratio to be used depends on the specific application and also on the amount of catalyst used. Thus, in general, it is conventional to use lower transition metal/ligand ratios in the case of very low transition metal concentrations ( ⁇ 0.01 mol %) than in the case of transition metal concentrations of between 0.5 and 0.01 mol % of transition metal.
  • the present phosphine compounds and their corresponding phosphonium salts are thermally very stable. It is thus possible to use the catalysts according to the invention at reaction temperatures of up to 250° C. or more.
  • the catalysts are preferably used at temperatures of 20 to 200° C.; it has proved advantageous in many cases to work at temperatures of 30 to 180° C., preferably of 40 to 160° C.
  • the ligands can also be used in pressure reactions without loss of activity, the operating pressure conventionally being up to only 100 bar, but preferably in the normal pressure range of up to 60 bar.
  • the present catalysts are preferably used in couplings reactions wherein a C—C or C-heteroatom bond is formed.
  • transition metal-catalyzed reactions such as the metathesis or hydrogenation of double bonds or carbonyl compounds can also be catalyzed by the present catalysts.
  • Pd catalyzed coupling reactions illustrative for reactions that can be catalyzed by the catalysts according to the present invention, i.e. Pd complexes comprising the present phosphine compounds as ligands (prepared in advance or formed in situ), is disclosed in “Palladiumkatalystechnische compounds as ligands”, by A. F. Littke and G. C. Fu, Angew. Chem. 2002, 114, 4350-4386.
  • the organoboron compound is boronic acid of the formula R a —B(OH) 2 , wherein R a is an aryl, alkenyl, or alkyl radical, or, although less preferred, a corresponding boronic acid ester.
  • R a is an aryl, alkenyl, or alkyl radical, or, although less preferred, a corresponding boronic acid ester.
  • the reaction is conducted in the presence of the Pd complex and a base.
  • the Suszuki cross-coupling is significant to couple aryl and heteroaryl boronic acid with aryl and heteroaryl halides, respectively, resulting in the formation of biaryl compounds.
  • the carbon electrophile is an aryl, heteroaryl or vinyl halide/pseudohalide, although other electrophiles, such as acid halides, may be used.
  • the organotin compound has the formula R b Sn(R c ) 3 , wherein the R c radicals being not transferred are usually butyl or methyl radicals and the R b radical can be varied broadly, preferably it is an aryl, heteroaryl, alkenyl, alkynyl, or alkyl radical.
  • the reaction is conducted in the presence of the Pd complex. Stille cross-coupling is a popular tool in the synthesis of complex natural products.
  • the organosilane has the formula R d SiZ, wherein Z represents three radicals that are not transferred, e.g. MeCl 2 , Me 3 , and (OMe) 3 , and R d is, for example, a vinyl, akynyl, or aryl radical.
  • the reaction is conducted in the presence of the Pd catalyst.
  • the Hiyama cross-coupling is an interesting alternative to the Stille cross-coupling as organosilicon compounds are non-toxic.
  • the organozinc compound has the formual R e ZnX or R e 2 Zn, wherein X is a halogen or a phenyl radical and R e is, for example, an aryl, heteroaryl, or alkyl radical.
  • the reaction is conducted in the presence of the Pd catalyst.
  • the Negishi cross-coupling is an effective method for the formation of C—C bonds as organozinc compounds are readily accessible and show a high tolerance against functional groups.
  • the compounds to be arylated include carbonyl compounds, such as ketones and esters, and nitro compounds.
  • the reaction is conducted in the presence of the Pd catalyst and a base.
  • the cyanation agent is an inorganic cyanide, such as Zn(CN) 2 or KCN.
  • the reaction is conducted in the presence of the Pd catalyst.
  • An example of a C—N coupling reaction is the Buchwald-Hartwig coupling of an aryl or heteroaryl halide/pseudohalide with an amine (Buchwald-Hartwig amination).
  • the amine component can be varied broadly, it includes various secondary and primary alkyl (including cycloalkyl) amine and anilines.
  • the reaction is conducted in the presence of the Pd catalyst and a base.
  • the Buchwald-Hartwig amination is an effective tool for the synthesis of aniline derivatives that play an important role in the preparation of pharmaceuticals, agro chemicals, and in photography.
  • An example of a reaction resulting in the formation of a C—O bond is the coupling of an aryl or heteroaryl halide/pseudohalide with an alcohol.
  • the Pd catalyzed C—O coupling may be used for substrates that do not couple in the absence of the Pd catalyst under “normal” conditions of the well-known electrophilic substitution.
  • the alkoxide employed is NaOtBu or a phenoxide.
  • the reaction is conducted in the presence of the Pd catalyst (and a base, in case the alcohol is employed instead of the alkoxide).
  • the resulting diaryl and arylalkyl ethers play an important role in the synthesis of pharmaceuticals and natural products.
  • pseudohalogen or “pseudohalide” has the standard meaning accepted in the art.
  • Non-limiting examples of pseudohalogens/pseudohalides are —COCl, —SO 2 Cl, —N 2 X, —OP(O)(OR) 2 , —OSO 2 CF 3 (—OTf, triflate), and —OSO 2 Tol (—OTs, tosylate).
  • the preferred pseudohalides used in the above coupling reactions are the triflates.
  • the above-mentioned coupling reactions are preferably conducted by using the corresponding chlorides, bromides, or triflates as starting materials, more preferably the corresponding chlorides or bromides are used.
  • a further example of a reaction that can be catalyzed the by the catalysts according to the present invention is the dehydrohalogenation, especially dehydrochlorination, of aryl and heteroaryl halides, preferably chlorides and bromides.
  • aryl and heteroaryl halides are not only important for the organic synthesis but also for environmental chemistry as the dechlorination of polychlorinated biphenyls (PCB) and related chlorinated arenes represents a mechanism to detoxicate these persistent harmful substances.
  • PCB polychlorinated biphenyls
  • the heterogeneous Pd catalyzed dehalogenation has been used for may years, the new phosphine compounds used as ligands in homogeneous transition metal complexes, preferably Pd complexes, offer a new perspective to dehalogenate aryl and heteroaryl halides under mild conditions.
  • a transition metal complex comprising a specific phosphine compound as a ligand has not the same effectiveness as catalyst in all different types of reactions with all different types of substrates.
  • a significant advantage of the new phosphine compounds is that they have a variable backbone they allows “catalyst fine tuning”, i.e. detailed structural and electronic modifications in order to adapt the ligand to the intended use.
  • Mass spectra were recorded on a Finigan MAT 95 magnetic sector spectrometer. Thin layer chromatograpy (TLC) was performed using Fluka silica gel 60 F 254 (0.2 mm) on aluminum plates. Silica gel columns for chromatography were prepared with E. Merck silica gel 60 (0.063-0.20 mesh ASTM). Fluorene was purchased from Aldrich and used as received.
  • radicals R, R 1 , R 2 , etc. do not have the same meanings as defined in the general part of the description, but the meanings as evident from the examples.
  • benzene (335 ml, 3.74 mol) and aluminum trichloride (90.78 g, 0.68 mol) were introduced into a 1 liter three necked round bottomed flask fitted with a magnetic stirring apparatus, an addition funnel and a reflux condenser.
  • the stirred orange mixture was cooled to 7° C. and tigloyl chloride (33) (40 g, 0.34 mol) was added dropwise via an addition funnel. After completion of the addition, the mixture was allowed to come to room temperature and then refluxed overnight. Then the reaction mixture was allowed to come to room temperature and poured onto mixture of ice (300 g) and conc. HCl (50 ml).
  • AlCl 3 (64 g, 0.48 mol) and CH 2 Cl 2 (250 ml) (dried with magnesium sulfate) were placed under an argon atmosphere in a 500 ml three necked round bottomed flask fitted with a magnetic stirring apparatus, an addition funnel, an inner thermometer and a reflux condenser.
  • the liquid was purified via column chromatography [(SiO 2 , 25 ⁇ 9 cm) eluent: cyclohexane:ethylacetate (1:1)] to afford 2,3-dimethyl-4,7-dimethoxy-1-indanone (36) (9.53 g, 12%), R f 0.35 (cyclohexane:ethylacetate (5:1)) as an orange liquid.
  • the liquid was found to be a mixture of the two isomers of 4,7-dimethoxy-2,3-dimethyl-1-indanone (36a to 36b approximately 4:1).
  • p-Toluene sulfonic acid 50 mg, 0.26 mmol was added and the solution refluxed overnight. After completion of the removal of the water the excess toluene was removed via distillation through the Dean-Stark arm, the residue was cooled to ambient temperature, diluted with diethyl ether (100 ml), washed with a saturated solution of sodium bicarbonate (3 ⁇ 100 ml), dried over magnesium sulfate and filtered.
  • the resulting mixture was transferred to a separation funnel and extracted with diethyl ether (3 ⁇ 200 ml). The combined organic layers were stirred overnight with 15 ml concentrated HCl. After this time the reaction mixture was carefully adjusted to pH 7 with a saturated aqueous solution of sodium carbonate. The reaction mixture was transferred into a separation funnel. The organic layer was washed with H 2 O (3 ⁇ 100 ml), dried over MgSO 4 , filtered and the solvent removed under reduced pressure to give a yellow liquid.
  • the residual liquid was purified via column chromatography [(SiO 2 , 35 ⁇ 9 cm), initial eluent: cyclohexane:ethylacetate (100:2))] to afford two fractions: 1,2,3-trimethyl-4,7-dimethoxyindene (39) (4.63 g, 66%) as a yellow liquid R f 0.42; (Change of eluents to cyclohexane:ethylacetate (2:1)): 4,7-dimethoxy-2,3-dimethyl-1-indanone (36) (starting material) R f 0.35 (cyclohexane:ethylacetate) (5:1)) as a pale yellow liquid.
  • 1,2,3-trimethylindene (37) (2.44 g, 15.4 mmol) was dissolved in Et 2 O (50 ml) under an argon atmosphere. The mixture was cooled to ⁇ 60° C. (N 2 /Isopropanol) and n-BuLi (5.9 ml, 2.5 M solution in hexane, 14.7 mmol) was added. The solution was stirred for 10 min at ⁇ 60° C., then for 3 hours at ambient temperature. A white precipitate was formed. Then the mixture was cooled to ⁇ 60° C. and Cy 2 PCl (2.7 ml, 12 mmol) was added.
  • 1,2,3-trimethylindene (37) (5.14 g, 32.5 mmol) was dissolved in Et 2 O (100 ml) under an argon atmosphere. The mixture was cooled to ⁇ 60° C. (N 2 /Isopropanol) and n-BuLi (12.38 ml, 2.5M solution in hexane, 31 mmol) was added. The solution was stirred for 10 min at ⁇ 60° C., then for 3 hours at ambient temperature. A white precipitate was formed. Then the mixture was cooled to ⁇ 60° C. and iPr 2 PCl (4.1 ml, 25.8 mmol) was added.
  • 1-Methylfluorene (47) 1-Methylfluoren-9-one (46) was prepared according to Mortier et al. (D. Tilly, S. S. Samanta, A.-S. Castanet, A. De, J. Mortier, Eur. J. Org. Chem. 2005, 174). 1-Methylfluoren-9-one (46) was reduced according to the general procedure of Carruthers et al. (W. Carruthers, D. Whitmarsh, J. Chem. Soc. Perkin Trans, I 1973, 1511). 1-Methylfluoren-9-one (46) (6.8 g, 35 mmol) was dissolved in 450 ml propionic acid.
  • Reagents and conditions a) 1,3-propanediol, ZrCl 4 ; n-BuLi, MeI, H 2 SO 4 ;
  • 2,6-Dibromobenzaldehyde (49) (10.0 g, 37.9 mmol) was dissolved in 160 ml dry CH 2 Cl 2 .
  • Propanediol (66.4 ml, 88.5 ml)
  • triethylorthoformate (6.83 ml, 41 mmol)
  • anhydrous ZrCl 4 1.0 g
  • the acetal (10.1 g, 31.25 mmol) was dissolved in THF, abs. (200 ml). At ⁇ 78° C. n-BuLi (15.1 ml, 2.5 M in hexane, 37.8 mmol) was added within 25 min, followed by 90 min additional stirring at that temperature. Then the reaction mixture was treated with methyliodide (5.99 g, 42.2 mmol) and stirred for 25 min at ⁇ 78° C. Next the reaction mixture was allowed to warm to ambient temperature within 1.5 h. The resulting solution was quenched with HCl (290 ml of a 5 N solution) and stirred for 1.5 h at ambient temperature. The complete deprotection of the aldehyde was checked via GC analysis.
  • the reaction mixture was allowed to cool to ambient temperature and treated with NaOH (100 ml of a 1 N solution) and diethylether (200 ml) and transferred into a separation funnel.
  • the aqueous phase was extracted with Et 2 O (2 ⁇ 100 ml), the combined organic layers were subsequently washed with NaOH (100 ml, 1 N), brine (100 ml), dried over MgSO 4 , and the volatiles removed in vacuo.
  • the resulting brown oil was purified by filtration over a short pad of silica gel (10 ⁇ 5 cm, eluent: cyclohexane/ethylacetate 20:1) to afford 51 (3.1 g, 89%) as a yellow oil.
  • R f 0.66 cyclohexane:ethylacetate (10:1)). The product was used without any further purification.
  • 1,3,8-Trimethylfluorene (54) 1,3,8-Trimethylfluoren-9-one (53) was reduced according to the general procedure of Carruthers et al. (W. Carruthers, D. Whitmarsh, J. Chem. Soc. Perkin Trans, 11973, 1511). 1,3,8-Trimethylfluoren-9-one (53) (2.74 g, 12.3 mmol) was dissolved in propionic acid (235 ml). Red phosphorus (3.0 g) and concentrated HI (40 ml) were added and the reaction mixture was refluxed for 24 h. Quantitative conversion was shown by TLC.
  • reaction mixture was diluted with water (250 ml), neutralized with NaOH and extracted with Et 2 O (4 ⁇ 125 ml). The combined organic layers were washed with brine (2 ⁇ 125 ml), dried over MgSO 4 , filtered and the volatiles removed in vacuo to afford 2.56 g (quant.) 54 as a white solid.
  • Aqueous HBF 4 50 ml, 4 N was added, the mixture was stirred vigorously, the aqueous phase separated and kept in an open beaker overnight. The crystals which had formed were separated via suction filtration and dried in vacuo to afford 7a (1.90 g, 81%) as white crystals.
  • Fluorene (0.505 g, 3.04 mmol) dissolved in THF, abs (10 ml) was treated with n-BuLi (1.5 ml, 2.0 M in hexane) at ⁇ 80° C. The mixture turned orange and was stirred for additional 4 h at ambient temperature. Then tBu 2 PCl (0.476 g, 2.6 mmol) was added at ⁇ 80° C., as well as 10 ml heptane, abs.
  • phosphine compounds were used as ligands in Pd complexes performing as catalysts in various cross-coupling reactions. All cross-coupling reaction were carried out under an argon atmosphere in degassed solvents (freeze and thaw). TON means catalytic turnover number and is defined as the ratio of the number of moles of product to the number of moles of catalyst.
  • Catalyst Na 2 PdCl 4 /phosphonium salt/CuI (4:8:3), catalyst mixture in i Pr 2 NH•HBr. [a] 5: MeFluP i Pr 2 ; 6: EtFluP i Pr 2 [b] Average of 2 runs.
  • the product was isolated by column chromatography (silica, cyclohexane/ethylacetate (100:2). Alternatively the yield was determined via gaschromatography with hexadecane or diethylene glycol di-n-butylether as an internal standard.
  • phosphonium salt MeFluiPr 2 •HBF 4 (5a). Reaction conditions not been optimized. [a] Average of two runs. Purified by chromatography through a short silica pad. Eluent: cyclohexane:ethylacetate (10:1). [b] ligand: EtFluPCy 2 (9a) [c] ligand: BnFluPCy 2 (10a). [d] ligand: Ad 2 PBn (comparative example)
  • Catalyst-Stock-Solution the Catalyst stock solution was prepared as described for the aqueous Sonogshira reaction using 9-Et-2-SO 3 HFlu-PCy 2 .HBF 4 (13a).
  • aryl halide 1.2 equiv. boronic acid, 3.2 equiv. K 2 CO 3 , degassed water (4 ml mmol ⁇ 1 ), catalyst: Na 2 PdCl 4 /ligand (1:2), ligand: 9-Et-2-SO 3 HFluPCy 2 (13). Reaction times and temperatures were not optimized.
  • Additive Labrasol (0.05 ml).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
US12/375,869 2006-08-31 2007-08-14 Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions Abandoned US20090253907A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06119870A EP1894938A1 (en) 2006-08-31 2006-08-31 New cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions
EP06119870.1 2006-08-31
PCT/EP2007/058417 WO2008025673A1 (en) 2006-08-31 2007-08-14 New cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/058417 A-371-Of-International WO2008025673A1 (en) 2006-08-31 2007-08-14 New cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/437,415 Division US8618328B2 (en) 2006-08-31 2012-04-02 Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions

Publications (1)

Publication Number Publication Date
US20090253907A1 true US20090253907A1 (en) 2009-10-08

Family

ID=37546996

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/375,869 Abandoned US20090253907A1 (en) 2006-08-31 2007-08-14 Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions
US13/437,415 Active US8618328B2 (en) 2006-08-31 2012-04-02 Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions
US14/065,815 Active US8969624B2 (en) 2006-08-31 2013-10-29 Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/437,415 Active US8618328B2 (en) 2006-08-31 2012-04-02 Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions
US14/065,815 Active US8969624B2 (en) 2006-08-31 2013-10-29 Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions

Country Status (5)

Country Link
US (3) US20090253907A1 (enrdf_load_stackoverflow)
EP (2) EP1894938A1 (enrdf_load_stackoverflow)
JP (1) JP5377309B2 (enrdf_load_stackoverflow)
CN (1) CN101622264B (enrdf_load_stackoverflow)
WO (1) WO2008025673A1 (enrdf_load_stackoverflow)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054205A1 (en) * 2008-01-15 2011-03-03 Dow Global Technologies Inc. Sulfonated organophosphine compounds and use thereof in hydroformylation processes
US20110054203A1 (en) * 2008-01-15 2011-03-03 Dow Global Technologies Inc. Sulfonated organophosphine compounds and use in hydroformylation processes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723977B (zh) * 2009-11-06 2012-06-06 华中师范大学 3-(2-苯基茚基)二环己基膦四氟硼酸盐及其制备和应用
CN103447086B (zh) * 2012-05-28 2015-05-06 国家纳米科学中心 一种负载型钯催化剂及其制备方法和应用
EP2899195A1 (en) * 2014-01-28 2015-07-29 ROTOP Pharmaka AG Stabilized form of Tetrofosmin and its use
CN104327117B (zh) * 2014-10-17 2016-05-11 华中师范大学 一种1-(2-芳基茚基)二环己基膦及其制备方法和应用
EP3202758A1 (de) 2016-02-03 2017-08-09 Evonik Degussa GmbH Reduktive alkylierung von aminen mit orthocarbonsäureestern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849754B2 (en) * 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
US6995280B2 (en) * 2003-11-06 2006-02-07 Degussa Ag Process for preparing (mercaptoorganyl)alkoxysilanes
US7332519B2 (en) * 2003-12-23 2008-02-19 Gruenenthal Gmbh Spirocyclic cyclohexane compounds
US7371881B2 (en) * 2005-08-10 2008-05-13 Degussa Ag Process for the preparation of organosilicon compounds

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6174974B1 (en) * 1996-07-05 2001-01-16 Bayer Aktiengesellschaft Method for producing thermoplastic elastomers
ATE316532T1 (de) 1998-07-10 2006-02-15 Massachusetts Inst Technology Liganden für metalle und metall-katalysiertes verfahren
DE10037961A1 (de) 2000-07-27 2002-02-07 Aventis Res & Tech Gmbh & Co Neue Phosphanliganden, deren Herstellung und ihre Verwendung in katalytischen Reaktionen
DE10114345A1 (de) 2001-03-23 2002-09-26 Bayer Ag Katalysator mit einer Donor-Akzeptor-Wechselwirkung
DE10244214A1 (de) * 2002-09-23 2004-04-01 Bayer Ag Übergangsmetallverbindungen mit Donor-Akzeptor-Wechselwirkung und speziellem Substitutionsmuster
DE10351736B3 (de) 2003-11-06 2005-01-13 Degussa Ag Verfahren zur Herstellung von (Mercaptoorganyl)-alkoxysilanen
GB0400717D0 (en) * 2004-01-14 2004-02-18 Stylacats Ltd Ferrocene derivatives
DE102005020534B4 (de) 2004-09-07 2006-07-06 Degussa Ag Verfahren zur Herstellung von Mercaptoorganyl(alkoxysilanen)
DE102005020536A1 (de) 2004-09-07 2006-03-23 Degussa Ag Verfahren zur Herstellung von Mercaptoorganyl(alkoxysilan)
DE102005057801A1 (de) 2005-01-20 2006-08-03 Degussa Ag Mercaptosilane
US20090082581A1 (en) * 2005-05-03 2009-03-26 Benoit Pugin Ferrocenyl ligands, production and use thereof
DE102005020535B3 (de) 2005-05-03 2006-06-08 Degussa Ag Verfahren zur Herstellung von Mercaptoorganyl(alkoxysilanen)
DE102005060122A1 (de) 2005-12-16 2007-06-21 Degussa Gmbh Verfahren zur Herstellung von (Mercaptoorganyl)alkylpolyethersilanen
DE102007037556A1 (de) 2007-08-09 2009-02-12 Evonik Degussa Gmbh Verfahren zur Herstellung von alkylpolyethersubstituierten Mercaptosilanen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849754B2 (en) * 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
US7323582B2 (en) * 2001-08-06 2008-01-29 Degussa Ag Organosilicon compounds
US6995280B2 (en) * 2003-11-06 2006-02-07 Degussa Ag Process for preparing (mercaptoorganyl)alkoxysilanes
US7332519B2 (en) * 2003-12-23 2008-02-19 Gruenenthal Gmbh Spirocyclic cyclohexane compounds
US7371881B2 (en) * 2005-08-10 2008-05-13 Degussa Ag Process for the preparation of organosilicon compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054205A1 (en) * 2008-01-15 2011-03-03 Dow Global Technologies Inc. Sulfonated organophosphine compounds and use thereof in hydroformylation processes
US20110054203A1 (en) * 2008-01-15 2011-03-03 Dow Global Technologies Inc. Sulfonated organophosphine compounds and use in hydroformylation processes
US8394978B2 (en) * 2008-01-15 2013-03-12 Dow Global Technologies Llc Sulfonated organophosphine compounds and use thereof in hydroformylation processes
US8466306B2 (en) * 2008-01-15 2013-06-18 Dow Global Technologies Llc Sulfonated organophosphine compounds and use in hydroformylation processes

Also Published As

Publication number Publication date
JP5377309B2 (ja) 2013-12-25
EP2057174A1 (en) 2009-05-13
CN101622264B (zh) 2013-09-18
JP2010501617A (ja) 2010-01-21
US20140058101A1 (en) 2014-02-27
EP2057174B1 (en) 2014-12-17
US8618328B2 (en) 2013-12-31
WO2008025673A1 (en) 2008-03-06
US20120245348A1 (en) 2012-09-27
EP1894938A1 (en) 2008-03-05
CN101622264A (zh) 2010-01-06
US8969624B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
US8969624B2 (en) Cyclopentadienyl, indenyl or fluorenyl substituted phosphine compounds and their use in catalytic reactions
US7148176B2 (en) Production of novel phosphane ligands and use in catalytical reactions
Gooßen et al. Copper‐catalyzed protodecarboxylation of aromatic carboxylic acids
JP5138386B2 (ja) 置換ビフェニル類の製造方法
Kapdi Organometallic aspects of transition-metal catalysed regioselective C–H bond functionalisation of arenes and heteroarenes
JP2001501954A (ja) アリールエーテルの合成、それに関連した方法及び試薬
Kwong et al. Palladium-catalyzed phosphination of functionalized aryl triflates
Nobre et al. Pd complexes of iminophosphine ligands: A homogeneous molecular catalyst for Suzuki–Miyaura cross-coupling reactions under mild conditions
Li et al. Copper-catalyzed stereo-and regioselective hydrophosphorylation of terminal alkynes: scope and mechanistic study
US6124462A (en) Catalysis using phosphine oxide compounds
Della Ca' et al. Palladium‐Catalyzed Synthesis of Selectively Substituted Phenanthridine Derivatives
JP4567450B2 (ja) 新規ニッケル−、パラジウム−及び白金−カルベン錯体、それらの製造及び触媒反応における使用
Lee et al. A highly effective azetidine–Pd (II) catalyst for Suzuki–Miyaura coupling reactions in water
US20030109380A1 (en) Catalytic boronate ester synthesis from boron reagents and hydrocarbons
JP2003183187A (ja) N−ヘテロ環式カルベン錯体およびその使用
JP3552934B2 (ja) 安息香酸アミド類の製造方法
CN101824052A (zh) 一种氮杂环卡宾金属络合物催化合成膦化合物的方法
JP4581132B2 (ja) 両親媒性有機リン化合物と遷移金属錯体を含有する触媒、及びそれを用いたビアリール化合物の製造法。
Kashihara Studies on Catalytic Denitrative Transformations of Organic Nitro Compounds
JPH04234825A (ja) ベンゾトリフルオリド化合物の製造法
US6878850B2 (en) Catalysis using halophosphine compounds
Wang Transition-Metal-Catalyzed Carbon-Carbon Bond Forming Reactions Involving Organolithium Reagents
김주현 Catalytic Reactions of Ruthenium, Copper Nanoparticles and Rhodium Homogeneous Catalysts
JP2024502715A (ja) 有機金属化合物
Jin Oxidant Evolution in Metal-Free Redox Amination Reactions

Legal Events

Date Code Title Description
AS Assignment

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PLENIO, HERBERT;FLECKENSTEIN, CHRISTOPH;KADYROV, RENAT;AND OTHERS;REEL/FRAME:022260/0722;SIGNING DATES FROM 20080924 TO 20081031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION