US20060063852A1 - Silicone hydrogel contact lens - Google Patents

Silicone hydrogel contact lens Download PDF

Info

Publication number
US20060063852A1
US20060063852A1 US11/213,437 US21343705A US2006063852A1 US 20060063852 A1 US20060063852 A1 US 20060063852A1 US 21343705 A US21343705 A US 21343705A US 2006063852 A1 US2006063852 A1 US 2006063852A1
Authority
US
United States
Prior art keywords
lens
contact lens
silicon
lens body
polymeric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/213,437
Other languages
English (en)
Inventor
Junichi Iwata
Tsuneo Hoki
Seiichirou Ikawa
Arthur Back
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CooperVision International Ltd
Original Assignee
Asahi Kasei Aime Co Ltd
CooperVision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Aime Co Ltd, CooperVision Inc filed Critical Asahi Kasei Aime Co Ltd
Priority to US11/213,437 priority Critical patent/US20060063852A1/en
Publication of US20060063852A1 publication Critical patent/US20060063852A1/en
Priority to US11/525,106 priority patent/US8367746B2/en
Assigned to ASAHIKASEI AIME CO. LTD. reassignment ASAHIKASEI AIME CO. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOKI, TSUNEO, IKAWA, SEIICHIROU, IWATA, JUNICHI
Assigned to COOPERVISION, INC. reassignment COOPERVISION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BACK, ARTHUR
Assigned to COOPERVISION INTERNATIONAL HOLDING COMPANY, LP reassignment COOPERVISION INTERNATIONAL HOLDING COMPANY, LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COOPERVISION, INC.
Assigned to COOPERVISION INTERNATIONAL HOLDING COMPANY LP reassignment COOPERVISION INTERNATIONAL HOLDING COMPANY LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASAHIKASEI AIME CO. LTD.
Priority to US13/430,068 priority patent/US8614261B2/en
Priority to US13/740,921 priority patent/US9322958B2/en
Assigned to COOPERVISION INTERNATIONAL LIMITED reassignment COOPERVISION INTERNATIONAL LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COOPERVISION INTERNATIONAL HOLDING COMPANY, LP
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to contact lenses which are wearable, on a continuous basis, for extended periods of time.
  • the invention relates to flexible, hydrophilic silicon-containing contact lenses which have advantageous combinations of properties.
  • Contact lenses are fundamentally classified into soft and hard type lenses. Hard contact lenses are literally hard and can be somewhat uncomfortable to wear. On the other hand, soft contact lenses are more comfortable to wear, but are commonly removed from the eye at the end of each day. Soft contact lenses are classified as hydrogel lenses and non-hydrogel lenses.
  • Conventional soft hydrogel contact lenses are often composed of copolymers of hydrophilic monomers, such as hydroxyethylmethacrylate, N-vinylpyrrolidone and the like, and can be prepared by lathe-cutting methods, spin casting methods, cast molding methods or combinations thereof, followed by a swelling treatment in a physiological saline and/or phosphate buffer solution to obtain lenses with water contents of about 20% or about 30% to about 80% by weight.
  • hydrophilic monomers such as hydroxyethylmethacrylate, N-vinylpyrrolidone and the like
  • Soft silicon or silicone hydrogel contact lenses have been suggested for continuous wear for extended periods of time. For example, some silicone hydrogel contact lenses are intended to be worn overnight. Some silicone hydrogel contact lenses can be worn continuously for about two weeks, and some silicone hydrogel contact lenses can be worn continuously for about one month or about thirty days. Such continuous wear lenses have had relatively high oxygen permeabilities to provide for oxygen access to the cornea during the extended wearing of such lenses.
  • Oxygen permeability (Dk) is an important factor in contact lens design to maintain ocular health for contact lens wearers. As established by Holden and Mertz in 1984, a minimum of 87 ⁇ 10 ⁇ 9 (cm ml O 2 )/(sec ml mmHg) oxygen transmissibility is required for hydrogel contact lenses to limit overnight edema to 4% (Holden et al., Invest. Ophtalmol. Vis. Sci., 25:1161-1167(1984)). Physical properties such as oxygen flux (j), oxygen permeability (Dk), and oxygen transmissibility (Dk/t) are used in referring to properties of contact lenses.
  • Oxygen flux can be defined as a volume of oxygen passing through a specified area of a contact lens over a set amount of time.
  • the physical units of oxygen flux can be described as ⁇ l O 2 (cm 2 sec).
  • Oxygen permeability can be defined as the amount of oxygen passing through a contact lens material over a set amount of time and pressure difference. Physical units of oxygen permeability can be described as 1 Barrer or 10 ⁇ 11 (cm 3 O 2 cm)/(cm 3 sec mmHg).
  • Oxygen transmissibility can be defined as the amount of oxygen passing through a contact lens of specified thickness over a set amount of time and pressure difference.
  • the physical units of oxygen transmissibility can be defined as 10 ⁇ 9 (cm ml O 2 )/(ml sec mmHg).
  • Oxygen transmissibility relates to a lens type with a particular thickness.
  • Oxygen permeability is a material specific property that can be calculated from lens oxygen transmissibility.
  • Oxygen transmissibility is commonly measured using polarographic and coulometric techniques known by persons or ordinary skill in the art. Oxygen permeability can be calculated by multiplying the oxygen transmissibility (Dk/t) of a lens by the mean thickness of the measured area.
  • Dk/t oxygen transmissibility
  • the polarographic techniques may not provide accurate measurements for high Dk silicone hydrogel contact lenses, such as silicone hydrogel contact lenses having a Dk greater than about 100 barrers.
  • the variability associated with polarographic techniques may be related to the issue that for silicone hydrogel lenses having a Dk greater than 100 barrers, the measurements tend to plateau at Dk values greater than 100.
  • the coulometric technique is frequently used to measure the Dk of lenses that are believed to have Dks greater than 100 barrers.
  • Prior art soft silicon-containing hydrophilic contact lenses with higher water contents tend to have reduced or lower oxygen permeabilities.
  • a silicone hydrogel contact lens available under the tradename, Focus Night & Day (available from CIBA Vision Corporation), has a water content of about 24% and a Dk of about 140 barrers.
  • Another silicone hydrogel contact lens available under the tradename, O2 Optix (available from CIBA Vision Corporation), has a water content of about 33% and a Dk of about 110 barrers.
  • Another silicone hydrogel contact lens available under the tradename, Acuvue Oasys available from Johnson & Johnson
  • a non-silicone hydrogel contact lens available under the tradename, Acuvue2 available from Johnson & Johnson
  • existing silicone hydrogel contact lenses have a modulus from between about 0.4 to about 1.4 mPa.
  • the Focus Night & Day contact lens has a modulus of about 1.4 mPa
  • the PureVision contact lens has a modulus of about 1.3 mPa
  • the O2 Optix has a modulus of about 1.0 mPa
  • the Advance contact lens has a modulus of about 0.4 mPa
  • the Oasys contact lens has a modulus of about 0.7 mPa.
  • the modulus of the lens increases.
  • existing silicone hydrogel contact lenses do not have desirable surface wettabilities.
  • the Focus Night and Day contact lens has a wetting angle of about 67°
  • the PureVision contact lens has a wetting angle of about 99°
  • the O2 Optix contact lens has a wetting angle of about 60°
  • the Advance contact lens has a wetting angle of about 107°.
  • non-silicone hydrogel contact lenses have wetting angles of about 30°.
  • contact lenses be comfortable and safe to wear.
  • silicone hydrogel contact lenses should be comfortable and safe to wear for daily use, for overnight wear, and/or for wearing on an extended or continuous wear basis.
  • One problem that arises in extended or continuous wear contact lenses is adhesion of the lens to the cornea during lens wearing which can result in wearer discomfort, eye irritation, corneal staining and/or other damage to the eye.
  • lenses with high water contents are softer and more comfortable to wear, such prior art lenses may not have one or more properties useful to provide comfortable and safe wearing of the contact lenses.
  • existing contact lenses may not have a desirable Dk, a desirable surface wettability, a desirable modulus, a desired design, and/or a desirable water content.
  • silicone hydrogel contact lenses with a high Dk typically have a lower water content.
  • such lenses are more stiff compared to lenses with a higher water content, and such lenses are less wettable.
  • a lens that has an oxygen transmissibility of at least about 45.
  • Lenses such as certain existing silicone hydrogel contact lenses, with an oxygen transmissibility greater than 50 have been developed to reduce stromal anoxia during daily wear.
  • some lenses have been produced which include one or more surface treatments or surface modifications to attempt to make the lens surfaces more hydrophilic.
  • Other lenses have been produced which include an interpenetrating network of polyvinylpyrollidone and a silicon-containing polymer.
  • the present silicone hydrogel contact lenses have one or more surfaces that are not treated to become more hydrophilic, have no wetting agents, and/or are associated with low or no protein or lipid deposition.
  • the present silicone hydrogel contact lenses have a relatively high Dk and a relatively high water content compared to existing silicone hydrogel contact lenses, such as those described herein.
  • the present silicone hydrogel contact lenses may have an equilibrium water content from about 30% to about 60% by weight, and a Dk from about 200 barrers to about 80 barrers.
  • a silicone hydrogel contact lens has an equilibrium water content from 20% to 70% by weight, and a Dk from 220 barrers to 60 barrers.
  • One example of the present silicone hydrogel contact lenses has an equilibrium water content of about 30% by weight and a Dk of about 200 barrers.
  • the present lens has an equilibrium water content greater than 20% by weight and a Dk greater than 160 barrers.
  • the present silicone hydrogel contact lenses have a relatively higher Dk and a relatively lower modulus compared to existing silicone hydrogel contact lenses, as described herein.
  • the present silicone hydrogel contact lenses may have a Dk from about 100 to about 200 barrers, and a modulus from about 0.4 mPa to about 1.4 mPa.
  • One example of a silicone hydrogel contact lens has a Dk greater than 90 barrers and a modulus from 0.3 mPa to 1.5 mPa.
  • the present silicone hydrogel contact lenses have a Dk of about 100 and a modulus of about 0.4 mPa.
  • the present silicone hydrogel contact lenses have a Dk of about 200 and a modulus of about 1.4.
  • the present silicone hydrogel contact lenses have a Dk of about 150 barrers and a modulus of about 0.8 mPA.
  • the existing Acuvue Advance silicone hydrogel contact lens has a modulus of about 0.4 mPa and a Dk of about 70.
  • the existing Focus Night & Day silicone hydrogel contact lens has a modulus of about 1.4 and a Dk of about 130.
  • certain embodiments of the present silicone hydrogel contact lenses have a relatively greater Dk, a relatively higher water content, and are relatively softer than existing silicone hydrogel contact lenses.
  • the present silicone hydrogel contact lenses may comprise surfaces that have a greater wettability than existing silicone hydrogel contact lenses, such as those silicone hydrogel contact lenses described herein.
  • the wettability of a contact lens surface can be determined by measuring the wetting angle using a method, such as the sessile drop method. Lower wetting angles correspond to enhanced surface wettability.
  • existing silicone hydrogel contact lenses, such as those described herein have surfaces that provide a wetting angle from about 60° to about 110°.
  • the present silicone hydrogel contact lenses may comprise surfaces, such as the anterior and/or posterior surface, that have a wetting angle less than 60°. In certain embodiments, the present silicone hydrogel contact lenses have surfaces that have a wetting angle less than about 50°.
  • the present silicone hydrogel contact lenses have surfaces that have a wetting angle of about 30°. At least one example of the present contact lenses has a surface that has a wetting angle less thn 40°.
  • the present contact lenses with the lower wetting angle, and therefore, enhanced surface wettability, have higher Dks, higher water contents, and/or lower modulus compared to existing silicone hydrogel contact lenses, as discussed herein.
  • the present lenses may provide improvement or enhancement in patient comfort compared to existing silicone hydrogel contact lenses, as discussed herein. For example, whereas only about 15% of patients wearing existing silicone hydrogel contact lenses reported satisfactory comfort wearing the lenses, about 40% of patients wearing the present silicone hydrogel contact lenses reported satisfactory comfort wearing the lenses.
  • the present contact lenses have a Dk from about 115 to about 149 barrers, a water content of about 48% by weight, and a modulus of about 0.84 mPa.
  • a contact lens may have a Dk greater than 105 barrers, a water content greater than 45% by weight and a modulus greater than 0.8 mPa.
  • the present silicone hydrogel contact lenses have a water content greater than about 50% by weight, a modulus from about 0.3 to about 0.5 mPa, and a Dk from about 70 to about 100 barrers.
  • a contact lens may have a water content greater than 50% by weight, a modulus from 0.2 mPa to 0.6 mPa, and a Dk greater than 60 barrers.
  • Such embodiments may be useful as daily wear silicone hydrogel contact lenses.
  • the present silicone hydrogel contact lenses have a Dk of at least about 120 barrers and a water content of at least about 48% by weight.
  • Such embodiments may be useful as extended or continuous wear silicone hydrogel contact lenses.
  • the Acuevue Advance silicone hydrogel contact lens has a Dk of about 105, a water content of about 46% by weight, and a modulus of 0.7 mPa.
  • the present lenses are hydrophilic, and have unique and advantageous combinations of properties as described herein.
  • the combinations of properties are helpful in evaluating appropriate conditions for wearing the present lenses.
  • certain combinations of properties, such as high water content, relatively lower Dk, and low modulus may be desirable or acceptable for daily wear silicone hydrogel contact lenses, such as lenses that can be worn overnight without cleaning, but that are typically disposed of on a daily basis.
  • Other combinations of properties, such as high Dk, high water content, and low modulus may be effective in facilitating the use of such lenses in continuous or extended wear applications, such as for more than one night, such as for at least about five days, for example about two weeks or more, or at least about one month.
  • the present contact lenses can be relatively easily and cost effectively produced. Using such lenses provides advantages, such as, vision correction with reduced lens handling and maintenance, continuous or extended wearing of contact lenses, while being ophthalmically compatible and providing for wearer comfort and safety.
  • contact lenses comprise lens bodies that are configured to be placed or disposed on a cornea of an animal or human eye.
  • the lens bodies comprise a hydrophilic silicon-containing polymeric material or materials.
  • the lens bodies have Dk's or oxygen permeabilities of greater than about 70 barrers or about 80 barrers or about 100 barrers or about 105 barrers or about 110 barrers or about 115 barrers or about 120 barrers or about 125 barrers or about 130 barrers or about 150 barrers or about 180 barrers or about 200 barrers or more and equilibrium water contents of greater than about 15% or about 30% or about 35% or about 40% or more by weight.
  • the present contact lenses are ophthalmically compatible, and advantageously are adapted and structured and/or are effective for continuous wear on a cornea of a human or animal eye, for example, for 1 day or 5 days or at least about 5 days or more.
  • the lens body that is the ophthalmically compatible lens body, of the present contact lens, does not have, for example, is produced without, surface treatment or modification, such as on the anterior face and/or posterior face of the lens body.
  • surface treatment was required to enhance surface wettability and/or one or more other properties of the lenses.
  • the present lenses advantageously have ophthalmic compatibility without requiring such surface treatment or modification.
  • the present lenses can be produced by polymerizing a lens precursor composition in a contact lens mold assembly to form a contact lens that can undergo extraction and packaging steps without requiring a post-polymerizing surface modification to remain sufficiently wettable when placed on an eye of an individual.
  • the present lenses do not require polyvinylpyrollidone (PVP), such as a PVP containing interpenetrating network, and/or other additivies, to obtain the desired wettability of the present lenses.
  • PVP polyvinylpyrollidone
  • the present lenses are free of a surface modification or surface treatment and do not include a PVP-containing interpenetrating network.
  • the present contact lenses can be produced by polymerizing or curing a lens precursor composition in a contact lens mold and extracting and hydrating the polymerized lens.
  • the hydrated lens produced in the mold includes an anterior surface and/or posterior surface that is sufficiently wettable to be worn on an eye with reduced discomfort or without substantial discomfort, to a lens wearer, and without requiring a surface treatment.
  • embodiments of the present invention may be understood to be non-surface treated silicone hydrogel contact lenses.
  • the lens bodies of the present contact lenses may have a combination of properties, including an effective or appropriate ionoflux to substantially inhibit, or even substantially prevent, corneal staining, for example, corneal staining more severe than superficial or moderate corneal staining, after the contact lens is worn continuously on a cornea of a human or animal eye for 8 hours or more, for example, for about 1 day, or about 5 days, or about 10 days, or about 20 days or about 30 days or longer.
  • the oxygen permeability of the present lens bodies may be measured with the contact lens in the wet or fully hydrated state.
  • the oxygen permeability or Dk is expressed as barrers, that is 10 ⁇ 10 (ml O 2 mm)/(cm 2 sec. mm Hg) or 10 ⁇ 10 ml O 2 mm cm ⁇ 2 sec. ⁇ 1 mm Hg ⁇ 1 .
  • the lens body has a Dk of at least about 80 barrers or about 100 barrers or about 105 barrers or about 110 barrers or about 115 barrers or about 120 barrers or about 125 barrers or about 130 barrers, or at least about 150 barrers or about 180 barrers, or even at least about 200 barrers or more.
  • the larger values of Dk of the present lens bodies are highly useful in that oxygen is substantially accessible to the cornea of an eye even when a contact lens is located on the cornea continuously from a prolonged period of time, as described herein.
  • present lens bodies may have effective or appropriate structural or mechanical characteristics, such as modulus, tear strength, elongation and/or one or more of the like properties, to withstand continuous contact lens wear for extended or prolonged periods of time, as described herein.
  • present lens bodies may have effective or appropriate modulus for use as continuous wear contact lenses.
  • the present contact lenses include a lens body comprising a hydrophilic silicon-containing polymeric material.
  • the polymeric material comprise units from a silicon-containing monomer, for example, from two silicon-containing macromers having different molecular weights, and preferably different chemical structures.
  • Such an embodiment may be particularly useful for continuous wear silicone hydrogel contact lenses, such as silicone hydrogel contact lenses that can be worn continuously for about 30 days.
  • the present contact lenses comprises only one silicon-containing macromer having a relatively high molecular weight. This embodiment, that is the embodiment comprising one silicon-containing macromer may be particularly useful for daily wear silicone hydrogel contact lenses that can be worn while sleeping, but that are typically discarded on a daily basis.
  • ophthalmically compatible can be understood to refer to the wearing of the present lenses by a lens wearer with little or no discomfort, and little or no occurrence of features associated with existing silicone hydrogel contact lenses, such as lipid or protein deposition, corneal staining, and the like.
  • the lens body has all of the aforementioned properties useful in lenses that are worn for at least one day, including daily wear lenses. In further embodiments, the lens body has all of the aforementioned properties useful in lenses that are worn for about thirty days, including continuous wear contact lenses.
  • Embodiments of the present silicone hydrogel contact lenses comprise a lens body having an oxygen permeability of at least about 70 barrers, a water content of at least about 30% by weight, a modulus less than about 1.4 mPa, and a contact angle on a surface of the lens body less than about 60 degrees.
  • the lens body has an oxygen permeability greater than about 110 barrers.
  • the lens body has a water content greater than about 45% by weight.
  • the lens body has a modulus less than about 0.9 mPa.
  • one embodiment of the present silicone hydrogel contact lenses comprises a lens body that has an oxygen permeability of at least about 115 barrers, a water content of about 48% by weight, and a modulus of about 0.84 mPa.
  • one embodiment of the present silicone hydrogel contact lenses comprises a lens body that has an oxygen permeability from about 70 barrers to about 100 barrers, a water content of at least about 50% by weight, and a modulus from about 0.3 mPa to about 0.5 mPa.
  • the present invention is directed to contact lenses which comprise lens bodies that are configured to be placed or disposed on a cornea of an animal or human eye.
  • the lens bodies comprise a hydrophilic silicon-containing polymeric material or materials.
  • the lens bodies have Dk's or oxygen permeabilities of greater than about 70 barrers or about 75 barrers or about 80 barrers or about 85 barrers or about 90 barrers or about 95 barrers or about 100 barrers or about 105 barrers or about 110 barrers or about 115 barrers or about 120 barrers or about 125 barrers or about 130 barrers or about 150 barrers or about 180 barrers or about 200 barrers, and equilibrium water contents of greater than about 15% or about 30% or about 35% or about 40% by weight.
  • the present contact lenses are ophthalmically compatible, as defined herein, and are advantageously adapted and structured and/or are effective for continuous wear on a cornea of a human or animal eye, for example, for about 1 day or for about 5 days or for at least about 5 days or about 10 days or about 20 days or about 30 days or more.
  • Corneal staining is a measure of corneal epithelium cell damage or destruction.
  • the corneal epithelium is about 50 microns thick and comprise 5-7 layers of cells.
  • the epithelium is constantly regenerated with the outermost layer of cells sloughing off into the tear film with the assistance of blinking.
  • the innermost cell layer is pushed forward by new cell growth beneath and this layer gradually transforms to become the outermost layer of cells following repeated cycles of new growth over about 7 days. Damaged or dead epithelial cells are stained when exposed to sodium fluorescein.
  • the degree of such staining can be used to measure the degree of cell damage/destruction.
  • Some degree of corneal staining is often present with the wearing of conventional daily-wear and continuous wear contact lenses, and can occur even without contact lens wear.
  • the lens bodies of the present contact lenses may have combinations of properties, including effective or appropriate ionofluxes, to substantially inhibit, or even substantially prevent, corneal staining, as described herein.
  • the present lens bodies have ionofluxes of no greater than about 5, more preferably no greater than about 4 or about 3, for example, no greater than about 2 or about 1 or less. Ionoflux is expressed as 10 ⁇ 3 mm 2 /min.
  • the ophthalmically compatible lens bodies, of the present contact lenses may have no surface treatment or modification, for example, may be produced without surface treatment or modification, such as on the anterior face and/or posterior face of the lens body, to enhance surface wettability and/or one or more other beneficial properties of the lens bodies.
  • no such surface treatment or modification is provided on either the anterior face or the posterior face of the present ophthalmically compatible lens bodies.
  • the lens manufacturing process is less complex and expensive, and more efficient.
  • the present lens bodies advantageously have more reproducible and/or more homogeneous surfaces.
  • the lens wearer is not exposed to a surface treatment on the lens, which may, in and of itself, cause eye irritation and the like.
  • the oxygen permeability of the present lens bodies is measured with the contact lens in the wet or fully hydrated state.
  • the oxygen permeability or Dk is expressed as 10 ⁇ 10 (ml O 2 mm)/(cm 2 sec mm Hg) or barrer.
  • the lens body has a Dk of at least about 70 barrers or about 75 barrers or about 80 barrers or about 85 barrers or about 90 barrers or about 95 barrers or about 100 barrers or about 105 barrers or about 110 barrers or about 115 barrers or about 120 barrers or about 125 barrers or about 130 barrers, or about 150 barrers or about 180 barrers or even at least about 200 barrers or more.
  • the relatively high values of Dk of the present ophthalmically compatible lens bodies are highly advantageous in that oxygen is substantially accessible to the cornea of an eye even when a contact lens is located on the cornea continuously for a prolonged period of time, as described herein.
  • the Dk values of the present lens bodies, together with the equilibrium water contents and/or the relatively low ionofluxes and/or the relatively high elongations of the present lens bodies effectively facilitate ophthalmic compatibility of the present contact lenses and/or enhanced safety and comfort of the wearer of the present contact lenses, making continuous wear of such lenses more beneficial for the lens wearer.
  • the polymeric material may comprise units from a silicon-containing macromer having a number average molecular weight of less than about 5,000, for example, less than about 3,000 or less than about 2,000.
  • the use of two different molecular weight silicon-containing macromers in producing the present lens bodies is advantageous in providing appropriate or effective high oxygen permeability and appropriate or effective equilibrium water content and/or relatively low ionoflux while providing lens bodies effective for use in continuous wear contact lenses, for example, ophthalmically compatible contact lenses that can be worn for about thirty days, if desired.
  • one of the silicon-containing macromers preferably the low molecular weight macromer
  • the mono-functional macromer facilitates or enhances component compatibility and/or heterogeneity, for example, on a molecular level, of the polymeric material. That is, the morphology of the polymeric material of the lens body is believed to be sufficiently non-uniform or heterogenous such that different phase domains are present in the polymeric material.
  • contact lenses with unique and advantageous combinations of properties which combinations of properties make the present lenses ophthalmically compatible, and advantageously highly effective for continuous or extended wear, can surprisingly be provided by selecting and processing macromers and monomers, as described herein, into lens bodies of contact lenses.
  • composition of the contact lenses of the present invention so long as the lenses have the combinations of properties and/or perform in daily wear applications or continuous or extended wear applications as set forth herein.
  • hydrophilic siloxanyl methacrylate in accordance with the present invention provides contact lenses with high oxygen permeability, reduced deposition of proteins and lipids, superior or enhanced maintenance of lens water wettability during continuous lens wear, acceptable lens movement on the cornea of an eye, and reduced adhesion to a cornea.
  • At least one of R1, R2, R3 and R4 may be selected from the groups shown by the following formulas (1a), (2a) and (3a): wherein, g is an integer from 1 to about 10.
  • hydrophilic groups comprise, without limitation: monohydric alcohol substituents such as —C 3 H 6 OH, —C 8 H 16 OH, —C 3 H 6 OC 2 H 4 OH, —C 3 H 6 OCH 2 CH(OH)C 3 , —C 2 H 4 COOC 2 H 4 OH, —C 2 H 4 COOCH 2 CH(OH)C 2 H 5 and the like; polyhydric alcohol substituents such as —C 3 H 6 OCH 2 CH(OH)CH 2 OH, —C 2 H 4 COOCH 2 CH(OH)CH 2 OH, —C 3 H 6 OCH 2 C(CH 2 OH) 3 and the like; and polyoxyalkylene substituents such as —C 3 H 6 (OC 2 H 4 ) 4 OH, —C 3 H 6 (OC 2 H 4 ) 30 OH, —C 3 H 6 (OC 2 H 4 ) 10 OCH 3 , —C 3 H 6 (OC 2 H 4 ) 10, —(OC 3
  • substituents linked to silicon atoms may comprise, without limitation, hydrocarbon groups having one to about 12 carbon atoms, trimethylsiloxy groups and the like, and may be the same or different from each other.
  • a very useful group is an alkyl group having 1 to about 3 carbon atoms, and methyl group is particularly useful.
  • m advantageously is an integer from 0 to about 4. If m is about 5 or greater, the monomer may become too hydrophobic to be compatible with the other monomers, giving a cloudiness during polymerization and difficulty in homogeneous mixing of the monomers. In the formula (3a), if g is greater than about 10, the monomer may have reduced compatibility with the other monomers.
  • hydrophilic siloxanyl methacrylate may be synthesized by reacting 2-isocyanatoethyl methacrylate with siloxanylalkyl alcohol.
  • the present contact lenses may have equilibrium water contents in a range of about 25-60% by weight, comprise hydrophilic silicon-containing polymeric material, and have oxygen permeabilities, expressed as Dk, of not less than about 80 or about 90 or about 100 or about 110 or about 120.
  • the lenses may provide one or more, for example, at least 2 or 3 or more, and advantageously all, of the following: reduced adsorption of proteins and lipids to the inner part of lens; easy lens care, acceptable lens movement on the eye, acceptable stability in lens shape, flexibility and wear comfort, thus enabling use in continuous wear applications.
  • the present contact lenses are sufficiently ophthalmically compatible to be effective for continuous wear for at least 5 days or at least 10 days or at least 20 days or at least 30 days.
  • the use of the combination of such high and low molecular weight silicon-containing macromers to produce a contact lens body provides for enhanced ophthalmic compatibility and/or enhanced effectiveness in such continuous wear applications relative to a substantially identical contact lens body produced without one of the high molecular weight macromer or the low molecular weight macromer.
  • the polymer may include copolymers with the following copolymerizable compounds: acrylic monomers such as methyl acrylate, ethyl acrylate and acrylic acid; methacrylic monomers such as methyl methacrylate, ethyl methacrylate, 2-hydroxyethyl methacrylate and methacrylic acid; siloxane monomers such as tris(trimethylsiloxy)silylpropyl methacrylate, bis(trimethylsiloxy)methylsilylpropyl methacrylate, pentamethyldisiloxanepropyl methacrylate, tris(trimethylsiloxy)silylpropyloxyethyl methacrylate, and tris(polydimethylsiloxy)silylpropyl methacrylate; fluorosiloxane monomers such as tri(dimethylsiloxy)silylpropyl methacrylate; fluorosiloxane monomers such as tri(d)
  • the contact lenses of the present invention can be manufactured by conventional lens manufacturing methods. Such methods comprise, for example and without limitation a method by lathe-cutting of polymer block followed by polishing, a method to cast a monomer (and a macromer) composition into a mold with corresponding lens shape followed by polymerization, and a method to form only one face of lens by casting method using a polymerization mold then finish the other face by lathe-cutting and polishing method, etc.
  • Polymeric materials comprising units of a hydrophilic polysiloxane monomer shown by the general formula II can be used for the contact lenses of the present invention: wherein, R12 is hydrogen or methyl group; each of R13, R14, R15 and R16 is independently selected from hydrocarbon groups having 1 to about 12 carbon atoms and trimethylsiloxy groups; Y is selected from combinations of the structural units (I′) and (II′) shown below, with the ratio of the structural unit (I′) and the structural unit (II′) being about 1:10 to about 10:1 and total number of the structural units (I′) and (II′) being from about 7 to about 200 or about 1000; each of a and c independently is an integer from 1 to about 20, d is an integer from 2 to about 30; b is an integer from 0 to about 20; X is —NHCOO— group or —OOCNH—R16—NHCOO— group, wherein R16 is a hydrocarbon group having about 4 to about 13 carbon atoms: where
  • Very useful oxygen containing groups for use as R19 and/or R20 comprise, without limitation —C 3 H 6 (OC 2 H 4 ) e OH and —C 3 H 6 (OC 2 H 4 ) f OCH 3 wherein e and f is an integer from about 2 to about 40, preferably about 2 to about 20.
  • the units from monomer(s) or macromer(s) may make up about 30% or about 40% to about 70% or about 80% by weight of the polymeric material.
  • the high molecular weight macromer comprises at least about 20% or about 30% or about 40% by weight of the polymeric materials. In one useful embodiment, units from the combination of the high molecular weight macromer and the low molecular weight macromer are at least about 30% or about 40% or about 50% by weight of the polymeric material.
  • a contact lens comprising the above described polysiloxane monomer or monomers (macromer or macromers) as a main or primary component can be manufactured by conventional lens manufacturing methods such as the casting method in which a monomer composition is injected into a polymerization mold with a corresponding lens shape followed by a polymerization.
  • EVOH ethylene-vinyl alcohol
  • polymerizable unsaturated groups are linked to the ends of siloxane chain and structure of the unsaturated group is acrylate or methacrylate group.
  • a linking group to Si atoms hydrocarbon groups containing urethane or urea linkages are preferable, and may be linked to Si atoms through oxyethylene groups.
  • Urethane or urea linkages are highly polar and enhance the hydrophilic property and strength of the polymer.
  • a structure having two such groups can be formed by a reaction between diisocyanate linkages and a hydroxyl- or amine-containing molecule having about 2 to about 13 carbon atoms and may be linear, cyclic or aromatic types.
  • An example of a useful synthesis method comprises the following: A ring-opening polymerization of a mixture of cyclic siloxane with hydrosilane groups (Si—H), cyclic siloxane with hydrocarbon groups, and disiloxane with hydroxyalkyl groups at both ends, along with cyclic siloxane with fluorine-substituted hydrocarbon groups in certain cases, is performed using an acidic catalyst, such as sulfuric acid, trifluoromethanesulfonic acid and acidic clay to obtain hydrosilyl-group-containing polysiloxane compounds having hydroxyl groups at both ends.
  • siloxane compounds with various degrees of polymerization and introduction ratios of fluorine-containing substituent and hydrosilyl groups can be obtained by changing feed ratios of each cyclic siloxane and disiloxane compounds used.
  • Isocyanate substituted acrylates or isocyanate substituted methacrylates are then reacted with hydroxyl groups at the ends of polysiloxane to obtain urethane-containing fluorinated siloxane compounds with polymerizable unsaturated groups at both ends.
  • the presently useful monofunctional macromers may be produced using conventional and well known chemical synthesis techniques.
  • a monofunctional hydroxyl polysiloxane such as a commercially available monofunctional hydroxyl polysiloxane
  • an isocyanate-substituted acrylate or an isocyanate-substituted methacrylate in the presence of a catalyst, for example, tin-containing catalyst, at conditions effective to obtain a mono-terminated acrylate or methacrylate polysiloxane macromer.
  • a catalyst for example, tin-containing catalyst
  • Useful isocyanate-substituted methacrylates comprise, without limitation, such monomers as methacryloxyethylisocyanate, methacryloylisocyanate, and the like and mixtures thereof.
  • Isocyanate compounds with acrylate or methacrylate groups obtained by reacting hydroxyl-group-containing acrylates or methacrylates, such as hydroxyethyl methacrylate and hydroxybutyl acrylate, with various diisocyanate compounds can also be utilized.
  • Another route of synthesis is as follows: After synthesis of a hydrosilyl-group-containing polysiloxane compound having hydroxyl groups at both ends, a hydrophilic group or moiety is introduced by hydrosilylation in advance, then polymerizable groups are introduced to both ends of the siloxane by reacting with isocyanate-substituted methacrylate or the like.
  • a silicate ester derivative such as dimethoxy silane, a diethoxysilane compound, and the like, instead of a cyclic siloxane, can be used as a starting raw material. Mixtures of two or more hydrophilic polysiloxane monomers thus obtained can also be used.
  • Any polymer which comprises units from one or more hydrophilic silicon-containing monomers and/or macromers described herein can be used in the contact lenses of the present invention.
  • At least one hydrophilic monomer may be employed as a comonomer component in addition to the hydrophilic silicon-containing monomer or macromer.
  • an amide monomer for example, an amide monomer containing an N-vinyl group, is useful to obtain superior transparency, staining resistance and surface wettability.
  • a phase-separated structure on a molecular level, may be formed in the copolymerization with the hydrophilic polysiloxane monomer (macromer) or monomers (macromers) disclosed in the present invention, for example, due to differences in copolymerizability, molecular weight, polarity and the like between two or more of these monomers resulting in providing stable staining resistance, enhanced hydrophilicity and enhanced oxygen permeability, and preferably an enhanced degree of ophthalmic compatibility.
  • Useful polymeric materials in accordance with the present invention comprise copolymers obtained by addition of monomers other than the hydrophilic polysiloxane monomer(s) and the amide monomer containing N-vinyl group. Any monomer can be used in the present invention so long as it is copolymerizable, and hydrophilic monomers, among them, are useful.
  • Useful hydrophilic monomers have good compatibility with the hydrophilic polysiloxane monomer(s) and/or macromer(s) and also can further improve surface wettability of the polymeric material and modify water content.
  • Useful hydrophilic monomers comprise, for example and without limitation, monomers containing one or more hydroxyl groups, which monomers can improve mechanical properties, e.g., strength, elongation, tear strength and the like, such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 1-hydroxymethylpropyl methacrylate, 4-hydroxybutyl methacrylate and glycerol methacrylate; monomers containing fluorine-substituted groups such as 3-(1,1,2,2-tetrafluoroethoxy)-2-hydroxypropyl methacrylate; and acrylates corresponding to the methacrylates set forth herein. 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate and mixtures thereof are very useful.
  • hydrophilic monomers includes, for example, and without limitation, monomers containing carboxyl groups such as methacrylic acid, acrylic acid and itaconic acid; monomers containing alky substituted amino groups such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate; acrylamide or methacrylamide monomers such as N,N′-dimethylacrylamide, N,N′-diethylacrylamide, N-methylacrylamide, methylenebisacrylamide and diacetoneacrylamide; monomers containing oxyalkylene groups such as methoxypolyethylene glycol monomethacrylate and polypropylene glycol monomethacrylate and the like and mixtures thereof.
  • monomers containing carboxyl groups such as methacrylic acid, acrylic acid and itaconic acid
  • monomers containing alky substituted amino groups such as dimethylaminoethyl methacrylate and diethylaminoethyl methacrylate
  • Siloxanyl acrylates are useful comonomers, for example, to adjust oxygen permeability.
  • such monomers comprise, without limitation, tris(trimethylsiloxy)silylpropyl methacrylate, bis(trimethylsiloxy)methylsilylpropyl methacrylate pentabmethyldisiloxanyl methacrylate and the like and mixtures thereof.
  • Polymerizable polydimethylsiloxanes substituted with methacrylate groups and the like and mixtures thereof can also be used for the similar objective.
  • Other monomers which can be utilized, comprise, without limitation, fluorinated monomers, such as fluoroalkyl acrylates and fluoroalkyl methacrylates, for example, trifluoroethyl acrylate, tetrafluoroethyl acrylate, tetrafluoropropyl acrylate, pentabfluorpropyl acrylate, hexafluorobutyl acrylate, hexafluoroisopropyl acrylate, methacrylates corresponding to these acrylates and the like and mixtures thereof.
  • fluorinated monomers such as fluoroalkyl acrylates and fluoroalkyl methacrylates, for example, trifluoroethyl acrylate, tetrafluoroethyl acrylate, tetrafluoropropyl acrylate, pentabfluorpropyl acrylate, hexafluorobutyl acrylate, hexafluoroiso
  • alkyl acrylate monomers and alkyl methylacrylate monomers can also be used if necessary and/or desired. They comprise, for example and without limitation, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, stearyl acrylate methacrylates corresponding to these acrylates and the like and mixtures thereof.
  • monomers with high glass transition temperature (Tg) such as cyclohexyl methacrylate, tert-butyl methacrylate and isobornyl methacrylate and the like and mixtures thereof can also be used to enhance mechanical properties.
  • crosslinkable monomers other than hydrophilic polysiloxane monomers can be used to improve mechanical properties and stability and adjust water content.
  • they comprise, without limitation, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimehtylolpropane trimethacrylate, pentaerythritol tetramethacrylate, bisphenol A dimethacrylate, vinyl methacrylate; acrylates corresponding to these methacrylates; monomers containing one or more alkyl groups, such as, without limitation, triallyl isocyanurate, triallyl cyamurate, triallyl trimelitate and allylmethacrylate; siloxane derivatives such as 1,3-bis(3-methacryloxypropyl)tetramethyldisiloxane and the like and mixtures thereof.
  • Crosslinkable monomers linked with urethane group are particularly useful in providing compatibility and hydrophilicity, together with improvement of mechanical properties.
  • Bifunctional crosslinkable monomers shown by the formula (10 b) are useful: wherein, R24 and R26 are independently selected from hydrogen and methyl group; Z3 is an urethane linking group; R25 is selected from hydrocarbon group having 2 to about 10 carbon atoms and polyoxyethylene group expressed by —(C 2 H 4 O) u C 2 H 4 — wherein u is an integer from 2 to about 40; t is an integer from 0 to about 10; s is 0 when t is 0 and 1 when t is 1 or greater.
  • the above bifunctional compounds have good compatibilities and copolymerizability and contribute to strength improvement by intermolecular interaction because the hydrophilic polysiloxane monomers have similar backbones, for example urethane group-containing backbones.
  • crosslinkable monomers with urethane linkages including, without limitation, 2-methacryloylcarbamoyloxyethyl methacrylate, 2-2(2-methacryloxycarbamoyloxy)ethyl acrylate, 2-(2-methacryloxyethylcarbamoyloxy)propyl methacrylate, 2-methacryloxyethylcarbamoyloxytetraethylene glycol methacrylate and the like and mixtures thereof.
  • a particularly useful crosslinkable monomer shown by the formula (11b) is:
  • crosslinkable monomers can be used alone or in combination.
  • An example, without limitation, of such a contact lens comprises a polymer material derived from about 30% to about 70% or about 80% by weight of hydrophilic silicon-containing monomer(s) or macromer(s), about 5% to about 50% by weight of N-vinylpyrrolidone, 0% or about 0.1% to about 25% by weight of N-vinyl N-methylacetamide, 0% or about 0.1% to about 15% by weight of 2-hydroxybutyl methacrylate, 0% or about 0.1% to about 15% by weight of methyl methacrylate, and about 0.005% to about 5% by weight of a crosslinker compound.
  • Various additives may further be added before or after polymerization, if necessary.
  • additives comprise, without limitation, dyes or pigments with various coloring characteristics, UV absorbers and the like and mixtures thereof. Furthermore, when a lens is manufactured using a mold, mold releasing agents such as surfactants and the like and mixtures thereof can be added to improve separation of lens from the mold.
  • One embodiment of the present silicone hydrogel contact lenses comprises a material having the United States Adopted Name (USAN) comfilcon A.
  • the contact lenses of the present invention can be manufactured by conventional lens manufacturing methods.
  • the methods include, for example a method by lathe-cutting of polymer block followed by polishing, a method to cast a monomer (and a macromer) composition into a mold with corresponding lens shape followed by polymerization, and a method to form only one face of lens by casting method using a polymerization mold then finish the other face by lathe-cutting and polishing method, etc.
  • a polymeric material used for a contact lens of the present invention is formed to an ophthalmologic lens by a mold method in which a monomer mixture comprising, for example, one or more hydrophilic polysiloxane monomers and an amide monomer containing N-vinyl group, is filled into a mold, followed by a radical polymerization by the known method, or by a spin casting method in which a monomer mixture is fed in a rotatable hemisphere mold, followed by a polymerization.
  • polymerization of a solution of monomer mixture added with solvents in a mold may be utilized to adjust the degree of polymerization or lens swelling ratio. If a solvent is included, solvents which dissolve the monomers effectively are advantageously used.
  • Examples include, without limitation alcohols such as ethanol and isopropanol; ethers such as dimethylsulfoxide, dimethylformamide, dioxane and tetrahydrofran; ketones such as methylethyl ketone; esters such as ethyl acetate; and the like and mixtures thereof.
  • any mold material can be used for mold polymerization or casting polymerization, so long as it is substantially insoluble to monomer mixture and lens can be separated after polymerization.
  • polyolefin resins such as polypropylene and polyethylene can be used, and materials having polar groups at a surface are preferable.
  • a polar group means an atomic group with strong affinity with water and comprises hydroxyl groups, nitrile groups, carboxyl groups, polyoxyethylene groups, amide groups, urethane groups and the like.
  • Very useful mold materials are insoluble to a polymerization monomer composition and have contact angles to water at least at the part for forming one lens surface, not higher than about 90°, preferably about 65° to about 80°, by the sessile drop method.
  • a contact lens formed using a mold material having surface contact angle smaller than 80° shows particularly superior water wettability and stable performance in lipid deposition and the like.
  • a mold material having surface contact angle smaller than 65° is not advantageous because of difficulty in separating from the mold after polymerization, resulting in minute surface damage or fractures at an edge part of lens.
  • a mold material soluble to monomer compositions is also difficult to use because of difficulty in separating the lens as well as rough lens surfaces and low transparency.
  • a mold material is a resin selected from polyamides, polyethylene terephthalates and ethylene-vinyl alcohol copolymers (EVOH) and the like.
  • Ethylene-vinyl alcohol copolymers are particularly useful, for example, from the viewpoints of an easiness in molding, providing a dimensionally stable mold and giving stable water wettability to the molded lens.
  • An example of an ethylene-vinyl alcohol copolymer resin product to be used is available as “Soarlite” from The Japan Synthetic Chem. Ind. Co. Ltd. or “EVAL” from Kuraray Co., Ltd.
  • Various grades of EVOH with ethylene copolymerization ratio of about 25-50% by mole can be used in the present invention.
  • a photopolymerization method may be used to initiate polymerization by UV or visible light irradiation in the presence of photopolymerization initiators in a monomer mixture, or a radical polymerization method to thermally polymerize using azo compounds or organic peroxides.
  • photopolymerization initiators comprise, without limitation, benzoin ethyl ether, benzyl dimethyl ketal, alpha, alpha′- diethoxy acetophenone, 2,4,6-trimethylbenzoyl diphenyl phosphine axide, and the like and mixtures thereof.
  • organic peroxide comprise, without limitation, benzoin peroxide, t-butyl peroxide and the like and mixtures thereof.
  • azo compounds comprise, without limitation, azobisisobutyronitorile, azobisdimethylvaleronitorile and the like and mixtures thereof. Among them, a photopolymerization method is very useful due to providing a stable polymerization in a short cycle time.
  • the surface of the molded lens may be modified, if desired, by applying plasma treatment, ozone treatment, corona discharge, graft polymerization or the like.
  • the present contact lenses have highly advantageous combinations of properties without requiring any surface treatment or modification.
  • Dk value was determined by the so-called Mocon Method, for example using a test instrument commercially available under the model designation of Mocon Ox-Tran System. This method is described in Tuomela et al U.S. Pat. No. 5,817,924, the disclosure of which is hereby incorporated in its entirety herein by reference.
  • the Dk value is expressed as barrers or 10 ⁇ 10 (ml O 2 mm)/(cm 2 sec mm Hg).
  • the ionoflux of a contact lens or lens body is measured using a technique substantially similar to the so-called “Ionoflux Technique” described in Nicolson et al U.S. Pat. No. 5,849,811, the disclosure of which is hereby incorporated in its entirety herein by reference.
  • the elongation of a contact lens or lens body is measured in the fully hydrated state. This measurement is conducted in a substantially conventional/standard way and involves pulling the specimen employing an Instron Machine.
  • Synthesis Example 1 is repeated with appropriate adjustments to the amounts of the components and/or conditions utilized to provide a macromer structured similarly to M3-U except that Y has the following structure:
  • This material identified as M3-UU, has a number average molecular weight of about 20,000.
  • FMM polysiloxane-methacrylate
  • NVP N-vinyl-2-pyrrolidone
  • VMA N-vinyl-N-methylacetamide
  • IBM isobornyl methacrylate
  • MMA methyl methacrylate
  • TPO 2,4,6-trimethylbenzoyl-diphenylphosphine oxide
  • the mixture was injected into a mold for forming a contact lens made of an ethylene vinyl alcohol resin (hereinafter “EVOH resin”) (made by The Japan Synthetic Chem. Ind. Co., Ltd., Soarlite S), then irradiated by ultraviolet (UV) light for 1 hour in a light exposure equipment to give a lens-shaped polymer.
  • EVOH resin ethylene vinyl alcohol resin
  • UV light ultraviolet
  • the lens thus obtained was soaked in ethyl alcohol for 1.5 hours, then soaked in fresh ethyl alcohol for an additional 1.5 hours, than soaked in an ethyl alcohol/water (1/1) mixture for 0.5 hours, soaked in deionized water for 3 hours, and then placed in PBS solution, and followed by autoclaving for 20 mins.
  • the lens thus obtained was transparent and flexible, and showed good water wettability. Evaluation of physical properties showed results set forth in Table 1.
  • Example 3 was repeated three times except that the mixtures formed had the compositions shown in Table 1. Each of the lenses thus obtained was transparent and flexible, and showed good water wettability. Evaluation of physical properties showed results set forth in Table 1.
  • Example 3 was repeated four additional times except that the mixture formed had the components and compositions shown in Table 1.
  • 10 parts by weight of FMM was included.
  • each of the mixtures comprise one silicon-containing macromer having a molecular weight of about 15,000, and another silicon-containing macromer having a molecular weight of about 1,400.
  • Each of the lenses thus obtained was transparent and flexible, and showed good water wettability. Evaluation of physical properties showed results set forth in Table 1.
  • a lens was prepared in accordance with Example 5.
  • the hydrated lens was placed into a 2% by weight aqueous solution of glycerol monomethacrylate (GMMA)/glycerol dimethacrylate (GDMA) (97/3 by weight).
  • GMMA glycerol monomethacrylate
  • GDMA glycerol dimethacrylate
  • the aqueous solution was gently agitated to maintain hydration.
  • the solution was heated to 70° C. for 40 minutes.
  • An aqueous solution of 2,2′-azobis(2-amidinopropane dihydrochloride (Vazo 56) was added to the lens/solution. Polymerization was allowed to occur for 30 minutes.
  • the lens was removed and repeatedly rinsed/soaked with deionized water.
  • the lens thus obtained was transparent and flexible, and showed good water wettability. Evaluation of physical properties showed results set forth in Table 1.
  • the present contact lenses that is the contact lenses of Examples 3 through 11, have unique and advantageous combinations of physical properties which make each of such lenses highly effective in continuous or extended wear applications, particularly when considered in comparison to the comparative commercially available lenses of Examples 12 and 13.
  • Each of the lenses in Examples 3 to 11 has a combination of properties, for example, including water content, oxygen permeability, modulus and/or one or more other mechanical-related properties, and ionoflux, which provides for enhanced performance, for example, in terms of lens function effectiveness, wearer comfort and safety, in continuous wear applications.
  • the combinations of physical properties of the lenses of Examples 3 to 11 are unmatched, for example, by the competitive lenses of Examples 12 and 13.
  • the lenses of Examples 3 to 11 are ophthalmically compatible during continuous wear for at least about 5 days or about 10 days or about 20 days or about 30 days. For example, such lenses do not adhere to the cornea during such continuous wear.
  • the present contact lenses comprise one or more features that are different than existing silicone hydrogel contact lenses.
  • the lens body has a water content of about 50% (such as 47% or about 48%) and a ionoflux between about 4 and about 5. In additional embodiments, such a lens body has a Dk greater than 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Materials For Medical Uses (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US11/213,437 2004-08-27 2005-08-26 Silicone hydrogel contact lens Abandoned US20060063852A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/213,437 US20060063852A1 (en) 2004-08-27 2005-08-26 Silicone hydrogel contact lens
US11/525,106 US8367746B2 (en) 2004-08-27 2006-09-20 Silicone hydrogel contact lens
US13/430,068 US8614261B2 (en) 2004-08-27 2012-03-26 Silicone hydrogel contact lens
US13/740,921 US9322958B2 (en) 2004-08-27 2013-01-14 Silicone hydrogel contact lenses

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60496104P 2004-08-27 2004-08-27
US62152504P 2004-10-22 2004-10-22
US11/213,437 US20060063852A1 (en) 2004-08-27 2005-08-26 Silicone hydrogel contact lens

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/525,106 Continuation-In-Part US8367746B2 (en) 2004-08-27 2006-09-20 Silicone hydrogel contact lens
US13/430,068 Continuation US8614261B2 (en) 2004-08-27 2012-03-26 Silicone hydrogel contact lens

Publications (1)

Publication Number Publication Date
US20060063852A1 true US20060063852A1 (en) 2006-03-23

Family

ID=36000629

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/213,437 Abandoned US20060063852A1 (en) 2004-08-27 2005-08-26 Silicone hydrogel contact lens
US11/525,106 Active 2028-08-19 US8367746B2 (en) 2004-08-27 2006-09-20 Silicone hydrogel contact lens
US13/430,068 Expired - Lifetime US8614261B2 (en) 2004-08-27 2012-03-26 Silicone hydrogel contact lens

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/525,106 Active 2028-08-19 US8367746B2 (en) 2004-08-27 2006-09-20 Silicone hydrogel contact lens
US13/430,068 Expired - Lifetime US8614261B2 (en) 2004-08-27 2012-03-26 Silicone hydrogel contact lens

Country Status (13)

Country Link
US (3) US20060063852A1 (enExample)
EP (1) EP1789821B1 (enExample)
JP (2) JP5473219B2 (enExample)
KR (1) KR101367538B1 (enExample)
CN (1) CN102323629B (enExample)
BR (1) BRPI0514733B1 (enExample)
CA (1) CA2577899C (enExample)
ES (1) ES2732439T3 (enExample)
HU (1) HUE044130T2 (enExample)
MX (1) MX2007002202A (enExample)
SG (1) SG155241A1 (enExample)
TW (1) TWI454724B (enExample)
WO (1) WO2006026474A2 (enExample)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070216045A1 (en) * 2006-03-20 2007-09-20 Francis Charles A Demolding aids for silicone hydrogels and related methods
US20070228364A1 (en) * 2005-12-27 2007-10-04 Radu Nora S Compositions comprising novel copolymers and electronic devices made with such compositions
US20070291223A1 (en) * 2006-06-15 2007-12-20 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US20070296914A1 (en) * 2006-06-15 2007-12-27 Ye Hong Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US20080015315A1 (en) * 2006-07-12 2008-01-17 Frank Chang Novel Polymers
US20080048350A1 (en) * 2006-06-15 2008-02-28 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US20080143958A1 (en) * 2006-12-13 2008-06-19 Arturo Norberto Medina Production of ophthalmic devices based on photo-induced step growth polymerization
US20080174035A1 (en) * 2006-06-08 2008-07-24 Lynn Cook Winterton Silicone hydrogel contact lenses
US20090057164A1 (en) * 2007-08-31 2009-03-05 Kasey Jon Minick Contact lens packaging solutions
US20090059165A1 (en) * 2007-08-31 2009-03-05 John Dallas Pruitt Contact lens products
US20090188602A1 (en) * 2005-10-27 2009-07-30 Commissariat A L'energie Atomique Method for grafting molecules of interest on inorganic surfaces, resulting surfaces and uses thereof
US20090234089A1 (en) * 2008-02-08 2009-09-17 Asahi Kasei Aime Co., Ltd. Hydrophilic Polysiloxane Macromonomer, and Production and Use of the same
US20100048847A1 (en) * 2006-11-22 2010-02-25 Sauflon Cl Limited Contact Lens
US20100249273A1 (en) * 2009-03-31 2010-09-30 Scales Charles W Polymeric articles comprising oxygen permeability enhancing particles
US20100258788A1 (en) * 2005-12-28 2010-10-14 Nora Sabina Radu Compositions comprising novel compounds and electronic devices made with such compositions
US20110037056A1 (en) * 2008-12-12 2011-02-17 E. I. Du Pont De Nemours And Company Photoactive composition and electronic device made with the composition
CN101467094B (zh) * 2006-06-15 2011-02-23 库柏维景国际控股公司 可湿性硅氧水凝胶隐形眼镜以及相关组合物和方法
WO2012016096A1 (en) * 2010-07-30 2012-02-02 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US20120172486A1 (en) * 2009-09-22 2012-07-05 Coopervision International Holding Company, Lp Wettable Hydrogel Materials For Use In Ophthalmic Applications And Methods
WO2012095293A2 (en) 2011-01-14 2012-07-19 Cognis Ip Management Gmbh Process for the synthesis of compounds from cyclic carbonates
US8242223B2 (en) 2006-08-24 2012-08-14 E I Du Pont De Nemours And Company Hole transport polymers
US20120214898A1 (en) * 2011-02-21 2012-08-23 Chih-Ta Lee Silicone hydrogel with high water content
EP2492720A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Wettable Silicone Hydrogel Contact Lenses
EP2492719A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Dimensionally stable silicone hydrogel contact lenses
EP2492718A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Silicone Hydrogel Contact Lenses
WO2012118670A2 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses and related compositions and methods
WO2012118671A1 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Phosphine-containing hydrogel contact lenses
WO2012118681A2 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses having acceptable levels of energy loss
WO2012118672A2 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
WO2012118678A1 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses
WO2012154268A1 (en) 2011-02-28 2012-11-15 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
US8445614B2 (en) 2011-02-28 2013-05-21 Coopervision International Holding Company, Lp Dimensionally stable silicone hydrogel contact lenses
EP2610281A1 (en) 2011-12-29 2013-07-03 Pegavision Corporation Method of manufacturing hydrophilic silicone prepolymer
CN103189173A (zh) * 2010-07-30 2013-07-03 库柏维景国际控股公司 乙烯醇眼科镜片模具、其中模制的眼科镜片和相关方法
WO2013176886A2 (en) 2012-05-25 2013-11-28 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
WO2013177513A1 (en) 2012-05-25 2013-11-28 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble n-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
US8648333B2 (en) 2009-10-19 2014-02-11 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
WO2014033442A1 (en) 2012-08-28 2014-03-06 Coopervision International Holding Company, Lp Contact lenses made with hema-compatible polysiloxane macromers
WO2014035912A1 (en) * 2012-08-27 2014-03-06 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
EP2738221A1 (en) 2012-11-30 2014-06-04 Pegavision Corporation Silicone hydrogel composition and silicone hydrogel contact lenses made from the composition
US8937110B2 (en) 2011-12-23 2015-01-20 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having a structure formed via controlled reaction kinetics
US8937111B2 (en) 2011-12-23 2015-01-20 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising desirable water content and oxygen permeability
US8937300B2 (en) 2009-10-19 2015-01-20 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
US8969429B2 (en) 2011-02-08 2015-03-03 Novartis Ag Low-tack, hydrophobic ophthalmic device materials
US9005700B2 (en) 2011-10-12 2015-04-14 Novartis Ag Method for making UV-absorbing ophthalmic lenses
US20150219795A9 (en) * 2004-08-27 2015-08-06 Coopervison International Holding Company, Lp Silicone Hydrogel Contact Lenses
US20150224724A1 (en) * 2014-01-06 2015-08-13 Coopervision International Holding Company, Lp Ophthalmic lens manufacturing method, system, and apparatus that include flash removal from lens mold members
WO2015128636A1 (en) 2014-02-28 2015-09-03 Coopervision International Holding Company, Lp Contact lenses made with hema-compatible polysiloxane macromers
US9125808B2 (en) 2011-12-23 2015-09-08 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US9140825B2 (en) 2011-12-23 2015-09-22 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US9156214B2 (en) 2010-07-09 2015-10-13 Coopervision International Holding Company, Lp Polar thermoplastic ophthalmic lens molds, ophthalmic lenses molded therein, and related methods
US9156934B2 (en) 2011-12-23 2015-10-13 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising n-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides
US9170349B2 (en) 2011-05-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9193118B2 (en) 2010-07-30 2015-11-24 Coopervision International Holding Company, Lp Ophthalmic lens molds, ophthalmic lenses molded therein, and related methods
US9244196B2 (en) 2012-05-25 2016-01-26 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US9297929B2 (en) 2012-05-25 2016-03-29 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
US9310627B2 (en) 2013-11-15 2016-04-12 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US9475827B2 (en) 2012-12-14 2016-10-25 Shin-Etsu Chemical Company, Ltd. Tris(trimethyl siloxyl)silane vinylic monomers and uses thereof
US9522980B2 (en) 2010-05-06 2016-12-20 Johnson & Johnson Vision Care, Inc. Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
US9588258B2 (en) 2011-12-23 2017-03-07 Johnson & Johnson Vision Care, Inc. Silicone hydrogels formed from zero diluent reactive mixtures
US9612364B2 (en) 2011-05-04 2017-04-04 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9612363B2 (en) 2010-11-04 2017-04-04 Johnson & Johnson Vision Care, Inc. Silicone hydrogel reactive mixtures comprising borates
US9708087B2 (en) 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9829723B2 (en) 2015-12-03 2017-11-28 Novartis Ag Contact lens packaging solutions
US9902793B1 (en) * 2016-08-11 2018-02-27 Hon Hai Precision Industry Co., Ltd. Ophthalmic lens material, ophthalmic lens, and method for making ophthalmic lens
US10338408B2 (en) 2012-12-17 2019-07-02 Novartis Ag Method for making improved UV-absorbing ophthalmic lenses
US10449740B2 (en) 2015-12-15 2019-10-22 Novartis Ag Method for applying stable coating on silicone hydrogel contact lenses
US10525170B2 (en) 2014-12-09 2020-01-07 Tangible Science, Llc Medical device coating with a biocompatible layer
EP3555696B1 (en) 2016-12-16 2020-08-26 CooperVision International Holding Company, LP Contact lenses with incorporated components
US10830923B2 (en) 2017-12-13 2020-11-10 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
US11002884B2 (en) 2014-08-26 2021-05-11 Alcon Inc. Method for applying stable coating on silicone hydrogel contact lenses
US11008413B1 (en) * 2017-03-18 2021-05-18 Verily Life Sciences Llc Biocompatible materials for underlid device fabrication
EP4465098A2 (en) 2023-05-15 2024-11-20 CooperVision International Limited Radiation blockers for contact lenses
EP4465097A1 (en) 2023-05-15 2024-11-20 CooperVision International Limited Radiation blockers for contact lenses
WO2025003697A1 (en) 2023-06-30 2025-01-02 Coopervision International Limited Contact lenses and contact lens formulations with reduced rippling
WO2025003698A1 (en) 2023-06-30 2025-01-02 Coopervision International Limited Stabilized formulations for contact lenses

Families Citing this family (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1789821B1 (en) 2004-08-27 2019-04-10 CooperVision International Holding Company, LP Silicone hydrogel contact lenses
US20060142525A1 (en) * 2004-12-29 2006-06-29 Bausch & Lomb Incorporated Hydrogel copolymers for biomedical devices
US7785092B2 (en) 2005-08-09 2010-08-31 Coopervision International Holding Company, Lp Systems and methods for producing contact lenses from a polymerizable composition
MY146558A (en) * 2005-08-09 2012-08-30 Coopervision Int Holding Co Lp Compositions and methods for producing silicone hydrogel contact lenses
JP5224090B2 (ja) * 2006-06-15 2013-07-03 クーパーヴィジョン インターナショナル ホウルディング カンパニー リミテッド パートナーシップ 湿潤性シリコーンヒドロゲルコンタクトレンズ及び関連組成物及び方法
AU2008228761B2 (en) * 2007-03-22 2011-11-24 Novartis Ag Silicone-containing prepolymers with hydrophilic polymeric chains
WO2009114490A1 (en) * 2008-03-12 2009-09-17 Novartis Ag Method for cast molding contact lenses
US8079703B2 (en) * 2008-07-21 2011-12-20 Novartis Ag Silicone-containing polymeric materials with hydrolyzable groups
MY159465A (en) * 2009-10-01 2017-01-13 Coopervision Int Holding Co Lp Silicone hydrogel contact lenses and methods of making silicone hydrogel contact lenses
GB0917806D0 (en) * 2009-10-12 2009-11-25 Sauflon Cl Ltd Fluorinated silicone hydrogels
EP3427693B1 (en) * 2010-09-30 2020-06-24 KeraMed, Inc. Reversibly deformable artificial cornea
EP2613180B1 (de) * 2012-02-01 2014-03-26 LensWista AG Silikon-Kontaktlinse
CN102675561B (zh) * 2011-03-07 2014-10-22 远东新世纪股份有限公司 具有高含水率的聚硅氧水凝胶
JP6131243B2 (ja) * 2011-04-01 2017-05-17 ノバルティス アーゲー コンタクトレンズを形成するための組成物
JP6205364B2 (ja) * 2012-09-05 2017-09-27 株式会社メニコン 薬物徐放性眼用レンズ及びその製造方法
US20140291875A1 (en) 2013-02-12 2014-10-02 Coopervision International Holding Company, Lp Methods and Apparatus Useful in the Manufacture of Contact Lenses
HUE040478T2 (hu) 2013-06-26 2019-03-28 Coopervision Int Holding Co Lp Gyártási eljárások és berendezés, amelyek hasznosak tórikus kontaktlencsék gyártásában
US9266985B2 (en) 2013-11-14 2016-02-23 Shin-Etsu Chemical Co., Ltd. Silicone compound and a use thereof
JP6073207B2 (ja) * 2013-11-14 2017-02-01 信越化学工業株式会社 眼科デバイス製造用モノマー
JP6045515B2 (ja) * 2014-01-28 2016-12-14 信越化学工業株式会社 眼科デバイス製造用モノマー
JP6037454B2 (ja) * 2013-11-15 2016-12-07 信越化学工業株式会社 眼科デバイス製造用モノマー
US9296764B2 (en) * 2013-12-10 2016-03-29 Momentive Performance Materials Inc. Hydrophilic silicone composition
JP6023899B2 (ja) 2013-12-16 2016-11-09 株式会社メニコン 眼用レンズ
WO2015092858A1 (ja) 2013-12-16 2015-06-25 株式会社メニコン 眼用レンズ用ポリシロキサン系マクロモノマー及びそれを用いた眼用レンズ
BR112016026141A2 (pt) 2014-05-09 2018-08-07 Interojo Inc. lentes de contato de hidrogel com superfície molhada, e método de fabricação das mesmas.
JP6173260B2 (ja) * 2014-06-12 2017-08-02 信越化学工業株式会社 眼科デバイス製造用モノマー
TWI545158B (zh) 2015-06-18 2016-08-11 明基材料股份有限公司 隱形眼鏡材料、隱形眼鏡及其製造方法
TWI541291B (zh) * 2015-06-18 2016-07-11 明基材料股份有限公司 隱形眼鏡材料、隱形眼鏡的製造方法與由此方法所製造出之隱形眼鏡
US10227435B2 (en) * 2015-12-15 2019-03-12 Novartis Ag Polymerizable polysiloxanes with hydrophilic substituents
AU2016373539B2 (en) * 2015-12-15 2019-03-14 Alcon Inc. Hydrophilized polydiorganosiloxane vinylic crosslinkers and uses thereof
JP6615349B2 (ja) * 2015-12-15 2019-12-04 ノバルティス アーゲー 両親媒性分枝鎖状ポリジオルガノシロキサンマクロマー
CN105418858B (zh) * 2015-12-23 2018-08-17 江苏海伦隐形眼镜有限公司 具有高透氧性的硅水凝胶材料、角膜接触镜及其制备方法
CN105399954B (zh) * 2015-12-23 2019-07-09 江苏海伦隐形眼镜有限公司 亲水性硅氧烷低聚物、硅水凝胶、角膜接触镜及制备方法
CN108700676B (zh) 2016-02-22 2021-01-01 库柏维景国际控股公司 润滑性改进的硅酮水凝胶隐形眼镜
US10422927B2 (en) 2016-07-14 2019-09-24 Coopervision International Holding Company, Lp Method of manufacturing silicone hydrogel contact lenses having reduced rates of evaporation
US11385478B2 (en) 2016-09-20 2022-07-12 Alcon Inc. Process for producing contact lenses with durable lubricious coatings thereon
US10875967B2 (en) 2017-06-07 2020-12-29 Alcon Inc. Silicone hydrogel contact lenses
MY197603A (en) 2017-06-07 2023-06-27 Alcon Inc Silicone hydrogel contact lenses
EP3634732B8 (en) 2017-06-07 2021-10-27 Alcon Inc. Method for producing silicone hydrogel contact lenses
US20180354213A1 (en) 2017-06-13 2018-12-13 Coopervision International Holding Company, Lp Method of Manufacturing Coated Silicone Hydrogel Contact Lenses
US10906258B2 (en) 2017-08-29 2021-02-02 Alcon Inc. Cast-molding process for producing contact lenses
KR101994668B1 (ko) 2017-10-18 2019-07-02 한국화학연구원 습윤성 하이드로겔 콘택트렌즈
KR101963234B1 (ko) 2017-11-01 2019-03-29 (주)지오메디칼 하이드록시에틸메타크릴레이트 및 솔비톨 용액중합체가 코팅된 콘택트렌즈 및 그 제조방법
US11111327B2 (en) 2018-01-22 2021-09-07 Alcon Inc. Cast-molding process for producing UV-absorbing contact lenses
JP7019058B2 (ja) 2018-02-26 2022-02-14 アルコン インク. シリコーンヒドロゲルコンタクトレンズ
US11427685B2 (en) 2018-03-28 2022-08-30 Alcon Inc. Method for making silicone hydrogel contact lenses
KR102326436B1 (ko) 2018-05-18 2021-11-15 주식회사 인터로조 콘택트렌즈용 코팅액 조성물, 그 제조방법 및 이를 이용한 코팅방법
KR20190131953A (ko) 2018-05-18 2019-11-27 주식회사 인터로조 콘택트렌즈용 코팅액 조성물, 그 제조방법 및 이를 이용한 코팅방법
WO2019234591A1 (en) 2018-06-04 2019-12-12 Alcon Inc. Method for producing silicone hydrogel contact lenses
US11254075B2 (en) 2018-06-04 2022-02-22 Alcon Inc. Method for producing silicone hydrogel contact lenses
WO2019234590A1 (en) 2018-06-04 2019-12-12 Alcon Inc. Method for making silicone hydrogel contact lenses
WO2020100090A1 (en) 2018-11-15 2020-05-22 Alcon Inc. Contact lens with phosphorylcholine-modified polyvinylalcohols therein
EP3890951B1 (en) 2018-12-03 2023-06-07 Alcon Inc. Method for coated silicone hydrogel contact lenses
WO2020115570A1 (en) 2018-12-03 2020-06-11 Alcon Inc. Method for making coated silicone hydrogel contact lenses
US11648583B2 (en) 2019-04-10 2023-05-16 Alcon Inc. Method for producing coated contact lenses
HUE062610T2 (hu) 2019-05-13 2023-11-28 Alcon Inc Eljárás fotokróm kontaktlencsék elõállítására
SG11202111038UA (en) 2019-05-28 2021-12-30 Alcon Inc Pad transfer printing instrument and method for making colored contact lenses
SG11202111037SA (en) 2019-05-28 2021-12-30 Alcon Inc Method for making opaque colored silicone hydrogel contact lenses
JP7564197B2 (ja) 2019-11-04 2024-10-08 アルコン インク. 異なる柔軟性を有する表面を有するコンタクトレンズ
MX2022007311A (es) 2019-12-16 2022-07-12 Alcon Inc Lentes de contacto de hidrogel de silicona humectables.
CN113004528A (zh) * 2019-12-20 2021-06-22 菁眸生物科技(上海)有限公司 一种隐形眼镜及用于隐形眼镜的表面活性剂
WO2021181307A1 (en) 2020-03-11 2021-09-16 Alcon Inc. Photochromic polydiorganosiloxane vinylic crosslinkers
US11618823B2 (en) 2020-03-19 2023-04-04 Alcon Inc. High refractive index siloxane insert materials for embedded contact lenses
WO2021186383A1 (en) 2020-03-19 2021-09-23 Alcon Inc. Embedded silicone hydrogel contact lenses
KR102828785B1 (ko) 2020-03-19 2025-07-04 알콘 인코포레이티드 높은 산소 투과율 및 높은 굴절률을 갖는 삽입물 재료
MY209077A (en) 2020-03-19 2025-06-19 Alcon Inc Method for producing embedded or hybrid hydrogel contact lenses
US12116442B2 (en) 2020-05-07 2024-10-15 Alcon Inc. Method for producing silicone hydrogel contact lenses
US11999908B2 (en) 2020-06-02 2024-06-04 Alcon Inc. Method for making photochromic contact lenses
TWI788924B (zh) * 2020-07-22 2023-01-01 國立陽明交通大學 表面修飾的隱形眼鏡、其製備方法及修飾高分子材料表面的方法
HUE069050T2 (hu) 2020-07-28 2025-02-28 Alcon Inc Puhább lencsefelületekkel rendelkezõ kontaktlencsék
WO2022090967A1 (en) 2020-10-28 2022-05-05 Alcon Inc. Method for making photochromic contact lenses
WO2022097049A1 (en) 2020-11-04 2022-05-12 Alcon Inc. Method for making photochromic contact lenses
EP4240578B1 (en) 2020-11-04 2024-12-18 Alcon Inc. Method for making photochromic contact lenses
CN112812247B (zh) * 2020-12-31 2023-03-24 江苏海伦隐形眼镜有限公司 一种高透氧性硅水凝胶、角膜接触镜及其制备方法
CN112898506B (zh) * 2020-12-31 2023-03-24 江苏海伦隐形眼镜有限公司 一种高透氧性硅水凝胶及角膜接触镜
CN116867836A (zh) 2021-02-09 2023-10-10 爱尔康公司 亲水化聚二有机硅氧烷乙烯类交联剂
US12111443B2 (en) 2021-03-08 2024-10-08 Alcon Inc. Method for making photochromic contact lenses
WO2022201013A1 (en) 2021-03-23 2022-09-29 Alcon Inc. Polysiloxane vinylic crosslinkers with high refractive index
US12194698B2 (en) 2021-03-24 2025-01-14 Alcon Inc. Method for making embedded hydrogel contact lenses
HUE070670T2 (hu) 2021-04-01 2025-06-28 Alcon Inc Eljárás fotokróm kontaktlencsék elõállítására
US12360289B2 (en) 2021-04-01 2025-07-15 Alcon Inc. Method for making embedded hydrogel contact lenses
KR20230144622A (ko) 2021-04-01 2023-10-16 알콘 인코포레이티드 내장형 히드로겔 콘택트 렌즈
JP7749702B2 (ja) 2021-06-14 2025-10-06 アルコン インク. 多焦点回折シリコーンヒドロゲルコンタクトレンズ
TWI854369B (zh) * 2021-11-22 2024-09-01 美商蓋列斯特股份有限公司 用於在模製期間誘發隱形眼鏡組成物之較大濕潤性的方法
WO2023209569A1 (en) 2022-04-26 2023-11-02 Alcon Inc. Method for making embedded hydrogel contact lenses
EP4514595A1 (en) 2022-04-26 2025-03-05 Alcon Inc. Method for making embedded hydrogel contact lenses
US20230364832A1 (en) 2022-04-28 2023-11-16 Alcon Inc. Method for making uv and hevl-absorbing ophthalmic lenses
TW202402513A (zh) 2022-04-29 2024-01-16 瑞士商愛爾康公司 用於製造矽酮水凝膠接觸鏡片之方法
WO2023218324A1 (en) 2022-05-09 2023-11-16 Alcon Inc. Method for making embedded hydrogel contact lenses
EP4529621A1 (en) 2022-05-23 2025-04-02 Alcon Inc. Uv/hevl-filtering contact lenses
WO2023228054A1 (en) 2022-05-23 2023-11-30 Alcon Inc. Method for making hevl-filtering contact lenses
US12391014B2 (en) 2022-05-25 2025-08-19 Alcon Inc. Method for making embedded hydrogel contact lenses
US20240092043A1 (en) 2022-08-17 2024-03-21 Alcon Inc. Contact lens with a hydrogel coating thereon
US12153287B2 (en) * 2022-09-27 2024-11-26 Coopervision International Limited Sustained fatty acid release from contact lens
EP4658491A1 (en) 2023-02-02 2025-12-10 Alcon Inc. Water gradient silicone hydrogel contact lenses
TW202441215A (zh) 2023-02-27 2024-10-16 瑞士商愛爾康公司 用於生產可潤濕矽酮水凝膠接觸鏡片之方法
CN116535651A (zh) * 2023-03-20 2023-08-04 华诺森(武汉)生物医药技术有限公司 一种用于硅水凝胶隐形眼镜的大分子有机硅单体及其制备方法和应用
WO2024194826A1 (en) 2023-03-22 2024-09-26 Alcon Inc. Method for making embedded hydrogel contact lenses
CN121039534A (zh) 2023-05-18 2025-11-28 爱尔康公司 Uv/hevl过滤性硅氧烷水凝胶隐形眼镜
WO2024236526A2 (en) 2023-05-18 2024-11-21 Alcon Inc. High-energy-violet-absorbing vinylic monomers
WO2024241239A1 (en) 2023-05-25 2024-11-28 Alcon Inc. Coated silicone hydrogel contact lenses and method for making the same
US20240399684A1 (en) 2023-06-01 2024-12-05 Alcon Inc. Embedded hydrogel contact lenses
GB2629223B (en) * 2023-07-20 2025-04-30 Coopervision Int Ltd Tinted silicone hydrogel contact lens formulations and contact lenses
US20250052927A1 (en) 2023-08-07 2025-02-13 Alcon Inc. Uv/hevl-filtering silicone hydrogel contact lenses
WO2025109468A1 (en) 2023-11-20 2025-05-30 Alcon Inc. Embedded contact lens with a high refractive index insert therein
US20250362530A1 (en) 2024-05-22 2025-11-27 Alcon Inc. Method for making centrally colored contact lenses
US20250361400A1 (en) 2024-05-22 2025-11-27 Alcon Inc. Reactive hevl-absorbing dyes
US20250361401A1 (en) 2024-05-22 2025-11-27 Alcon Inc. Reactive dyes

Citations (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907851A (en) * 1971-03-30 1975-09-23 Union Carbide Corp Novel process for producing organosilicon hydroxy compounds and novel organosilicon adducts
US4099859A (en) * 1974-12-02 1978-07-11 High Voltage Engineering Corporation Contact lens having a smooth surface layer of a hydrophilic polymer
US4121896A (en) * 1976-03-24 1978-10-24 Shepherd Thomas H Apparatus for the production of contact lenses
US4136250A (en) * 1977-07-20 1979-01-23 Ciba-Geigy Corporation Polysiloxane hydrogels
US4182822A (en) * 1976-11-08 1980-01-08 Chang Sing Hsiung Hydrophilic, soft and oxygen permeable copolymer composition
US4208365A (en) * 1978-12-20 1980-06-17 National Patent Development Corporation Method and apparatus for molding toric contact lenses
US4217038A (en) * 1978-06-05 1980-08-12 Bausch & Lomb Incorporated Glass coated polysiloxane contact lens
US4246389A (en) * 1979-06-25 1981-01-20 American Optical Corporation Contact lens composition having increased oxygen permeability
US4259467A (en) * 1979-12-10 1981-03-31 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes containing hydrophilic sidechains
US4260725A (en) * 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4293397A (en) * 1979-02-23 1981-10-06 Shin-Etsu Chemical Co., Ltd. Photocurable organopolysiloxane compositions
US4440918A (en) * 1982-01-18 1984-04-03 Minnesota Mining And Manufacturing Company Contact lens containing a fluorinated telechelic polyether
US4487905A (en) * 1983-03-14 1984-12-11 Dow Corning Corporation Wettable silicone resin optical devices and curable compositions therefor
US4605712A (en) * 1984-09-24 1986-08-12 Ciba-Geigy Corporation Unsaturated polysiloxanes and polymers thereof
US4649184A (en) * 1984-12-10 1987-03-10 Toyo Contact Lens Co., Ltd. Oxygen permeable soft contact lens material
US4703097A (en) * 1986-04-10 1987-10-27 Bayer Aktiengesellschaft Optical contact objects
US4711943A (en) * 1985-04-26 1987-12-08 Sola U.S.A. Inc. Hydrophilic siloxane monomers and dimers for contact lens materials, and contact lenses fabricated therefrom
US4879072A (en) * 1987-07-07 1989-11-07 Essilor International Cie Generale D'optique Method of manufacturing natural protein polymer contact lenses by molding and cross-linking
US4954586A (en) * 1989-01-17 1990-09-04 Menicon Co., Ltd Soft ocular lens material
US5010141A (en) * 1989-10-25 1991-04-23 Ciba-Geigy Corporation Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof
US5023305A (en) * 1986-09-30 1991-06-11 Hoya Corporation Oxygen-permeable hard contact lens material with excellent impact resistance
US5034461A (en) * 1989-06-07 1991-07-23 Bausch & Lomb Incorporated Novel prepolymers useful in biomedical devices
US5070169A (en) * 1988-02-26 1991-12-03 Ciba-Geigy Corporation Wettable, flexible, oxygen permeable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units and use thereof
US5079319A (en) * 1989-10-25 1992-01-07 Ciba-Geigy Corporation Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof
US5158717A (en) * 1990-11-27 1992-10-27 Bausch & Lomb Incorporated Method of molding shaped polymeric articles
US5258490A (en) * 1987-12-14 1993-11-02 Chang Sing Hsiung Non-irritating soft gas permeable contact lens and process for producing same
US5260000A (en) * 1992-08-03 1993-11-09 Bausch & Lomb Incorporated Process for making silicone containing hydrogel lenses
US5274008A (en) * 1990-11-27 1993-12-28 Bausch & Lomb Incorporated Mold materials for silicone containing lens materials
US5312690A (en) * 1989-12-05 1994-05-17 Shin-Etsu Chemical Co., Ltd. Self-adhesive silicone rubber composition and silicone rubber coated-fabric material
US5321108A (en) * 1993-02-12 1994-06-14 Bausch & Lomb Incorporated Fluorosilicone hydrogels
US5352714A (en) * 1991-11-05 1994-10-04 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
US5358995A (en) * 1992-05-15 1994-10-25 Bausch & Lomb Incorporated Surface wettable silicone hydrogels
US5451617A (en) * 1991-09-12 1995-09-19 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
US5486579A (en) * 1991-11-05 1996-01-23 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
US5496871A (en) * 1993-03-15 1996-03-05 Bausch & Lomb Incorporated Fumarate and fumaramide siloxane hydrogel compositions
US5760100A (en) * 1994-09-06 1998-06-02 Ciba Vision Corporation Extended wear ophthalmic lens
US5776999A (en) * 1994-09-06 1998-07-07 Ciba Vision Corporation Methods of using and screening extended wear ophthalmic lenses
US5807944A (en) * 1996-06-27 1998-09-15 Ciba Vision Corporation Amphiphilic, segmented copolymer of controlled morphology and ophthalmic devices including contact lenses made therefrom
US5817924A (en) * 1998-01-21 1998-10-06 Modern Controls, Inc. Method and apparatus for measuring oxygen transmission through contact lenses
US5945498A (en) * 1995-04-04 1999-08-31 Novartis Ag Polysiloxane-comprising perfluoroalkyl ethers and the preparation and use thereof
US5959117A (en) * 1998-08-10 1999-09-28 Bausch & Lomb Monomers useful for contact lens materials
US5962548A (en) * 1998-03-02 1999-10-05 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
US5969076A (en) * 1998-05-15 1999-10-19 Bausch & Lomb Incorporated Thermoplastic silicone-containing hydrogels
US5981675A (en) * 1998-12-07 1999-11-09 Bausch & Lomb Incorporated Silicone-containing macromonomers and low water materials
US5998498A (en) * 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
US6020445A (en) * 1997-10-09 2000-02-01 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
US6310116B1 (en) * 1997-10-09 2001-10-30 Kuraray Co., Ltd. Molded polymer article having a hydrophilic surface and process for producing the same
US20020016383A1 (en) * 1999-12-16 2002-02-07 Junichi Iwata Long wearable soft contact lens
US6359024B2 (en) * 1998-05-15 2002-03-19 Bausch & Lomb Incorporated Method for polymerizing contact lenses
US6367929B1 (en) * 1998-03-02 2002-04-09 Johnson & Johnson Vision Care, Inc. Hydrogel with internal wetting agent
US6403328B1 (en) * 1998-03-05 2002-06-11 Roger Clampitt Method of measuring erythrocyte sedimentation rate (ESR) or plasma fibrinogen of a blood sample
US20020107324A1 (en) * 1998-03-02 2002-08-08 Vanderlaan Douglas G. Soft contact lenses
US6436481B1 (en) * 1996-12-23 2002-08-20 Novartis Ag Method of producing a reactive coating by after-glow plasma polymerization
US20020120084A1 (en) * 1999-05-20 2002-08-29 Valint Paul L. Surface treatment of silicone medical devices with reactive hydrophilic polymers
US20020137811A1 (en) * 2001-01-05 2002-09-26 Turek Richard Charles Tinted, high Dk ophthalmic molding and a method for making same
US20030008154A1 (en) * 2001-05-30 2003-01-09 Celeste Aguado Polymeric materials for making contact lenses
US20030039748A1 (en) * 1998-05-05 2003-02-27 Valint Paul L. Plasma surface treatment of silicone hydrogel contact lenses
US20030109637A1 (en) * 1999-07-27 2003-06-12 Bausch & Lomb Incorporated Contact lens material
US20030109390A1 (en) * 1997-06-06 2003-06-12 Bausch & Lomb Incorporated Contact lens packing solutions
US20030125498A1 (en) * 2001-09-10 2003-07-03 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US20030134132A1 (en) * 2002-01-09 2003-07-17 Winterton Lynn Cook Polymeric articles having a lubricious coating and method for making the same
US20030162862A1 (en) * 2001-09-10 2003-08-28 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US6638991B2 (en) * 2000-03-22 2003-10-28 Menicon Co., Ltd. Material for ocular lens
US6649742B1 (en) * 1991-11-04 2003-11-18 Xoma Technology Ltd. Immunotoxins comprising ribosome-inactivating proteins
US6689480B2 (en) * 2000-05-10 2004-02-10 Toray Industries, Inc. Surface-treated plastic article and method of surface treatment
US6727336B1 (en) * 1999-05-12 2004-04-27 Menicon Co., Ltd. Ocular lens materials and process for producing the same
US6849671B2 (en) * 1998-03-02 2005-02-01 Johnson & Johnson Vision Care, Inc. Contact lenses
US6861123B2 (en) * 2000-12-01 2005-03-01 Johnson & Johnson Vision Care, Inc. Silicone hydrogel contact lens
US20050053642A1 (en) * 2000-08-23 2005-03-10 Mathias Ulbricht Biocompatible materials
US6891010B2 (en) * 2001-10-29 2005-05-10 Bausch & Lomb Incorporated Silicone hydrogels based on vinyl carbonate endcapped fluorinated side chain polysiloxanes
US6902812B2 (en) * 1999-05-20 2005-06-07 Bausch & Lomb Incorporated Surface treatment for silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US20050179862A1 (en) * 2001-09-10 2005-08-18 Robert Steffen Soft contact lenses displaying superior on-eye comfort
US20050228065A1 (en) * 1994-09-06 2005-10-13 Ciba Vision Corporation Extended wear ophthalmic lens
US20060001184A1 (en) * 2004-06-30 2006-01-05 Phelan John C Method for lathing silicone hydrogel lenses
US20060012751A1 (en) * 1999-12-10 2006-01-19 Rosenzweig Howard S Contact lens
US6992118B2 (en) * 2000-04-18 2006-01-31 Cooper Vision Inc. Ophthalmic lenses and compositions and methods for producing same
US20060072069A1 (en) * 2004-09-30 2006-04-06 Laredo Walter R Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents
US20060074208A1 (en) * 2004-09-30 2006-04-06 Laredo Walter R Biomedical devices containing amphiphilic block copolymers
US20070066706A1 (en) * 2004-08-27 2007-03-22 Coopervision, Inc. Silicone hydrogel contact lens
US20070291223A1 (en) * 2006-06-15 2007-12-20 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US20070296914A1 (en) * 2006-06-15 2007-12-27 Ye Hong Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US20080048350A1 (en) * 2006-06-15 2008-02-28 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US7426993B2 (en) * 2005-08-09 2008-09-23 Coopervision International Holding Company, Lp Contact lens package

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA983230A (en) 1972-01-03 1976-02-10 Lawrence Stark Physiologically compatible plastic contact lenses and a method for their production
US4062627A (en) 1973-08-06 1977-12-13 Essilor International (Compagnie Generale D'optique S.A.) Flexible contact lens
DE2642461A1 (de) 1976-09-21 1978-03-30 Bayer Ag Permanent stabilisierte polymere
US4640489A (en) * 1981-04-30 1987-02-03 Mia-Lens Production A/S Mold for making contact lenses, either the male or female mold sections being relatively more flexible
CA1263208A (en) 1985-12-19 1989-11-28 Kirk K.S. Hwang Method and apparatus for making optical devices
ES2023033B3 (es) 1988-02-26 1991-12-16 Ciba-Geigy Ag Lentes de contacto humectables, flexibles, permeables al oxigeno, que contienen unidades soporte de copolimero en bloque de polisiloxano polioxialquileno.
DE68900100D1 (de) 1988-02-26 1991-07-11 Ciba Geigy Ag Benetzbare, flexible, sauerstoffdurchlaessige kontaktlinse, bestehend aus blockcopolymeren mit polysiloxan-polyoxyalkylen-gliedern in der hauptkette, und verwendung hierfuer.
JPH0339928A (ja) * 1989-07-07 1991-02-20 Asahi Chem Ind Co Ltd コンタクトレンズ材料
US5314960A (en) * 1990-04-10 1994-05-24 Permeable Technologies, Inc. Silicone-containing polymers, oxygen permeable hydrophilic contact lenses and methods for making these lenses and treating patients with visual impairment
US5264465A (en) 1991-01-31 1993-11-23 Hoya Corporation Contact lens material and contact lens
JP2774233B2 (ja) * 1992-08-26 1998-07-09 株式会社メニコン 眼用レンズ材料
SI0819258T1 (en) * 1995-04-04 2002-04-30 Novartis Ag Extended wear ophthalmic lens
US5943203A (en) * 1997-09-12 1999-08-24 Linfinity Microelectronics Inc. Electronic circuit breaker
JPH11258553A (ja) 1998-03-09 1999-09-24 Menicon Co Ltd プリズムバラスト型コンタクトレンズ及びその製造方法並びにそれに用いられるモールド型
US6036891A (en) * 1998-05-11 2000-03-14 Pharmacia & Upjohn Polymerizable hydrophilic ultraviolet light absorbing monomers
JPH11320571A (ja) 1998-05-15 1999-11-24 Menicon Co Ltd 眼用レンズの成形型及びその製造方法並びにそれを用いた眼用レンズの製造法
KR100703583B1 (ko) 1999-10-07 2007-04-05 존슨 앤드 존슨 비젼 케어, 인코포레이티드 실리콘 하이드로겔, 이의 제조방법 및 이를 포함하는 콘택트 렌즈
JP2001188101A (ja) * 1999-12-27 2001-07-10 Asahi Kasei Aimii Kk 耐汚れ性ソフトコンタクトレンズ材料
JP2001201723A (ja) * 2000-01-18 2001-07-27 Asahi Kasei Aimii Kk 連続装用ソフトコンタクトレンズ
DE602004032420D1 (de) * 2003-01-10 2011-06-09 Menicon Co Ltd Hochsicheres silikonhaltiges material für eine okularlinse und herstellungsprozess dafür
US7710395B2 (en) * 2004-07-14 2010-05-04 Alken, Inc. Head-mounted pointing and control device

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907851A (en) * 1971-03-30 1975-09-23 Union Carbide Corp Novel process for producing organosilicon hydroxy compounds and novel organosilicon adducts
US4099859A (en) * 1974-12-02 1978-07-11 High Voltage Engineering Corporation Contact lens having a smooth surface layer of a hydrophilic polymer
US4121896A (en) * 1976-03-24 1978-10-24 Shepherd Thomas H Apparatus for the production of contact lenses
US4182822A (en) * 1976-11-08 1980-01-08 Chang Sing Hsiung Hydrophilic, soft and oxygen permeable copolymer composition
US4136250A (en) * 1977-07-20 1979-01-23 Ciba-Geigy Corporation Polysiloxane hydrogels
US4217038A (en) * 1978-06-05 1980-08-12 Bausch & Lomb Incorporated Glass coated polysiloxane contact lens
US4208365A (en) * 1978-12-20 1980-06-17 National Patent Development Corporation Method and apparatus for molding toric contact lenses
US4293397A (en) * 1979-02-23 1981-10-06 Shin-Etsu Chemical Co., Ltd. Photocurable organopolysiloxane compositions
US4246389A (en) * 1979-06-25 1981-01-20 American Optical Corporation Contact lens composition having increased oxygen permeability
US4259467A (en) * 1979-12-10 1981-03-31 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes containing hydrophilic sidechains
US4260725A (en) * 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4440918A (en) * 1982-01-18 1984-04-03 Minnesota Mining And Manufacturing Company Contact lens containing a fluorinated telechelic polyether
US4487905A (en) * 1983-03-14 1984-12-11 Dow Corning Corporation Wettable silicone resin optical devices and curable compositions therefor
US4605712A (en) * 1984-09-24 1986-08-12 Ciba-Geigy Corporation Unsaturated polysiloxanes and polymers thereof
US4649184A (en) * 1984-12-10 1987-03-10 Toyo Contact Lens Co., Ltd. Oxygen permeable soft contact lens material
US4711943A (en) * 1985-04-26 1987-12-08 Sola U.S.A. Inc. Hydrophilic siloxane monomers and dimers for contact lens materials, and contact lenses fabricated therefrom
US4703097A (en) * 1986-04-10 1987-10-27 Bayer Aktiengesellschaft Optical contact objects
US5023305A (en) * 1986-09-30 1991-06-11 Hoya Corporation Oxygen-permeable hard contact lens material with excellent impact resistance
US4879072A (en) * 1987-07-07 1989-11-07 Essilor International Cie Generale D'optique Method of manufacturing natural protein polymer contact lenses by molding and cross-linking
US5258490A (en) * 1987-12-14 1993-11-02 Chang Sing Hsiung Non-irritating soft gas permeable contact lens and process for producing same
US5070169A (en) * 1988-02-26 1991-12-03 Ciba-Geigy Corporation Wettable, flexible, oxygen permeable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units and use thereof
US4954586A (en) * 1989-01-17 1990-09-04 Menicon Co., Ltd Soft ocular lens material
US5034461A (en) * 1989-06-07 1991-07-23 Bausch & Lomb Incorporated Novel prepolymers useful in biomedical devices
US5010141A (en) * 1989-10-25 1991-04-23 Ciba-Geigy Corporation Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof
US5079319A (en) * 1989-10-25 1992-01-07 Ciba-Geigy Corporation Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof
US5312690A (en) * 1989-12-05 1994-05-17 Shin-Etsu Chemical Co., Ltd. Self-adhesive silicone rubber composition and silicone rubber coated-fabric material
US5274008A (en) * 1990-11-27 1993-12-28 Bausch & Lomb Incorporated Mold materials for silicone containing lens materials
US5158717A (en) * 1990-11-27 1992-10-27 Bausch & Lomb Incorporated Method of molding shaped polymeric articles
US5451617A (en) * 1991-09-12 1995-09-19 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
US6649742B1 (en) * 1991-11-04 2003-11-18 Xoma Technology Ltd. Immunotoxins comprising ribosome-inactivating proteins
US5352714A (en) * 1991-11-05 1994-10-04 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
US5486579A (en) * 1991-11-05 1996-01-23 Bausch & Lomb Incorporated Wettable silicone hydrogel compositions and methods for their manufacture
US5358995A (en) * 1992-05-15 1994-10-25 Bausch & Lomb Incorporated Surface wettable silicone hydrogels
US5387632A (en) * 1992-05-15 1995-02-07 Bausch & Lomb Incorporated Surface wettable silicone hydrogels
US5260000A (en) * 1992-08-03 1993-11-09 Bausch & Lomb Incorporated Process for making silicone containing hydrogel lenses
US5321108A (en) * 1993-02-12 1994-06-14 Bausch & Lomb Incorporated Fluorosilicone hydrogels
US5539016A (en) * 1993-02-12 1996-07-23 Bausch & Lomb Incorporated Fluorosilicone hydrogels
US5496871A (en) * 1993-03-15 1996-03-05 Bausch & Lomb Incorporated Fumarate and fumaramide siloxane hydrogel compositions
US20050228065A1 (en) * 1994-09-06 2005-10-13 Ciba Vision Corporation Extended wear ophthalmic lens
US5789461A (en) * 1994-09-06 1998-08-04 Ciba Vision Corporation Methods of forming an extended wear ophthalmic lens having a hydrophilic surface
US5760100A (en) * 1994-09-06 1998-06-02 Ciba Vision Corporation Extended wear ophthalmic lens
US5789461B1 (en) * 1994-09-06 2000-11-21 Ciba Vision Corp Methods of forming an extended wear ophthalmic lens having a hydrophilic surface
US5849811A (en) * 1994-09-06 1998-12-15 Ciba Vision Corporation Extended wear ophthalmic lens
US5760100B1 (en) * 1994-09-06 2000-11-14 Ciba Vision Corp Extended wear ophthalmic lens
US6951894B1 (en) * 1994-09-06 2005-10-04 Ciba Vision Corporation Extended wear ophthalmic lens
US5776999A (en) * 1994-09-06 1998-07-07 Ciba Vision Corporation Methods of using and screening extended wear ophthalmic lenses
US5965631A (en) * 1994-09-06 1999-10-12 Ciba Vision Corporation Extended wear ophthalmic lens
US5849811B1 (en) * 1994-09-06 2000-11-14 Ciba Vision Corporatin Extended wear ophthalmic lens
US5776999B1 (en) * 1994-09-06 2000-11-21 Ciba Vision Corp Methods of using and screening extended wear opthalmic lenses
US5945498A (en) * 1995-04-04 1999-08-31 Novartis Ag Polysiloxane-comprising perfluoroalkyl ethers and the preparation and use thereof
US5807944A (en) * 1996-06-27 1998-09-15 Ciba Vision Corporation Amphiphilic, segmented copolymer of controlled morphology and ophthalmic devices including contact lenses made therefrom
US6436481B1 (en) * 1996-12-23 2002-08-20 Novartis Ag Method of producing a reactive coating by after-glow plasma polymerization
US20030109390A1 (en) * 1997-06-06 2003-06-12 Bausch & Lomb Incorporated Contact lens packing solutions
US6020445A (en) * 1997-10-09 2000-02-01 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
US6310116B1 (en) * 1997-10-09 2001-10-30 Kuraray Co., Ltd. Molded polymer article having a hydrophilic surface and process for producing the same
US5817924A (en) * 1998-01-21 1998-10-06 Modern Controls, Inc. Method and apparatus for measuring oxygen transmission through contact lenses
US6943203B2 (en) * 1998-03-02 2005-09-13 Johnson & Johnson Vision Care, Inc. Soft contact lenses
US6367929B1 (en) * 1998-03-02 2002-04-09 Johnson & Johnson Vision Care, Inc. Hydrogel with internal wetting agent
US20020107324A1 (en) * 1998-03-02 2002-08-08 Vanderlaan Douglas G. Soft contact lenses
US6849671B2 (en) * 1998-03-02 2005-02-01 Johnson & Johnson Vision Care, Inc. Contact lenses
US5962548A (en) * 1998-03-02 1999-10-05 Johnson & Johnson Vision Products, Inc. Silicone hydrogel polymers
US5998498A (en) * 1998-03-02 1999-12-07 Johnson & Johnson Vision Products, Inc. Soft contact lenses
US6403328B1 (en) * 1998-03-05 2002-06-11 Roger Clampitt Method of measuring erythrocyte sedimentation rate (ESR) or plasma fibrinogen of a blood sample
US20030039748A1 (en) * 1998-05-05 2003-02-27 Valint Paul L. Plasma surface treatment of silicone hydrogel contact lenses
US5969076A (en) * 1998-05-15 1999-10-19 Bausch & Lomb Incorporated Thermoplastic silicone-containing hydrogels
US6359024B2 (en) * 1998-05-15 2002-03-19 Bausch & Lomb Incorporated Method for polymerizing contact lenses
US5959117A (en) * 1998-08-10 1999-09-28 Bausch & Lomb Monomers useful for contact lens materials
US5981675A (en) * 1998-12-07 1999-11-09 Bausch & Lomb Incorporated Silicone-containing macromonomers and low water materials
US6727336B1 (en) * 1999-05-12 2004-04-27 Menicon Co., Ltd. Ocular lens materials and process for producing the same
US6902812B2 (en) * 1999-05-20 2005-06-07 Bausch & Lomb Incorporated Surface treatment for silicone hydrogel contact lenses comprising hydrophilic polymer chains attached to an intermediate carbon coating
US20020120084A1 (en) * 1999-05-20 2002-08-29 Valint Paul L. Surface treatment of silicone medical devices with reactive hydrophilic polymers
US20030109637A1 (en) * 1999-07-27 2003-06-12 Bausch & Lomb Incorporated Contact lens material
US6921802B2 (en) * 1999-07-27 2005-07-26 Bausch & Lomb, Inc. Contact lens materials
US20060012751A1 (en) * 1999-12-10 2006-01-19 Rosenzweig Howard S Contact lens
US6867245B2 (en) * 1999-12-16 2005-03-15 Asahikasei Aime Co., Ltd. Long wearable soft contact lens
US20020016383A1 (en) * 1999-12-16 2002-02-07 Junichi Iwata Long wearable soft contact lens
US20040039077A1 (en) * 2000-03-22 2004-02-26 Menicon Co., Ltd. Ocular lens material
US6638991B2 (en) * 2000-03-22 2003-10-28 Menicon Co., Ltd. Material for ocular lens
US6992118B2 (en) * 2000-04-18 2006-01-31 Cooper Vision Inc. Ophthalmic lenses and compositions and methods for producing same
US6689480B2 (en) * 2000-05-10 2004-02-10 Toray Industries, Inc. Surface-treated plastic article and method of surface treatment
US20050053642A1 (en) * 2000-08-23 2005-03-10 Mathias Ulbricht Biocompatible materials
US6861123B2 (en) * 2000-12-01 2005-03-01 Johnson & Johnson Vision Care, Inc. Silicone hydrogel contact lens
US20020137811A1 (en) * 2001-01-05 2002-09-26 Turek Richard Charles Tinted, high Dk ophthalmic molding and a method for making same
US20030008154A1 (en) * 2001-05-30 2003-01-09 Celeste Aguado Polymeric materials for making contact lenses
US20030125498A1 (en) * 2001-09-10 2003-07-03 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US20060007391A1 (en) * 2001-09-10 2006-01-12 Mccabe Kevin P Biomedical devices containing internal wetting agents
US20050154080A1 (en) * 2001-09-10 2005-07-14 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US20050179862A1 (en) * 2001-09-10 2005-08-18 Robert Steffen Soft contact lenses displaying superior on-eye comfort
US20030162862A1 (en) * 2001-09-10 2003-08-28 Mccabe Kevin P. Biomedical devices containing internal wetting agents
US6891010B2 (en) * 2001-10-29 2005-05-10 Bausch & Lomb Incorporated Silicone hydrogels based on vinyl carbonate endcapped fluorinated side chain polysiloxanes
US20050165187A1 (en) * 2001-10-29 2005-07-28 Kunzler Jay F. Silicone hydrogels based on vinyl carbonate endcapped fluorinated side chain polysiloxanes
US20030134132A1 (en) * 2002-01-09 2003-07-17 Winterton Lynn Cook Polymeric articles having a lubricious coating and method for making the same
US6940580B2 (en) * 2002-01-09 2005-09-06 Novartis Ag Polymeric articles having a lubricious coating and method for making the same
US20060001184A1 (en) * 2004-06-30 2006-01-05 Phelan John C Method for lathing silicone hydrogel lenses
US20070066706A1 (en) * 2004-08-27 2007-03-22 Coopervision, Inc. Silicone hydrogel contact lens
US20060072069A1 (en) * 2004-09-30 2006-04-06 Laredo Walter R Wettable hydrogels comprising reactive, hydrophilic, polymeric internal wetting agents
US20060074208A1 (en) * 2004-09-30 2006-04-06 Laredo Walter R Biomedical devices containing amphiphilic block copolymers
US7426993B2 (en) * 2005-08-09 2008-09-23 Coopervision International Holding Company, Lp Contact lens package
US20070291223A1 (en) * 2006-06-15 2007-12-20 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US20070296914A1 (en) * 2006-06-15 2007-12-27 Ye Hong Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US20080048350A1 (en) * 2006-06-15 2008-02-28 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods

Cited By (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322958B2 (en) * 2004-08-27 2016-04-26 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
US20150219795A9 (en) * 2004-08-27 2015-08-06 Coopervison International Holding Company, Lp Silicone Hydrogel Contact Lenses
US20090188602A1 (en) * 2005-10-27 2009-07-30 Commissariat A L'energie Atomique Method for grafting molecules of interest on inorganic surfaces, resulting surfaces and uses thereof
US7919046B2 (en) * 2005-10-27 2011-04-05 Commissariat A L'energie Atomique Method for grafting molecules of interest on inorganic surfaces, resulting surfaces and uses thereof
US20070228364A1 (en) * 2005-12-27 2007-10-04 Radu Nora S Compositions comprising novel copolymers and electronic devices made with such compositions
US8440324B2 (en) 2005-12-27 2013-05-14 E I Du Pont De Nemours And Company Compositions comprising novel copolymers and electronic devices made with such compositions
US20110198575A1 (en) * 2005-12-28 2011-08-18 E. I. Du Pont De Nemours And Company Compositions comprising novel compounds and electronic devices made with such compositions
US20100258788A1 (en) * 2005-12-28 2010-10-14 Nora Sabina Radu Compositions comprising novel compounds and electronic devices made with such compositions
US20070216045A1 (en) * 2006-03-20 2007-09-20 Francis Charles A Demolding aids for silicone hydrogels and related methods
US7799248B2 (en) * 2006-03-20 2010-09-21 Coopervision International Holding Company, Lp Demolding aids for silicone hydrogels and related methods
US7858000B2 (en) 2006-06-08 2010-12-28 Novartis Ag Method of making silicone hydrogel contact lenses
US20080174035A1 (en) * 2006-06-08 2008-07-24 Lynn Cook Winterton Silicone hydrogel contact lenses
WO2007146312A3 (en) * 2006-06-15 2008-06-19 Coopervision Int Holding Co Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US20080048350A1 (en) * 2006-06-15 2008-02-28 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US7572841B2 (en) 2006-06-15 2009-08-11 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US8552085B2 (en) * 2006-06-15 2013-10-08 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US20130031873A1 (en) * 2006-06-15 2013-02-07 Coopervision International Holding Company, Lp Wettable Silicone Hydrogel Contact Lenses And Related Compositions And Methods
US8476337B2 (en) 2006-06-15 2013-07-02 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
WO2007146299A3 (en) * 2006-06-15 2008-11-27 Coopervision Int Holding Co Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US8231218B2 (en) 2006-06-15 2012-07-31 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US20070291223A1 (en) * 2006-06-15 2007-12-20 Charlie Chen Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US7540609B2 (en) 2006-06-15 2009-06-02 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
CN101467094B (zh) * 2006-06-15 2011-02-23 库柏维景国际控股公司 可湿性硅氧水凝胶隐形眼镜以及相关组合物和方法
US9272473B2 (en) 2006-06-15 2016-03-01 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US20070296914A1 (en) * 2006-06-15 2007-12-27 Ye Hong Wettable Silicone Hydrogel Contact Lenses and Related Compositions and Methods
US9804417B2 (en) 2006-06-15 2017-10-31 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses and related compositions and methods
US20080015315A1 (en) * 2006-07-12 2008-01-17 Frank Chang Novel Polymers
US8703875B2 (en) 2006-07-12 2014-04-22 Novartis Ag Polymers
US8404783B2 (en) 2006-07-12 2013-03-26 Novartis Ag Polymers
US8242223B2 (en) 2006-08-24 2012-08-14 E I Du Pont De Nemours And Company Hole transport polymers
US20100048847A1 (en) * 2006-11-22 2010-02-25 Sauflon Cl Limited Contact Lens
US8703891B2 (en) 2006-11-22 2014-04-22 Sauflon Cl Limited Contact lens
US20080143958A1 (en) * 2006-12-13 2008-06-19 Arturo Norberto Medina Production of ophthalmic devices based on photo-induced step growth polymerization
US8357771B2 (en) 2006-12-13 2013-01-22 Novartis Ag Production of ophthalmic devices based on photo-induced step growth polymerization
US8609745B2 (en) 2006-12-13 2013-12-17 Novartis Ag Production of ophthalmic devices based on photo-induced step growth polymerization
US8003710B2 (en) 2006-12-13 2011-08-23 Novartis Ag Production of ophthalmic devices based on photo-induced step growth polymerization
US9162784B2 (en) 2007-08-31 2015-10-20 Novartis Ag Contact lens packaging solutions
US8647658B2 (en) 2007-08-31 2014-02-11 Novartis Ag Contact lens products
US8689971B2 (en) 2007-08-31 2014-04-08 Novartis Ag Contact lens packaging solutions
US9348061B2 (en) 2007-08-31 2016-05-24 Novartis Ag Contact lens products
US20090057164A1 (en) * 2007-08-31 2009-03-05 Kasey Jon Minick Contact lens packaging solutions
US20090059165A1 (en) * 2007-08-31 2009-03-05 John Dallas Pruitt Contact lens products
US8524850B2 (en) 2008-02-08 2013-09-03 Coopervision International Holding Company, Lp Hydrophilic polysiloxane macromonomer, and production and use of the same
US8129442B2 (en) 2008-02-08 2012-03-06 Coopervision International Holding Company, Lp Hydrophilic polysiloxane macromonomer, and production and use of the same
US20090234089A1 (en) * 2008-02-08 2009-09-17 Asahi Kasei Aime Co., Ltd. Hydrophilic Polysiloxane Macromonomer, and Production and Use of the same
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
US20110037056A1 (en) * 2008-12-12 2011-02-17 E. I. Du Pont De Nemours And Company Photoactive composition and electronic device made with the composition
US8513324B2 (en) 2009-03-31 2013-08-20 Johnson & Johnson Vision Care, Inc. Polymeric articles comprising oxygen permeability enhancing particles
US20100249273A1 (en) * 2009-03-31 2010-09-30 Scales Charles W Polymeric articles comprising oxygen permeability enhancing particles
US9062180B2 (en) 2009-03-31 2015-06-23 Johnson & Johnson Vision Care, Inc. Polymeric articles comprising oxygen permeability enhancing particles
US20120172486A1 (en) * 2009-09-22 2012-07-05 Coopervision International Holding Company, Lp Wettable Hydrogel Materials For Use In Ophthalmic Applications And Methods
US8410190B2 (en) * 2009-09-22 2013-04-02 Coopervision International Holding Company, Lp Wettable hydrogel materials for use in ophthalmic applications and methods
US8937300B2 (en) 2009-10-19 2015-01-20 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
US8648333B2 (en) 2009-10-19 2014-02-11 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
US10301465B2 (en) 2010-05-06 2019-05-28 Johnson & Johnson Vision Care, Inc. Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
US9815979B2 (en) 2010-05-06 2017-11-14 Johnson & Johnson Vision Care, Inc. Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
US9522980B2 (en) 2010-05-06 2016-12-20 Johnson & Johnson Vision Care, Inc. Non-reactive, hydrophilic polymers having terminal siloxanes and methods for making and using the same
US9156214B2 (en) 2010-07-09 2015-10-13 Coopervision International Holding Company, Lp Polar thermoplastic ophthalmic lens molds, ophthalmic lenses molded therein, and related methods
US9498924B2 (en) 2010-07-09 2016-11-22 Coopervision International Holding Company, Lp Ophthalmic lens molds with low levels of UV light transmittance, ophthalmic lenses molded therein, and related methods
US8529057B2 (en) 2010-07-30 2013-09-10 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9738813B2 (en) 2010-07-30 2017-08-22 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US10781340B2 (en) 2010-07-30 2020-09-22 Alcon Inc. Silicone hydrogel lenses with water-rich surfaces
KR20200091498A (ko) * 2010-07-30 2020-07-30 알콘 인코포레이티드 가교된 친수성 코팅을 갖는 실리콘 히드로겔 렌즈
KR102139022B1 (ko) 2010-07-30 2020-07-29 알콘 인코포레이티드 가교된 친수성 코팅을 갖는 실리콘 히드로겔 렌즈
CN103293707A (zh) * 2010-07-30 2013-09-11 诺瓦提斯公司 具有富水表面的硅水凝胶透镜
WO2012016096A1 (en) * 2010-07-30 2012-02-02 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US9507173B2 (en) 2010-07-30 2016-11-29 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9492951B2 (en) 2010-07-30 2016-11-15 Coopervision International Holding Company, Lp Ophthalmic device molds formed from water-soluble vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
US9616626B2 (en) 2010-07-30 2017-04-11 Coopervision International Holding Company, Lp Ophthalmic device molds formed from vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
US9411171B2 (en) 2010-07-30 2016-08-09 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
RU2619715C1 (ru) * 2010-07-30 2017-05-17 Новартис Аг Силиконовые гидрогелевые линзы с обогащенными водой поверхностями
KR20190140108A (ko) * 2010-07-30 2019-12-18 노파르티스 아게 가교된 친수성 코팅을 갖는 실리콘 히드로겔 렌즈
US10509236B2 (en) 2010-07-30 2019-12-17 Coopervision International Holding Company, Lp Ophthalmic device molds and related methods
US8480227B2 (en) 2010-07-30 2013-07-09 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US9664925B2 (en) 2010-07-30 2017-05-30 Coopervision International Holding Company, Lp Ophthalmic device molds formed from highly amorphous vinyl alcohol polymer, ophthalmic devices molded therein, and related methods
CN103189173A (zh) * 2010-07-30 2013-07-03 库柏维景国际控股公司 乙烯醇眼科镜片模具、其中模制的眼科镜片和相关方法
US9676153B2 (en) 2010-07-30 2017-06-13 Coopervision International Holding Company, Lp Vinyl alcohol ophthalmic lens molds, ophthalmic lenses molded therein, and related methods
KR101413390B1 (ko) * 2010-07-30 2014-06-27 노파르티스 아게 수분이 풍부한 표면을 갖는 실리콘 히드로겔 렌즈
KR102266813B1 (ko) 2010-07-30 2021-06-18 알콘 인코포레이티드 가교된 친수성 코팅을 갖는 실리콘 히드로겔 렌즈
US9244200B2 (en) 2010-07-30 2016-01-26 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US9239409B2 (en) 2010-07-30 2016-01-19 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US9193118B2 (en) 2010-07-30 2015-11-24 Coopervision International Holding Company, Lp Ophthalmic lens molds, ophthalmic lenses molded therein, and related methods
US9816009B2 (en) 2010-07-30 2017-11-14 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US8939577B2 (en) 2010-07-30 2015-01-27 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
US8944592B2 (en) 2010-07-30 2015-02-03 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
RU2645991C1 (ru) * 2010-07-30 2018-02-28 Новартис Аг Силиконовые гидрогелевые линзы с обогащенными водой поверхностями
US10042183B2 (en) 2010-07-30 2018-08-07 Coopervision International Holding Company, Lp Ophthalmic device molds formed from water-soluble vinyl alcohol copolymer, ophthalmic devices molded therein, and related methods
US10185056B2 (en) 2010-11-04 2019-01-22 Johnson & Johnson Vision Care, Inc. Silicone hydrogel reactive mixtures comprising borates
US9612363B2 (en) 2010-11-04 2017-04-04 Johnson & Johnson Vision Care, Inc. Silicone hydrogel reactive mixtures comprising borates
WO2012095293A2 (en) 2011-01-14 2012-07-19 Cognis Ip Management Gmbh Process for the synthesis of compounds from cyclic carbonates
US8969429B2 (en) 2011-02-08 2015-03-03 Novartis Ag Low-tack, hydrophobic ophthalmic device materials
US20120214898A1 (en) * 2011-02-21 2012-08-23 Chih-Ta Lee Silicone hydrogel with high water content
WO2012118672A2 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
US8487058B2 (en) 2011-02-28 2013-07-16 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses
US9864103B2 (en) 2011-02-28 2018-01-09 Coopervision International Holding Company, Lp Phosphine-containing hydrogel contact lenses
WO2012118681A2 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses having acceptable levels of energy loss
WO2012118671A1 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Phosphine-containing hydrogel contact lenses
WO2012118670A2 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses and related compositions and methods
US8642677B2 (en) 2011-02-28 2014-02-04 Coopervision International Holding Company, Lp Phosphine-containing hydrogel contact lenses
EP3456758A1 (en) 2011-02-28 2019-03-20 CooperVision International Holding Company, LP Silicone hydrogel contact lenses and related compositions and methods
US8513325B2 (en) 2011-02-28 2013-08-20 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses and related compositions and methods
EP2492718A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Silicone Hydrogel Contact Lenses
US8865789B2 (en) 2011-02-28 2014-10-21 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
US8820928B2 (en) 2011-02-28 2014-09-02 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
EP2492719A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Dimensionally stable silicone hydrogel contact lenses
WO2012154268A1 (en) 2011-02-28 2012-11-15 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses
US8481662B2 (en) 2011-02-28 2013-07-09 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses having acceptable levels of energy loss
EP2492720A1 (en) 2011-02-28 2012-08-29 CooperVision International Holding Company, LP Wettable Silicone Hydrogel Contact Lenses
WO2012118678A1 (en) 2011-02-28 2012-09-07 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses
US8658747B2 (en) 2011-02-28 2014-02-25 Coopervision International Holding Company, Lp Wettable silicone hydrogel contact lenses
US8658748B2 (en) 2011-02-28 2014-02-25 Coopervision International Holding Company, Lp Silicone hydrogel contact lenses having acceptable levels of energy loss
US8445614B2 (en) 2011-02-28 2013-05-21 Coopervision International Holding Company, Lp Dimensionally stable silicone hydrogel contact lenses
US10386545B2 (en) 2011-05-04 2019-08-20 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US11067720B2 (en) 2011-05-04 2021-07-20 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9612364B2 (en) 2011-05-04 2017-04-04 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9170349B2 (en) 2011-05-04 2015-10-27 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9599751B2 (en) 2011-05-04 2017-03-21 Johnson & Johnson Vision Care, Inc. Medical devices having homogeneous charge density and methods for making same
US9005700B2 (en) 2011-10-12 2015-04-14 Novartis Ag Method for making UV-absorbing ophthalmic lenses
US9140825B2 (en) 2011-12-23 2015-09-22 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US8937110B2 (en) 2011-12-23 2015-01-20 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having a structure formed via controlled reaction kinetics
US9588258B2 (en) 2011-12-23 2017-03-07 Johnson & Johnson Vision Care, Inc. Silicone hydrogels formed from zero diluent reactive mixtures
US9562161B2 (en) 2011-12-23 2017-02-07 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having a structure formed via controlled reaction kinetics
US9507055B2 (en) 2011-12-23 2016-11-29 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US9612365B2 (en) 2011-12-23 2017-04-04 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having desirable water content and oxygen permeability
US9494714B2 (en) 2011-12-23 2016-11-15 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising N-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides
US9994665B2 (en) 2011-12-23 2018-06-12 Johnson & Johnson Vision Care, Inc. Silicone hydrogels having a structure formed via controlled reaction kinetics
US10353115B2 (en) 2011-12-23 2019-07-16 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising N-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides
US9964666B2 (en) 2011-12-23 2018-05-08 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising N-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides
EP2794723B1 (en) 2011-12-23 2019-04-24 Johnson & Johnson Vision Care Inc. Silicone hydrogels having a structure formed via controlled reaction kinetics
US10259900B2 (en) 2011-12-23 2019-04-16 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US8937111B2 (en) 2011-12-23 2015-01-20 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising desirable water content and oxygen permeability
US9125808B2 (en) 2011-12-23 2015-09-08 Johnson & Johnson Vision Care, Inc. Ionic silicone hydrogels
US9244197B2 (en) 2011-12-23 2016-01-26 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising desirable water content and oxygen permeability
US10017596B2 (en) 2011-12-23 2018-07-10 Johnson & Johnson Vision Care, Inc. Silicone hydrogels formed from zero diluent reactive mixtures
US9156934B2 (en) 2011-12-23 2015-10-13 Johnson & Johnson Vision Care, Inc. Silicone hydrogels comprising n-vinyl amides and hydroxyalkyl (meth)acrylates or (meth)acrylamides
US9056879B2 (en) 2011-12-29 2015-06-16 Pegavision Corporation Method of manufacturing hydrophilic silicone prepolymer
EP2610281A1 (en) 2011-12-29 2013-07-03 Pegavision Corporation Method of manufacturing hydrophilic silicone prepolymer
US9726906B2 (en) 2012-05-25 2017-08-08 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US9625617B2 (en) 2012-05-25 2017-04-18 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
WO2013176886A2 (en) 2012-05-25 2013-11-28 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
EP3296334A1 (en) 2012-05-25 2018-03-21 Johnson & Johnson Vision Care Inc. Polymers and nanogel materials and methods for making and using the same
US10871595B2 (en) 2012-05-25 2020-12-22 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
WO2013177513A1 (en) 2012-05-25 2013-11-28 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble n-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
US9244196B2 (en) 2012-05-25 2016-01-26 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US11029539B2 (en) 2012-05-25 2021-06-08 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US10073192B2 (en) 2012-05-25 2018-09-11 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
EP3401342A1 (en) 2012-05-25 2018-11-14 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
WO2013177523A2 (en) 2012-05-25 2013-11-28 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
WO2013177506A2 (en) 2012-05-25 2013-11-28 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US9297929B2 (en) 2012-05-25 2016-03-29 Johnson & Johnson Vision Care, Inc. Contact lenses comprising water soluble N-(2 hydroxyalkyl) (meth)acrylamide polymers or copolymers
US10502867B2 (en) 2012-05-25 2019-12-10 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US10502978B2 (en) 2012-05-25 2019-12-10 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US11782296B2 (en) 2012-05-25 2023-10-10 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
EP4502052A2 (en) 2012-05-25 2025-02-05 Johnson & Johnson Vision Care, Inc. Polymers and nanogel materials and methods for making and using the same
US12449674B2 (en) 2012-08-27 2025-10-21 Tangible Science, Inc. Contact lens with a hydrophilic layer
US10451896B2 (en) 2012-08-27 2019-10-22 Tangible Science, Llc Contact lens with a hydrophilic layer
US11181754B2 (en) 2012-08-27 2021-11-23 Tangible Science, Llc Contact lens with a hydrophilic layer
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
WO2014035912A1 (en) * 2012-08-27 2014-03-06 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
WO2014033442A1 (en) 2012-08-28 2014-03-06 Coopervision International Holding Company, Lp Contact lenses made with hema-compatible polysiloxane macromers
US9046641B2 (en) 2012-11-30 2015-06-02 Pegavision Corporation Silicone hydrogel composition and silicone hydrogel contact lenses made from the composition
EP2738221A1 (en) 2012-11-30 2014-06-04 Pegavision Corporation Silicone hydrogel composition and silicone hydrogel contact lenses made from the composition
US9475827B2 (en) 2012-12-14 2016-10-25 Shin-Etsu Chemical Company, Ltd. Tris(trimethyl siloxyl)silane vinylic monomers and uses thereof
US9567352B2 (en) 2012-12-14 2017-02-14 Novartis Ag Tris(trimethyl siloxy)silane vinylic monomers and uses thereof
US10338408B2 (en) 2012-12-17 2019-07-02 Novartis Ag Method for making improved UV-absorbing ophthalmic lenses
US11433628B2 (en) 2013-11-15 2022-09-06 Tangible Science, Inc. Contact lens with a hydrophilic layer
US9310627B2 (en) 2013-11-15 2016-04-12 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US10330951B2 (en) 2013-11-15 2019-06-25 Tangible Science, Llc Contact lens with a hydrophilic layer
US9708087B2 (en) 2013-12-17 2017-07-18 Novartis Ag Silicone hydrogel lens with a crosslinked hydrophilic coating
US20150224724A1 (en) * 2014-01-06 2015-08-13 Coopervision International Holding Company, Lp Ophthalmic lens manufacturing method, system, and apparatus that include flash removal from lens mold members
WO2015128636A1 (en) 2014-02-28 2015-09-03 Coopervision International Holding Company, Lp Contact lenses made with hema-compatible polysiloxane macromers
US11002884B2 (en) 2014-08-26 2021-05-11 Alcon Inc. Method for applying stable coating on silicone hydrogel contact lenses
US10525170B2 (en) 2014-12-09 2020-01-07 Tangible Science, Llc Medical device coating with a biocompatible layer
US11260150B2 (en) 2014-12-09 2022-03-01 Tangible Science, Inc. Medical device coating with a biocompatible layer
US9829723B2 (en) 2015-12-03 2017-11-28 Novartis Ag Contact lens packaging solutions
US10449740B2 (en) 2015-12-15 2019-10-22 Novartis Ag Method for applying stable coating on silicone hydrogel contact lenses
US9902793B1 (en) * 2016-08-11 2018-02-27 Hon Hai Precision Industry Co., Ltd. Ophthalmic lens material, ophthalmic lens, and method for making ophthalmic lens
EP3555696B1 (en) 2016-12-16 2020-08-26 CooperVision International Holding Company, LP Contact lenses with incorporated components
US11008413B1 (en) * 2017-03-18 2021-05-18 Verily Life Sciences Llc Biocompatible materials for underlid device fabrication
US10830923B2 (en) 2017-12-13 2020-11-10 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
US11256003B2 (en) 2017-12-13 2022-02-22 Alcon Inc. Weekly and monthly disposable water gradient contact lenses
US11029446B2 (en) 2017-12-13 2021-06-08 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
US11029447B2 (en) 2017-12-13 2021-06-08 Alcon Inc. Method for producing MPS-compatible water gradient contact lenses
EP4465098A2 (en) 2023-05-15 2024-11-20 CooperVision International Limited Radiation blockers for contact lenses
EP4465097A1 (en) 2023-05-15 2024-11-20 CooperVision International Limited Radiation blockers for contact lenses
WO2024236287A1 (en) 2023-05-15 2024-11-21 Coopervision International Limited Radiation blockers for contact lenses
WO2025003697A1 (en) 2023-06-30 2025-01-02 Coopervision International Limited Contact lenses and contact lens formulations with reduced rippling
WO2025003698A1 (en) 2023-06-30 2025-01-02 Coopervision International Limited Stabilized formulations for contact lenses

Also Published As

Publication number Publication date
BRPI0514733B1 (pt) 2018-11-13
WO2006026474A2 (en) 2006-03-09
BRPI0514733A (pt) 2008-06-24
CA2577899A1 (en) 2006-03-09
SG155241A1 (en) 2009-09-30
JP2013008055A (ja) 2013-01-10
EP1789821A4 (en) 2016-01-06
JP2008511870A (ja) 2008-04-17
US20120252925A1 (en) 2012-10-04
US20070066706A1 (en) 2007-03-22
JP5473219B2 (ja) 2014-04-16
CA2577899C (en) 2013-06-04
WO2006026474A3 (en) 2007-12-27
EP1789821B1 (en) 2019-04-10
US8367746B2 (en) 2013-02-05
US8614261B2 (en) 2013-12-24
TW200622284A (en) 2006-07-01
ES2732439T3 (es) 2019-11-22
TWI454724B (zh) 2014-10-01
KR101367538B1 (ko) 2014-02-26
HUE044130T2 (hu) 2019-09-30
EP1789821A2 (en) 2007-05-30
KR20070067679A (ko) 2007-06-28
HK1160227A1 (en) 2012-08-10
MX2007002202A (es) 2007-10-10
CN102323629A (zh) 2012-01-18
CN102323629B (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
US8614261B2 (en) Silicone hydrogel contact lens
US6867245B2 (en) Long wearable soft contact lens
US9529119B2 (en) Method for fabricating silicone-containing copolymer molded article having hydrophilic surface and silicone-hydrogel contact lens having hydrophilic surface
CN101163991A (zh) 硅水凝胶隐形眼镜
JPWO2001044861A1 (ja) 長期装用できるソフトコンタクトレンズ
US9322958B2 (en) Silicone hydrogel contact lenses
MX2007007361A (es) Tensoactivos polimerizables y su uso como comonomeros que forman dispositivos.
HK1160227B (en) Silicone hydrogel contact lenses
HK1115197A (en) Silicone hydrogel contact lenses
US8408697B2 (en) High refractive index oxygen permeable contact lens system and method
US11873361B2 (en) Ophthalmic devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: COOPERVISION, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BACK, ARTHUR;REEL/FRAME:018513/0429

Effective date: 20060825

Owner name: ASAHIKASEI AIME CO. LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:IWATA, JUNICHI;HOKI, TSUNEO;IKAWA, SEIICHIROU;REEL/FRAME:018513/0457

Effective date: 20061011

AS Assignment

Owner name: COOPERVISION INTERNATIONAL HOLDING COMPANY, LP, BA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOPERVISION, INC.;REEL/FRAME:024863/0335

Effective date: 20080728

AS Assignment

Owner name: COOPERVISION INTERNATIONAL HOLDING COMPANY LP, BAR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASAHIKASEI AIME CO. LTD.;REEL/FRAME:025527/0633

Effective date: 20101201

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: COOPERVISION INTERNATIONAL LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COOPERVISION INTERNATIONAL HOLDING COMPANY, LP;REEL/FRAME:054370/0631

Effective date: 20201102