US20070129470A1 - Weatherable resinous composition with low heat storage and method - Google Patents

Weatherable resinous composition with low heat storage and method Download PDF

Info

Publication number
US20070129470A1
US20070129470A1 US11/294,126 US29412605A US2007129470A1 US 20070129470 A1 US20070129470 A1 US 20070129470A1 US 29412605 A US29412605 A US 29412605A US 2007129470 A1 US2007129470 A1 US 2007129470A1
Authority
US
United States
Prior art keywords
acrylonitrile
styrene
composition
structural units
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/294,126
Other languages
English (en)
Inventor
Olga Kuvshinnikova
Nela Stafie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/294,126 priority Critical patent/US20070129470A1/en
Priority to US11/562,147 priority patent/US7728056B2/en
Priority to AT06844768T priority patent/ATE496964T1/de
Priority to JP2008544407A priority patent/JP5107932B2/ja
Priority to CN200680052368.6A priority patent/CN101336268B/zh
Priority to BRPI0619441-9A priority patent/BRPI0619441A2/pt
Priority to KR1020087013764A priority patent/KR20080082962A/ko
Priority to EP06844768A priority patent/EP1957568B1/en
Priority to PCT/US2006/046186 priority patent/WO2007067462A1/en
Priority to DE602006019906T priority patent/DE602006019906D1/de
Priority to AU2006322112A priority patent/AU2006322112B2/en
Publication of US20070129470A1 publication Critical patent/US20070129470A1/en
Assigned to SABIC INNOVATIVE PLASTICS IP B.V. reassignment SABIC INNOVATIVE PLASTICS IP B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC COMPANY
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT reassignment CITIBANK, N.A., AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a rubber modified thermoplastic resin composition comprising a combination of pigment and colorant which composition has good color and low heat accumulating properties, and a method to make such a composition.
  • IRR inorganic infrared reflecting
  • IR infrared
  • IR reflective pigments provide benefits against thermal distortion and expansion problems, the achievable color space is limited to medium dark colors.
  • a jet black color is not achievable in plastic articles with IR reflective pigments.
  • deep dark color dark brown, dark green, dark blue, dark red and black
  • L* value below 40 is not achievable in plastic articles by use of just IRR pigments.
  • compositions for plastic articles which low L* value and also good resistance to solar radiation.
  • the present invention is a composition
  • a rubber modified thermoplastic resin comprising a discontinuous elastomeric phase dispersed in a rigid thermoplastic phase, wherein at least a portion of the rigid thermoplastic phase is grafted to the elastomeric phase; and wherein the elastomeric phase comprises a polymer having structural units derived from at least one (C1-C12)alkyl(meth)acrylate monomer; and wherein the rigid thermoplastic phase comprises structural units derived from at least one vinyl aromatic monomer and at least one monoethylenically unsaturated nitrile monomer; and (ii) a colorant combination comprising at least one inorganic infrared reflecting pigment and at least one organic colorant, wherein the combination of the inorganic pigment and organic colorant results in a molded part with an L* value of less than about 30 with specular component included, and a heating build
  • the present invention is a method for preparing an article comprising a rubber modified thermoplastic resin comprising a discontinuous elastomeric phase dispersed in a rigid thermoplastic phase, wherein at least a portion of the rigid thermoplastic phase is grafted to the elastomeric phase; and wherein the elastomeric phase comprises a polymer having structural units derived from butyl acrylate; and wherein the rigid thermoplastic phase comprises structural units derived from styrene, acrylonitrile, and optionally methyl methacrylate, wherein the article has an L* value of less than about 30 with specular component included, and a heating build-up (HBU) as measured according to ASTM D4803-89 of less than about 34° C.; which method comprises the step of combining the resin with a colorant combination comprising an inorganic infrared reflecting pigment and at least two organic colorants, wherein the inorganic infrared reflecting pigment is selected from the group consisting of a chromium iron oxide,
  • Embodiments of the invention also include articles comprising the compositions.
  • alkyl as used in the various embodiments of the present invention is intended to designate linear alkyl, branched alkyl, aralkyl, cycloalkyl, bicycloalkyl, tricycloalkyl and polycycloalkyl radicals containing carbon and hydrogen atoms, and optionally containing atoms in addition to carbon and hydrogen, for example atoms selected from Groups 15, 16 and 17 of the Periodic Table.
  • Alkyl groups may be saturated or unsaturated, and may comprise, for example, vinyl or allyl.
  • alkyl also encompasses that alkyl portion of alkoxide groups.
  • normal and branched alkyl radicals are those containing from 1 to about 32 carbon atoms, and include as illustrative non-limiting examples C 1 -C 32 alkyl (optionally substituted with one or more groups selected from C 1 -C 32 alkyl, C 3 -C 15 cycloalkyl or aryl); and C 3 -C 15 cycloalkyl optionally substituted with one or more groups selected from C 1 -C 32 alkyl.
  • Some particular illustrative examples comprise methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tertiary-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl.
  • Some illustrative non-limiting examples of cycloalkyl and bicycloalkyl radicals include cyclobutyl, cyclopentyl, cyclohexyl, methylcyclohexyl, cycloheptyl, bicycloheptyl and adamantyl.
  • aralkyl radicals are those containing from 7 to about 14 carbon atoms; these include, but are not limited to, benzyl, phenylbutyl, phenylpropyl, and phenylethyl.
  • aryl as used in the various embodiments of the present invention is intended to designate substituted or unsubstituted aryl radicals containing from 6 to 20 ring carbon atoms.
  • aryl radicals include C 6 -C 20 aryl optionally substituted with one or more groups selected from C 1 -C 32 alkyl, C 3 -C 15 cycloalkyl, aryl, and functional groups comprising atoms selected from Groups 15, 16 and 17 of the Periodic Table.
  • aryl radicals comprise substituted or unsubstituted phenyl, biphenyl, tolyl, naphthyl and binaphthyl.
  • compositions of the present invention comprise a rubber modified thermoplastic resin comprising a discontinuous elastomeric phase dispersed in a rigid thermoplastic phase, wherein at least a portion of the rigid thermoplastic phase is grafted to the elastomeric phase.
  • the rubber modified thermoplastic resin employs at least one rubber substrate for grafting.
  • the rubber substrate comprises the discontinuous elastomeric phase of the composition.
  • the rubber substrate is susceptible to grafting by at least a portion of a graftable monomer.
  • suitable rubber substrates comprise dimethyl siloxane/butyl acrylate rubber, or silicone/butyl acrylate composite rubber; polyolefin rubbers such as ethylene-propylene rubber or ethylene-propylene-diene (EPDM) rubber; or silicone rubber polymers such as polymethyl siloxane rubber.
  • the rubber substrate typically has a glass transition temperature, Tg, in one embodiment less than or equal to 25° C., in another embodiment below about 0° C., in another embodiment below about minus 20° C., and in still another embodiment below about minus 30° C.
  • Tg of a polymer is the T value of polymer as measured by differential scanning calorimetry (DSC; heating rate 20° C./minute, with the Tg value being determined at the inflection point).
  • the rubber substrate is derived from polymerization by known methods of at least one monoethylenically unsaturated alkyl (meth)acrylate monomer selected from (C 1 -C 12 )alkyl(meth)acrylate monomers and mixtures comprising at least one of said monomers.
  • the terminology “(C x -C y )” as applied to a particular unit, such as, for example, a chemical compound or a chemical substituent group means having a carbon atom content of from “x” carbon atoms to “y” carbon atoms per such unit.
  • (C 1 -C 12 )alkyl means a straight chain, branched or cyclic alkyl substituent group having from 1 to 12 carbon atoms per group.
  • Suitable (C 1 -C 12 )alkyl(meth)acrylate monomers include, but are not limited to, (C 1 -C 12 )alkyl acrylate monomers, illustrative examples of which comprise ethyl acrylate, butyl acrylate, iso-pentyl acrylate, n-hexyl acrylate, and 2-ethyl hexyl acrylate; and their (C 1 -C 12 )alkyl methacrylate analogs, illustrative examples of which comprise methyl methacrylate, ethyl methacrylate, propyl methacrylate, iso-propyl methacrylate, butyl methacrylate, hexyl methacrylate, and decyl methacrylate.
  • the rubber substrate may also optionally comprise a minor amount, for example up to about 5 wt. %, of structural units derived from at least one polyethylenically unsaturated monomer, for example those that are copolymerizable with a monomer used to prepare the rubber substrate.
  • a polyethylenically unsaturated monomer is often employed to provide cross-linking of the rubber particles and/or to provide “graftlinking” sites in the rubber substrate for subsequent reaction with grafting monomers.
  • Suitable polyethylenically unsaturated monomers include, but are not limited to, butylene diacrylate, divinyl benzene, butene diol dimethacrylate, trimethylolpropane tri(meth)acrylate, allyl methacrylate, diallyl methacrylate, diallyl maleate, diallyl fumarate, diallyl phthalate, triallyl methacrylate, triallyl cyanurate, triallyl isocyanurate, the acrylate of tricyclodecenylalcohol and mixtures comprising at least one of such monomers.
  • the rubber substrate comprises structural units derived from triallyl cyanurate.
  • the rubber substrate may optionally comprise structural units derived from minor amounts of other unsaturated monomers, for example those that are copolymerizable with a monomer used to prepare the rubber substrate.
  • the rubber substrate may optionally include up to about 25 wt. % of structural units derived from one or more monomers selected from (meth)acrylate monomers, alkenyl aromatic monomers and monoethylenically unsaturated nitrile monomers.
  • Suitable copolymerizable (meth)acrylate monomers include, but are not limited to, C 1 -C 12 aryl or haloaryl substituted acrylate, C 1 -C 12 aryl or haloaryl substituted methacrylate, or mixtures thereof, monoethylenically unsaturated carboxylic acids, such as, for example, acrylic acid, methacrylic acid and itaconic acid; glycidyl(meth)acrylate, hydroxy alkyl(meth)acrylate, hydroxy(C 1 -C 12 )alkyl(meth)acrylate, such as, for example, hydroxyethyl methacrylate; (C 4 -C 12 )cycloalkyl(meth)acrylate monomers, such as, for example, cyclohexyl methacrylate; (meth)acrylamide monomers, such as, for example, acrylamide, methacrylamide and N-substituted-acrylamide or N-substituted
  • Suitable alkenyl aromatic monomers include, but are not limited to, vinyl aromatic monomers, such as, for example, styrene and substituted styrenes having one or more alkyl, alkoxy, hydroxy or halo substituent groups attached to the aromatic ring, including, but not limited to, alpha-methyl styrene, p-methyl styrene, 3,5-diethylstyrene, 4-n-propylstyrene, 4-isopropylstyrene, vinyl toluene, alpha-methyl vinyl toluene, vinyl xylene, trimethyl styrene, butyl styrene, t-butyl styrene, chlorostyrene, alpha-chlorostyrene, dichlorostyrene, tetrachlorostyrene, bromostyrene, alpha-bromostyrene, dibromostyrene, p-hydroxyst
  • Substituted styrenes with mixtures of substituents on the aromatic ring are also suitable.
  • the term “monoethylenically unsaturated nitrile monomer” means an acyclic compound that includes a single nitrile group and a single site of ethylenic unsaturation per molecule and includes, but is not limited to, acrylonitrile, methacrylonitrile, alpha-chloro acrylonitrile, and the like.
  • the rubber substrate comprises repeating units derived from one or more (C 1 -C 12 )alkyl acrylate monomers. In still another particular embodiment, the rubber substrate comprises from 40 to 95 wt. % repeating units derived from one or more (C 1 -C 12 )alkyl acrylate monomers, and more preferably from one or more monomers selected from ethyl acrylate, butyl acrylate and n-hexyl acrylate.
  • the rubber substrate may be present in the rubber modified thermoplastic resin in one embodiment at a level of from about 4 wt. % to about 94 wt. %; in another embodiment at a level of from about 10 wt. % to about 80 wt. %; in another embodiment at a level of from about 15 wt. % to about 80 wt. %; in another embodiment at a level of from about 35 wt. % to about 80 wt. %; in another embodiment at a level of from about 40 wt. % to about 80 wt. %; in another embodiment at a level of from about 25 wt. % to about 60 wt.
  • the rubber substrate may be present in the rubber modified thermoplastic resin at a level of from about 5 wt. % to about 50 wt. %; at a level of from about 8 wt. % to about 40 wt. %; or at a level of from about 10 wt. % to about 30 wt. %, based on the weight of the particular rubber modified thermoplastic resin.
  • the initial rubber substrate may possess a broad, essentially monomodal, particle size distribution with particles ranging in size from about 50 nanometers (nm) to about 1000 nm.
  • the mean particle size of the initial rubber substrate may be less than about 100 nm.
  • the mean particle size of the initial rubber substrate may be in a range of between about 80 nm and about 400 nm. In other embodiments the mean particle size of the initial rubber substrate may be greater than about 400 nm.
  • the mean particle size of the initial rubber substrate may be in a range of between about 400 nm and about 750 nm.
  • the initial rubber substrate comprises particles which are a mixture of particle sizes with at least two mean particle size distributions.
  • the initial rubber substrate comprises a mixture of particle sizes with each mean particle size distribution in a range of between about 80 nm and about 750 nm.
  • the initial rubber substrate comprises a mixture of particle sizes, one with a mean particle size distribution in a range of between about 80 nm and about 400 nm; and one with a broad and essentially monomodal mean particle size distribution.
  • the rubber substrate may be made according to known methods, such as, but not limited to, a bulk, solution, or emulsion process.
  • the rubber substrate is made by aqueous emulsion polymerization in the presence of a free radical initiator, e.g., an azonitrile initiator, an organic peroxide initiator, a persulfate initiator or a redox initiator system, and, optionally, in the presence of a chain transfer agent, e.g., an alkyl mercaptan, to form particles of rubber substrate.
  • a free radical initiator e.g., an azonitrile initiator, an organic peroxide initiator, a persulfate initiator or a redox initiator system
  • a chain transfer agent e.g., an alkyl mercaptan
  • the rigid thermoplastic resin phase of the rubber modified thermoplastic resin comprises one or more thermoplastic polymers.
  • monomers are polymerized in the presence of the rubber substrate to thereby form a rigid thermoplastic phase, at least a portion of which is chemically grafted to the elastomeric phase.
  • the portion of the rigid thermoplastic phase chemically grafted to rubber substrate is sometimes referred to hereinafter as grafted copolymer.
  • the rigid thermoplastic phase comprises a thermoplastic polymer or copolymer that exhibits a glass transition temperature (Tg) in one embodiment of greater than about 25° C., in another embodiment of greater than or equal to 90° C., and in still another embodiment of greater than or equal to 100° C.
  • Tg glass transition temperature
  • the rigid thermoplastic phase comprises a polymer having structural units derived from one or more monomers selected from the group consisting of (C 1 -C 12 )alkyl-(meth)acrylate monomers, aryl-(meth)acrylate monomers, alkenyl aromatic monomers and monoethylenically unsaturated nitrile monomers.
  • Suitable (C 1 -C 12 )alkyl-(meth)acrylate and aryl-(meth)acrylate monomers, alkenyl aromatic monomers and monoethylenically unsaturated nitrile monomers include those set forth hereinabove in the description of the rubber substrate.
  • the rigid thermoplastic resin phase may, provided that the Tg limitation for the phase is satisfied, optionally include up to about 10 wt. % of third repeating units derived from one or more other copolymerizable monomers.
  • the rigid thermoplastic phase typically comprises one or more alkenyl aromatic polymers. Suitable alkenyl aromatic polymers comprise at least about 20 wt. % structural units derived from one or more alkenyl aromatic monomers. In a particular embodiment suitable alkenyl aromatic polymers comprise structural units derived from one or more alkenyl aromatic monomers and present in a range of between about 20 wt. % and about 50 wt. %, based on the total weight of monomers added to form the copolymer comprising the grafted copolymer and the rigid thermoplastic phase. In one embodiment the rigid thermoplastic phase comprises an alkenyl aromatic polymer having structural units derived from one or more alkenyl aromatic monomers and from at least one other polymerizable monomer.
  • alkenyl aromatic polymers include, but are not limited to, styrene/acrylonitrile copolymers, alpha-methylstyrene/acrylonitrile copolymers, alpha-methylstyrene/styrene/acrylonitrile copolymers, styrene/N-aryl maleimide copolymers, and styrene/N-phenyl maleimide copolymers.
  • the rigid thermoplastic phase comprises an alkenyl aromatic polymer having structural units derived from one or more alkenyl aromatic monomers; from one or more monoethylenically unsaturated nitrile monomers; and from one or more monomers selected from the group consisting of (C 1 -C 12 )alkyl- and aryl-(meth)acrylate monomers.
  • alkenyl aromatic polymers include, but are not limited to, styrene/acrylonitrile/methyl methacrylate copolymers, alpha-methylstyrene/acrylonitrile/methyl methacrylate copolymers and alpha-methylstyrene/styrene/acrylonitrile/methyl methacrylate copolymers.
  • suitable alkenyl aromatic polymers comprise styrene/methyl methacrylate copolymers, styrene/maleic anhydride copolymers; styrene/acrylonitrile/maleic anhydride copolymers, and styrene/acrylonitrile/acrylic acid copolymers. These copolymers may be used for the rigid thermoplastic phase either individually or as mixtures.
  • the amount of nitrile monomer added to form the copolymer comprising the grafted copolymer and the rigid thermoplastic phase may be in one embodiment in a range of between about 5 wt. % and about 40 wt. %, in another embodiment in a range of between about 5 wt. % and about 30 wt. %, in another embodiment in a range of between about 10 wt. % and about 30 wt. %, and in yet another embodiment in a range of between about 15 wt. % and about 30 wt.
  • the amount of nitrile monomer added to form the copolymer comprising the grafted copolymer and the rigid thermoplastic phase may be in a range of between about 10 wt. % and about 20 wt. %, based on the total weight of monomers added to form the copolymer comprising the grafted copolymer and the rigid thermoplastic phase.
  • the amount of the said monomer(s) added to form the copolymer comprising the grafted copolymer and the rigid thermoplastic phase may be in one embodiment in a range of between about 5 wt. % and about 50 wt. %, in another embodiment in a range of between about 5 wt. % and about 45 wt. %, in another embodiment in a range of between about 5 wt. % and about 35 wt. %, and in yet another embodiment in a range of between about 15 wt. % and about 35 wt.
  • the amount of the said monomer(s) added to form the copolymer comprising the grafted copolymer and the rigid thermoplastic phase may be in a range of between about 20 wt. % and about 50 wt. %, based on the total weight of monomers added to form the copolymer comprising the grafted copolymer and the rigid thermoplastic phase.
  • the wt./wt. ratio of said (meth)acrylate monomer to the totality of other monomers from which said rigid thermoplastic phase is derived is in one embodiment in a range of between about 10:1 and about 1:10; in another embodiment in a range of between about 8:1 and about 1:8; in another embodiment in a range of between about 5:1 and about 1:5; in another embodiment in a range of between about 3:1 and about 1:3; in another embodiment in a range of between about 2:1 and about 1:2; and in yet another embodiment in a range of between about 1.5:1 and about 1:1.5.
  • the wt./wt. ratio of said monomers is, respectively, in one embodiment in a range of from about 80/20/0 to about 20/60/20, in another embodiment in a range of from about 60/30/10 to about 45/30/25, and in still another embodiment in a range of from about 45/40/15 to about 35/40/25.
  • the amount of grafting that takes place between the rubber substrate and monomers comprising the rigid thermoplastic phase varies with the relative amount and composition of the elastomeric phase. In one embodiment, greater than about 10 wt. % of the rigid thermoplastic phase is chemically grafted to the rubber substrate, based on the total amount of rigid thermoplastic phase in the composition. In another embodiment, greater than about 15 wt. % of the rigid thermoplastic phase is chemically grafted to the rubber substrate, based on the total amount of rigid thermoplastic phase in the composition. In still another embodiment, greater than about 20 wt. % of the rigid thermoplastic phase is chemically grafted to the rubber substrate, based on the total amount of rigid thermoplastic phase in the composition.
  • the amount of rigid thermoplastic phase chemically grafted to the rubber substrate may be in a range of between about 5 wt. % and about 90 wt. %; between about 10 wt. % and about 90 wt. %; between about 15 wt. % and about 85 wt. %; between about 15 wt. % and about 50 wt. %; or between about 20 wt. % and about 50 wt. %, based on the total amount of rigid thermoplastic phase in the composition.
  • about 40 wt. % to 90 wt. % of the rigid thermoplastic phase is free, that is, non-grafted.
  • the rigid thermoplastic phase may be present in the rubber modified thermoplastic resin in one embodiment at a level of from about 85 wt. % to about 6 wt. %; in another embodiment at a level of from about 65 wt. % to about 6 wt. %; in another embodiment at a level of from about 60 wt. % to about 20 wt. %; in another embodiment at a level of from about 75 wt. % to about 40 wt. %, and in still another embodiment at a level of from about 60 wt. % to about 50 wt. %, based on the weight of the rubber modified thermoplastic resin.
  • the rigid thermoplastic phase may be present in a range of between about 90 wt. % and about 30 wt. %, based on the weight of the rubber modified thermoplastic resin.
  • the rigid thermoplastic phase may be formed solely by polymerization carried out in the presence of rubber substrate, or by addition of one or more separately synthesized rigid thermoplastic polymers to the rubber modified thermoplastic resin comprising the composition.
  • the separately synthesized rigid thermoplastic polymer comprises structural units essentially identical to those of the rigid thermoplastic phase comprising the rubber modified thermoplastic resin.
  • the separately synthesized rigid thermoplastic polymer is a copolymer comprising structural units derived from styrene and acrylonitrile (SAN); alpha-methylstyrene and acrylonitrile; alpha-methylstyrene, styrene, and acrylonitrile; styrene, acrylonitrile, and methyl methacrylate; alpha-methyl styrene, acrylonitrile, and methyl methacrylate; or alpha-methylstyrene, styrene, acrylonitrile, and methyl methacrylate.
  • SAN styrene and acrylonitrile
  • the amount of said separately synthesized rigid thermoplastic polymer added is in one embodiment in a range of between about 5 wt. % and about 90 wt. %, in another embodiment in a range of between about 5 wt. % and about 80 wt. %, in another embodiment in a range of between about 10 wt. % and about 70 wt. %, in another embodiment in a range of between about 15 wt. % and about 65 wt. %, and in still another embodiment in a range of between about 20 wt. % and about 65 wt. %, based on the weight of resinous components in the composition.
  • Two or more different rubber substrates, each possessing a different mean particle size may be separately employed in a polymerization reaction to prepare rigid thermoplastic phase, and then the products blended together to make the rubber modified thermoplastic resin.
  • the ratios of said substrates may be in a range of about 90:10 to about 10:90, or in a range of about 80:20 to about 20:80, or in a range of about 70:30 to about 30:70.
  • an initial rubber substrate with smaller particle size is the major component in such a blend containing more than one particle size of initial rubber substrate.
  • the rigid thermoplastic phase may be made according to known processes, for example, mass polymerization, emulsion polymerization, suspension polymerization or combinations thereof, wherein at least a portion of the rigid thermoplastic phase is chemically bonded, i.e., “grafted” to the elastomeric phase via reaction with unsaturated sites present in the elastomeric phase.
  • the grafting reaction may be performed in a batch, continuous or semi-continuous process. Representative procedures include, but are not limited to, those taught in U.S. Pat. No. 3,944,631; and in U.S. patent application Ser. No. 08/962,458, filed Oct. 31, 1997.
  • the unsaturated sites in the elastomeric phase are provided, for example, by residual unsaturated sites in those structural units of the rubber substrate that were derived from a graftlinking monomer.
  • monomer grafting to rubber substrate with concomitant formation of rigid thermoplastic phase may optionally be performed in stages wherein at least one first monomer is grafted to rubber substrate followed by at least one second monomer different from said first monomer.
  • Representative procedures for staged monomer grafting to rubber substrate include, but are not limited to, those taught in commonly assigned U.S. patent application Ser. No. 10/748,394, filed Dec. 30, 2003.
  • the rubber modified thermoplastic resin is an ASA graft copolymer such as that manufactured and sold by General Electric Company under the trademark GELOY®, or an acrylate-modified acrylonitrile-styrene-acrylate graft copolymer.
  • ASA polymeric materials include, for example, those disclosed in U.S. Pat. No. 3,711,575.
  • Acrylonitrile-styrene-acrylate graft copolymers comprise those described for example in commonly assigned U.S. Pat. Nos. 4,731,414 and 4,831,079.
  • the ASA component further comprises an additional acrylate-graft formed from monomers selected from the group consisting of C 1 to C 12 alkyl- and aryl-(meth)acrylate as part of either the rigid phase, the elastomeric phase, or both.
  • Such copolymers are referred to as acrylate-modified acrylonitrile-styrene-acrylate graft copolymers, or acrylate-modified ASA.
  • a preferred monomer is methyl methacrylate to result in a PMMA-modified ASA (sometimes referred to hereinafter as “MMA-ASA”).
  • Compositions of the invention comprise at least one inorganic infrared reflecting pigment.
  • the pigment is not particularly limited provided that it hardly absorbs infrared radiation.
  • Illustrative inorganic infrared reflecting pigments comprise: metal oxides, mixed metal oxides, titanates, aluminates, metal carbonates, iron oxides, chromium oxides, ultramarines, stainless steel powder, mica powder covered with titanium oxide or metal sulfides (including rare-earth sulfides).
  • inorganic infrared reflecting pigments comprise chromium iron oxides or black spinels, such as but not limited to, chrome iron nickel black spinel. Illustrative examples of these materials are available under the names “Black 1”, “Black 462”, “Black 376”, and “Black 411” from The Shepherd Color Company, Cincinnati, Ohio.
  • compositions of the invention comprise at least one organic colorant.
  • organic colorants are non-absorbing in the infrared.
  • Illustrative organic colorants comprise those which contribute to the production of a dark or a black color in molded parts of the compositions.
  • Suitable organic colorants may be employed either alone or as mixtures comprising more than one organic colorant in embodiments of compositions of the invention.
  • at least two organic colorants may be employed to produce either a dark or a black color.
  • Illustrative organic colorants are derived from the class of anthraquinone, azo, phthalic anhydride, phthalocyanine, indigo/thioindigo, azomethine, azomethine-azo, dioxazine, quinacridone, isoindolinone, isoindoline, diketopyrrolopyrrole, perylene, or perinone organic colorants, or mixtures thereof.
  • Other illustrative examples of particular examples of organic colorants that produce a dark or a black color include but are not limited to mixtures of Solvent Green 3 and Solvent Red 135 or Solvent Green 3, Solvent Violet 13, and Pigment Blue 15:4 as referenced in the Color Index.
  • azomethine system organic pigments such as CHROMOFINE® Black A-1103, a trademarked product produced by Dainichiseika Color & Chemicals Mfg. Co., Ltd., and perylene system pigments such as PALIOGEN® Black S 0084 (C.I. Pigment Black 31), a trademarked product produced by BASF Corporation, may be employed, and these may be dispersed in the resin component either singly or in combination with other pigments.
  • organic colorants comprise MACROLEX® Green 5B Gran, which is an anthraquinone dyestuff, MACROLEX® Red EG Gran, which is a perinone dyestuff, and MACROLEX® Red Violet R Gran also known as Disperse Violet 31/26, C.A.S. #6408-72-6, 1,4-diamino-2,3-diphenoxyanthraquinone, obtained from Lanxess Corporation.
  • MACROLEX® Green 5B Gran which is an anthraquinone dyestuff
  • MACROLEX® Red EG Gran which is a perinone dyestuff
  • MACROLEX® Red Violet R Gran also known as Disperse Violet 31/26, C.A.S. #6408-72-6, 1,4-diamino-2,3-diphenoxyanthraquinone, obtained from Lanxess Corporation.
  • suitable organic colorants may be found in U.S. Pat. No
  • the amounts of inorganic infrared reflecting pigment and organic colorant in embodiments of compositions of the invention are those amounts effective to provide a colorant combination comprising at least one inorganic infrared reflecting pigment and at least one organic colorant resulting in a molded part with an L* value of less than about 30 with specular component included and a heating build-up (HBU) of less than about 34° C.
  • the total amount of inorganic infrared reflecting pigment is greater than or equal to about 0.05 parts per hundred parts resinous components (phr).
  • the total loading of IRR pigment is greater than or equal to about 0.75 phr and the total loading of organic colorant greater than or equal to about 0.5 phr.
  • the total loading of IRR pigment is greater than or equal to about 1 phr and the total loading of organic colorant greater than or equal to about 0.8 phr. In still other preferred embodiments the total loading of IRR pigment is greater than or equal to about 2 phr and the total loading of organic colorant is greater than or equal to about 1 phr.
  • the amount of any one organic colorant may be greater than or equal to about 0.005 phr, preferably greater than or equal to about 0.01 phr, and more preferably greater than or equal to about 0.05 phr.
  • the total loading of IRR pigment is less than or equal to about 5 phr, preferably less than or equal to about 4 phr. In still other embodiments the total loading of organic colorant is less than or equal to about 4 phr, preferably less than or equal to about 3 phr.
  • Thermoplastic resin compositions in embodiments of the present invention may optionally comprise various conventional additives, such as, but not limited to: (1) antioxidants, such as, for example, organophosphites, for example, tris(nonyl-phenyl)phosphite, (2,4,6-tri-tert-butylphenyl)(2-butyl-2-ethyl-1,3-propanediol)phosphite, bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite or distearyl pentaerythritol diphosphite, as well as alkylated monophenols, polyphenols, alkylated reaction products of polyphenols with dienes, such as, for example, butylated reaction products of para-cresol and dicyclopentadiene, alkylated hydroquinones, hydroxylated thiodiphenyl ethers, alkylidene-bisphenols
  • compositions of the present invention may be prepared by mixing the components as described herein to form a first mixture.
  • the mixing can be typically carried out in any conventional mixer like drum mixers, ribbon mixers, vertical spiral mixers, Muller mixers, Henschel mixers, sigma mixers, chaotic mixers, static mixers or the like.
  • the first mixture is then compounded under melt-mixing conditions using any conventional method, such as extrusion kneading or roll kneading, a two-roll mill, in a Banbury mixer or in a single screw or twin-screw extruder, or in any high shear mixing device to mix the components to produce an intimate mixture, and optionally, to reduce the composition so formed to particulate form, for example, by pelletizing or grinding the composition.
  • the twin screw extruder when employed, can be co-rotating, counter rotating, intermeshing, non-intermeshing, a planetary gear extruder, a co-continuous mixer, or the like.
  • the compounding process can be a continuous, semi-continuous, or a batch process.
  • all or a portion of resin or additive, colorant or pigment, either neat or in the form of a mixture may be added to the composition at some stage of a blending process, such as in an extrusion process.
  • a blending process such as in an extrusion process.
  • a portion of the rigid thermoplastic resin may be mixed with any additive, colorant and/or pigment to prepare a master batch, and then the remaining rigid thermoplastic resin may be added and mixed therewith later for multistage mixture.
  • compositions in embodiments of the present invention can be molded into useful articles by a variety of means such as injection, extrusion, coextrusion, rotary molding, blow molding or thermoforming, or like methods to form articles.
  • the articles comprise unitary articles.
  • Illustrative unitary articles comprise a profile consisting essentially of a composition of the present invention.
  • the articles may comprise multilayer articles comprising at least one layer comprising a composition of the present invention.
  • multilayer articles may comprise a cap-layer comprising a composition of the invention and a substrate layer comprising at least one thermoplastic resin different from said cap-layer.
  • articles include, but are not limited to, Some particular suitable articles comprise outdoor and indoor signs, and highway signs, articles for outdoor vehicle and device (OVAD) applications; exterior and interior components for automotive, truck, military and emergency vehicles (including automotive and water-borne vehicles), scooter, bicycle, and motorcycle, including panels, quarter panels, vertical panels, horizontal panels, trim, pillars, center posts, doors, door frames, decklids, trunklids, hoods, bonnets, roofs, fascia, pillar appliques, cladding, body side moldings, wheel covers, window frames, and license plate enclosures; enclosures, housings, panels, and parts for outdoor vehicles and devices; enclosures for electrical and telecommunication devices; electrical components; outdoor furniture; aircraft components; boats and marine equipment, including trim, enclosures, and housings; outboard motor housings; depth finder housings, pools; spas; hot-tubs; steps; step coverings; building and construction applications such as fencing, roofs, siding, particularly vinyl siding applications; windows, decorative window furnishings or treatments; wall panels, and doors;
  • OAD outdoor
  • IRR means infrared reflecting
  • C.Ex.” means comparative example.
  • Components used in the compositions were as follows:
  • the ASA resin employed comprised structural units derived from 37.5 wt. % styrene, 18 wt. % acrylonitrile, and 44.5 wt. % butyl acrylate.
  • the MMA-ASA resin employed comprised structural units derived from 30.1 wt. % styrene, 13.7 wt. % acrylonitrile, 11.1 wt. % methyl methacrylate, and 45 wt. % butyl acrylate.
  • the pigments and colorants were as follows:
  • IRR Black 1 was “Black 376”, a jet-black powder comprising chrome iron nickel black spinel produced by high temperature calcination and obtained from The Shepherd Color Company, Cincinnati, Ohio.
  • IRR Black 2 was “Black 411”, a brown-black powder comprising chromium iron oxide produced by high temperature calcination and obtained from The Shepherd Color Company, Cincinnati, Ohio.
  • Organic Colorant 1 was MACROLEX® Green 5B Gran, an anthraquinone dyestuff obtained from Lanxess Corporation.
  • Organic Colorant 2 was MACROLEX® Red EG Gran, a perinone dyestuff obtained from Lanxess Corporation.
  • Organic Colorant 3 was Disperse Violet 31/26, C.A.S. #6408-72-6, 1,4-diamino-2,3-diphenoxyanthraquinone, MACROLEX® Red Violet R Gran obtained from Lanxess Corporation.
  • compositions comprising ASA or MMA-ASA and additives as indicated in Table 1 were mixed in a Henschel mixer, and then extruded using standard compounding conditions (for example, melt temperature in a range of about 240° C. to about 260° C.) and pelletized. Pellets of the compositions were injection molded into color plaques of dimensions 62.4 mm ⁇ 62.4 mm, and 3.2 mm thick.
  • the heating build-up (HBU) due to the absorption of solar energy in materials for outdoor application was measured based upon data obtained by experimentally determining the total solar reflectance (TSR) and the temperature rise above ambient temperature under an ultraviolet heat lamp, relative to carbon black according to ASTM D4803-89.
  • TSR total solar reflectance
  • TSR measurement was conducted with a Solar Spectrum Reflectometer, model SSR-ER version 5.0, equipped with a single tungsten filament source. Weathering performance was characterized by color change ( ⁇ E) during exposure in an Atlas Xenon arc accelerated weathering chamber according to ASTM G26. Color measurements were done using a Gretag-Macbeth 7000A spectrophotometer with integrating sphere and with specular component included using CIE LAB D65 illuminant and 10 degree field of view. The term “specular component” corresponds to specular reflection as defined in ASTM E284.
  • Examples 1 and 2 comprising at least one inorganic infrared reflecting pigment and at least one organic colorant have a very good combination of low HBU, low value for L*, and low value for ⁇ E.
  • Comparative examples 1 and 2 containing at least one inorganic infrared reflecting pigment but no organic colorant both show higher value for L* than Examples 1 and 2.
  • the comparative examples 3, 4, 5, and 6 containing conventional carbon black colorant all show higher values for HBU than Examples 1 and 2.
  • Preferred compositions of the invention have a ⁇ E of less than about 2 after 1250 kiloJoules per square meter (kJ/m 2 ).
  • compositions of the invention show a surprising advantage in both low HBU, low value for L*, and good weatherability as shown by low value for delta E. These advantages are particularly beneficial for compositions to make dark molded parts, such as dark brown, dark green, black, dark blue, dark gray, dark red, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Central Heating Systems (AREA)
  • Road Signs Or Road Markings (AREA)
  • Table Devices Or Equipment (AREA)
US11/294,126 2005-12-05 2005-12-05 Weatherable resinous composition with low heat storage and method Abandoned US20070129470A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US11/294,126 US20070129470A1 (en) 2005-12-05 2005-12-05 Weatherable resinous composition with low heat storage and method
US11/562,147 US7728056B2 (en) 2005-12-05 2006-11-21 Weatherable resinous compositions with low heat storage and method
EP06844768A EP1957568B1 (en) 2005-12-05 2006-12-04 Weatherable resinous composition with low heat storage and method
JP2008544407A JP5107932B2 (ja) 2005-12-05 2006-12-04 低蓄熱の耐候性樹脂組成物及び方法
CN200680052368.6A CN101336268B (zh) 2005-12-05 2006-12-04 具有低的蓄热的耐气候树脂组合物和方法
BRPI0619441-9A BRPI0619441A2 (pt) 2005-12-05 2006-12-04 composição resinosa itemperizável com baixo calor de armazenagem, artigo feito com a referida composição e método para preparar esse artigo
KR1020087013764A KR20080082962A (ko) 2005-12-05 2006-12-04 낮은 열 저장성을 갖는 내후성 수지 조성물과 그 제조 방법
AT06844768T ATE496964T1 (de) 2005-12-05 2006-12-04 Wetterfeste harzzusammensetzung mit geringer wärmespeicherung und entsprechendes verfahren
PCT/US2006/046186 WO2007067462A1 (en) 2005-12-05 2006-12-04 Weatherable resinous composition with low heat storage and method
DE602006019906T DE602006019906D1 (de) 2005-12-05 2006-12-04 Wetterfeste harzzusammensetzung mit geringer wärmespeicherung und entsprechendes verfahren
AU2006322112A AU2006322112B2 (en) 2005-12-05 2006-12-04 Weatherable resinous composition with low heat storage and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/294,126 US20070129470A1 (en) 2005-12-05 2005-12-05 Weatherable resinous composition with low heat storage and method
US11/562,147 US7728056B2 (en) 2005-12-05 2006-11-21 Weatherable resinous compositions with low heat storage and method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/562,147 Continuation-In-Part US7728056B2 (en) 2005-12-05 2006-11-21 Weatherable resinous compositions with low heat storage and method

Publications (1)

Publication Number Publication Date
US20070129470A1 true US20070129470A1 (en) 2007-06-07

Family

ID=37951663

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/294,126 Abandoned US20070129470A1 (en) 2005-12-05 2005-12-05 Weatherable resinous composition with low heat storage and method
US11/562,147 Active 2026-01-30 US7728056B2 (en) 2005-12-05 2006-11-21 Weatherable resinous compositions with low heat storage and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/562,147 Active 2026-01-30 US7728056B2 (en) 2005-12-05 2006-11-21 Weatherable resinous compositions with low heat storage and method

Country Status (10)

Country Link
US (2) US20070129470A1 (ko)
EP (1) EP1957568B1 (ko)
JP (1) JP5107932B2 (ko)
KR (1) KR20080082962A (ko)
CN (1) CN101336268B (ko)
AT (1) ATE496964T1 (ko)
AU (1) AU2006322112B2 (ko)
BR (1) BRPI0619441A2 (ko)
DE (1) DE602006019906D1 (ko)
WO (1) WO2007067462A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100160190A1 (en) * 2008-12-19 2010-06-24 Kuvshinnikova Olga I Weatherable colored resinous composition and method
WO2011144429A1 (de) 2010-05-20 2011-11-24 Evonik Röhm Gmbh Formmasse oder beschichtungssystem (pmma-frei) mit ir reflektierenden eigenschaften in kombination mit einer pmma-haltigen deckschicht oder folie
WO2012075369A1 (en) * 2010-12-03 2012-06-07 3G Mermet Corporation Near infrared reflecting composition and coverings for architectural openings incorporating same
US9238725B2 (en) 2011-11-04 2016-01-19 Nihon Tokushu Toryo Co., Ltd. Infrared reflective film, infrared reflective paint and infrared reflective body
CN106661300A (zh) * 2014-04-01 2017-05-10 乐天尖端材料株式会社 具有改善的耐热性和着色性质的热塑性树脂组合物
CN109280427A (zh) * 2017-07-21 2019-01-29 包头中科世纪科技有限责任公司 水性树脂色浆及其制备方法
EP3603729A4 (en) * 2017-03-30 2020-12-16 Terumo Kabushiki Kaisha MEDICAL INSTRUMENT
CN113166471A (zh) * 2018-12-05 2021-07-23 艾维恩股份有限公司 用于保护光敏材料的组合物
US11655361B2 (en) 2019-02-19 2023-05-23 Lg Chem, Ltd. Thermoplastic resin composition and thermoplastic resin molded article

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032035A1 (en) * 2005-09-16 2007-03-22 Dayco Fluid Technologies S.P.A. Device for purifying exhaust gases of a vehicle by selective catalytic reduction including a heated piping
EP1931905B1 (en) * 2005-09-16 2012-08-08 DYTECH - Dynamic Fluid Technologies S.p.A. Multi-layer piping for conveying and heating a fluid
US20080138609A1 (en) * 2006-11-20 2008-06-12 Honda Motor Co., Ltd. Infrared reflective pigments in unpainted automotive plastics
US20080306204A1 (en) * 2007-06-06 2008-12-11 Brett David Ermi Black-colored thermoplastic compositions, articles, and methods
US8318851B2 (en) * 2007-10-16 2012-11-27 Sabic Innovative Plastics Ip B.V. Weatherable resinous compositions
DE102007061052A1 (de) * 2007-12-18 2009-06-25 Rowa Gmbh Kunststoff mit hoher Farbtiefe
JP5390112B2 (ja) 2008-03-21 2014-01-15 三菱樹脂株式会社 樹脂組成物
US8865293B2 (en) 2008-12-15 2014-10-21 3M Innovative Properties Company Optically active materials and articles and systems in which they may be used
KR101856465B1 (ko) * 2010-12-14 2018-06-19 금호석유화학 주식회사 내열성과 칼라 자유도가 우수한 친환경 창호재 조성물
ITRM20100667A1 (it) 2010-12-17 2012-06-18 Bayer Materialscience Ag Composizione di polimeri con caratteristiche di assorbimento di calore ad alta stabilità agli agenti atmosferici.
ITRM20100670A1 (it) * 2010-12-17 2012-06-18 Bayer Materialscience Ag Colorante organico e composizioni polimeriche colorate ad alta stabilità agli agenti atmosferici.
ITRM20100668A1 (it) 2010-12-17 2012-06-18 Bayer Materialscience Ag Substrato-led a colorazione stabile.
IT1403380B1 (it) 2010-12-17 2013-10-17 Bayer Materialscience Ag Composizione di polimeri con caratteristiche di assorbimento di calore ad alta stabilità agli agenti atmosferici.
KR101239169B1 (ko) * 2011-08-31 2013-03-05 저먼코리아(주) 투명 폴리메틸메타크릴레이트/폴리카보네이트 수지 조성물 및 그의 제조방법
JP5749635B2 (ja) * 2011-11-30 2015-07-15 帝人株式会社 黒色樹脂組成物および樹脂成形体
EP2890743B1 (en) 2012-08-30 2017-07-26 SABIC Global Technologies B.V. Improved low temperature impact properties in pc-siloxane copolymer blend with black and white color capability
JP6062450B2 (ja) * 2012-10-15 2017-01-18 旭化成株式会社 熱可塑性樹脂組成物及びその成形体
WO2014095954A1 (de) * 2012-12-20 2014-06-26 Bayer Materialscience Ag Gedeckt eingefärbte polycarbonat formmassen enthaltend ir-reflektierende pigmente
KR101981816B1 (ko) * 2013-10-30 2019-05-23 롯데첨단소재(주) 내후성이 향상된 열가소성 수지 조성물
US9732211B2 (en) 2013-10-30 2017-08-15 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition having improved weather resistance
US9634707B2 (en) * 2014-07-11 2017-04-25 Superior Communications, Inc. Mobile device case and armband with fluid chamber
CN106574096B (zh) 2014-07-11 2019-08-20 Sabic环球技术有限责任公司 低光泽热塑性组合物及其制备方法和包含所述组合物的制品
JP6659243B2 (ja) * 2015-06-09 2020-03-04 住化ポリカーボネート株式会社 ポリカーボネート樹脂組成物およびそれから得られる樹脂シート
US11209580B2 (en) 2016-12-23 2021-12-28 Sabic Global Technologies B.V. Articles comprising an infrared blocking layer and methods of making the same
US11981277B2 (en) * 2017-11-24 2024-05-14 Sabic Global Technologies B.V. Panel, integrated structure, and method
KR102243041B1 (ko) 2018-05-30 2021-04-22 삼성디스플레이 주식회사 고내열성 조성물 및 이를 이용하는 입체 기재의 제조 방법
FR3087776B1 (fr) * 2018-10-26 2021-07-30 Arkema France Composition de polymere comprenant des particules et un colorant, son procede de preparation et son utilisation
CN109679067A (zh) * 2018-12-29 2019-04-26 江南大学 一种植物基自着色聚氨酯弹性体的合成方法
JP2022539530A (ja) * 2019-06-28 2022-09-12 アルケマ フランス 超低蓄熱性被覆材
JP7457216B1 (ja) 2023-03-29 2024-03-27 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711575A (en) * 1970-02-06 1973-01-16 Hitachi Chemical Co Ltd Three stage emulsion and suspension in process for production of impact resistant thermoplastic resins
US3944631A (en) * 1974-02-01 1976-03-16 Stauffer Chemical Company Acrylate-styrene-acrylonitrile composition and method of making the same
US4731414A (en) * 1986-06-20 1988-03-15 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
US4831079A (en) * 1986-06-20 1989-05-16 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
US6366397B1 (en) * 2000-03-10 2002-04-02 Ntt Advanced Technology Corporation Infrared radiation reflector and infrared radiation transmitting composition
US6521038B2 (en) * 2000-12-21 2003-02-18 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Near-infrared reflecting composite pigments
US20040044119A1 (en) * 2000-11-16 2004-03-04 Gunter Etzrodt Pigmentation formulations
US20040225069A1 (en) * 2003-05-09 2004-11-11 General Electric Company Impact-modified compositions and method
US6822041B2 (en) * 2002-11-21 2004-11-23 General Electric Company Non-streaking black color formulations for polycarbonate-siloxane copolymers and blends
US20060000392A1 (en) * 2002-11-18 2006-01-05 Basf Akitiengesellschaft Solid pigment preparations containing water-soluble anionic surface-active additives that comprise carboxylate groups

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1124878B1 (en) 1998-10-29 2004-01-21 General Electric Company Weatherable block copolyestercarbonates and blends containing them
JP2001187574A (ja) * 1999-10-19 2001-07-10 T S Tec Kk ステアリングホイールおよびステアリングホイールカバーおよび自動車内装部品用樹脂成形品およびステアリングホイールの製造方法
US6541112B1 (en) 2000-06-07 2003-04-01 Dmc2 Degussa Metals Catalysts Cerdec Ag Rare earth manganese oxide pigments
DE10047622A1 (de) * 2000-09-26 2002-04-11 Basf Ag Verfahren zur Herstellung von polymerumhüllten Pigmentteilchen durch Präzipitation
JP3990298B2 (ja) * 2003-02-19 2007-10-10 テクノポリマー株式会社 低蓄熱性熱可塑性樹脂組成物及び成形品
WO2004015014A1 (ja) * 2002-08-07 2004-02-19 Techno Polymer Co., Ltd. 低蓄熱性熱可塑性樹脂組成物および成形品
JP3990294B2 (ja) * 2002-08-07 2007-10-10 テクノポリマー株式会社 低蓄熱性熱可塑性樹脂組成物及び成形品
EP1625172B1 (en) 2003-05-09 2006-09-06 General Electric Company Impact-modified compositions and method
JP2007103813A (ja) * 2005-10-07 2007-04-19 Techno Polymer Co Ltd 太陽電池用バックシート

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711575A (en) * 1970-02-06 1973-01-16 Hitachi Chemical Co Ltd Three stage emulsion and suspension in process for production of impact resistant thermoplastic resins
US3944631A (en) * 1974-02-01 1976-03-16 Stauffer Chemical Company Acrylate-styrene-acrylonitrile composition and method of making the same
US4731414A (en) * 1986-06-20 1988-03-15 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
US4831079A (en) * 1986-06-20 1989-05-16 General Electric Company Blends of an ASA terpolymer, an acrylic polymer and an acrylate based impact modifier
US6366397B1 (en) * 2000-03-10 2002-04-02 Ntt Advanced Technology Corporation Infrared radiation reflector and infrared radiation transmitting composition
US20040044119A1 (en) * 2000-11-16 2004-03-04 Gunter Etzrodt Pigmentation formulations
US6521038B2 (en) * 2000-12-21 2003-02-18 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Near-infrared reflecting composite pigments
US20060000392A1 (en) * 2002-11-18 2006-01-05 Basf Akitiengesellschaft Solid pigment preparations containing water-soluble anionic surface-active additives that comprise carboxylate groups
US6822041B2 (en) * 2002-11-21 2004-11-23 General Electric Company Non-streaking black color formulations for polycarbonate-siloxane copolymers and blends
US20040225069A1 (en) * 2003-05-09 2004-11-11 General Electric Company Impact-modified compositions and method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010080325A1 (en) * 2008-12-19 2010-07-15 Sabic Innovative Plastics Ip B.V. Weatherable colored resinous composition and method
US20100160190A1 (en) * 2008-12-19 2010-06-24 Kuvshinnikova Olga I Weatherable colored resinous composition and method
WO2011144429A1 (de) 2010-05-20 2011-11-24 Evonik Röhm Gmbh Formmasse oder beschichtungssystem (pmma-frei) mit ir reflektierenden eigenschaften in kombination mit einer pmma-haltigen deckschicht oder folie
DE102010029169A1 (de) 2010-05-20 2011-11-24 Evonik Röhm Gmbh Formmasse oder Beschichtungssystem (PMMA-frei) mit IR reflektierenden Eigenschaften in Kombination mit einer PMMA-haltigen Deckschicht oder Folie
CN103282593B (zh) * 2010-12-03 2016-01-20 3G穆尔门公司 近红外反射组合物及掺有所述组合物的建筑开口用覆盖物
WO2012075369A1 (en) * 2010-12-03 2012-06-07 3G Mermet Corporation Near infrared reflecting composition and coverings for architectural openings incorporating same
CN103282593A (zh) * 2010-12-03 2013-09-04 3G穆尔门公司 近红外反射组合物及掺有所述组合物的建筑开口用覆盖物
US9238725B2 (en) 2011-11-04 2016-01-19 Nihon Tokushu Toryo Co., Ltd. Infrared reflective film, infrared reflective paint and infrared reflective body
CN106661300A (zh) * 2014-04-01 2017-05-10 乐天尖端材料株式会社 具有改善的耐热性和着色性质的热塑性树脂组合物
US10329415B2 (en) * 2014-04-01 2019-06-25 Lotte Advanced Materials Co., Ltd. Thermoplastic resin composition with improved heat resistance and coloring property
EP3603729A4 (en) * 2017-03-30 2020-12-16 Terumo Kabushiki Kaisha MEDICAL INSTRUMENT
CN109280427A (zh) * 2017-07-21 2019-01-29 包头中科世纪科技有限责任公司 水性树脂色浆及其制备方法
CN113166471A (zh) * 2018-12-05 2021-07-23 艾维恩股份有限公司 用于保护光敏材料的组合物
US11655361B2 (en) 2019-02-19 2023-05-23 Lg Chem, Ltd. Thermoplastic resin composition and thermoplastic resin molded article

Also Published As

Publication number Publication date
US20070129482A1 (en) 2007-06-07
ATE496964T1 (de) 2011-02-15
JP5107932B2 (ja) 2012-12-26
CN101336268B (zh) 2013-06-12
KR20080082962A (ko) 2008-09-12
JP2009518515A (ja) 2009-05-07
US7728056B2 (en) 2010-06-01
AU2006322112B2 (en) 2011-06-09
EP1957568A1 (en) 2008-08-20
CN101336268A (zh) 2008-12-31
EP1957568B1 (en) 2011-01-26
AU2006322112A1 (en) 2007-06-14
BRPI0619441A2 (pt) 2011-10-04
DE602006019906D1 (de) 2011-03-10
WO2007067462A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US7728056B2 (en) Weatherable resinous compositions with low heat storage and method
JP4740863B2 (ja) Asa型樹脂の製造方法、asa型樹脂、及び、樹脂組成物の製造方法
JP2008514784A (ja) 耐熱性の向上した耐候性樹脂状組成物
US7858176B2 (en) Multilayer articles having special visual effects
JP2011012247A (ja) 漆黒性に優れたゴム変性アクリル系樹脂組成物、及びその成形体
EP1893659B1 (en) Impact-modified molding composition and method
US20100160190A1 (en) Weatherable colored resinous composition and method
EP1625172B1 (en) Impact-modified compositions and method
US20100093915A1 (en) Impact-modified molding composition and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SABIC INNOVATIVE PLASTICS IP B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551

Effective date: 20070831

Owner name: SABIC INNOVATIVE PLASTICS IP B.V.,NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:020985/0551

Effective date: 20070831

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:021423/0001

Effective date: 20080307

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION