US20060001918A1 - Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device - Google Patents

Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device Download PDF

Info

Publication number
US20060001918A1
US20060001918A1 US11/170,246 US17024605A US2006001918A1 US 20060001918 A1 US20060001918 A1 US 20060001918A1 US 17024605 A US17024605 A US 17024605A US 2006001918 A1 US2006001918 A1 US 2006001918A1
Authority
US
United States
Prior art keywords
unit
control line
driving
line
information acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/170,246
Other languages
English (en)
Inventor
Masafumi Okano
Hiroki Ui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OKANO, MASAFUMI, UI, HIROYUKI
Assigned to SONY CORPORATION reassignment SONY CORPORATION CORRECTIVE COVER SHEET DOCUMENT ID NO. 103037156 (NOTICE OF 11/8/05) REEL/FRAME 016748/0148 Assignors: OKANO, MASAFUMI, UI, HIROKI
Publication of US20060001918A1 publication Critical patent/US20060001918A1/en
Priority to US12/357,590 priority Critical patent/US8310574B2/en
Priority to US13/649,475 priority patent/US9071782B2/en
Priority to US14/721,858 priority patent/US9456158B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/672Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction between adjacent sensors or output registers for reading a single image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/7795Circuitry for generating timing or clock signals

Definitions

  • the present invention contains subject matter related to Japanese Patent Application JP 2004-195502 filed in the Japanese Patent Office on Jul. 1, 2004, the entire contents of which are incorporated herein by reference.
  • the present invention relates to a physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device. More particularly, the present invention relates to a driving control technique in reading unit-element signals from unit elements, particularly suitable for use in a semiconductor device, such as a solid-state image sensor including an array of unit elements sensitive to an electromagnetic wave such as light or radiation incident from the outside and capable of outputting an electrical signal indicating a physical quantity distribution detected by the unit elements.
  • a semiconductor device such as a solid-state image sensor including an array of unit elements sensitive to an electromagnetic wave such as light or radiation incident from the outside and capable of outputting an electrical signal indicating a physical quantity distribution detected by the unit elements.
  • a semiconductor device which includes a linear array or a matrix array of unit elements (pixels) sensitive to a change in a physical quantity such as a pressure or an electromagnetic wave such as light or radiation incident from the outside.
  • a solid-state image sensor which includes an image sensor device of a CCD (Charge Coupled Device) type, a MOS (Metal Oxide Semiconductor) type, or a CMOS (Complementary Metal-Oxide Semiconductor) type to detect a change in a physical quantity such as light (which is an example of an electromagnetic wave).
  • CCD Charge Coupled Device
  • MOS Metal Oxide Semiconductor
  • CMOS Complementary Metal-Oxide Semiconductor
  • a fingerprint recognition device is used to acquire fingerprint information by detecting an image of a fingerprint based on a change in an electrical or optical characteristic associated with a pressure.
  • a physical quantity distribution is converted into an electrical signal by unit elements (pixels in the case of a solid-state image sensor) and the resultant electrical signal is read out.
  • an active pixel sensor in which a driving transistor for amplification is disposed in each image signal generation part that generates an image signal corresponding to a signal charge generated in a charge generation part.
  • This structure is used in many CMOS solid-state image sensors.
  • the active solid-state image sensing apparatus to read an image signal, unit pixels arranged in a pixel array part are sequentially selected by controlling addressing, and signals are read from the respective unit pixels. That is, the active solid-state image sensing apparatus is a solid-state image sensor of the address control type.
  • each pixel is configured to have an amplification capability using an active element having a MOS structure (MOS transistor).
  • MOS transistor MOS transistor
  • a signal charge (photoelectrons) accumulated in a photodiode serving as a photoelectric conversion device is amplified by the active element and read out as image information.
  • a pixel array part is formed using a large number of pixel transistors arranged in the form of a two-dimensional matrix array. Accumulation of signal charges corresponding to incident light is started on a line-by-line (row-by-row) basis or a pixel-by-pixel basis, and a current or a voltage corresponding to the signal charge accumulated in each pixel is read sequentially from the respective pixels by accessing the pixels by means of addressing.
  • the addressing is performed, for example, such that pixels are simultaneously accessed on a line-by-line basis and pixel signals are read from the accessed pixels, that is, pixel signals are read on a line-by-line basis from a pixel array part.
  • solid-state image sensing devices of this type to adapt to the reading scheme of accessing the pixel array part on a line-by-line basis and reading pixels signals from the accessed line, analog-to-digital converters and/or other signal processing units are disposed for respective vertical columns. This configuration is called a column parallel arrangement.
  • a solid-state image sensing device in which a CDS processor or a digital converter is disposed in each vertical column such that pixel signals are sequentially read and output is called a column-type solid-state image sensing device.
  • CMOS image sensors can operate with less consumption power and can be produced at a lower cost than CCD image sensors, and thus CMOS image sensors are expected to be widely used instead of CCD image sensors.
  • solid-state image sensing devices having several hundred pixels are now available and used in high-resolution digital still cameras and movie video cameras.
  • the increase in resolution results in an increase in the number of pixel transistors.
  • the increase in the number of pixel transistors and an increase in the number of functions achieved by the capability of accessing arbitrary pixels result in an increase in the length of control lines for controlling reading of pixel signals. This causes an increase in load imposed on drivers connected to the control lines and also causes an increase in skew, which cannot be neglected.
  • CMOS image sensors electrons generated as a result of photoelectric conversion are accumulated in each pixel, and pixel signals are sequentially read from pixels in pixel columns (vertical columns) specified by address control signals output from a sensor control unit (SCU).
  • SCU sensor control unit
  • an address decoder is disposed in a vertical scanning circuit located close to the pixel array part, and an address control signal is supplied from the address decoder to sequentially select pixels.
  • the vertical scanning circuit supplies various kinds of control signals (generically it can be referred to as control signals) to a predetermined points on drive control lines (particularly they can be referred to as original driving points) via driving buffers.
  • control signals go to pixel transistors, which are connected to respective driving points on the drive control lines, through the drive control lines, thereby turning on/off the pixel transistor at the specified horizontal address position.
  • the address decoder generates data indicating the address of a pixel to be selected.
  • control signals by which to specify the horizontal address position, control turning on/off of the pixel transistor, are transmitted via control signal lines, and pixel signals output from pixels in units of lines are sequentially transmitted in a horizontal direction via a horizontal signal line (horizontal transfer line).
  • horizontal signal line horizontal transfer line
  • the skew can cause a reduction in a timing margin in an operation of shading in a horizontal direction or in an operation of transferring data to an amplifier at a following stage. Therefore, it is desirable to minimize the skew to as low a level as possible.
  • a tree layout such as that shown in FIG. 10 is used to equally distribute a drive control signal (clock signal) in a sensor.
  • clock signal a drive control signal
  • the overall skew of the circuit is dominated by a skew that occurs at a first stage having a longest interconnection.
  • a widely used technique of driving the same line using one or two driving buffers is to dispose one or two driving buffers at one or both ends of the line and drive the pixels using the driving buffers.
  • a difference in arrival time of a driving pulse occurs among pixels depending on the locations of the pixels. That is, a difference in arrival time of the driving pulse occurs between pixels located close to the driving buffer and pixels located far from the driving buffer. This can make it impossible to read pixel signals or can cause shading.
  • the present invention provides a first physical information acquisition method of reading unit-element signals from a semiconductor device, the semiconductor device including unit elements arranged in a particular order, each unit element having a unit-element signal generation part for outputting a unit-element signal indicating a detected change in a physical quantity, wherein a control line for driving unit elements to read unit-element signals from the respective unit elements is driven at a dividing point on the control line, and more preferably at a plurality of dividing points on the control line.
  • the present invention provides a second a physical information acquisition method, in which a control line is driven at an original driving point that results in a reduction in a maximum value of a product of load capacitance at an arbitrary driving point on the control line and line resistance between the arbitrary driving point and a driver unit that is connected to the original driving point.
  • the present invention also provides a physical information acquisition apparatus including a drive control unit that drives a control line at an optimum point determined in the above-described manner.
  • the present invention also provides a semiconductor device including a drive control unit that drives a control line at an optimum point determined in the above-described manner.
  • FIG. 1 is block diagram showing a CMOS solid-state image sensor (CMOS image sensor), which is an example of a semiconductor device according to an embodiment of the present invention.
  • CMOS image sensor CMOS image sensor
  • FIG. 2 is a diagram showing an example of a configuration of a unit pixel used in the solid-state image sensor shown in FIG. 1 .
  • FIG. 3 is a diagram showing a skew reduction layout technique according to a first embodiment of the invention.
  • FIG. 4 is a diagram showing a comparative example in which a control line is driven at only one end point thereof.
  • FIG. 5 is a diagram showing a comparative example in which a control line is driven at both end points thereof.
  • FIG. 6 is a graph showing simulated skew that occurs when driving points are set at both end points according to a conventional technique and simulated skew that occurs when a control line is driven using a two-dividing-point equal driving method.
  • FIG. 7 is a diagram showing a skew reduction layout technique according to a second embodiment of the invention.
  • FIG. 8 is a diagram showing a skew reduction layout technique according to a third embodiment of the invention.
  • FIG. 9 is a diagram showing a skew reduction layout technique according to a fourth embodiment of the invention.
  • FIG. 10 is a diagram showing a tree-structure layout.
  • CMOS image sensor device whose pixels are all formed of NMOS or PMOS devices is used to construct a solid-state image sensor of the X-Y address type.
  • the image sensor device is not limited to the MOS-type image sensor device, but the present embodiment and any other embodiment described later may be applied to any semiconductor device including a one-dimensional or two-dimensional array of elements sensitive to an electromagnetic wave incident from the outside, such as light or radiation.
  • FIG. 1 shows a CMOS solid-state image sensor (CMOS image sensor), which is an example of a semiconductor device according to an embodiment of the present invention.
  • CMOS image sensor CMOS image sensor
  • This CMOS solid-state image sensor is also an example of an electronic device according to an embodiment of the present invention.
  • FIG. 1 shows an example of a circuit configuration, but the purpose of FIG. 1 is not to define the location of each functional unit, and the manner in which driving buffers (pixel drivers) are located according to the present embodiment will be described in detail later.
  • the solid-state image sensor 1 has a pixel array part in which a plurality of pixels each including a photoelectric conversion device such as a photodiode (which is an example of a charge generation part) for outputting an electronic signal corresponding to the intensity of incident light are arranged along rows and columns (in the form of a two-dimensional array). Voltage signals are output from respective pixels and supplied to data processing units such as CDS (Correlated Double Sampling) units and analog-to-digital converters (ADCs) disposed in a column-parallel fashion.
  • CDS Correlated Double Sampling
  • ADCs analog-to-digital converters
  • CDS units and ADCs are disposed in substantially parallel at locations corresponding to the respective vertical columns along which vertical signal lines 19 extend.
  • the CDS units and ADCs may be disposed only in an area adjacent to one side, which is perpendicular to the columns (which is the lower side as viewed in FIG. 1 ), of the pixel array part 10 or they may be disposed in areas adjacent to both sides of the pixel array part 10 such that some of the CDS units and ADSc are disposed in one of the two areas (in the lower area in FIG. 1 ) and the remaining CDS units and ADSs are disposed in the other area (the upper area in FIG. 1 ). In the latter case, it is desirable to divide the horizontal scanning unit, which performs scanning (horizontal scanning) in the row direction, into two parts and dispose them in the two respective areas adjacent to lower and upper sides of the pixel array part 10 such that they can operate independently.
  • the column type is a typical example in which CDS units and ADSs are disposed in an area of an image sensing part, called a column area, in a column-parallel fashion at locations corresponding to respective vertical columns such that signals are sequentially read via these CDS units and ADSs to the outside.
  • the manner of disposing CDS units and ADSs is not limited to that used in the column type described above, but CDS units and ADSs may be disposed such that one CDS unit and one ADS are assigned to a predetermined number of (for example, two) adjacent vertical signal lines 19 (vertical columns), or such that one CDS unit and one ADS are assigned to every N (positive integer) vertical signal lines 19 (vertical columns).
  • a plurality of vertical signal lines 19 share one CDS unit and one ADS.
  • a selection switch is disposed such that pixels signals supplied from the plurality of signal lines 19 (vertical columns) of the pixel array part 10 are sequentially selected by the selection switch and the selected pixel signal is supplied to the one CDS unit and one ADS.
  • a memory for storing the output pixel signals is necessary.
  • the signal processors are allowed to operate at a lower speed than an operating speed that is needed if the pixel signals are serially processed by only one CDS unit and one ADS disposed in an output circuit or disposed outside the device. This is advantageous in that the signal processors can operate with lower consumption power and a narrower bandwidth, and the signal processors generate less noise. Conversely, when the same power consumption and the same bandwidth are allowed, it is possible to increase the overall operating speed of the sensor.
  • the image sensor is assumed to be of the column type unless otherwise stated.
  • the solid-state image sensor 1 includes a pixel array part (image sensing part) 10 , a drive control unit 7 , a column processor 26 including a CDS unit 26 a disposed in an area adjacent to a lower side (as viewed in FIG. 1 ) of the pixel array part 10 and column switches (not shown), and an output circuit 28 .
  • the column processor 26 functions as a main part of a normal image processing system for performing signal processing associated with generation of a normal image based on an image signal acquired by the pixel array part 10 .
  • an AGC (Auto Gain Control) circuit having a signal amplification capability and/or an AD (Analog to Digital) converter may be disposed in the same semiconductor area as the column processor 26 , at a stage before or after the CDS unit 26 a .
  • the AGC circuit is of an analog type.
  • the AGC circuit is disposed at the stage after the CDS unit 26 a , the AGC circuit is of a digital type. If n-bit digital data is simply amplified, there is a possibility that degradation occurs in halftone quality. To avoid the above problem, it is desirable that an analog signal be amplified first, and then the resultant signal be converted into digital form.
  • the drive control unit 7 has a control circuit for sequentially reading an image signal from the pixel array part 10 . More specifically, for example, the drive control unit 7 includes a horizontal scanning circuit (column scanning circuit) 12 for controlling a column address and column scanning, a vertical scanning circuit (row scanning circuit) 14 for controlling a row address and row scanning, and a communication/timing controller 20 having the capability of generating an internal clock signal.
  • the horizontal scanning circuit 12 includes a horizontal driving controller (horizontal read scan circuit) for reading image information from the column processor 26 or a processing unit 27 .
  • the above-described elements of the drive control unit 7 are formed in a semiconductor area of single-crystal silicon or the like together with the pixel array part 10 in an integrated form using a technique similar to that used in production of semiconductor integrated circuits, so as to obtain a solid-state image sensing device (image sensing device) which is an example of a semiconductor system according to the invention.
  • the vertical scanning circuit 14 includes a plurality of vertical scanning circuits (a first vertical scanning circuit 14 a , a second vertical scanning circuit 14 b , and a third vertical scanning circuit 14 c in the example shown in FIG. 1 ) for sequentially selecting unit pixels 3 in the pixel array part 10 and supplying an image signal read from each unit pixel 3 of the pixel array part 10 to the column processor 26 , by driving the unit pixel 3 from both sides of the pixel array part 10 or from an arbitrary middle position of the pixel array part 10 .
  • the first vertical scanning circuit 14 a and the second vertical scanning circuit 14 b are used to drive control lines from the left or right end of the pixel array part 10 and the third vertical scanning circuit 14 c is used to drive an arbitrary dividing point on a control line.
  • an actual solid-state image sensor includes a greater number of rows and columns, and there are several ten to several thousand unit pixels 3 in each row or column.
  • Each unit pixel 3 includes a photodiode serving as a photosensor (a charge generation part) and a pixel amplifier including a semiconductor element (for example, a transistor) for amplification.
  • Each unit pixel 3 is connected to the vertical scanning circuit 14 via a row control line 15 for selecting a row and to the column processor 26 for outputting a normal image via a vertical signal line 19 .
  • row control line 15 generically denotes all control lines extending from the vertical scanning circuit 14 to the pixels.
  • the communication/timing controller 20 controls the timing of driving pulses output from the plurality of vertical scanning circuits 14 ( 14 a , 14 b , and 14 c ) such that the driving pulses are output at substantially the same time from the output terminals of the respective vertical scanning circuits 14 to the row control lines 15 .
  • the vertical scanning circuits 14 ( 14 a , 14 b , and 14 c ) and the horizontal scanning circuit 12 each have a decoder and start reading pixel signals to be processed in response to a control signal CN 1 (CN 1 a , CN 1 b , or CN 1 c ) or CN 2 supplied from the communication/timing controller 20 . Therefore, various kinds of drive control pulses (such as a reset pulse RST, a transfer control pulse TX, a DRN control pulse DRN, and a vertical selection pulse SEL) for driving unit pixels 3 are transmitted via each row control line 15 .
  • various kinds of drive control pulses such as a reset pulse RST, a transfer control pulse TX, a DRN control pulse DRN, and a vertical selection pulse SEL
  • the vertical scanning circuits 14 ( 14 a , 14 b , and 14 c ) and the communication/timing controller 20 form a unit-element signal selection controller (vertical drive controller) that specifies positions of respective unit pixels 3 to be processed and reads pixels signals from the respective unit pixels 3 at the specified positions to the column processor 26 .
  • unit-element signal selection controller vertical drive controller
  • the communication/timing controller 20 includes (although not shown) a functional block serving as a timing generator TG (which is an example of a read address controller) that supplies a clock signal or timing pulses needed in operations of various parts and also includes a functional block serving as a communication interface that receives a master clock CLK 0 via a terminal 5 a and data DATA indicating an operation mode or the like via a terminal 5 b and outputs data including information associated with the solid-state image sensor 1 .
  • TG which is an example of a read address controller
  • a horizontal address control signal is supplied to a horizontal decoder
  • a vertical address control signal is supplied to a vertical decoder, and each decoder selects a row or a column in accordance with the received horizontal or vertical address control signal.
  • unit pixels 3 are accessed in units of rows, and analog pixel signals output in the column direction from the accessed unit pixels 3 are acquired, and then the acquired analog pixel signals are output in the row direction to the external circuit.
  • an arbitrary unit pixel 3 may be directly accessed by specifying its address to read necessary information from the specified unit pixel 3 .
  • the vertical scanning circuit 14 supplies a pulse to select a row of the pixel array part 10 . More specifically, each of a first vertical scanning circuit 14 a , a second vertical scanning circuit 14 b , and a third vertical scanning circuit 14 c has a vertical driving circuit 144 including a vertical decoder (vertical shift register) 142 that specifies the vertical position of a row from which to read pixel signals, and also including a driving buffer (pixel driver) (not shown) that buffers the signal received from the vertical decoder 142 and supplies a drive control pulse to a row control line 15 corresponding to the row specified by the vertical decoder 142 to drive unit pixels 3 on the specified row.
  • the vertical decoder 142 also serves to select a row in an electronic shuttering operation in addition to selection of a row in a signal reading operation.
  • the horizontal scanning circuit 12 sequentially selects functional parts of the column processor 26 in synchronization with a low-speed clock CLK 2 and supplies signals output from the respective functional parts of the column processor 26 to a horizontal signal line (horizontal output line) 18 .
  • the horizontal scanning circuit 12 includes a horizontal decoder 122 that specifies the location in the horizontal direction of a column from which to read a pixel signal (that is, specifies a CDS unit 26 a in the column processor 26 ) and also includes a horizontal driving circuit 124 that transmits the signal output from the column processor 26 to the horizontal signal line 18 in accordance with the read address supplied from the horizontal decoder 122 .
  • image signals output from unit pixels 3 in the respective vertical columns are supplied to the CDS unit 26 a of the column processor 26 via vertical signal lines 19 .
  • the image signals from the pixel array part 10 are transmitted to the column processor 26 located on a lower side, as viewed in FIG. 1 , of the pixel array part 10 .
  • the image signals from the pixel array part 10 all pixels in one horizontal row are simultaneously selected by the vertical scanning circuit 14 and the pixel signals of the respective vertical columns are simultaneously output in parallel. That is, the pixel signals are output in a column-parallel mode.
  • the CDS unit 26 a of the column processor 26 performs a CDS process on the image signal in a voltage form input via the vertical signal line 19 . More specifically, a signal level (indicating a noise level) obtained immediately after a pixel is reset is subtracted from a pixel signal Vsig (indicating the intensity of incident light) thereby removing a noise signal component such as fixed pattern noise (FPN) or reset noise from the pixel signal.
  • a signal level indicating a noise level
  • Vsig indicating the intensity of incident light
  • the resultant image signal is transmitted to the horizontal signal line 18 via a horizontal selection switch (column switch) driven by the horizontal selection signal supplied from the horizontal scanning circuit 12 and further transmitted to the output circuit 28 .
  • a horizontal selection switch column switch driven by the horizontal selection signal supplied from the horizontal scanning circuit 12 and further transmitted to the output circuit 28 .
  • the respective pixels are driven by the first vertical scanning circuit 14 a , the second vertical scanning circuit 14 b , and the third vertical scanning circuit 14 c such that image signals output from pixels in respective vertical columns are supplied on a row-by-row basis from the pixel array part 10 , in which photosensors serving as charge generation parts are arranged in the form of the matrix array, to the column processor 26 and output to the external circuit at a normal frame rate.
  • one frame of image composed of a set of pixel signals output from the respective photosensors (photoelectric conversion devices such as photodiodes) arranged in the form of the matrix array in the pixel array part 10 is output as an image signal S 0 from the output circuit 28 to the external circuit 100 .
  • the external circuit 100 includes an analog-to-digital (A/D) converter for converting the analog image signal S 0 output from the output circuit 28 into digital image data D 0 , and also includes a digital signal processor (DSP) for performing digital signal processing on the digital image data output from the A/D converter.
  • the digital signal processor performs color separation on the image data and further performs other signal processing the image data RGB thereby generating image data RGB representing R (red), G (green), and B (blue) image components to be output to a monitor.
  • the digital signal processor has a functional block for compressing image data to be stored on a storage medium.
  • the external circuit 100 also includes a digital-to-analog (D/A) converter for converting digital image data output from the digital signal processor into an analog image signal.
  • D/A digital-to-analog
  • the image signal output from the D/A converter is supplied to a display device such as a liquid crystal monitor. A user can perform various operations while viewing the image displayed on the display device.
  • the solid-state image sensor 1 which is an example of a physical information acquisition apparatus (in the broad sense) according to the invention, is realized by forming, on a single circuit board or a single semiconductor substrate, the pixel array part 10 that is the main part of the image sensor that is an example of a semiconductor device, and the physical information acquisition apparatus (in the narrow sense) including the drive control unit 7 that drives the pixel array part 10 and also including the column processor 26 that performs the signal processing on the image signal output from the pixel array part 10
  • the solid-state image sensor 1 may be configured in various other ways.
  • the pixel array part 10 and the other parts may be formed separately.
  • the physical information acquisition apparatus is configured using the drive control unit 7 and the column processor 26 .
  • FIG. 2 shows an example of a structure of a unit pixel 3 and a relationship of the driver unit and pixel transistors used in the solid-state image sensor 1 shown in FIG. 1 .
  • the structure of each unit pixel (pixel cell) 3 in the pixel array part 10 is similar to that of a common CMOS image sensor, and each unit pixel 3 is configured with four transistors.
  • the configuration of the unit pixel 3 is not limited to the 4-transistor configuration employed herein, but other configurations such as a 3-transistor configuration disclosed in Japanese Patent No. 2708455 may also be employed, as long as the configuration of the unit pixel 3 allows it to form a CMOS image sensor array.
  • a floating diffusion amplifier may be used. More specifically, for example, a 4-transistor configuration widely used in CMOS sensors can be realized using a read selection transistor that is an example of a charge reading part (transfer gate/read gate) connected to a charge generation part, a reset transistor that is an example of a reset gate, a vertical selection transistor, and an amplification transistor in the form of a source follower that is an example of a detection element for detecting a voltage change of the floating diffusion layer.
  • a read selection transistor that is an example of a charge reading part (transfer gate/read gate) connected to a charge generation part
  • reset transistor that is an example of a reset gate
  • a vertical selection transistor a vertical selection transistor
  • an amplification transistor in the form of a source follower that is an example of a detection element for detecting a voltage change of the floating diffusion layer.
  • the unit pixel 3 is formed using a charge generation part 32 for converting incident light into a charge and storing the resultant charge, a read selection transistor (transfer transistor) 34 that is connected to the charge generation part 32 and that is an example of a charge reading element (transfer gate/read gate), a reset transistor 36 that is an example of a reset gate, a vertical selection transistor 40 , and an amplification transistor 42 in the form of a source follower that is an example of a detection element for detecting a voltage change of a floating diffusion layer 38 .
  • This unit pixel 3 includes an image signal generation part 5 in the form of a floating diffusion amplifier (FDA) formed of the floating diffusion layer 38 that is an example of a charge injection part having a charge accumulation function.
  • the floating diffusion layer 38 is a diffusion layer having parasitic capacitance.
  • the read selection transistor (second transfer element) 34 is driven by a transfer driving buffer 250 via a transfer line (read selection line TX) 55 .
  • the reset transistor 36 is driven by a reset drive buffer 252 via a reset line (RST) 56 .
  • the vertical selection transistor 40 is driven by a selection drive buffer 254 via a vertical selection line (SEL) 52 .
  • These drive buffers are independently driven by the first vertical scanning circuit 14 a or the second vertical scanning circuit 14 b.
  • the source of the reset transistor 36 in the image signal generation part 5 is connected to the floating diffusion layer 38 , and the drain thereof is connected to the power supply VDD.
  • a reset pulse RST is input via a reset driving buffer.
  • the reset transistor 36 serves to reset the voltage of the output circuit 28 .
  • the drain of the vertical selection transistor 40 is connected to the source of the amplification transistor 42 , the source thereof is connected to the pixel line 51 , and the gate (vertical selection gate SELV) thereof is connected to the vertical selection line 52 .
  • the connection is not limited to this example, but the electrodes of the vertical selection transistor 40 may be connected in other ways.
  • the drain of the vertical selection transistor 40 may be connected to the power supply VDD, the source may be connected to the drain of the amplification transistor 42 , and gate may be connected to the vertical selection line 52 .
  • a vertical selection signal SEL is applied to the vertical selection line 52 .
  • the gate of the amplification transistor 42 is connected to the floating diffusion layer 38 , the drain thereof is connected to the power supply VDD, and the source thereof is connected to the pixel line 51 via the drain of the vertical selection transistor 40 and further to the vertical signal line 19 .
  • the amplification transistor 42 outputs a voltage signal corresponding to the voltage of the floating diffusion layer 38 (hereinafter, referred to as an FD voltage) to the vertical signal line 53 ( 19 ) via the pixel line 51 .
  • the reset transistor 36 resets the floating diffusion layer 38 .
  • the read selection transistor (transfer transistor) 34 transfers the signal charge generated in the charge generation part 32 to the floating diffusion layer 38 .
  • a vertical selection transistor 40 connected to a pixel to be selected is turned on while maintaining other vertical selection transistors 40 in the off state. As a result, the selected pixel is connected to the vertical signal line 19 and a signal output from the selected pixel is output via the vertical signal line 19 .
  • a unit pixel 3 can be formed in a 3-transistor configuration using a charge generation part 32 (for example, a photodiode) for generating a signal charge corresponding to incident light by means of a photoelectric conversion, an amplification transistor 42 connected to a drain line (DRN), for amplifying the signal voltage corresponding to the signal charge generated by the charge generation part 32 , and a reset transistor 36 for resetting the charge generation part 32 .
  • a read selection transistor (transfer gate) 34 which is driven by a vertical scanning circuit 14 (not shown) via a transfer line (TRF) 55 , is disposed between the charge generation part 32 and the gate of the amplification transistor 42 .
  • the gate of the amplification transistor 42 and the source of the reset transistor 36 are connected to the charge generation part 32 via the read selection transistor 34 , and the drain of the reset transistor 36 and the drain of the amplification transistor 42 are connected to the drain line.
  • the source of the amplification transistor 42 is connected to the vertical signal line 53 .
  • the read selection transistor 34 is driven by the transfer driving buffer 250 via the transfer line 55 .
  • the reset transistor 36 is driven by the reset driving buffer 252 via the reset line 56 .
  • the transfer driving buffer 250 and the reset driving buffer 252 operate with a voltage swing between a reference voltage of 0 V and a power supply voltage. Thus, a low-level voltage supplied to the gate of the read selection transistor 34 in the pixel is equal to 0 V.
  • the reset line (RST) 56 connected to the reset transistor 36 extends in the row direction.
  • the drain line (DRN) 57 is connected in common to almost all pixels.
  • the drain line 57 is driven by a drain driving buffer (hereinafter, referred to as a DRN driving buffer) 240 .
  • the reset transistor 36 is driven by the reset driving buffer 252 to control the voltage of the floating diffusion layer 38 .
  • drain line 57 is divided in the row direction, drain lines 57 in a row are actually connected in common to each other such that all pixels in the row are simultaneously driven.
  • the signal charge generated by the charge generation part 32 (photoelectric conversion device) is transferred to the floating diffusion layer 38 via the read selection transistor 34 .
  • the unit pixel 3 does not have the vertical selection transistor 40 connected in serial to the amplification transistor 42 .
  • the selection of one of many pixels connected to the vertical signal line 53 is performed not by turning on the selection transistor but by controlling the FD voltage.
  • the FD voltage is normally at a low level. If the FD voltage of the pixel to be selected is raised to a high level, the signal output from the selected pixel is supplied to the vertical signal line 53 . Thereafter, the FD voltage of the selected pixel is returned to the low level. This process is simultaneously performed for all pixels in one row.
  • the FD voltage is controlled as follows. 1) To raise the FD voltage of a row to be selected to the high level, the drain line 57 is raised to the high level to raise the FD voltage to the high level via the reset transistors 36 in the row to be selected, and 2) the FD voltage of the selected row is returned to the low level by lowering the drain line 57 to the low level thereby lowering the FD voltage to the low level via the reset transistors 36 in the row to be selected.
  • the load that is imposed on the drain driving buffer 240 when the drain driving buffer 240 drives the drain line 57 becomes greater than the load that is imposed on the transfer driving buffer 250 when the transfer driving buffer 250 drives the transfer gate line 55 that is another driving line and greater than the load that is imposed on the reset driving buffer 252 when the reset driving buffer 252 drives the reset gate line 56 , and thus the skew depending on the location on the line acting as the load becomes greater than the skew on the transfer gate line 55 or the reset gate line 56 .
  • Each transistors 34 , 36 and 40 which are included in unit pixel 3 , are driven by the driving buffer through the drive control lines 52 , 55 , 56 and 57 .
  • Drive control pulses are transmitted to the drive control line with the driver unit being connected to the predetermined points of the drive control line, as described in FIG. 2 ( c ). And then, the drive control pulses reach the pixel transistors, which are connected to arbitrary points on the drive control line, through the drive control line.
  • the drive control line as a whole is an object of driving by the driver unit and so all the points on the drive control line can be the driving points.
  • a control line is driven at a particular point (or at a plurality of points) in a particular range of the control line include in the substantially effective area of the pixel area 10 , in which to suppress the skew by a driving buffer (driver unit) so that the load imposed by pixels on the driving buffer is reduced and becomes uniform (the dependence of the location on the load is reduced).
  • control line is driven by a driving buffer (pixel driver) at an arbitrary dividing point (and more preferably, at a plurality of dividing points).
  • control line is also driven at one or both ends of the control line.
  • a driving buffer is connected, at the arbitrary dividing point, to the control line extending in the pixel array part 10 and a drive control pulse is supplied from the driving buffer over the control line at the same timing as that of a drive control pulse supplied from one or both end points of control line.
  • the dividing point on the drive control line, which is connected to the driver unit is the original driving point.
  • the control line the skew along which is to be suppressed and the driving buffers are disposed so as to make the greatest value of products of the load capacitance and the line resistance between the dividing point (original driving point) and an arbitrary driving point on the drive control line within the effective range in which the skew is to be suppressed, smaller than on the driving method of the related art (one-end driving or both-ends driving) and preferably to make a maximum value of a products local minimum or substantially local minimum.
  • FIG. 3 shows a manner in which driving buffers are disposed so as to reduce skew (hereinafter, the technique will be referred to as a skew reduction layout technique) according to a first embodiment of the invention.
  • FIG. 4 shows a comparative example in which driving is performed at one end
  • FIG. 5 shows another comparative example in which driving is performed at both ends.
  • a vertical driving circuit 144 that is, a driving buffer BF
  • a driving buffer BF a driving buffer BF
  • the load increases as the number of pixels is increased to achieve higher resolution.
  • the increase in the load results in an increase in the difference in reading time between a pixel located close to the driving buffer and a pixel located far from the driving buffer. This can make it difficult to correctly read pixel signals, and can cause shading or noise.
  • the “farthest point” refers to a point on a control line the distance from which to a original driving point at which a driving buffer is connected to the control line is greatest.
  • the time constant line resistance ⁇ load capacitance
  • FIG. 5 (A) One technique to ease the problem described above is, as shown in FIG. 5 (A), to dispose vertical driving circuits 144 (driving buffers) on left and right sides of the pixel array part 10 and drive a control line connected to pixels from both sides of the pixel array part 10 thereby reducing the load imposed on each driving buffer.
  • the control line is driven at two dividing points on the control line whose distance from a closer end of the range in which skew is to be minimized is equal to 1 ⁇ 4 of the total length of the range.
  • this driving method will be referred to as a two-dividing-point equal driving method.
  • the driving buffers for driving the control line at dividing points do not necessarily need to be disposed within the vertical scanning circuit 14 c . More preferably, they may be disposed in at least one of the vertical scanning circuits 14 a and 14 b , and the dividing points may be connected to the respective driving buffers via connection lines extending in parallel with the metal control line toward one or both ends of the control line.
  • FIG. 6 shows simulated skew at nodes b 0 and b 1 that occur when original driving points are set at both end points according to the conventional technique and simulated skew at nodes c 0 and c 1 that occur when original driving points are set at two dividing points.
  • Driving buffer size properly set to be capable of driving the line.
  • the skew between nodes b 0 and b 1 is 250 ps
  • the skew between nodes c 0 and c 1 is 70 ps which is 1 ⁇ 4 of that between nodes b 0 and b 1 (when the skew is measured at 0.5 Vdd).
  • the skew can be reduced by employing the two-dividing-point equal driving method.
  • FIG. 7 shows a skew reduction layout technique according to a second embodiment of the invention.
  • two ends of the control line are not used as original driving points, but original driving points are set at three dividing points of the control line such that points farthest from the respective driving points within the range in which skew is to be suppressed are distributed substantially equally.
  • this driving method will be referred to as the “three-dividing-point equal driving method”.
  • the distance between each point farthest from the corresponding original driving point is set to be 1 ⁇ 6 of the total length of the control line as shown in FIG. 7 .
  • two ends of the control line are not used as original driving points, but a plurality of original driving points are set such that points farthest from the respective original driving points within the range in which skew is to be suppressed are equally distributed.
  • the skew can be more reduced as the number of dividing points increases.
  • the dividing-point driving method has the advantage that skew similar to that which occurs when the control line is driven at both ends using two driving buffers can be obtained using only one driving buffer.
  • FIG. 8 shows a skew reduction layout technique according to a third embodiment of the invention.
  • this third embodiment in addition to three original driving points on the control line two of which are located at points whose distance from a closer end of the control line is 1 ⁇ 4 of the total length of the control line and the other one of which is located at the center of the control line, original driving points are set at two respective end points of the control line.
  • this driving method will be referred to as the “both-end and three-dividing-point equal driving method”.
  • original driving points are set at three dividing points on the control line, two of which are located at points whose distance from a closer end of the control line is 1 ⁇ 4 of the total length of the control line and the other one of which is located at the center of the control line in addition to two original driving points set at two respective end points of the control line
  • the number of dividing points on the control line used as original driving points is not limited to three, but original driving points may be set at an arbitrary number of dividing points.
  • Whether one or both ends are used as original driving points and/or how many dividing points are used as original driving points may be properly determined depending on the number of pixels, the required response speed, the load resistance, the load capacitance, etc.
  • one or more auxiliary control lines may be used to drive pixels in a range that should be driven with less skew.
  • original driving points may be set such that farthest points are unequally distributed. Even in this case, if the positions of the original driving points are selected such that a product of the line resistance and the line capacitance (the time constant) becomes equal for all farthest points, it is possible to achieve a similar reduction in skew to that achieved when the original driving points are set such that the farthest points are equally distributed (refer to a fourth embodiment described later).
  • the position of the dividing point is set such that the distance the original driving point to a point farthest from the original driving point is 1 ⁇ 4 of the total length of the control line.
  • the location of the dividing point is set to be the center of the control line. That is, two control lines are prepared one of which is connected to all pixels in a line and the other one of which is connected to only pixels in a central range.
  • the control line connected only to pixels in the central range has small load capacitance originating from the capacitance of the pixel transistors acting as loads, and thus driving pulses applied to this control line can rise more steeply than those applied to the control line connected to all pixels.
  • the rising time can be as small as that of driving pulses output from driving buffers that drives a control line at both end points thereof.
  • only one end point and one or more dividing points may be used as original driving points.
  • the location of the dividing point is set such that the distance between the dividing point and the end point that is not selected as the original driving point is equal to 1 ⁇ 3 of the total length of the control line.
  • FIG. 9 shows a skew reduction layout technique according to a fourth embodiment of the invention.
  • two ends of the control line are not used as original driving points, but original driving points are set at dividing points on the control line such that points farthest from original driving points are distributed at unequal intervals and such that a product of the line resistance and the line capacitance (the time constant) becomes equal for all farthest points.
  • this driving method will be referred to as an “unequal driving method”.
  • the time constant ⁇ f for any furthest point is given by equation (6). From equation (6), it can be seen that the time constant ⁇ f is 1/9 of that in the both-end driving method and 1/36 of that in the one-end driving method.
  • the theoretical skew can be reduced to 16/729 of that in the one-end driving method shown in FIG. 4 and to 4/729 of that in the both-end driving method shown in FIG. 5 .
  • a control line within a range in which skew is to be suppressed is driven at least at one or more arbitrary dividing points (driving at a plurality of dividing points is more desirable than driving at one dividing point) such that skew is reduced in the range in which skew is to be suppressed.
  • skew can be reduced in a range in which skew should be suppressed, by using a small number of driving circuits.
  • the location of the dividing point is determined such that the location results in a reduction in the maximum value of the time constant given by the product of load capacitance at an arbitrary driving point on the control line and line resistance between the arbitrary driving point and a driver unit that drives the original driving point, then it becomes possible to drive the control line at an optimum position even when the line resistance and the load capacitance are distributed non-uniformly.
  • the present invention makes it possible to ease a problem (skew) caused by non-uniformity of the driving capacity, which is very serious in particular when the number of pixels is increased or when pixels are driven at a high speed. Thus, it is possible to reduce shading and other problems.
  • CMOS image sensor is used as an example of a semiconductor device the present invention to which the present invention is applied. Also this invention is applied to a physical information acquisition apparatus like a camera module or a camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
US11/170,246 2004-07-01 2005-06-29 Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device Abandoned US20060001918A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/357,590 US8310574B2 (en) 2004-07-01 2009-01-22 Configuration and method for driving physical information acquisition sensor control lines at multiple dividing points
US13/649,475 US9071782B2 (en) 2004-07-01 2012-10-11 Physical information acquisition apparatus for driving physical information acquisition sensor control lines at multiple dividing points
US14/721,858 US9456158B2 (en) 2004-07-01 2015-05-26 Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004195502 2004-07-01
JPP2004-195502 2004-07-01
JPP2005-175959 2005-06-16
JP2005175959A JP4337779B2 (ja) 2004-07-01 2005-06-16 物理情報取得方法および物理情報取得装置並びに物理量分布検知の半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/357,590 Continuation US8310574B2 (en) 2004-07-01 2009-01-22 Configuration and method for driving physical information acquisition sensor control lines at multiple dividing points

Publications (1)

Publication Number Publication Date
US20060001918A1 true US20060001918A1 (en) 2006-01-05

Family

ID=35513547

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/170,246 Abandoned US20060001918A1 (en) 2004-07-01 2005-06-29 Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device
US12/357,590 Expired - Fee Related US8310574B2 (en) 2004-07-01 2009-01-22 Configuration and method for driving physical information acquisition sensor control lines at multiple dividing points
US13/649,475 Expired - Fee Related US9071782B2 (en) 2004-07-01 2012-10-11 Physical information acquisition apparatus for driving physical information acquisition sensor control lines at multiple dividing points
US14/721,858 Active US9456158B2 (en) 2004-07-01 2015-05-26 Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/357,590 Expired - Fee Related US8310574B2 (en) 2004-07-01 2009-01-22 Configuration and method for driving physical information acquisition sensor control lines at multiple dividing points
US13/649,475 Expired - Fee Related US9071782B2 (en) 2004-07-01 2012-10-11 Physical information acquisition apparatus for driving physical information acquisition sensor control lines at multiple dividing points
US14/721,858 Active US9456158B2 (en) 2004-07-01 2015-05-26 Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device

Country Status (5)

Country Link
US (4) US20060001918A1 (ko)
JP (1) JP4337779B2 (ko)
KR (1) KR101207136B1 (ko)
CN (1) CN1728784B (ko)
TW (1) TWI280050B (ko)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096238A1 (en) * 2005-10-28 2007-05-03 Yusuke Oike Solid-state imaging device, method of driving solid-state imaging device and imaging apparatus
US20080122964A1 (en) * 2006-11-28 2008-05-29 Nobukazu Teranishi Solid-state imaging device and driving method thereof
US20100182448A1 (en) * 2009-01-16 2010-07-22 Sony Corporation Data transfer circuit, solid-state imaging device and camera system
US20110043673A1 (en) * 2007-12-19 2011-02-24 Microsoft International Holdings B.V. Image sensor and a configuration for improved skew time
US20110226935A1 (en) * 2008-09-19 2011-09-22 National Univ. Corporation Information-acquisition device and optical communication system
US20120049041A1 (en) * 2010-09-01 2012-03-01 International Business Machines Corporation Switched rail circuitry and modified cell structure and method of manufacture and use
US20130271625A1 (en) * 2012-04-12 2013-10-17 Qualcomm Incorporated Photometric registration from arbitrary geometry for augmented reality
US20150054998A1 (en) * 2013-08-22 2015-02-26 Canon Kabushiki Kaisha Solid-state imaging apparatus
EP2879376A1 (en) * 2013-11-28 2015-06-03 Samsung Electronics Co., Ltd Image sensor and method of driving image sensor
US20150264286A1 (en) * 2014-03-14 2015-09-17 Kabushiki Kaisha Toshiba Solid-state imaging device
US20160211299A1 (en) * 2013-10-01 2016-07-21 Olympus Corporation Image capturing device
US20160353045A1 (en) * 2014-02-07 2016-12-01 National University Corporation Shizuoka University Image sensor
CN110088908A (zh) * 2017-09-05 2019-08-02 索尼半导体解决方案公司 传感器芯片和电子设备
EP3672230A1 (fr) * 2018-12-21 2020-06-24 Trixell Détecteur matriciel à conducteurs de ligne d'impédance maîtrisée
EP3723361A4 (en) * 2017-12-06 2020-10-28 Sony Semiconductor Solutions Corporation IMAGING DEVICE
US10887539B2 (en) 2016-03-30 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Imaging device
US11057578B2 (en) 2016-08-23 2021-07-06 Nikon Corporation Image-capturing device and image-capturing system
US11095836B2 (en) * 2019-11-15 2021-08-17 Omnivision Technologies, Inc. Image sensor far end driver circuitry providing fast settling row control signals
US20220286639A1 (en) * 2021-03-05 2022-09-08 Semiconductor Components Industries, Llc Methods and apparatus for an image sensor
US11800255B2 (en) 2020-02-25 2023-10-24 Nuvoton Technology Corporation Japan Solid-state imaging device including driver circuits comprising multi-stage buffer elements

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337779B2 (ja) * 2004-07-01 2009-09-30 ソニー株式会社 物理情報取得方法および物理情報取得装置並びに物理量分布検知の半導体装置
JP4870610B2 (ja) * 2007-04-18 2012-02-08 シャープ株式会社 並列接続トランジスタ
JP5164531B2 (ja) 2007-11-13 2013-03-21 キヤノン株式会社 固体撮像装置
JP5523131B2 (ja) * 2010-02-08 2014-06-18 キヤノン株式会社 固体撮像装置
JP2013044891A (ja) * 2011-08-23 2013-03-04 Sony Corp 表示装置及び電子機器
JP2014120858A (ja) * 2012-12-14 2014-06-30 Canon Inc 固体撮像装置
KR20150021812A (ko) 2013-08-21 2015-03-03 삼성전자주식회사 신호 특성을 향상한 라인 구동 회로 및 이를 포함하는 반도체 장치
JP2015185855A (ja) * 2014-03-20 2015-10-22 株式会社東芝 固体撮像装置
JP2015185823A (ja) * 2014-03-26 2015-10-22 ソニー株式会社 固体撮像素子、及び、撮像装置
TWI543056B (zh) * 2014-08-14 2016-07-21 群創光電股份有限公司 顯示裝置及觸控顯示裝置
CN105334650B (zh) * 2014-08-14 2018-11-13 群创光电股份有限公司 显示装置及触控显示装置
US9082144B2 (en) 2015-02-18 2015-07-14 Cargo Chief Transportation service matching with arrival estimation adjusted for external factors
JP2021182669A (ja) * 2020-05-18 2021-11-25 キヤノン株式会社 信号処理回路、光電変換装置および機器

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761137A (en) * 1946-01-05 1956-08-28 Lester C Van Atta Solid dielectric waveguide with metal plating
US3577105A (en) * 1969-05-29 1971-05-04 Us Army Method and apparatus for joining plated dielectric-form waveguide components
US4647882A (en) * 1984-11-14 1987-03-03 Itt Corporation Miniature microwave guide
US4875026A (en) * 1987-08-17 1989-10-17 W. L. Gore & Associates, Inc. Dielectric waveguide having higher order mode suppression
US5119202A (en) * 1987-05-25 1992-06-02 Canon Kabushiki Kaisha Scan circuit with bootstrap drive
US5134488A (en) * 1990-12-28 1992-07-28 David Sarnoff Research Center, Inc. X-Y addressable imager with variable integration
US5805030A (en) * 1995-08-04 1998-09-08 Apple Computer, Inc. Enhanced signal integrity bus having transmission line segments connected by resistive elements
US5818526A (en) * 1995-04-03 1998-10-06 Olympus Optical Co., Ltd. Solid state image pickup device having a number of vertical scanning circuit units which is half the number of pixels in the vertical direction
US6246385B1 (en) * 1997-04-28 2001-06-12 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device and its driving method
US6337713B1 (en) * 1997-04-04 2002-01-08 Asahi Kogaku Kogyo Kabushiki Kaisha Processor for image-pixel signals derived from divided sections of image-sensing area of solid-type image sensor
US6437767B1 (en) * 1997-04-04 2002-08-20 Sharp Kabushiki Kaisha Active matrix devices
US6590477B1 (en) * 1999-10-29 2003-07-08 Fci Americas Technology, Inc. Waveguides and backplane systems with at least one mode suppression gap
US6885549B2 (en) * 2002-04-11 2005-04-26 Dell Products L.P. System and method for flexible circuits
US7382346B2 (en) * 2003-04-18 2008-06-03 Lg Electronics Inc. Driving device of flat display panel and method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783105B2 (ja) 1986-03-19 1995-09-06 日本電気株式会社 電荷転送素子
JPH07326720A (ja) 1994-05-31 1995-12-12 Fuji Xerox Co Ltd イメージセンサ
JP2001251557A (ja) * 1999-12-27 2001-09-14 Canon Inc エリアセンサ、該エリアセンサを有する画像入力装置および該エリアセンサの駆動方法
JP2002158932A (ja) * 2000-11-16 2002-05-31 Sony Corp 固体撮像装置及び固体撮像素子の駆動方法
JP4337779B2 (ja) * 2004-07-01 2009-09-30 ソニー株式会社 物理情報取得方法および物理情報取得装置並びに物理量分布検知の半導体装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761137A (en) * 1946-01-05 1956-08-28 Lester C Van Atta Solid dielectric waveguide with metal plating
US3577105A (en) * 1969-05-29 1971-05-04 Us Army Method and apparatus for joining plated dielectric-form waveguide components
US4647882A (en) * 1984-11-14 1987-03-03 Itt Corporation Miniature microwave guide
US5119202A (en) * 1987-05-25 1992-06-02 Canon Kabushiki Kaisha Scan circuit with bootstrap drive
US4875026A (en) * 1987-08-17 1989-10-17 W. L. Gore & Associates, Inc. Dielectric waveguide having higher order mode suppression
US5134488A (en) * 1990-12-28 1992-07-28 David Sarnoff Research Center, Inc. X-Y addressable imager with variable integration
US5818526A (en) * 1995-04-03 1998-10-06 Olympus Optical Co., Ltd. Solid state image pickup device having a number of vertical scanning circuit units which is half the number of pixels in the vertical direction
US5805030A (en) * 1995-08-04 1998-09-08 Apple Computer, Inc. Enhanced signal integrity bus having transmission line segments connected by resistive elements
US6337713B1 (en) * 1997-04-04 2002-01-08 Asahi Kogaku Kogyo Kabushiki Kaisha Processor for image-pixel signals derived from divided sections of image-sensing area of solid-type image sensor
US6437767B1 (en) * 1997-04-04 2002-08-20 Sharp Kabushiki Kaisha Active matrix devices
US6246385B1 (en) * 1997-04-28 2001-06-12 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device and its driving method
US6590477B1 (en) * 1999-10-29 2003-07-08 Fci Americas Technology, Inc. Waveguides and backplane systems with at least one mode suppression gap
US6885549B2 (en) * 2002-04-11 2005-04-26 Dell Products L.P. System and method for flexible circuits
US7382346B2 (en) * 2003-04-18 2008-06-03 Lg Electronics Inc. Driving device of flat display panel and method thereof

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096238A1 (en) * 2005-10-28 2007-05-03 Yusuke Oike Solid-state imaging device, method of driving solid-state imaging device and imaging apparatus
US8222709B2 (en) * 2005-10-28 2012-07-17 Sony Corporation Solid-state imaging device, method of driving solid-state imaging device and imaging apparatus
US20080122964A1 (en) * 2006-11-28 2008-05-29 Nobukazu Teranishi Solid-state imaging device and driving method thereof
US8634006B2 (en) * 2007-12-19 2014-01-21 Microsoft International Holdings B.V. Image sensor and a configuration for improved skew time
US20110043673A1 (en) * 2007-12-19 2011-02-24 Microsoft International Holdings B.V. Image sensor and a configuration for improved skew time
US20110226935A1 (en) * 2008-09-19 2011-09-22 National Univ. Corporation Information-acquisition device and optical communication system
US8891978B2 (en) * 2008-09-19 2014-11-18 National University Corporation Shizuoka University Information-acquisition device and optical communication system
US20100182448A1 (en) * 2009-01-16 2010-07-22 Sony Corporation Data transfer circuit, solid-state imaging device and camera system
US8319522B2 (en) * 2009-01-16 2012-11-27 Sony Corporation Data transfer circuit, solid-state imaging device and camera system
US20120049041A1 (en) * 2010-09-01 2012-03-01 International Business Machines Corporation Switched rail circuitry and modified cell structure and method of manufacture and use
US20130271625A1 (en) * 2012-04-12 2013-10-17 Qualcomm Incorporated Photometric registration from arbitrary geometry for augmented reality
US9578226B2 (en) * 2012-04-12 2017-02-21 Qualcomm Incorporated Photometric registration from arbitrary geometry for augmented reality
US20150054998A1 (en) * 2013-08-22 2015-02-26 Canon Kabushiki Kaisha Solid-state imaging apparatus
US20160211299A1 (en) * 2013-10-01 2016-07-21 Olympus Corporation Image capturing device
US10319774B2 (en) * 2013-10-01 2019-06-11 Olympus Corporation Image capturing device
EP2879376A1 (en) * 2013-11-28 2015-06-03 Samsung Electronics Co., Ltd Image sensor and method of driving image sensor
US9571764B2 (en) 2013-11-28 2017-02-14 Samsung Electronics Co., Ltd. Image sensor and method of driving image sensor
US20160353045A1 (en) * 2014-02-07 2016-12-01 National University Corporation Shizuoka University Image sensor
US9832409B2 (en) * 2014-02-07 2017-11-28 National University Corporation Shizuoka University Image sensor
US20150264286A1 (en) * 2014-03-14 2015-09-17 Kabushiki Kaisha Toshiba Solid-state imaging device
US10887539B2 (en) 2016-03-30 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Imaging device
US11057578B2 (en) 2016-08-23 2021-07-06 Nikon Corporation Image-capturing device and image-capturing system
CN110088908A (zh) * 2017-09-05 2019-08-02 索尼半导体解决方案公司 传感器芯片和电子设备
EP3605610A4 (en) * 2017-09-05 2020-03-25 Sony Semiconductor Solutions Corporation SENSOR CHIP AND ELECTRONIC MACHINE
US11889213B2 (en) 2017-09-05 2024-01-30 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
US10748952B2 (en) * 2017-09-05 2020-08-18 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
EP4057354A1 (en) * 2017-09-05 2022-09-14 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
CN112004039A (zh) * 2017-09-05 2020-11-27 索尼半导体解决方案公司 飞行时间传感器
US10872920B2 (en) 2017-09-05 2020-12-22 Sony Semiconductor Solutions Corporation Sensor chip and electronic apparatus
EP3975551A1 (en) * 2017-12-06 2022-03-30 Sony Semiconductor Solutions Corporation Imaging device
EP3723361A4 (en) * 2017-12-06 2020-10-28 Sony Semiconductor Solutions Corporation IMAGING DEVICE
EP3672230A1 (fr) * 2018-12-21 2020-06-24 Trixell Détecteur matriciel à conducteurs de ligne d'impédance maîtrisée
US10999547B2 (en) 2018-12-21 2021-05-04 Trixell Matrix-array detector with controlled-impedance row conductors
FR3091113A1 (fr) * 2018-12-21 2020-06-26 Trixell Détecteur matriciel à conducteurs de ligne d’impédance maitrisée
CN111355908A (zh) * 2018-12-21 2020-06-30 特里赛尔公司 行导体具有经控制阻抗的矩阵检测器
US11095836B2 (en) * 2019-11-15 2021-08-17 Omnivision Technologies, Inc. Image sensor far end driver circuitry providing fast settling row control signals
TWI764334B (zh) * 2019-11-15 2022-05-11 美商豪威科技股份有限公司 影像感測器及成像系統
US11800255B2 (en) 2020-02-25 2023-10-24 Nuvoton Technology Corporation Japan Solid-state imaging device including driver circuits comprising multi-stage buffer elements
US20220286639A1 (en) * 2021-03-05 2022-09-08 Semiconductor Components Industries, Llc Methods and apparatus for an image sensor
US11457166B1 (en) * 2021-03-05 2022-09-27 Semiconductor Components Industries, Llc Methods and apparatus for an image sensor
US11985441B2 (en) 2021-03-05 2024-05-14 Semiconductor Components Industries, Llc Methods and apparatus for an image sensor

Also Published As

Publication number Publication date
CN1728784B (zh) 2010-05-26
KR101207136B1 (ko) 2012-12-04
US20150271427A1 (en) 2015-09-24
US8310574B2 (en) 2012-11-13
US9071782B2 (en) 2015-06-30
US20090128675A1 (en) 2009-05-21
US9456158B2 (en) 2016-09-27
TWI280050B (en) 2007-04-21
JP2006050566A (ja) 2006-02-16
TW200614804A (en) 2006-05-01
KR20060049750A (ko) 2006-05-19
CN1728784A (zh) 2006-02-01
US20140028882A1 (en) 2014-01-30
JP4337779B2 (ja) 2009-09-30

Similar Documents

Publication Publication Date Title
US9456158B2 (en) Physical information acquisition method, a physical information acquisition apparatus, and a semiconductor device
US7321329B2 (en) Analog-to-digital converter and semiconductor device
US9113102B2 (en) Method of acquiring physical information and physical information acquiring device
EP1515540B1 (en) Semiconductor device, and control method and device for driving unit component of semiconductor device
US8253836B2 (en) Solid-state imaging device, imaging device and driving method of solid-state imaging device
US7456886B2 (en) Image pickup apparatus
CN103297715B (zh) 固体摄像装置及电子设备
US7256382B2 (en) Solid state imaging device, method of driving solid state imaging device and image pickup apparatus
US6867806B1 (en) Interlace overlap pixel design for high sensitivity CMOS image sensors
KR100597651B1 (ko) 이미지 센서, 실제 이미지를 전기적 신호로 바꾸는 장치 및 그 방법
KR20110014089A (ko) 고체 촬상 장치, 고체 촬상 장치의 아날로그-디지털 변환 방법 및 전자기기
US20120104233A1 (en) Solid-state imaging device and method of driving the same
US20090046187A1 (en) Solid-state imaging device
JP2001045375A (ja) 撮像装置とその読み出し方法
US6876388B1 (en) Interlaced alternating pixel design for high sensitivity CMOS Image sensors
JP2006238444A (ja) アクティブピクセルイメージセンサ
JP4661212B2 (ja) 物理情報取得方法および物理情報取得装置並びに半導体装置
JP4232714B2 (ja) 読出アドレス制御方法、物理情報取得装置、および半導体装置
KR101046817B1 (ko) 센싱 감도를 개선하기 위한 이미지 센서 및 그 구동 방법
JP5177198B2 (ja) 物理情報取得方法および物理情報取得装置
JP2019165274A (ja) 固体撮像素子及び撮像装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OKANO, MASAFUMI;UI, HIROYUKI;REEL/FRAME:016748/0148

Effective date: 20050621

AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: CORRECTIVE COVER SHEET DOCUMENT ID NO. 103037156 (NOTICE OF 11/8/05) REEL/FRAME 016748/0148;ASSIGNORS:OKANO, MASAFUMI;UI, HIROKI;REEL/FRAME:017324/0118

Effective date: 20050621

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION