US20080284285A1 - Vibration actuator, lens barrel, camera, manufacturing method for vibration body and manufacturing method for vibration actuator - Google Patents
Vibration actuator, lens barrel, camera, manufacturing method for vibration body and manufacturing method for vibration actuator Download PDFInfo
- Publication number
- US20080284285A1 US20080284285A1 US12/047,687 US4768708A US2008284285A1 US 20080284285 A1 US20080284285 A1 US 20080284285A1 US 4768708 A US4768708 A US 4768708A US 2008284285 A1 US2008284285 A1 US 2008284285A1
- Authority
- US
- United States
- Prior art keywords
- vibration
- elastic body
- electromechanical transducer
- transducer element
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 238000001746 injection moulding Methods 0.000 claims description 16
- 238000005245 sintering Methods 0.000 claims description 16
- 238000002604 ultrasonography Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 230000010287 polarization Effects 0.000 description 16
- 239000000203 mixture Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 238000005192 partition Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 7
- 239000006096 absorbing agent Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000035939 shock Effects 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000000750 progressive effect Effects 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000005453 pelletization Methods 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 244000126211 Hericium coralloides Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000009966 trimming Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001374 Invar Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 235000021438 curry Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/097—Forming inorganic materials by sintering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K33/00—Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/08—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
- G02B7/10—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
- G02B7/102—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
- H10N30/084—Shaping or machining of piezoelectric or electrostrictive bodies by moulding or extrusion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49005—Acoustic transducer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/4902—Electromagnet, transformer or inductor
- Y10T29/4908—Acoustic transducer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49128—Assembling formed circuit to base
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
Definitions
- the present invention relates to a vibration actuator, a lens barrel, a camera, a manufacturing method for a vibration body and a manufacturing method for a vibration actuator.
- a vibration actuator causes an electromechanical transducer element to expand and contract based on a driving signal, and using this expansion and contraction, generates a progressive vibrational wave (hereinafter, referred to as a progressive wave) into a driving surface of an elastic body. Then, the vibration actuator generates elliptic motion in the driving surface based on this progressive wave, and gives rise to a driving force by driving a relative displacement member that has been brought into pressure-contact with a crest of a wave of the elliptic motion.
- a progressive wave progressive vibrational wave
- the prior art discloses an example of providing a partitioning border portion in a piezoelectric element main body, wherein the border portion comprises a notch taking the form of a groove in at least a part of the piezoelectric element in a thickness direction to partition the piezoelectric element for each electrode area.
- An object of the present invention is to provide a vibration actuator, a lens barrel, a camera, a manufacturing method for a vibration body and a manufacturing method for a vibration actuator, which have an enhanced driving efficiency and can be easily manufactured.
- the present invention achieves said object by virtue of the means described below.
- a vibration actuator comprising: an elastic body provided on a vibration body; and an electromechanical transducer element sintered onto the elastic body in a state that the element is divided into a plurality of areas by a groove-shaped border portion.
- the electromechanical transducer element may be separated into a plurality of independent areas by the border portion.
- electrodes may be formed on a surface of the plurality of areas of the electromechanical transducer.
- No electrode may be formed on a surface of an end portion other than an end portion touching the border portion of the plurality of areas.
- the electromechanical transducer element may be manufactured by injection molding.
- An interval on a surface of the electromechanical transducer element between adjacent areas of the plurality of areas may be 0.1 mm or less.
- a movable body in pressure-contact with a face on an opposite side of a face where the electromechanical transducer element of the elastic body may be provided.
- a pressurizing section generating a pressurizing force to pressure-contact the elastic body and the movable body, and provided on a face side on which the electromechanical transducer element of the elastic body may be provided.
- a lens barrel provided with the vibration actuator according to the first aspect of the present invention.
- a camera provided with the vibration actuator according to the first aspect of the present invention.
- a manufacturing method for a vibration body comprising: a first step of providing an electromechanical transducer element on an elastic body in a state that the element is divided into a plurality of areas by a groove-shaped border portion; and a second step of sintering the elastic body and the electromechanical transducer element.
- the first step may further comprise providing the electromechanical transducer element divided into a plurality of independent areas by the groove-shaped border portion.
- a third step of forming electrodes on a surface of the plurality of areas of the electromechanical transducer element may be comprised.
- a fourth step of polarizing the electromechanical transducer element for each of the plurality of areas may be comprised.
- the first step may provide the electromechanical transducer element by injection molding.
- the electromechanical transducer element may be provided such that an interval between adjacent areas of the plurality of areas on a surface of the electromechanical transducer element is 0.1 mm or less.
- a movable body may be provided in pressure-contact with a face on an opposite side of a face where the electromechanical transducer element of the elastic body is provided.
- a pressurizing section generating a pressurizing force to pressure-contact the elastic body and the movable body may be provided on a face side on which the electromechanical transducer element of the elastic body is provided.
- a vibration actuator it is possible to provide a vibration actuator, a lens barrel, a camera, a manufacturing method for a vibration body and a manufacturing method for a vibration actuator, which have an enhanced driving efficiency and can be easily manufactured.
- FIG. 1 is an illustration showing a camera using an ultrasound motor of the present embodiment
- FIG. 2 is a cross-sectional view of an ultrasound motor of the present embodiment
- FIG. 3A is a view showing a vibration body of the present embodiment when the vibration body is viewed from the side of the pressurizing section;
- FIG. 3B is a perspective view showing a vibration body of the present embodiment, showing a piezoelectric body and an elastic body in a separated state;
- FIG. 4 is a process chart showing a manufacturing method for a vibration body of the present embodiment.
- FIG. 5 is a schematic diagram for explaining an injection molding process in detail.
- FIG. 1 is an illustration showing a camera 1 using an ultrasound motor 10 of the present embodiment.
- the camera 1 of the present embodiment is provided with a camera body 2 having an image pickup device 6 , and a lens barrel 3 .
- the lens barrel 3 is an interchangeable lens that is attachable to and detachable from the camera body 2 . It should be noted that the camera 1 of the present embodiment forms an example for which the lens barrel 3 is an interchangeable lens, but the invention is not limited to this, and the lens barrel 3 may be, for example, a lens barrel formed in an integrated fashion with the camera body.
- the lens barrel 3 is provided with a lens 4 , a cam tube 5 , an ultrasound motor 10 and so on.
- the ultrasound motor 10 is used as a driving source for driving the lens 4 during a focusing operation of the camera 1 , and the driving force gained from the ultrasound motor 10 is transferred to the cam tube 5 .
- the lens 4 is in cam-engagement with the cam tube 5 , and if the cam tube 5 rotates by the driving force of the ultrasound motor 10 , then the lens 4 moves based on the cam-engagement with the cam tube 5 so as to perform focusing.
- FIG. 2 is a cross-sectional view of an ultrasound motor 10 of the present embodiment.
- the ultrasound motor 10 of the present embodiment is provided with a vibration body 11 , a movable body 14 , a shock absorber member 15 , a supporting body 16 , a shock absorber member 17 , a pressurizing section 18 , a securing member 19 and so on.
- the vibration body 11 is provided with an elastic body 12 , a piezoelectric body 13 and so on.
- the elastic body 12 is a substantially circular ring shaped member formed using a metallic material capable of being elastically deformed such as an iron alloy, e.g. a stainless steel material or an Invar material, brass or the like, one face of which is provided with a piezoelectric body 13 and another face of which is provided with a comb tooth section 12 b formed by slotting it to form a plurality of grooves 12 a .
- the apical surface of this comb tooth section 12 b is a driving surface in which a progressive wave emerges due to excitation of the piezoelectric body 13 to drive the movable body 14 .
- the piezoelectric body 13 has a function of converting electric energy into mechanical energy, and in the present embodiment, is formed using PZT (piezoelectric zirconate titanate or lead (Pb) zirconate titanate).
- This piezoelectric body 13 is formed as a plurality of bodies for each area of an electrode 131 (see FIG. 3A ) to which a driving signal is input, and the bodies 13 are sintered onto the elastic body 12 .
- the electrode 131 is electrically connected to a flexible printed board, not shown, and a driving signal supplied from this flexible printed board excites the piezoelectric body 13 .
- the detailed shape of the piezoelectric body 13 of the present embodiment will be described later.
- the movable body 14 is a member taking the form of a substantially circular ring, and is brought into pressure-contact with the driving surface of the elastic body 12 by a pressurization force of the pressurizing section 18 described later and is frictionally driven by a progressive wave of the elastic body 12 .
- the shock absorber member 15 is a substantially circular ring shaped member formed using rubber or the like. This shock absorber member 15 is a member for preventing vibrations of the movable body 14 from being transferred to the side of the supporting body 16 , and is provided between the movable body 14 and the supporting body 16 .
- the supporting body 16 is a member for supporting the movable body 14 , and is a member that rotates integrally with the movable body 14 to transfer the rotary movement of the movable body 14 to a driven member (not shown) and regulates the position of the movable body 14 in the direction of a rotational center axis.
- the pressurizing section 18 is a part for generating a pressurization force causing the vibration body 11 and the movable body 14 to be brought into pressure-contact with each other, and is provided with a pressurization plate 18 a and a disc spring 18 b .
- the pressurization plate 18 a is a plate taking the form of a substantially circular ring, which receives the pressurization force generated by the disc spring 18 b.
- the shock absorber member 17 is a member taking the form of a substantially circular ring, which is formed using a nonwoven fabric, felt or the like. This shock absorber member 17 is a member for preventing the vibrations of the vibration body 11 from being transferred to the side of the pressurizing section 18 , and is provided between the piezoelectric body 13 and the pressurization plate 18 a.
- the securing member 19 is a member for securing the ultrasound motor 10 of the present embodiment to the lens barrel 3 .
- the shape of the piezoelectric body 13 is described in more detail.
- FIG. 3 is a set of illustrations showing the vibration body 11 of the present embodiment.
- FIG. 3A is an illustration of the vibration body 11 when viewed from the side of the pressurizing section 18 , which shows that electrodes 131 are formed in the portions shown by oblique lines.
- FIG. 3B is a perspective view showing the piezoelectric body 13 and the elastic body 12 separately for the purpose of facilitating understanding.
- a plurality of the piezoelectric bodies 13 of the present embodiment are independently formed on the surface on the side opposite to the driving surface of the elastic body 12 .
- the manufacturing method for this piezoelectric body 13 and the vibration body 11 will be described later.
- the electrodes 131 are formed on the piezoelectric bodies 13 . These electrodes 131 are not formed on both ends (the inner peripheral end and outer peripheral end) of the piezoelectric bodies 13 in the radial direction of the elastic body 12 , for the purpose of preventing discharge in the polarization process, and the base material portions of the piezoelectric bodies 13 are exposed to the exterior with a predetermined width at both ends of the piezoelectric bodies 13 in the radial direction of the elastic body 12 . On the other hand, the electrode 131 is formed on both ends of the piezoelectric body 13 in the circumferential direction of the elastic body 12 .
- the piezoelectric body 13 is not formed between the adjacent electrodes 131 in the circumferential direction of the elastic body 12 , and when the vibration body 11 is viewed from the side of the pressurizing section 18 , it leads to a configuration in which the elastic body 12 is visible.
- the outside diameter of the elastic body and the piezoelectric body is about 12 mm, and the inside diameter of the same is about 8 mm, in the present embodiment.
- These piezoelectric bodies 13 are separated to form parts receiving signals of two phases (A phase and B phase), and in the part corresponding to each respective phase, elements of different polarities (A 1 , A 2 , A 3 , A 4 , B 1 , B 2 , B 3 , B 4 ) are lined up in such a manner that polarization directions are arranged alternately for each half-wavelength. Additionally, a portion having an interval of 1 ⁇ 4 wavelength between the A phase and the B phase corresponds to the ground (G).
- FIG. 4 is a process chart showing the method of manufacturing the vibration body 11 of the present embodiment.
- the manufacturing process of the vibration body 11 is provided with a piezoelectric body preparation step S 100 , an elastic body preparation step S 200 , an injection molding step S 300 , a sintering step S 400 and an electrode forming step S 500 and a polarizing step S 600 .
- the piezoelectric body preparation step S 100 is provided with a material ascertaining step S 101 , a material weighing step S 102 , a material mixing step S 103 , a preliminary sintering step S 104 , a crushing step S 105 , a granulating step S 106 , a binder mixing step S 107 and a pelletizing step S 108 .
- the material ascertaining step S 101 is a step of ascertaining the properties of the material of the PZT, in which for example an X-ray fluorescence apparatus is used to check whether or not the purity of the PZT is equal to or more than 99.90%.
- the material weighting step S 102 is a step of measuring the weight of the raw material of the PZT, in which for example a precision balance is used to check whether or not the weight of a raw material of the PZT corresponds to a predetermined target value within a margin of error of 0.1 g or less.
- the material mixing step S 103 is a step of mixing the raw material of the PZT and a predetermined material necessary for sintering, in which for example a ball mill is used to carry out the mixing for a predetermined amount of time (in the present embodiment, two hours). Then, a particle size distribution analyzer is used to check whether or not the particle diameter of the mixture ranges from 1 to 2 ⁇ m.
- the preliminary sintering step S 104 is a step of preliminarily sintering the mixture, in which the preliminary sintering is performed while for example a temperature recorder and/or a temperature history sensor is used to check whether or not the profile (setting) of the temperature is within a range of ⁇ 5° C. from 850° C.
- the crushing step S 105 is a step of crushing the preliminarily sintered object, in which for example a ball mill is used to carry out the crushing for a predetermined amount of time. Then it is ascertained whether or not the particle diameter of the crushed object is between 1 to 2 ⁇ m, using a particle size distribution analyzer. In addition, an X-ray diffraction device is used to check the ratio of the PZT included in the crushed object from a crystalline phase of the PZT, and a specific surface area measuring instrument is used to check whether or not the specific surface area of the crushed object has a predetermined value (in the present embodiment, 3 cm 2 /g).
- a predetermined value in the present embodiment, 3 cm 2 /g
- the granulating step S 106 is a step of solidifying the powder of the crushed object to granulate it.
- a spray dryer is used to dry the crushed object at a predetermined temperature (in the present embodiment, 200° C.), and subsequently a predetermined amount of PVA (polyvinyl alcohol) is added thereto to carry out the granulation.
- PVA polyvinyl alcohol
- an SEM scanning electron microscope
- the diameter of the resultant granular particles has a predetermined value (in the present embodiment, between 30 and 100 ⁇ m) and whether or not the PVA shows a predetermined ratio.
- the binder mixing step S 107 is a step of mixing the granulated object with a predetermined amount of predetermined binder, in which, for example a precision balance is used to check whether or not the total weight of the mixture has an error of 1 g or less from a predetermined target value.
- PVB polyvinyl butyral
- the pelletizing step 108 is a step of pelletizing (solidifying to make granular) the mixture, in which for example, a pellet producing machine is used.
- the elastic body preparation step S 200 is provided with an elastic body manufacturing step S 201 for manufacturing the elastic body 12 .
- the elastic body 12 is made by a cutting work process.
- the injection molding step S 300 is a step of melting the pelletized mixture to curry out injection molding.
- FIG. 5 is a schematic diagram for explaining this injection molding step S 300 in more detail.
- the elastic body 12 manufactured in the elastic body preparation step S 200 is placed in an elastic body forming mold 12 A, as shown in the figure (S 301 ).
- a piezoelectric element forming mold 13 A is placed in opposition to the elastic body forming mold 12 A (S 302 ).
- This piezoelectric element forming mold 13 A is provided with partitions 13 B for separating a cavity into which the pelletized mixture is injected into a plurality of regions.
- the partitions 13 B are in contact with a surface of the elastic body 12 in the state, shown in S 302 in FIG. 5 , that the piezoelectric element forming mold 13 A is placed in opposition to the elastic body forming mold 12 A.
- the pelletized mixture is injected and molded into each region delimited by the partitions 13 B (S 303 ). It should be noted that this injection molding is performed while an injection molding machine is used to check, for example, whether the temperature of the mixture is between 160 and 170° C., whether the pressure-maintaining pressure has a predetermined value, and/or whether a pressure holding time has a predetermined value, and the like.
- the pressurization value is preferably on the order of 0.5 t/cm 2 . It should be noted that this step may be omitted if the elastic body 12 and the piezoelectric element 13 are sufficiently pressurized during the injection (if the pressurization value is on the order of 0.5 t/cm 2 ).
- the elastic body 12 and the piezoelectric element 13 are removed from the elastic body forming mold 12 A and the piezoelectric element forming mold 13 A (S 305 ). It should be noted that after the injection molding step S 300 , there is a resin removal step for removing the resin binder that has become unnecessary, for example wherein the resin removal is performed by a pyrolytic method or the like.
- the sintering step S 400 is a step of heating the elastic body 12 and piezoelectric body 13 integrally formed in the injection molding step S 300 so as to sinter the piezoelectric body 13 , in which the sintering temperature of the sintering step is preferably between 1000 and 1200° C.
- the sintering step S 400 is performed while for example a temperature recorder and/or a temperature history sensor is used to check whether or not the profile of the temperature is within a range of ⁇ 10° C. from 1100° C.
- the mixture for the piezoelectric body becomes the sintered body of the piezoelectric body 13 , and is bonded completely to the elastic body 12 .
- the electrode forming step S 500 is a step of forming an electrode on the piezoelectric body 13 , in which for example a screen printing machine is used to form the electrodes 131 based on a printing process. In addition, an SEM is used to check whether or not the film thickness of the printed electrodes 131 is between 2 and 5 ⁇ m.
- the polarizing step S 600 is a step of polarizing the piezoelectric body 13 , in which for example a predetermined power supply is used to apply a voltage of 25 kV/cm 2 to the body 13 . Additionally, a thermometer is used to adjust the temperature of the piezoelectric body 13 at the time of polarization to 100° C., and a timer is used to apply the voltage to the body 13 for 30 minutes. It should be noted that the polarization needs to be performed with the piezoelectric body 13 being sandwiched between a positive electrode and a negative electrode, but in the present embodiment, the electrode 131 formed by the printing process is used as one of the electrodes and the elastic body 12 is used as the other.
- the polarizing step S 600 polishing processing and the like are carried out for maintaining the planarity of the driving surface of the elastic body 12 if necessary, and then the vibration body 11 of the present embodiment is completed.
- the ultrasound motor 10 of the present embodiment is completed through an assembly step of assembling the ultrasound motor 10 and/or any other step.
- the method of forming the electrodes on the substantially circular ring shaped piezoelectric body as in the prior art has to provide a predetermined interval between the electrodes in order to prevent discharge at the time of polarization processing of the piezoelectric body. Accordingly, between the electrodes of the piezoelectric body, there is a base material portion of the piezoelectric body, in which no electrode is formed. This base material portion of the piezoelectric body has no electrode formed, and thereby remains unpolarized even if the polarization processing is carried out.
- a plurality of the piezoelectric bodies 13 are formed for areas corresponding to the electrodes 131 on an area-by-area basis, so that there is no area of the piezoelectric body which remains unpolarized between the electrodes 131 , and this avoids the inhibition of the expansion and contraction of the piezoelectric body 13 in an area in which the electrode 131 is formed, thereby making it possible to expect an improvement of the driving efficiency of the ultrasound motor 10 .
- the polarization processing is performed one-by-one for each of the electrodes in order to prevent discharge at the time of the polarization process, then a piezoelectric body in one of the areas in which the electrode is formed expands and the piezoelectric body in the other area contracts, and the base material portion of the piezoelectric body between the electrodes in which the electrode is not formed is not deformed, so that the piezoelectric body which has been subjected to the polarization process is deformed and takes an awkward shape.
- the piezoelectric body 13 is independently formed for each electrode 131 , so that it cannot be deformed even if the polarization process is carried out for each electrode 131 . Therefore, according to the present embodiment, it is not required to polarize all the electrodes simultaneously, thereby making it possible to reduce the interval between the adjacent electrodes.
- the total area of the electrodes 131 accordingly increases by about 6% and the area of the piezoelectric bodies 13 contributing to the excitation of the elastic body 12 increases.
- the present embodiment is intended to perform the polarization processing in such a manner that the piezoelectric bodies 13 that are adjacent to each other and polarize for different polarities (polarization directions) are polarized separately for each polarity.
- the piezoelectric body 13 requires the steps of washing and drying of components, applying an adhesive, securing by a securing jig, thermally curing, removing the securing jig and so on, as well as several controls during the steps, including the amount of adhesive applied, the temperature of the adhesive, the amount of pressurization, the pressurization time, the curing temperature, the curing time and so on.
- the piezoelectric body 13 is made integrally with the elastic body 12 by the injection molding step S 300 that is one of the manufacturing steps for the piezoelectric body 13 , and their complete bonding can be accomplished by the sintering step without using an adhesive or the like, so that the number of process steps is reduced and various kinds of controls as described above can be eliminated, thereby making it possible to easily perform the manufacture of the vibration body 11 and consequently the manufacture of the ultrasound motor 10 .
- a vibration body in which the piezoelectric body and the elastic body are bonded with an adhesive as in the prior art has led to problems in that the vibrations are attenuated by the presence of the layer of adhesive between the piezoelectric body and the elastic body, and in that to ensure sufficient adhesive strength, the material of the adhesive must be selected, a process must be carried out to roughen a surface of the elastic body to which the piezoelectric body is bonded, and/or other requirements had to be met.
- the piezoelectric body 13 and the elastic body 12 are directly bonded and thus there is nothing interfering with the transfer of vibrations between the piezoelectric body 13 and the elastic body 12 , so that the elastic body 12 can be excited efficiently.
- the piezoelectric body 13 is bonded to the elastic body 12 by sintering, so that the piezoelectric body 13 and the elastic body 12 can be easily bonded in an integrated fashion with sufficient bonding strength.
- the piezoelectric body 13 as in the present embodiment is to be formed by means of cutting a substantially circular ring shaped piezoelectric body in a predetermined shape or by other means, such processing as cutting or the like is difficult because the piezoelectric body 13 has a brittle nature.
- the piezoelectric body forming mold 13 A in the present embodiment has cavity sections completely separated in a plurality of areas, based on a situation where the partitions 13 B are in contact with the elastic body 12 when the mold 13 A is placed opposite to the elastic body 12 .
- the foregoing has been given by way of an example for which a plurality of separate piezoelectric bodies 13 are independently formed on the respective separate areas, by injecting and molding a material of the piezoelectric body into the separate areas, respectively.
- the piezoelectric body may be formed in the following manner.
- the height of the partition may be decreased to form a clearance between the surface of the elastic body and the partition when the piezoelectric body forming mold is brought into contact with the elastic body.
- the adjacent piezoelectric bodies are not completely separated, but they are continuous on the elastic body side and become one piezoelectric body essentially separated into a plurality of regions by a groove.
- the mixture can flow into the other regions from the clearance when injecting the mixture. Therefore, it is possible to inject the mixture into the whole cavity portion, for example even if the injection outlet is at a single location, and thus the injection can be carried out easily and uniformly.
- the piezoelectric body forming mold is formed to have a cavity section taking the shape of a circular ring without any partition.
- the piezoelectric body is divided into a plurality of regions by injecting the mixture into the cavity section and radially trimming parts of the circular ring shaped piezoelectric body formed on the elastic body.
- the piezoelectric body 13 was molded by placing the piezoelectric body forming mold 13 A on the elastic body forming mold 12 A in opposition to the mold 12 A and by injecting the mixture therein.
- the piezoelectric body may be manufactured differently from the elastic body, and may adhere to the elastic body.
- the piezoelectric body may be manufactured solely by injection molding, or may be manufactured by stamping it out with a die from a sheet-formed material.
- the piezoelectric body may be manufactured by slicing a cylindrical body.
- the piezoelectric body manufactured in these ways may be in a circular ring shape, and may have a shape obtained by dividing the circular ring into a plurality of segments.
- the piezoelectric body may adhere to the elastic body and then the piezoelectric body may be divided into a plurality of areas by trimming parts of the piezoelectric body in a radial line formation. In this case, positioning for bonding the piezoelectric body on the elastic body is easy.
- the piezoelectric body is made to adhere to the elastic body in such a manner that the piezoelectric body becomes a substantially circular ring shaped as a whole. In this case, it is possible to omit efforts to trim the piezoelectric body to divide it.
- the present invention is not limited to this, and for instance the electrode 131 may be formed over the whole area of the piezoelectric body 13 . In this case, it is preferable to provide a solution for preventing discharge during the polarization process.
- the description in the present embodiment has been given by way of an example in which a rotational type ultrasound motor 10 whose movable body 14 is rotationally driven is used as a vibration actuator, but the invention is not limited to this and the actuator may be a linear type ultrasound motor. Alternatively, the actuator may be an actuator of a rod type, pencil type, disc type or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/884,463 US8549728B2 (en) | 2007-03-14 | 2010-09-17 | Manufacturing method for vibration body and manufacturing method for vibration actuator |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007-065126 | 2007-03-14 | ||
| JP2007065126 | 2007-03-14 | ||
| JP2008060499A JP5309626B2 (ja) | 2007-03-14 | 2008-03-11 | 振動アクチュエータ、振動子の製造方法及び振動アクチュエータの製造方法 |
| JP2008-060499 | 2008-03-11 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/884,463 Continuation US8549728B2 (en) | 2007-03-14 | 2010-09-17 | Manufacturing method for vibration body and manufacturing method for vibration actuator |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20080284285A1 true US20080284285A1 (en) | 2008-11-20 |
Family
ID=39982422
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/047,687 Abandoned US20080284285A1 (en) | 2007-03-14 | 2008-03-13 | Vibration actuator, lens barrel, camera, manufacturing method for vibration body and manufacturing method for vibration actuator |
| US12/884,463 Expired - Fee Related US8549728B2 (en) | 2007-03-14 | 2010-09-17 | Manufacturing method for vibration body and manufacturing method for vibration actuator |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/884,463 Expired - Fee Related US8549728B2 (en) | 2007-03-14 | 2010-09-17 | Manufacturing method for vibration body and manufacturing method for vibration actuator |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20080284285A1 (enExample) |
| JP (1) | JP5309626B2 (enExample) |
| KR (1) | KR101522424B1 (enExample) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102299663A (zh) * | 2011-09-06 | 2011-12-28 | 哈尔滨工业大学 | 采用弹簧块预紧的圆筒型行波超声电机振子 |
| US20120026103A1 (en) * | 2010-07-28 | 2012-02-02 | Samsung Electro-Mechanics Co., Ltd. | Vibration generator and electronic device including the same |
| US20120053393A1 (en) * | 2010-02-26 | 2012-03-01 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Sound transducer for insertion in an ear |
| WO2012155276A1 (en) * | 2011-05-19 | 2012-11-22 | Optotune Ag | Positioning device |
| US8365977B2 (en) * | 2009-08-12 | 2013-02-05 | Kulicke And Soffa Industries, Inc. | Ultrasonic transducers for wire bonding and methods of forming wire bonds using ultrasonic transducers |
| US20140125200A1 (en) * | 2010-05-11 | 2014-05-08 | Canon Kabushiki Kaisha | Vibration wave actuator |
| CN103872241A (zh) * | 2012-12-14 | 2014-06-18 | 深圳先进技术研究院 | 整平装置 |
| US8944647B2 (en) | 2010-09-02 | 2015-02-03 | Optotune Ag | Illumination source with variable divergence |
| US20160111981A1 (en) * | 2012-04-19 | 2016-04-21 | Canon Kabushiki Kaisha | Vibrator, vibration type driving apparatus and manufacturing method of vibrator |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101819316B (zh) * | 2009-02-27 | 2011-11-09 | 富士迈半导体精密工业(上海)有限公司 | 变焦镜头 |
| KR101618101B1 (ko) | 2014-09-04 | 2016-05-04 | 강남국 | 스프링임팩터가 구비된 오거천공기 |
| KR101618099B1 (ko) | 2014-09-04 | 2016-05-04 | 강남국 | 유압임팩터가 구비된 오거천공기 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5256928A (en) * | 1990-10-26 | 1993-10-26 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic motor with a vibrator having recesses |
| US5831370A (en) * | 1995-06-15 | 1998-11-03 | Nikon Corporation | Vibration actuator |
| US7514845B2 (en) * | 2005-05-26 | 2009-04-07 | Nikon Corporation | Vibrational actuator and method for driving vibrational actuator |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63220782A (ja) * | 1987-03-10 | 1988-09-14 | Olympus Optical Co Ltd | 圧電素子 |
| JPH05116329A (ja) * | 1991-07-02 | 1993-05-14 | Tokyo Electric Co Ltd | インクジエツトプリンタヘツドの製作方法 |
| JPH06171095A (ja) * | 1992-12-03 | 1994-06-21 | Brother Ind Ltd | インク噴射装置の製造方法及びインク噴射装置 |
| US5650810A (en) * | 1992-12-03 | 1997-07-22 | Brother Kogyo Kabushiki Kaisha | Ink jet print head having a manifold wall portion and method of producing the same by injection molding |
| JPH07241091A (ja) * | 1994-02-28 | 1995-09-12 | Mitsubishi Materials Corp | 進行波型超音波モータとその製造方法 |
| JP2001169572A (ja) * | 1998-12-28 | 2001-06-22 | Ngk Insulators Ltd | 圧電/電歪デバイスおよびその製造方法 |
| JP2001045774A (ja) * | 1999-07-28 | 2001-02-16 | Canon Inc | 電気−機械エネルギー変換素子を振動源とする振動体、この振動体を駆動源とする振動波駆動装置、振動波駆動装置を有する装置およびこの振動体を搬送源とする搬送装置 |
| US7129618B2 (en) * | 2003-03-31 | 2006-10-31 | Canon Kabushiki Kaisha | Control apparatus capable of low-speed driving of vibration type driving apparatus, actuating apparatus using the control apparatus, control method capable of low-speed driving of vibration type driving apparatus, and storage medium storing program including program codes capable of realizing the control method |
| JP4532212B2 (ja) * | 2004-08-31 | 2010-08-25 | 日本碍子株式会社 | 圧電/電歪デバイスセットの検査方法 |
| JP2006295147A (ja) * | 2005-03-17 | 2006-10-26 | Osaka Industrial Promotion Organization | 圧電アクチュエータ及びポンプ |
| JP5116329B2 (ja) | 2007-03-23 | 2013-01-09 | 三洋電機株式会社 | 非水電解質二次電池 |
| JP5408935B2 (ja) * | 2007-09-25 | 2014-02-05 | キヤノン株式会社 | 電気機械変換素子及びその製造方法 |
| JP5594986B2 (ja) * | 2008-06-24 | 2014-09-24 | キヤノン株式会社 | 機械電気変換素子及び機械電気変換装置の製造方法 |
| JP5350092B2 (ja) * | 2008-06-24 | 2013-11-27 | キヤノン株式会社 | 機械電気変換素子及び機械電気変換装置の製造方法 |
| JP5430245B2 (ja) * | 2008-06-24 | 2014-02-26 | キヤノン株式会社 | 機械電気変換素子及び機械電気変換装置の製造方法 |
-
2008
- 2008-03-11 JP JP2008060499A patent/JP5309626B2/ja not_active Expired - Fee Related
- 2008-03-13 US US12/047,687 patent/US20080284285A1/en not_active Abandoned
- 2008-03-14 KR KR1020080023731A patent/KR101522424B1/ko not_active Expired - Fee Related
-
2010
- 2010-09-17 US US12/884,463 patent/US8549728B2/en not_active Expired - Fee Related
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5256928A (en) * | 1990-10-26 | 1993-10-26 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic motor with a vibrator having recesses |
| US5831370A (en) * | 1995-06-15 | 1998-11-03 | Nikon Corporation | Vibration actuator |
| US7514845B2 (en) * | 2005-05-26 | 2009-04-07 | Nikon Corporation | Vibrational actuator and method for driving vibrational actuator |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8365977B2 (en) * | 2009-08-12 | 2013-02-05 | Kulicke And Soffa Industries, Inc. | Ultrasonic transducers for wire bonding and methods of forming wire bonds using ultrasonic transducers |
| US20120053393A1 (en) * | 2010-02-26 | 2012-03-01 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Sound transducer for insertion in an ear |
| US10206045B2 (en) | 2010-02-26 | 2019-02-12 | Vibrosonic Gmbh | Sound transducer for insertion in an ear |
| US9497556B2 (en) * | 2010-02-26 | 2016-11-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Sound transducer for insertion in an ear |
| US9564837B2 (en) * | 2010-05-11 | 2017-02-07 | Canon Kabushiki Kaisha | Vibration wave actuator |
| US20140125200A1 (en) * | 2010-05-11 | 2014-05-08 | Canon Kabushiki Kaisha | Vibration wave actuator |
| US20120026103A1 (en) * | 2010-07-28 | 2012-02-02 | Samsung Electro-Mechanics Co., Ltd. | Vibration generator and electronic device including the same |
| US8917009B2 (en) * | 2010-07-28 | 2014-12-23 | Samsung Electro-Mechanics Co., Ltd. | Vibration generator and electronic device including the same |
| US8944647B2 (en) | 2010-09-02 | 2015-02-03 | Optotune Ag | Illumination source with variable divergence |
| WO2012155276A1 (en) * | 2011-05-19 | 2012-11-22 | Optotune Ag | Positioning device |
| CN102299663A (zh) * | 2011-09-06 | 2011-12-28 | 哈尔滨工业大学 | 采用弹簧块预紧的圆筒型行波超声电机振子 |
| US20160111981A1 (en) * | 2012-04-19 | 2016-04-21 | Canon Kabushiki Kaisha | Vibrator, vibration type driving apparatus and manufacturing method of vibrator |
| US10541630B2 (en) * | 2012-04-19 | 2020-01-21 | Canon Kabushiki Kaisha | Manufacturing method of vibrator |
| CN103872241A (zh) * | 2012-12-14 | 2014-06-18 | 深圳先进技术研究院 | 整平装置 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2008259410A (ja) | 2008-10-23 |
| JP5309626B2 (ja) | 2013-10-09 |
| KR20080084711A (ko) | 2008-09-19 |
| US20110002057A1 (en) | 2011-01-06 |
| US8549728B2 (en) | 2013-10-08 |
| KR101522424B1 (ko) | 2015-05-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8549728B2 (en) | Manufacturing method for vibration body and manufacturing method for vibration actuator | |
| EP2330460A1 (en) | Dust removing device and dust removing method | |
| CN105340096A (zh) | 振动波驱动装置、振动波马达用定子、振动波马达、驱动控制系统、光学设备及振动波驱动装置的制造方法 | |
| KR100384955B1 (ko) | 전기-기계에너지변환소자를 구동원으로서 이용하는진동부재, 이 진동부재를 구동원으로서 이용하는진동파구동장치 및 진동파구동장치를 구비한 장치 | |
| CN103650323A (zh) | 压电元件、多层压电元件、排液头、排液装置、超声波马达、光学装置和电子装置 | |
| CN102077455B (zh) | 振动促动器、振动促动器的制造方法、透镜镜筒及相机 | |
| US8555483B2 (en) | Method of manufacturing a vibrating element | |
| JP2000089085A (ja) | レンズ駆動アクチュエータ | |
| KR101653826B1 (ko) | 초음파 모터 및 그 제조 방법 | |
| CN101567642B (zh) | 振动执行元件、透镜镜筒、相机 | |
| CN109698637B (zh) | 振动致动器和包括该振动致动器的电子设备 | |
| JP2012233971A (ja) | 撮像装置の製造方法 | |
| JP2009060768A (ja) | アクチュエータ、レンズ鏡筒、カメラ | |
| JP3857911B2 (ja) | 複合圧電体およびその製造方法 | |
| JP2002217461A (ja) | 複合圧電材料 | |
| US12225823B2 (en) | Method of fabricating piezoelectric composite | |
| JP2008228453A (ja) | 振動体、振動アクチュエータ、振動体の製造方法 | |
| JP5573121B2 (ja) | 振動アクチュエータ、レンズ鏡筒及びカメラ | |
| WO2024257696A1 (ja) | 振動型アクチュエータ、電子機器、光学機器、及び、振動型アクチュエータの製造方法 | |
| JP2024021763A (ja) | 振動型アクチュエータ及びその製造方法、並びに、駆動装置 | |
| Kumari | A study of piezoelectric active control towards manufacturing and testing a thin glass mirror | |
| JP2008253023A (ja) | 駆動装置 | |
| JP2010288354A (ja) | 振動アクチュエータ、振動アクチュエータの相対運動部材の製造方法、振動アクチュエータを備えたレンズ鏡筒及びカメラ | |
| JPS63261328A (ja) | 自動焦点用アクチユエ−タ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: NIKON CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SATO, TAKAHIRO;REEL/FRAME:021312/0122 Effective date: 20080729 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |