US20060053782A1 - Exhaust manifold - Google Patents

Exhaust manifold Download PDF

Info

Publication number
US20060053782A1
US20060053782A1 US10/540,272 US54027205A US2006053782A1 US 20060053782 A1 US20060053782 A1 US 20060053782A1 US 54027205 A US54027205 A US 54027205A US 2006053782 A1 US2006053782 A1 US 2006053782A1
Authority
US
United States
Prior art keywords
catalyst
exhaust
exhaust manifold
partition plate
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/540,272
Other languages
English (en)
Inventor
Naoyuki Kobayashi
Takashi Yasuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yumex Corp
Original Assignee
Yumex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yumex Corp filed Critical Yumex Corp
Assigned to YUMEX CORPORATION reassignment YUMEX CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOBAYASHI, NAOYUKI, YASUDA, TAKASHI
Publication of US20060053782A1 publication Critical patent/US20060053782A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device

Definitions

  • the present invention relates to a catalyst integrated exhaust manifold, and particularly to a structure of an exhaust manifold which is joined to a catalyst container with a tilt angle.
  • Japanese Laid-open Patent Application No. 2001-164937 discloses a catalyst integrated exhaust manifold including a plurality of branch pipes communicating with corresponding discharge ports of an engine, an exhaust collecting portion where the plurality of branch pipes are joined integrally, a catalyst container joined to the exhaust collecting portion, and a catalyst accommodated in the catalyst container, wherein a partition wall is provided within the exhaust collecting portion so that the interior of the exhaust collecting portion is divided into two chambers, and the branch pipes respectively joined to the discharge ports of the cylinders that are not continuous in the order of exhaust processes are collected and communicated with each chamber.
  • Japanese Laid-open Patent Application No. 2000-110555 discloses a catalyst integrated exhaust manifold having a clearance between an exhaust downstream end edge of the partition wall, which divides the interior of the exhaust collecting portion into two chambers, and the catalyst such that a clearance area becomes not more than a predetermined rate of the exhaust passage cross-sectional area positioned at the exhaust downstream end edge of the partition wall to prevent interference of exhaust gas.
  • the exhaust collecting portion is often joined to the catalyst container with a tilt angle because of a problem such as engine layout.
  • an exhaust manifold 104 is jointed to a catalyst container 103 for accommodating a catalyst 102 with a tilt angle.
  • the exhaust manifold 104 consists of a plurality of branch pipes 106 each joined to corresponding discharge ports of the engine via a discharge port flange 105 , an exhaust collecting portion 107 where the plurality of branch pipes 106 are collected, and a partition plate 108 for dividing the interior of the exhaust collecting portion 107 .
  • This kind of catalyst integrated exhaust manifold 101 has drawbacks such as deterioration of the catalyst 102 and disturbance of smooth exhaust gas discharge because exhaust gas flows in a biased manner with respect to the catalyst 102 and always hits the catalyst 102 in certain areas of a plurality of gas flow passages 102 a.
  • this kind of catalyst integrated exhaust manifold 101 has a drawback in that each of the chambers divided by the partition plate 108 is provided with an O 2 sensor, thereby resulting increased manufacturing cost.
  • the present invention seeks to provide a catalyst integrated exhaust manifold of the type where an exhaust manifold is joined to a catalyst container with a tilt angle, and which can prevent both deterioration of the catalyst and retention of exhaust gas due to biased flow of exhaust gas.
  • the present invention also seeks to provide a catalyst integrated exhaust manifold which can decrease the manufacturing cost.
  • exhaust gas flows intermittently into the exhaust collecting portion so that a pressure difference causes between the chamber into which exhaust gas has been flowing and the opposite chamber into which exhaust gas has not been flowing.
  • an exhaust manifold which is joined to a catalyst container for accommodating a catalyst with a tilt angle, includes: a plurality of branch pipes communicating with corresponding discharge ports of an engine; an exhaust collecting portion where the plurality of branch pipes are collected; and a partition plate dividing an interior of the exhaust collecting portion, wherein the partition plate is cut away at an end surface portion located toward the catalyst.
  • the aforementioned exhaust manifold may be provided with a sensor at the cut-away portion of the partition plate.
  • FIG. 1 explains a catalyst integrated exhaust manifold of a first embodiment to which an exhaust manifold according to the present invention is adapted, in which (a) is a sectional view of the catalyst integrated exhaust manifold, and (b) is a perspective view of a partition plate.
  • FIG. 2 is a sectional view taken along the line A-A of FIG. 1 ( a ).
  • FIG. 3 explains a catalyst integrated exhaust manifold of a second embodiment to which an exhaust manifold according to the present invention is adapted, in which (a) is a sectional view of the catalyst integrated exhaust manifold, and (b) is a perspective view of a partition plate.
  • FIG. 4 explains a catalyst integrated exhaust manifold of a third embodiment to which an exhaust manifold according to the present invention is adapted, in which (a) is a sectional view of the catalyst integrated exhaust manifold, and (b) is a perspective view of a partition plate.
  • FIG. 5 explains a flow rate analysis for exhaust gas using an exhaust manifold according to the present invention, in which (a) is a partly exploded perspective view of the exhaust manifold used in the experiment, (b) is a transverse section of an exhaust collecting portion explaining gas passage area, and (c) shows flow rate distribution at a center of the catalyst for exhaust gas respectively discharged from the discharge ports.
  • FIG. 6 is a sectional view of a conventional catalyst integrated exhaust manifold, in which an exhaust manifold is joined to a catalyst container for accommodating a catalyst with a tilt angle.
  • the exhaust manifold according to this embodiment relates to an exhaust system of an inline four-cylinder engine.
  • a catalyst integrated exhaust manifold 1 includes a catalyst container 3 in which a catalyst 2 is accommodated, and an exhaust manifold 4 joined to the catalyst container 3 with a tilt angle.
  • the catalyst 2 converts detrimental component contained in exhaust gas that is discharged from each discharge port E 1 , E 2 , E 3 , E 4 of the engine into harmless component.
  • the catalyst 2 carries a three-way catalyst for cleaning CO, HC and NO x on a surface of a one-piece cast carrier having a large number of gas flow passages in the form of a honeycomb cross section and consisting of ceramic or heat resistant steel foil.
  • the catalyst container 3 is for accommodating the catalyst 2 and is joined to the exhaust manifold 4 with a tilt angle.
  • the exhaust manifold 4 includes a plurality of branch pipes 6 a , 6 b , 6 c and 6 d communicating with corresponding discharge ports E 1 , E 2 , E 3 and E 4 of the engine via a discharge port flange 5 , an exhaust collecting portion 7 where the plurality of branch pipes 6 a , 6 b , 6 c and 6 d are collected, and a partition plate 8 dividing the interior of the exhaust collecting portion 7 .
  • the illustrated four-cylinder engine is formed such that when the cylinders are referred to as a first cylinder, a second cylinder, a third cylinder, and a fourth cylinder in the order from the left side of FIG. 1 ( a ), ignition is made in order of the first cylinder, the third cylinder, the fourth cylinder, the second cylinder, and the first cylinder.
  • the exhaust collecting portion 7 is divided by the partition plate 8 into two chambers, that is, a first chamber 7 A and a second chamber 7 B.
  • the branch pipes 6 a and 6 d communicate with the first chamber 7 A and the other branch pipes 6 b and 6 c communicate with the second chamber 7 B.
  • the partition plate 8 is cut away to provide a cut 9 at one side of the end surface portion 8 A located toward the catalyst 2 .
  • the first chamber 7 A and the second chamber 7 B are communicated to each other through the cut 9 .
  • Reference numeral 10 indicates an O 2 sensor for detecting oxygen concentration in exhaust gas and carrying out a feed back control of the air/fuel ratio.
  • ECU controls, based on the detection value of the O 2 sensor, to increase the amount of fuel injection when the air/fuel ratio becomes lean (excessive amount of O 2 ) and to decrease the amount of fuel injection when the air/fuel ratio becomes rich (lack of oxygen).
  • the probe portion of the O 2 sensor 10 positions at the cut portion of the partition plate 8 so that the oxygen concentration of the exhaust gas that is discharged from each discharge port can be detected effectively.
  • the cylinder currently combusting is discriminated, for example, with a crank angle sensor (not shown) and a cam angle sensor (not shown), and an appropriate control is performed for increasing or decreasing the amount of fuel injection relative to a particular cylinder. Discrimination of the cylinder is not limited to the above example using a crank angle sensor and a cam angle sensor, and any other known methods can be used.
  • ignition is made in order of the first cylinder, the third cylinder, the fourth cylinder, the second cylinder, and the first cylinder. For this reason, combustion gas within the combustion chamber is discharged in order from the first discharge port E 1 , the third discharge port E 3 , the fourth discharge port E 4 , the second discharge port E 2 , and the first discharge port E 1 .
  • the exhaust gas flow discharged from the first discharge port E 1 flows down the branch pipe 6 a of the exhaust manifold 4 , and through the first chamber 7 A of the exhaust collecting portion 7 it flows into the catalyst 2 .
  • the exhaust gas flow discharged from the third discharge port E 3 flows down the branch pipe 6 c of the exhaust manifold 4 , and through the second chamber 7 B of the exhaust collecting portion 7 it flows into the catalyst 2 .
  • the exhaust gas flow discharged from the fourth discharge port E 4 flows down the branch pipe 6 d of the exhaust manifold 4 , and through the first chamber 7 A of the exhaust collecting portion 7 it flows into the catalyst 2 .
  • the exhaust gas flow discharged from the second discharge port E 2 flows down the branch pipe 6 b of the exhaust manifold 4 , and through the second chamber 7 B of the exhaust collecting portion 7 it flows into the catalyst 2 .
  • part of the exhaust gas flows that flow from the branch pipes 6 a , 6 d into the catalyst 2 through the first chamber 7 A are flowed to the second chamber 7 B through the cut 9 of the partition plate 8 and then into the catalyst 2 .
  • part of the exhaust gas flows that flow from the branch pipes 6 b , 6 c into the catalyst 2 through the second chamber 7 B are flowed to the first chamber 7 A through the cut 9 of the partition plate 8 and then into the catalyst 2 .
  • the catalyst integrated exhaust manifold of this embodiment providing a cut 9 at one side of the end surface portion 8 A of the partition plate 8 located toward the catalyst 2 allows part of the exhaust gas flowing into the chambers 7 A, 7 B that are divided by the partition plate 8 to flow into the opposite chamber 7 B, 7 A through the cut 8 and then toward the catalyst 2 . Therefore, even in the case where the exhaust manifold 4 is joined to the catalyst container 3 with a tilt angle, it is possible to alleviate a concentration of the flow of exhaust gas that flows from each chamber 7 A, 7 B into the catalyst 2 only at a certain region of the large number of gas flow passages of the catalyst 2 , thereby preventing deterioration of the catalyst 2 and retention of exhaust gas due to biased flow of exhaust gas.
  • the O 2 sensor 10 is positioned in the cut-away portion of the partition plate 8 , it is not necessary to provide an O 2 sensor 10 for each chamber 7 A, 7 B, thereby decreasing the manufacturing cost of the catalyst integrated exhaust manifold 1 .
  • the amount of exhaust gas that flows to the opposite chamber 7 A, 7 B through the cut 9 of the partition plate 8 increases in proportion to the opening area of the cut 9 . Meanwhile, increasing the opening area of the cut 9 may cause an interference of the exhaust gases that flow through the cut 9 from the discharge ports E 1 , E 2 , E 3 , E 4 of which order of exhaust processes is continuous.
  • a proper opening area of the cut 9 for example, by taking into consideration of the mount angle of the exhaust manifold 4 relative to the catalyst container 3 , that is, the angle of the exhaust gas flowing from the exhaust collecting portion 7 to the catalyst 2 .
  • a catalyst integrated exhaust manifold 11 has substantially the same construction as the catalyst integrated exhaust manifold 1 according to the first embodiment.
  • the partition plate 8 is cut away to provide cuts 9 at both sides of the end surface portion 8 A of the partition plate 8 .
  • the partition plate 8 is provided with cuts 9 at both sides of the end surface portion 8 A, it is possible to more uniformly distribute a biased flow of exhaust gas toward the catalyst 2 .
  • the amount of exhaust gas that flows to the opposite chamber through the cuts 9 , 9 increases in proportion to the total opening area of these cuts 9 , 9 . Meanwhile, increasing the total opening area of these cuts 9 , 9 may cause an interference of the exhaust gases that flow through the cuts 9 , 9 from the discharge ports E 1 , E 2 , E 3 , E 4 of which order of exhaust processes is continuous.
  • a catalyst integrated exhaust manifold 21 has substantially the same construction as the catalyst integrated exhaust manifold 1 according to the first embodiment.
  • the partition plate 8 is provided with a cut 9 at the opposite side of the O 2 sensor 10 , and a clearance 12 is formed between the end surface portion 8 A of the partition plate 8 that is located toward the catalyst 2 and the upper surface of the catalyst 2 .
  • a recess 13 is provided at a position corresponding to the probe portion of the O 2 sensor 10 .
  • the probe portion of the O 2 sensor 10 is in the shape of a cylinder which is in conformity with the recess 13 of the partition plate 8 .
  • this catalyst integrated exhaust manifold 21 because of the cut 9 provided at one side of the partition plate 8 and the clearance 12 formed between the end surface portion 8 A of the partition plate 8 and the upper end of the catalyst 2 , it is possible to more uniformly distribute a biased flow of exhaust gas toward the catalyst 2 .
  • the amount of exhaust gas that flows to the opposite chamber through the cut 9 and the clearance 12 increases in proportion to the opening area of the cut 9 and the clearance 12 . Meanwhile, increasing the opening are of these cut 9 and clearance 12 may cause an interference of the exhaust gases that flow through the cut 9 and the clearance 12 from the discharge ports E 1 , E 2 , E 3 , E 4 of which order of exhaust processes is continuous.
  • FIG. 5 explains a flow rate analysis for exhaust gas using an exhaust manifold according to the present invention, in which (a) is a partly exploded perspective view of the exhaust manifold used in the experiment, (b) is a transverse section of an exhaust collecting portion explaining gas passage area, and (c) shows flow rate distribution at a center of the catalyst for the exhaust gas respectively discharged from the discharge ports.
  • the analysis experiment was carried out with the use of an inline four-cylinder engine and with the engine speed kept at 3000 rpm.
  • the analysis experiment was carried out to measure the flow rate of exhaust gas at a center part (line A-A) of the catalyst 2 at a time when exhaust gas flows out from each discharge port E 1 , E 2 , E 3 , E 4 .
  • the catalyst integrated exhaust manifold shown in the figure is constructed such that the partition plate 8 is provided with a cut 9 at one side of the end surface portion located toward the catalyst, and an O 2 sensor 10 is positioned in the cut 9 portion.
  • a clearance (not shown) is also formed between the end surface portion of the partition plate 8 and the upper surface of the catalyst 2 .
  • the area of the cut 9 is set to be 18% of one gas passage area PA or the other gas passage area PA at the lower end of the exhaust collecting portion 7 (one half of the area that is obtained by excluding the transverse cross-sectional area of the end surface portion of the partition plate 8 from the transverse cross-sectional area of the lower end of the exhaust collecting portion 7 ).
  • the opening area of the cut portion becomes 15% of the gas passage area.
  • the above-described catalyst integrated exhaust manifolds 1 , 11 , 21 have been described as of a 4-2-1 exhaust system for use in a four-cylinder engine. However, it may be adapted to a 6-2-1 exhaust system for use in a six-cylinder engine.
  • a cut 9 may be provided at a center of the partition plate 8 or at a center of the end surface portion 8 A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
US10/540,272 2002-12-24 2003-12-16 Exhaust manifold Abandoned US20060053782A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-371590 2002-12-24
JP2002371590 2002-12-24
PCT/JP2003/016107 WO2004059137A1 (ja) 2002-12-24 2003-12-16 排気マニホールド

Publications (1)

Publication Number Publication Date
US20060053782A1 true US20060053782A1 (en) 2006-03-16

Family

ID=32677200

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/540,272 Abandoned US20060053782A1 (en) 2002-12-24 2003-12-16 Exhaust manifold

Country Status (7)

Country Link
US (1) US20060053782A1 (ja)
JP (1) JPWO2004059137A1 (ja)
KR (1) KR20050091752A (ja)
CN (1) CN1732330A (ja)
AU (1) AU2003289117A1 (ja)
DE (1) DE10393974T5 (ja)
WO (1) WO2004059137A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053780A1 (en) * 2004-09-13 2006-03-16 Hiroyuki Kikuchi Motorcycle exhaust system
US20090025664A1 (en) * 2006-01-31 2009-01-29 Hiroki Nagafuchi Internal combustion engine
US20090249774A1 (en) * 2006-06-13 2009-10-08 Wescast Industries, Inc. Exhaust Manifolds Including Heat Shield Assemblies
US20100005793A1 (en) * 2005-06-13 2010-01-14 Wescast Industries, Inc. Exhaust component assemblies with divider plates
US20110039461A1 (en) * 2005-12-12 2011-02-17 Brunswick Corporation Exhaust plenum for distributing exhaust gas uniformly through a catalyst module
US20110067387A1 (en) * 2009-09-21 2011-03-24 Gm Global Technology Operations, Inc. Thermally Efficient Exhaust Treatment System for an Internal Combustion Engine
US20140237991A1 (en) * 2011-11-14 2014-08-28 Mazda Motor Corporation Exhaust apparatus for multi-cylinder engine
US9889214B2 (en) 2009-03-19 2018-02-13 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101473117B (zh) * 2006-06-21 2010-11-17 戴姆勒股份公司 排气歧管
JP5014695B2 (ja) * 2006-07-19 2012-08-29 カルソニックカンセイ株式会社 エキゾーストマニホールドの集合部構造
CN101956598A (zh) * 2010-10-09 2011-01-26 奇瑞汽车股份有限公司 一种排气歧管及使用此排气歧管的排气系统
CN103362601A (zh) * 2013-07-30 2013-10-23 成都陵川特种工业有限责任公司 能够避免电机振动影响管路气密性的净化装置
JP6414132B2 (ja) * 2016-04-28 2018-10-31 トヨタ自動車株式会社 内燃機関の排気浄化システム
US11090255B2 (en) 2018-12-04 2021-08-17 Momentive Performance Materials Inc. Use of polycarboxylic acid compounds for the treatment of fibrious amino acid based substrates, especially hair

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796426A (en) * 1982-07-06 1989-01-10 Feuling James J High efficiency transition element positioned intermediate multi-cylinder exhaust system and secondary pipe assemblies
US5867985A (en) * 1996-07-09 1999-02-09 Yutaka Giken Co. Ltd. Exhaust manifold for engine
US6082103A (en) * 1997-08-06 2000-07-04 Toyota Jidosha Kabushiki Kaisha Exhaust manifold, for internal combustion engine, for improving durability of oxygen sensor at merging portion of exhaust manifold
US6555070B1 (en) * 1998-10-05 2003-04-29 Scambia Industrial Developments Ag Exhaust component and method for producing an exhaust component
US6702062B2 (en) * 2001-03-19 2004-03-09 Mazda Motor Corporation Exhaust system for automobile engine
US6722126B2 (en) * 2002-01-17 2004-04-20 Nissan Motor Co., Ltd. Exhaust arrangement for internal combustion engine
US6918246B2 (en) * 2002-03-27 2005-07-19 Yumex Corporation Structure of an exhaust manifold branch collecting portion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2517030Y2 (ja) * 1990-09-28 1996-11-13 株式会社ユーメックス エンジンの排気装置
JP2580693Y2 (ja) * 1992-09-24 1998-09-10 株式会社三五 デュアル・板金マニホールドコンバータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4796426A (en) * 1982-07-06 1989-01-10 Feuling James J High efficiency transition element positioned intermediate multi-cylinder exhaust system and secondary pipe assemblies
US5867985A (en) * 1996-07-09 1999-02-09 Yutaka Giken Co. Ltd. Exhaust manifold for engine
US6082103A (en) * 1997-08-06 2000-07-04 Toyota Jidosha Kabushiki Kaisha Exhaust manifold, for internal combustion engine, for improving durability of oxygen sensor at merging portion of exhaust manifold
US6555070B1 (en) * 1998-10-05 2003-04-29 Scambia Industrial Developments Ag Exhaust component and method for producing an exhaust component
US6702062B2 (en) * 2001-03-19 2004-03-09 Mazda Motor Corporation Exhaust system for automobile engine
US6722126B2 (en) * 2002-01-17 2004-04-20 Nissan Motor Co., Ltd. Exhaust arrangement for internal combustion engine
US6918246B2 (en) * 2002-03-27 2005-07-19 Yumex Corporation Structure of an exhaust manifold branch collecting portion

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7290388B2 (en) * 2004-09-13 2007-11-06 Kawasaki Jukogyo Kabushiki Kaisha Motorcycle exhaust system
US20060053780A1 (en) * 2004-09-13 2006-03-16 Hiroyuki Kikuchi Motorcycle exhaust system
US20100005793A1 (en) * 2005-06-13 2010-01-14 Wescast Industries, Inc. Exhaust component assemblies with divider plates
US8371115B2 (en) 2005-06-13 2013-02-12 Wescast Industries, Inc. Exhaust component assemblies with divider plates
US20110039461A1 (en) * 2005-12-12 2011-02-17 Brunswick Corporation Exhaust plenum for distributing exhaust gas uniformly through a catalyst module
US20090025664A1 (en) * 2006-01-31 2009-01-29 Hiroki Nagafuchi Internal combustion engine
US20090249774A1 (en) * 2006-06-13 2009-10-08 Wescast Industries, Inc. Exhaust Manifolds Including Heat Shield Assemblies
US8413435B2 (en) * 2006-06-13 2013-04-09 Wescast Industries, Inc. Exhaust manifolds including heat shield assemblies
US9889214B2 (en) 2009-03-19 2018-02-13 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10722602B2 (en) 2009-03-19 2020-07-28 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US10064965B2 (en) 2009-03-19 2018-09-04 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
US9943616B2 (en) 2009-03-19 2018-04-17 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
WO2011012983A1 (en) * 2009-07-27 2011-02-03 Wescast Industries, Inc. Exhaust component assemblies with divider plates
US8353154B2 (en) * 2009-09-21 2013-01-15 GM Global Technology Operations LLC Thermally efficient exhaust treatment system for an internal combustion engine
US20110067387A1 (en) * 2009-09-21 2011-03-24 Gm Global Technology Operations, Inc. Thermally Efficient Exhaust Treatment System for an Internal Combustion Engine
US11154821B2 (en) 2011-04-01 2021-10-26 Emd Millipore Corporation Nanofiber containing composite membrane structures
US9140173B2 (en) * 2011-11-14 2015-09-22 Mazda Motor Corporation Exhaust apparatus for multi-cylinder engine
US20140237991A1 (en) * 2011-11-14 2014-08-28 Mazda Motor Corporation Exhaust apparatus for multi-cylinder engine
US10675588B2 (en) 2015-04-17 2020-06-09 Emd Millipore Corporation Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode

Also Published As

Publication number Publication date
JPWO2004059137A1 (ja) 2006-04-27
AU2003289117A1 (en) 2004-07-22
KR20050091752A (ko) 2005-09-15
DE10393974T5 (de) 2005-11-10
WO2004059137A1 (ja) 2004-07-15
CN1732330A (zh) 2006-02-08

Similar Documents

Publication Publication Date Title
US20060053782A1 (en) Exhaust manifold
EP1213454B1 (en) Exhaust manifold for internal combustion engine
KR101039540B1 (ko) 내연 기관의 배기 장치
EP3505732B1 (en) Engine exhaust device
EP1722089A1 (en) Exhaust gas purifying device for engine
US8015799B2 (en) Multicylinder internal combustion engine
JP2010001869A (ja) 内燃機関の排気装置
US6745561B2 (en) Exhaust manifold for vehicle
US6609506B2 (en) Exhaust gas recirculation system
JP2006328995A (ja) 排気浄化装置
EP1433934B1 (en) Exhaust manifold for an internal combustion engine
US20030070426A1 (en) Air injection system for engine exhaust gases
JPH11117727A (ja) エンジンの排気浄化装置
JP6447813B2 (ja) 多気筒内燃機関の排気装置
JP7388019B2 (ja) 排気ガスセンサの設置構造
JPS6146453Y2 (ja)
JPS6320808Y2 (ja)
JPH0627791Y2 (ja) 排気管
JPS63179142A (ja) 排気マニフォルドの酸素センサ取付部の加工方法
JP2580693Y2 (ja) デュアル・板金マニホールドコンバータ
US20090126351A1 (en) Exhaust system of internal combustion engine
JPS6162221U (ja)
JPH0442488Y2 (ja)
JP2011017261A (ja) 内燃機関の排気管

Legal Events

Date Code Title Description
AS Assignment

Owner name: YUMEX CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOBAYASHI, NAOYUKI;YASUDA, TAKASHI;REEL/FRAME:017278/0682

Effective date: 20050524

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION