US20050239198A1 - Stirred-tank reactor system - Google Patents
Stirred-tank reactor system Download PDFInfo
- Publication number
- US20050239198A1 US20050239198A1 US11/064,252 US6425205A US2005239198A1 US 20050239198 A1 US20050239198 A1 US 20050239198A1 US 6425205 A US6425205 A US 6425205A US 2005239198 A1 US2005239198 A1 US 2005239198A1
- Authority
- US
- United States
- Prior art keywords
- bag
- stirred
- tank reactor
- reactor system
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims abstract description 14
- 239000000523 sample Substances 0.000 claims description 54
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 239000002609 medium Substances 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 235000015097 nutrients Nutrition 0.000 claims description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 10
- 229920003023 plastic Polymers 0.000 claims description 10
- 235000013305 food Nutrition 0.000 claims description 9
- 244000005700 microbiome Species 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- 239000001569 carbon dioxide Substances 0.000 claims description 7
- 230000006870 function Effects 0.000 claims description 6
- 239000006143 cell culture medium Substances 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 239000003153 chemical reaction reagent Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000004448 titration Methods 0.000 claims description 4
- 239000013060 biological fluid Substances 0.000 claims description 3
- 238000011081 inoculation Methods 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 210000004027 cell Anatomy 0.000 description 20
- 238000004113 cell culture Methods 0.000 description 15
- 238000004140 cleaning Methods 0.000 description 11
- 238000013019 agitation Methods 0.000 description 10
- 229960000074 biopharmaceutical Drugs 0.000 description 10
- 230000001954 sterilising effect Effects 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- 239000012510 hollow fiber Substances 0.000 description 6
- 238000010200 validation analysis Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000012864 cross contamination Methods 0.000 description 5
- 239000012737 fresh medium Substances 0.000 description 5
- 239000002207 metabolite Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000010412 perfusion Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000003306 harvesting Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 241000700605 Viruses Species 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 238000012824 chemical production Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004500 asepsis Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000012007 large scale cell culture Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013587 production medium Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/14—Bags
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/12—Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/07—Stirrers characterised by their mounting on the shaft
- B01F27/071—Fixing of the stirrer to the shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/88—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with a separate receptacle-stirrer unit that is adapted to be coupled to a drive mechanism
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
- B01F27/91—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/86—Mixing heads comprising a driven stirrer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/50—Mixing receptacles
- B01F35/51—Mixing receptacles characterised by their material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/50—Mixing receptacles
- B01F35/513—Flexible receptacles, e.g. bags supported by rigid containers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/02—Apparatus for enzymology or microbiology with agitation means; with heat exchange means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
- C12M23/06—Tubular
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/26—Constructional details, e.g. recesses, hinges flexible
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/28—Constructional details, e.g. recesses, hinges disposable or single use
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/02—Stirrer or mobile mixing elements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/06—Nozzles; Sprayers; Spargers; Diffusers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2101/00—Mixing characterised by the nature of the mixed materials or by the application field
- B01F2101/44—Mixing of ingredients for microbiology, enzymology, in vitro culture or genetic manipulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- the present invention relates to a stirred-tank reactor system and methods of preparing such systems.
- the present invention further encompasses the use of the stirred-tank reactor system as a disposable bioreactor and in kits with disposable elements.
- a bioreactor or fermenter is a container used for fermentation, enzymatic reactions, cell culture, biologicals, chemicals, biopharmaceuticals, tissue engineering, microorganisms, plant metabolites, food production and the like.
- Bioreactors vary in size from benchtop fermenters to stand-alone units of various sizes.
- the stringent asepsis requirements for sterile production in bioreactors usually requires elaborate systems to achieve the desired product volumes. Consequently, the production of products in aseptic bioreactors is costly which provides the motivation for pursuing improved systems.
- This central strand of hollow fibers is concentrically surrounded by a plurality of strands of hollow fibers, through which a gaseous medium is conveyed.
- the hollow fibers of these strands are also constituted in such a manner that the gaseous medium—for example oxygen or carbon dioxide—can at least partly emerge from these strands or enter into these strands respectively.
- This type of bioreactor achieves a somewhat enhanced nutrient media oxygenation as compared to prior art devices. However, occasional contamination of cell cultures and an inability to control pH levels effectively remain consistent problems.
- the interior chamber of the support housing is lined with a disposable liner and sealed with a head plate attached to the liner to form a sealed chamber. Since the liner is open at the top, it must be used in a vertically oriented bioreactor to prevent the contamination of the head plate. Although this system provides a disposable liner, the head plate and the interior chamber still require cleaning and sterilization.
- U.S. Pat. No. 5,523,228 describes a flexible, disposable, and gas permeable cell culture chamber that is horizontally rotated.
- the cell culture chamber is made of two sheets of plastic fused together.
- the culture chamber is made of gas permeable material and is mounted on a horizontally rotating disk drive that supports the flexible culture chamber without blocking airflow over the membrane surfaces.
- the chamber is placed in an incubator and oxygen transfer is controlled by controlling the gas pressure in the incubator according to the permeability coefficient of the bag.
- the rotation of the bag assists in mixing the contents of the bag.
- the cell culture chamber is limited to use within a controlled gas environment.
- the cell culture chamber has no support apparatus and is thus limited to small volumes.
- the chamber does not provide an inlet and an outlet for media to be constantly pumped into and out of the chamber during rotation.
- Some companies have developed a range of pre-sterile, disposable bioreactors that do not require cleaning or sterilizing (e.g., Wave Biotech, Bridgewater, N.J.). Such reactors are made of sheets of flexible, gas impermeable material to form a bag. The bag is partially filled with media and then inflated with air that continually passes through the bag's headspace. The media is mixed and aerated by rocking the bags to increase the air-liquid interface. However, since there is no solid housing that support the bags, the bags become cumbersome and difficult to handle as they increase in size. Furthermore, the wave action within the rocking bag creates damaging turbulent forces. Certain cell cultures, particularly human cell cultures, develop better under more gentle conditions.
- the present invention provides a stirred-tank reactor system with disposable elements, such as a flexible plastic bag with an attached bearing, shaft, and impeller assembly.
- the instant invention further relates to the use of this novel stirred-tank reactor system as a disposable bioreactor and in kits with disposable elements.
- the advantages of the present invention are numerous.
- the stirred-tank reactor system may be pre-sterilized and does not require a steam-in-place (SIP) or clean-in-place (CIP) environment for changing from batch to batch or product to product in a culture or production system.
- SIP steam-in-place
- CIP clean-in-place
- the system requires less regulatory control by assuring zero batch-to-batch contamination and can, thus, be operated at a considerable cost-advantage and with minimal or no preparation prior to use.
- the system is a true stirred-tank reactor system unlike other disposable reactors systems.
- This provides the added advantage that the instant invention offers a hydrodynamic environment that can be scaled to various sizes similar to conventional non-disposable reactor systems. Since the system does not require cleaning or sterilizing it combines a flexible, easy-to-use, true stirred-tank reactor environment with zero cross-contamination during the cell culture or production process.
- One aspect of the present invention provides a stirred-tank reactor system, comprising a flexible bag with at least one opening, wherein the bag functions as a sterile container for a fluidic medium; a shaft situated within the bag; an impeller attachable to the shaft, wherein the impeller is used to agitate the fluidic medium to provide a hydrodynamic environment; and a bearing attached to the shaft and to the opening of the bag.
- the bag may be affixed to the shaft and the bearing through at least one seal or o-ring such that the inside of the bag remains sterile.
- the seals or o-rings can be affixed to the bag.
- the system may be disposable and pre-sterilized.
- the bag may further include a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag.
- the system may include at least one internal pouch sealed to the bag, wherein the pouch has one end that can be opened to the outside of the bag such that a probe (i.e., a temperature probe, a pH probe, a dissolved gas sensor, an oxygen sensor, a carbon dioxide (CO 2 ) sensor, a cell mass sensor, a nutrient sensor, an osmometer, and the like) can be inserted into the reactor.
- the system may also include at least one port in the bag allowing for the connection of a device such as a tube, a filter, a sampler, a probe, or a connection device to the port. A port allows for sampling; gas flow in and out of the bag; liquid or media flow in and out of the bag; inoculation; titration; adding of chemostat reagents; sparging; and the like.
- a stirred-tank reactor system comprising a flexible bag with at least one opening, wherein the bag functions as a sterile container for a fluidic medium; a shaft situated within the bag; an impeller attachable to the shaft, wherein the impeller is used to agitate the fluidic medium to provide a hydrodynamic environment; and a bearing attached to the shaft and to the opening of the bag.
- the system may further include a housing, such as a reactor housing, on the outside of the bag, wherein the housing includes at least one support that holds the bearing and a motor, and wherein the bag is contained within the housing.
- the housing may further include a plurality of baffles such that the bag folds around the baffles.
- the system further encompasses a heater (e.g., a heating pad, a steam jacket, a circulating fluid or water heater, etc.) that can be located between the bag and the housing.
- a heater e.g., a heating pad, a steam jacket, a circulating fluid or water heater, etc.
- the heater may be incorporated into the housing (e.g., a permanent reactor housing with incorporated heating system).
- the stirred-tank reactor system includes a permanent housing with a product loop with flow past a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the housing.
- the permanent housing includes, but is not limited to, a metal barrel, a plastic barrel, a wood barrel, a glass barrel, and the like.
- the invention also contemplates a method for preparing a stirred-tank reactor system, comprising providing a flexible bag with at least one opening, wherein the bag functions as a sterile container for a fluidic medium; inserting a shaft with an impeller attachable to the shaft into the bag, wherein the impeller is used to agitate the fluidic medium to provide a hydrodynamic environment; attaching a bearing to the shaft and to the opening of the bag; and sealing the bag to the shaft and the bearing such that the inside of the bag remains sterile.
- the stirred-tank reactor system prepared by this method includes at least one disposable element including, but not limited to, the bag, the shaft, the impeller, and the bearing.
- the invention further encompasses a kit comprising a stirred-tank reactor system and instructions for use.
- the kit includes a disposable stirred-tank reactor system.
- the kit may also include a stirred-tank reactor system with at least one disposable element such as the bag, the shaft, the impeller, or the bearing.
- the bag may be affixed to the shaft and the bearing through at least one seal or o-ring such that the inside of the bag remains sterile.
- the bag may include a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag.
- the kit may also include at least one internal pouch sealed to the bag, wherein the pouch includes one end that can be opened to the outside of the bag such that a probe can be inserted into the reactor.
- the system may include at least one port in the bag allowing for the connection of a device to the port, wherein the device includes, but is not limited to, a tube, a filter, a sampler, and the like.
- the bag may be a disposable, flexible, plastic bag.
- the bag may also include at least one disposable element including, but not limited to, a seal, an o-ring, a port, a pouch, a tube, a filter, a sampler, a probe, a sensor, a connection device, or the like.
- FIG. 1 depicts a longitudinal cross-section of one embodiment of the stirred-tank reactor system, wherein the stirred-tank reactor system is placed into a permanent housing.
- FIG. 2 depicts a probe connection in order to illustrate that a probe can be attached to the stirred-tank reactor system via a sterile or aseptic connection.
- the term “flexible bag” refers to a container that holds a fluidic medium.
- the bag may include one or more layer(s) of flexible or semi-flexible waterproof material depending on size, strength and volume requirements.
- the inside surface of the bag is preferably smooth and provides a sterile environment (e.g., for culturing cells or other organism, for food production, etc.).
- the bag may include one or more openings, pouches (e.g., for inserting one or more probes, devices, etc.), ports (e.g., for the connection of one or more probes, devices, etc.) or the like.
- the bag provides a disposable alternative to a solid vessel in a conventional stirred-tank bioreactor.
- the flexible bag may further include a shaft, an impeller, a bearing and seals or o-rings, and may be entirely disposable.
- fluidic medium means, for the purpose of the specification and claims, any biological fluid, cell culture medium, tissue culture medium, culture of microorganisms, culture of plant metabolites, food production, chemical production, biopharmaceutical production, and the like.
- the fluidic medium is not limited to any particular consistency and its viscosity may vary from high to medium to low.
- the fluidic medium is a cell culture medium the system may be operated in batch mode, semi-batch mode, fed-batch mode, or continuous mode.
- the term “impeller” refers to a device that is used for agitating or mixing the contents of a stirred-tank reactor system (e.g., bioreactor).
- the impeller may agitate the fluidic medium by stirring or other mechanical motion.
- the impeller of the instant invention includes, but is not limited to, a Rushton, a marine, a hydrofoil, a pitched blade, and any other commercially available impeller.
- a “hydrodynamic” environment of the instant invention refers to an environment that is influenced by the motion of fluids and the forces acting on solid bodies immersed in these fluids within the stirred-tank reactor system.
- the stirred-tank reactor system of the present invention provides a flexible and disposable bag for a variety of purposes, including culturing cells, microorganisms, or plant metabolites as well as processing foods, chemicals, biopharmaceutical and biologicals.
- the disposable bag may include disposable elements such as a shaft, impeller and bearing and is designed to fit into a permanent housing such as a reactor housing.
- the bag may further include one or more openings, pouches, ports or the like.
- the stirred-tank reactor system allows a user to operate the culture or production with relative ease and little training. In particular, the disposable system does not require cleaning or sterilizing. Furthermore, the system does not need continuous validation between production runs. Thus, it combines a flexible, easy-to-use, true stirred-tank reactor environment with zero cross-contamination during the production process.
- FIG. 1 depicts a flexible bag ( 4 ) with at least one opening and an agitation shaft ( 12 ) with an attachable impeller ( 13 ).
- the agitation shaft ( 12 ) and attached impeller ( 13 ) are situated within the bag ( 4 ).
- the agitation shaft ( 12 ) is connectable to a bearing ( 5 ), wherein the bearing can be sealed to the bag through seal(s) or o-ring(s) ( 6 ).
- the bag ( 4 ), agitation shaft ( 12 ), impeller ( 13 ), and bearing ( 5 ), including seals or o-rings ( 6 ) are optionally disposable.
- the disposable bag can be a flexible, plastic bag.
- the bag ( 4 ) can be affixed to the agitation shaft ( 12 ) and the bearing ( 5 ) through at least one seal or o-ring ( 6 ) such that the inside of the bag remains sterile.
- the seals or o-rings can be further affixed to the bag as is shown in FIG. 1 .
- the disposable stirred-tank reactor system may be connected to a support or one or more bracket(s) ( 3 ) that hold the bearing ( 5 ) and motor ( 1 ).
- the support ( 3 ) is a motor and bearing support ( 3 ), wherein the upper end of the agitation shaft ( 12 ) is further connected to a motor coupling ( 2 ).
- the motor coupling ( 2 ) is connected to the motor ( 1 ) which drives the stirring motion of the agitation shaft ( 12 ) and impeller ( 13 ) leading to a hydrodynamic environment within the bag ( 4 ).
- the bag ( 4 ) is designed to fit into a housing ( 11 ) such as a barrel or chamber.
- the housing may be a metal barrel, a plastic barrel, a wood barrel, a glass barrel, or any other barrel or chamber made from a solid material.
- the housing further includes a plurality of baffles, wherein the bag folds around the baffles.
- the flexible bag ( 4 ) further includes a top port (single or multiple) ( 8 ), a bottom port (single or multiple) ( 9 ), and a side port (single or multiple) ( 10 ), wherein flexible tubing ( 7 ) can be connected to one or more of these ports.
- the stirred-tank reactor system may optionally include a heater such as a heating pad, a steam jacket, or a circulating fluid or water heater.
- the heater is located between the bag ( 4 ) and the housing ( 11 ).
- the heater is incorporated into the housing ( 11 ) (e.g., into a double wall between the reactor housing and the bag).
- the stirred-tank reactor system is placed inside an incubator. The heater allows for heating or warming of a specific culture or production. This is particularly important for cell cultures which are often grown at 37° C.
- the bag ( 4 ), the bearing ( 5 ), the seal(s) or o-ring(s) ( 6 ), the tubing ( 7 ), the top port(s) ( 8 ), the bottom port(s) ( 9 ), the side port(s) ( 10 ), the shaft ( 12 ), and the impeller ( 13 ) are disposable.
- the motor ( 1 ), the motor coupling ( 2 ), the bracket(s) or motor and bearing support ( 3 ), and the housing ( 11 ) are permanent.
- the stirred-tank reactor system may also include sensors and other devices.
- the bag includes a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag.
- the sensors are disposable with the bag.
- the sensors are attachable to the bag and are separate units. Such sensors may optionally be reusable after sterilization.
- the system includes a product loop with flow past a pH sensor and dissolved-oxygen sensor, wherein the sensors are incorporated into the reactor housing.
- the system is flexible and provides alternative ways of supplying optional equipment of various kinds (e.g., sensors, probes, devices, pouches, ports, etc.).
- the system may also include one or more internal pouches that are sealed to the bag.
- the pouch has at least one end that can be opened to the outside of the bag to insert a probe into the reactor (i.e., the bag) while remaining on the exterior of the bag.
- the probe may be, for example, a temperature probe, a pH probe, a dissolved gas sensor, an oxygen sensor, a carbon dioxide sensor, a cell mass sensor, a nutrient sensor, an osmometer or any other probe that allows for testing or checking the culture or production.
- the system includes at least one port in the bag allowing for the connection of a device to the port.
- a device includes, but is not limited to, a tube, a filter, a connector, a probe, and a sampler.
- ports allow for gas flow in and out of the bag as well as liquid flow in and out of the bag. Such ports also allow for sampling or testing the media or culture inside the bag. Tubing, filters, connectors, probes, samplers or other devices can be connected to the ports by using any desirable tubing connection technology.
- Pouches and ports that are sealed or affixed to the bag are disposable with the bag.
- the bag may also include a sparger (i.e., the component of a reactor that sprays air into the medium) sealed to the bag which can be disposed off with the bag.
- ports may be incorporated at any place on the flexible bag to accommodate the following:
- Each port may have flexible tubing attached to the port, to which media bags, sample devices, filters, gas lines, or harvest pumps may be attached with sterile or aseptic connections.
- the ports are sealed onto the flexible bag during bag manufacture, and are sterilized with the bag assembly.
- Devices that may be used to make aseptic connections to the flexible tubing are the following:
- flexible tubing that is attached to an appropriate stainless-steel valve assembly may be sterilized separately (e.g., via autoclave), and then used as a way to connect the disposable bioreactor to traditional reactors or process piping.
- the valve assembly is used to make a traditional steam-in-place (SIP) connection to a traditional reactor or other process, and the flexible tubing is used to make a sterile or aseptic connection to a port on the disposable reactor.
- SIP steam-in-place
- FIG. 2 depicts a probe connection that can be employed with the stirred-tank reactor system of the instant invention.
- the probe ( 1 ) is connected to a flexible sleeve ( 2 ) or bag which extends to one half of a PALL connector ( 3 ).
- the PALL connector ( 3 ) can be connected to the other half of the PALL connector ( 5 ) to provide for a sterile connection between the probe and the stirred-tank reactor system.
- the PALL connectors ( 3 ), ( 5 ) include covers ( 4 ) and filters ( 7 ) to keep the connection site sterile.
- Sterile tubing ( 6 ) extends from the other half of the PALL connector ( 5 ) to a reactor port ( 8 ) of the reactor vessel ( 9 ) of the stirred-tank reactor system.
- the PALL connection is made by removing the covers ( 4 ), mating the connectors ( 3 , 5 ), removing the filters ( 7 ), and sliding the movable part of the connector into position.
- the probe sensor tip ( 12 ) is then pushed into the reactor as the flexible sleeve or bag bunches or compresses ( 10 ).
- the probe senor tip ( 12 ) is then in direct contact with the inside of the reactor vessel ( 9 ).
- a clamp ( 11 ) is placed around the probe and tubing to seal the reactor contents from the PALL connection assembly.
- the flexible sleeve ( 2 ) or bag becomes compressed ( 10 ) and the probe is in contact with the culture or production media.
- the probes may be sterilized separately (e.g., via autoclave) then attached to the reactor via a sterile or aseptic connection.
- a probe assembly may be made by inserting a probe ( 1 ) into one half of a PALL KLEENPAK connector ( 3 ) and sealing the probe to the connector using a flexible sleeve or bag ( 2 ) as described above and shown in FIG. 2 .
- the sleeve extends from the outside end of the probe to the barb of the PALL connector.
- This assembly is sterilized separately.
- the other half of the PALL connector ( 5 ) is connected to a port ( 8 ) on the reactor ( 9 ) via flexible tubing ( 6 ) that will accommodate the probe. This assembly is sterilized as part of the reactor.
- the PALL connector is described in detail in U.S. Pat. No. 6,655,655 and incorporated herein by reference in its entirety.
- the stirred-tank reactor system is designed to hold a fluidic medium such as a biological fluid, a cell culture medium, a culture of microorganisms, a food production, or the like.
- a fluidic medium such as a biological fluid, a cell culture medium, a culture of microorganisms, a food production, or the like.
- the fluidic medium is a cell culture
- the system can be operated in batch-mode, semi-batch mode, fed-batch mode, or continuous mode.
- a batch culture is a large scale cell culture in which a cell inoculum is cultured to a maximum density in a tank or fermenter, and harvested and processed as a batch.
- a fed-batch culture is a batch culture which is supplied with either fresh nutrients (e.g., growth-limiting substrates) or additives (e.g., precursors to products).
- a continuous culture is a suspension culture that is continuously supplied with nutrients by the inflow of fresh medium, wherein the culture volume is usually constant.
- continuous fermentation refers to a process in which cells or micro-organisms are maintained in culture in the exponential growth phase by the continuous addition of fresh medium that is exactly balanced by the removal of cell suspension from the bioreactor.
- the stirred-tank reactor system can be used for suspension, perfusion or microcarrier cultures.
- the stirred-tank reactor system can be operated as any conventional stirred-tank reactor with any type of agitator such as a Rushton, hydrofoil, pitched blade, or marine.
- the agitation shaft ( 12 ) can be mounted at any angle or position relative to the housing ( 11 ), such as upright centered, upright offset, or 15° offset.
- the control of the stirred-tank reactor system can be by conventional means without the need for steam-in-place (SIP) or clean-in-place (CIP) control.
- the system of the instant invention is not limited to sterile bioreactor operation, but can be used in any operation in which a clean product is to be mixed using a stirred tank, for example, food production or any clean-room mixing without the need for a clean-room.
- the invention encompasses a kit that includes a stirred-tank reactor system and instructions for use.
- the kit includes a disposable stirred-tank reactor system.
- the kit includes at least one disposable element such as the bag, the shaft, the impeller, or the bearing.
- the kit is entirely disposable.
- the flexible, disposable bag may be affixed to the shaft and the bearing through at least one seal or o-ring such that the inside of the bag remains sterile.
- the bag may include a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag and are disposable with the bag.
- the kit may also include one or more internal pouches that are sealed to the bag.
- the pouch has one end that can be opened to the outside of the bag such that a probe can be inserted into the reactor.
- the probe may be a temperature probe, a pH probe, a dissolved gas sensor, an oxygen sensor, a carbon dioxide (CO 2 ) sensor, a cell mass sensor, a nutrient sensor, an osmometer, and the like.
- the system may include at least one port in the bag allowing for the connection of a device to the port, wherein the device includes, but is not limited to, a tube, a filter, a sampler, a probe, a connector, and the like.
- the port allows for sampling, titration, adding of chemostat reagents, sparging, and the like.
- this kit is that it is optionally entirely disposable and easy-to-use by following the attached instructions.
- This kit comes in different sizes depending on the preferred culture volume and can be employed with any desired reaction chamber or barrel.
- This kit is pre-sterilized and requires no validation or cleaning.
- the kit can be used for cell culture, culture of microorganisms, culture of plant metabolites, food production, chemical production, biopharmaceutical production, and others.
- the kit in another embodiment includes a housing or barrel that holds the disposable bag.
- a housing or barrel can be supplied with the bag or provided separately.
- a stirred-tank reactor system of the instant invention is a disposable bioreactor.
- the bioreactor is similar to a 600 liter media bag with built-in agitation and attachable sensors (e.g., pH sensors, temperature sensors, dissolved oxygen (dO2) sensors, etc.).
- the reactor is operated via conventional controllers.
- the agitator e.g., agitation shaft and impeller
- the motor attaches to a support (e.g., motor and bearing support) or bracket(s) on the 600 liter barrel that holds the bag.
- this bioreactor appears similar to a stainless steel reactor with a sterile liner, however, the bioreactor of this invention provides a multitude of advantages compared to a conventional stainless steel reactor. Most importantly, the need for cleaning and steam sterilization is eliminated.
- the bag is pre-sterilized by irradiation and, thus, ready for use. In fact, no cleaning, sterilization, validation or testing is required at culture start-up or between culture runs. Consequently, the bioreactor provides a culture environment of zero cross-contamination between runs.
- CIP clean-in-progress
- SIP steam-in-progress
- the disposable bioreactor can be easily scaled-up by using larger culture bags and larger barrels to hold the bags. Multiple bioreactors can be operated at the same time without any need for extensive engineering or cleaning.
- the bioreactor is a true stirred tank with well characterized mixing. As such, the bioreactor has the added advantage that it can be scaled and its contents transferred to a stainless steel reactor if desired. Notably, the bioreactor combines ease of use with low cost and flexibility and provides, thus, a new technical platform for cell culture.
- the disposable bioreactor of the instant invention can be used for a batch culture in which cells are inoculated into fresh media. As the cells grow, they consume the nutrients in the media and waste products accumulate. For a secreted product, when the culture has run its course, cells are separated from the product by a filtration or centrifugation step. For viral-vector production, cells are infected with a virus during the growth phase of the culture, allowing expression of the vector followed by harvest. Since there is zero cross-contamination in the bioreactor it works well with batch cultures.
- the bioreactor can also be used for perfusion cultures, wherein product and/or waste media is continuously removed and the volume removed is replaced with fresh media.
- the constant addition of fresh media, while eliminating waste products, provides the cells with the nutrients they require to achieve higher cell concentrations.
- the perfusion method offers the means to achieve and maintain a culture in a state of equilibrium in which cell concentration and productivity may be maintained in a steady-state condition. This can be accomplished in the disposable bag as easily as in any conventional stainless steel reactor.
- the perfusion process allows for an increase in the cell concentration and, thereby the post-infection virus titer.
- perfusion in the bioreactor offers the user the opportunity to increase the productivity by simply increasing the size of the culture bag. Most importantly, there is no need for sterilization, validation, or cleaning because the system experiences zero cross-contamination during the production process.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Clinical Laboratory Science (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Accessories For Mixers (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
- The present invention relates to a stirred-tank reactor system and methods of preparing such systems. The present invention further encompasses the use of the stirred-tank reactor system as a disposable bioreactor and in kits with disposable elements.
- A bioreactor or fermenter is a container used for fermentation, enzymatic reactions, cell culture, biologicals, chemicals, biopharmaceuticals, tissue engineering, microorganisms, plant metabolites, food production and the like. Bioreactors vary in size from benchtop fermenters to stand-alone units of various sizes. The stringent asepsis requirements for sterile production in bioreactors usually requires elaborate systems to achieve the desired product volumes. Consequently, the production of products in aseptic bioreactors is costly which provides the motivation for pursuing improved systems.
- Conventional bioreactors perfuse nutrient media through a single type of hollow fiber. The various disadvantages of such bioreactors include heterogeneous cell mass, difficult procurement of representative cell growth samples, poor performance due to inefficient oxygenation and an inability to control oxygen levels, and problems with contamination of cell cultures. Moreover, micro-environmental factors such as pH cannot be effectively controlled and a mixed culture or co-culture of cells is not possible. An improvement to such prior art bioreactors is the hollow fiber reactor, as covered in U.S. Pat. No. 5,622,857. This reactor comprises a reaction container, through which a central strand of porous hollow fibers extends, through which a nutrient solution is pumped. This central strand of hollow fibers is concentrically surrounded by a plurality of strands of hollow fibers, through which a gaseous medium is conveyed. The hollow fibers of these strands are also constituted in such a manner that the gaseous medium—for example oxygen or carbon dioxide—can at least partly emerge from these strands or enter into these strands respectively. This type of bioreactor achieves a somewhat enhanced nutrient media oxygenation as compared to prior art devices. However, occasional contamination of cell cultures and an inability to control pH levels effectively remain consistent problems.
- The expense of producing cells, biopharmaceuticals, biologicals and the like in aseptic bioreactors is exacerbated by the required cleaning, sterilization and validation of the standard bioreactors (i.e., stainless steel or glass reactors). Attempts have been made to solve this problem with the development of pre-sterilized disposable bioreactor systems that need not be cleaned, sterilized or validated by end users. The use of such disposable bioreactor systems could provide significant savings. Furthermore, plastics are lightweight, easy to transport, and require less room than stainless steel or glass reactors. An example for the use of disposable elements in bioreactors is provided in U.S. Pat. No. 6,245,555 B1 which describes a reactor chamber with a support housing. The interior chamber of the support housing is lined with a disposable liner and sealed with a head plate attached to the liner to form a sealed chamber. Since the liner is open at the top, it must be used in a vertically oriented bioreactor to prevent the contamination of the head plate. Although this system provides a disposable liner, the head plate and the interior chamber still require cleaning and sterilization.
- Another solution has been to develop flexible, disposable plastic vessels that do not require cleaning or sterilization and require only minimal validation efforts. For example, U.S. Pat. No. 5,523,228 describes a flexible, disposable, and gas permeable cell culture chamber that is horizontally rotated. The cell culture chamber is made of two sheets of plastic fused together. In addition, the culture chamber is made of gas permeable material and is mounted on a horizontally rotating disk drive that supports the flexible culture chamber without blocking airflow over the membrane surfaces. The chamber is placed in an incubator and oxygen transfer is controlled by controlling the gas pressure in the incubator according to the permeability coefficient of the bag. The rotation of the bag assists in mixing the contents of the bag. However, the cell culture chamber is limited to use within a controlled gas environment. Particularly, the cell culture chamber has no support apparatus and is thus limited to small volumes. Furthermore, the chamber does not provide an inlet and an outlet for media to be constantly pumped into and out of the chamber during rotation.
- Some companies have developed a range of pre-sterile, disposable bioreactors that do not require cleaning or sterilizing (e.g., Wave Biotech, Bridgewater, N.J.). Such reactors are made of sheets of flexible, gas impermeable material to form a bag. The bag is partially filled with media and then inflated with air that continually passes through the bag's headspace. The media is mixed and aerated by rocking the bags to increase the air-liquid interface. However, since there is no solid housing that support the bags, the bags become cumbersome and difficult to handle as they increase in size. Furthermore, the wave action within the rocking bag creates damaging turbulent forces. Certain cell cultures, particularly human cell cultures, develop better under more gentle conditions.
- Thus, there is a continuing need in the art to develop flexible, pre-sterilized, disposable bioreactors that are easy to handle and require little training to operate, yet provide the necessary gas transfer and nutrient mixing required for successful cell and tissue cultures. Such disposable bioreactors would be equally useful for the production of chemicals, biopharmaceuticals, biologicals, cells, microorganisms, plant metabolites, foods and the like.
- The present invention provides a stirred-tank reactor system with disposable elements, such as a flexible plastic bag with an attached bearing, shaft, and impeller assembly. The instant invention further relates to the use of this novel stirred-tank reactor system as a disposable bioreactor and in kits with disposable elements. The advantages of the present invention are numerous. Particularly, the stirred-tank reactor system may be pre-sterilized and does not require a steam-in-place (SIP) or clean-in-place (CIP) environment for changing from batch to batch or product to product in a culture or production system. As such, the system requires less regulatory control by assuring zero batch-to-batch contamination and can, thus, be operated at a considerable cost-advantage and with minimal or no preparation prior to use. In addition, the system is a true stirred-tank reactor system unlike other disposable reactors systems. This provides the added advantage that the instant invention offers a hydrodynamic environment that can be scaled to various sizes similar to conventional non-disposable reactor systems. Since the system does not require cleaning or sterilizing it combines a flexible, easy-to-use, true stirred-tank reactor environment with zero cross-contamination during the cell culture or production process.
- One aspect of the present invention provides a stirred-tank reactor system, comprising a flexible bag with at least one opening, wherein the bag functions as a sterile container for a fluidic medium; a shaft situated within the bag; an impeller attachable to the shaft, wherein the impeller is used to agitate the fluidic medium to provide a hydrodynamic environment; and a bearing attached to the shaft and to the opening of the bag. The bag may be affixed to the shaft and the bearing through at least one seal or o-ring such that the inside of the bag remains sterile. The seals or o-rings can be affixed to the bag. The system may be disposable and pre-sterilized. The bag may further include a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag. In addition, the system may include at least one internal pouch sealed to the bag, wherein the pouch has one end that can be opened to the outside of the bag such that a probe (i.e., a temperature probe, a pH probe, a dissolved gas sensor, an oxygen sensor, a carbon dioxide (CO2) sensor, a cell mass sensor, a nutrient sensor, an osmometer, and the like) can be inserted into the reactor. The system may also include at least one port in the bag allowing for the connection of a device such as a tube, a filter, a sampler, a probe, or a connection device to the port. A port allows for sampling; gas flow in and out of the bag; liquid or media flow in and out of the bag; inoculation; titration; adding of chemostat reagents; sparging; and the like.
- Another aspect of the present invention provides a stirred-tank reactor system, comprising a flexible bag with at least one opening, wherein the bag functions as a sterile container for a fluidic medium; a shaft situated within the bag; an impeller attachable to the shaft, wherein the impeller is used to agitate the fluidic medium to provide a hydrodynamic environment; and a bearing attached to the shaft and to the opening of the bag. The system may further include a housing, such as a reactor housing, on the outside of the bag, wherein the housing includes at least one support that holds the bearing and a motor, and wherein the bag is contained within the housing. The housing may further include a plurality of baffles such that the bag folds around the baffles. Optionally, the system further encompasses a heater (e.g., a heating pad, a steam jacket, a circulating fluid or water heater, etc.) that can be located between the bag and the housing. Alternatively, the heater may be incorporated into the housing (e.g., a permanent reactor housing with incorporated heating system).
- In another aspect of the invention, the stirred-tank reactor system includes a permanent housing with a product loop with flow past a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the housing. The permanent housing includes, but is not limited to, a metal barrel, a plastic barrel, a wood barrel, a glass barrel, and the like.
- The invention also contemplates a method for preparing a stirred-tank reactor system, comprising providing a flexible bag with at least one opening, wherein the bag functions as a sterile container for a fluidic medium; inserting a shaft with an impeller attachable to the shaft into the bag, wherein the impeller is used to agitate the fluidic medium to provide a hydrodynamic environment; attaching a bearing to the shaft and to the opening of the bag; and sealing the bag to the shaft and the bearing such that the inside of the bag remains sterile. The stirred-tank reactor system prepared by this method includes at least one disposable element including, but not limited to, the bag, the shaft, the impeller, and the bearing.
- The invention further encompasses a kit comprising a stirred-tank reactor system and instructions for use. The kit includes a disposable stirred-tank reactor system. The kit may also include a stirred-tank reactor system with at least one disposable element such as the bag, the shaft, the impeller, or the bearing. The bag may be affixed to the shaft and the bearing through at least one seal or o-ring such that the inside of the bag remains sterile. Furthermore, the bag may include a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag. The kit may also include at least one internal pouch sealed to the bag, wherein the pouch includes one end that can be opened to the outside of the bag such that a probe can be inserted into the reactor. In addition, the system may include at least one port in the bag allowing for the connection of a device to the port, wherein the device includes, but is not limited to, a tube, a filter, a sampler, and the like.
- Another aspect of the invention provides a bag for use in a stirred-tank reactor system. The bag may be a disposable, flexible, plastic bag. The bag may also include at least one disposable element including, but not limited to, a seal, an o-ring, a port, a pouch, a tube, a filter, a sampler, a probe, a sensor, a connection device, or the like.
- The present invention is best understood when read in conjunction with the accompanying figures which serve to illustrate the preferred embodiments. It is understood, however, that the invention is not limited to the specific embodiments disclosed in the figures.
-
FIG. 1 depicts a longitudinal cross-section of one embodiment of the stirred-tank reactor system, wherein the stirred-tank reactor system is placed into a permanent housing. -
FIG. 2 depicts a probe connection in order to illustrate that a probe can be attached to the stirred-tank reactor system via a sterile or aseptic connection. - a) Definitions and General Parameters
- The following definitions are set forth to illustrate and define the meaning and scope of the various terms used to describe the invention herein.
- The term “flexible bag” refers to a container that holds a fluidic medium. The bag may include one or more layer(s) of flexible or semi-flexible waterproof material depending on size, strength and volume requirements. The inside surface of the bag is preferably smooth and provides a sterile environment (e.g., for culturing cells or other organism, for food production, etc.). The bag may include one or more openings, pouches (e.g., for inserting one or more probes, devices, etc.), ports (e.g., for the connection of one or more probes, devices, etc.) or the like. Furthermore, the bag provides a disposable alternative to a solid vessel in a conventional stirred-tank bioreactor. The flexible bag may further include a shaft, an impeller, a bearing and seals or o-rings, and may be entirely disposable.
- The term “fluidic medium” means, for the purpose of the specification and claims, any biological fluid, cell culture medium, tissue culture medium, culture of microorganisms, culture of plant metabolites, food production, chemical production, biopharmaceutical production, and the like. The fluidic medium is not limited to any particular consistency and its viscosity may vary from high to medium to low. When the fluidic medium is a cell culture medium the system may be operated in batch mode, semi-batch mode, fed-batch mode, or continuous mode.
- The term “impeller” refers to a device that is used for agitating or mixing the contents of a stirred-tank reactor system (e.g., bioreactor). The impeller may agitate the fluidic medium by stirring or other mechanical motion. The impeller of the instant invention includes, but is not limited to, a Rushton, a marine, a hydrofoil, a pitched blade, and any other commercially available impeller.
- A “hydrodynamic” environment of the instant invention refers to an environment that is influenced by the motion of fluids and the forces acting on solid bodies immersed in these fluids within the stirred-tank reactor system.
- b) The Stirred-Tank Reactor System
- The stirred-tank reactor system of the present invention provides a flexible and disposable bag for a variety of purposes, including culturing cells, microorganisms, or plant metabolites as well as processing foods, chemicals, biopharmaceutical and biologicals. The disposable bag may include disposable elements such as a shaft, impeller and bearing and is designed to fit into a permanent housing such as a reactor housing. The bag may further include one or more openings, pouches, ports or the like. The stirred-tank reactor system allows a user to operate the culture or production with relative ease and little training. In particular, the disposable system does not require cleaning or sterilizing. Furthermore, the system does not need continuous validation between production runs. Thus, it combines a flexible, easy-to-use, true stirred-tank reactor environment with zero cross-contamination during the production process.
- Referring to the drawings,
FIG. 1 depicts a flexible bag (4) with at least one opening and an agitation shaft (12) with an attachable impeller (13). As shown, the agitation shaft (12) and attached impeller (13) are situated within the bag (4). Further, the agitation shaft (12) is connectable to a bearing (5), wherein the bearing can be sealed to the bag through seal(s) or o-ring(s) (6). The bag (4), agitation shaft (12), impeller (13), and bearing (5), including seals or o-rings (6) are optionally disposable. The disposable bag can be a flexible, plastic bag. The bag (4) can be affixed to the agitation shaft (12) and the bearing (5) through at least one seal or o-ring (6) such that the inside of the bag remains sterile. The seals or o-rings can be further affixed to the bag as is shown inFIG. 1 . Additionally, the disposable stirred-tank reactor system may be connected to a support or one or more bracket(s) (3) that hold the bearing (5) and motor (1). In one embodiment (as shown inFIG. 1 ), the support (3) is a motor and bearing support (3), wherein the upper end of the agitation shaft (12) is further connected to a motor coupling (2). The motor coupling (2) is connected to the motor (1) which drives the stirring motion of the agitation shaft (12) and impeller (13) leading to a hydrodynamic environment within the bag (4). The bag (4) is designed to fit into a housing (11) such as a barrel or chamber. The housing may be a metal barrel, a plastic barrel, a wood barrel, a glass barrel, or any other barrel or chamber made from a solid material. In one embodiment of the instant invention, the housing further includes a plurality of baffles, wherein the bag folds around the baffles. In another embodiment, the flexible bag (4) further includes a top port (single or multiple) (8), a bottom port (single or multiple) (9), and a side port (single or multiple) (10), wherein flexible tubing (7) can be connected to one or more of these ports. - The stirred-tank reactor system may optionally include a heater such as a heating pad, a steam jacket, or a circulating fluid or water heater. In one embodiment, the heater is located between the bag (4) and the housing (11). In another embodiment, the heater is incorporated into the housing (11) (e.g., into a double wall between the reactor housing and the bag). In yet another embodiment, the stirred-tank reactor system is placed inside an incubator. The heater allows for heating or warming of a specific culture or production. This is particularly important for cell cultures which are often grown at 37° C.
- In one embodiment of the instant invention, the bag (4), the bearing (5), the seal(s) or o-ring(s) (6), the tubing (7), the top port(s) (8), the bottom port(s) (9), the side port(s) (10), the shaft (12), and the impeller (13) are disposable. The motor (1), the motor coupling (2), the bracket(s) or motor and bearing support (3), and the housing (11) are permanent.
- c) Devices and Ports
- The stirred-tank reactor system may also include sensors and other devices. In one embodiment, the bag includes a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag. As such, the sensors are disposable with the bag. In another embodiment, the sensors are attachable to the bag and are separate units. Such sensors may optionally be reusable after sterilization. In another embodiment, the system includes a product loop with flow past a pH sensor and dissolved-oxygen sensor, wherein the sensors are incorporated into the reactor housing. The system is flexible and provides alternative ways of supplying optional equipment of various kinds (e.g., sensors, probes, devices, pouches, ports, etc.). The system may also include one or more internal pouches that are sealed to the bag. In one preferred embodiment, the pouch has at least one end that can be opened to the outside of the bag to insert a probe into the reactor (i.e., the bag) while remaining on the exterior of the bag. The probe may be, for example, a temperature probe, a pH probe, a dissolved gas sensor, an oxygen sensor, a carbon dioxide sensor, a cell mass sensor, a nutrient sensor, an osmometer or any other probe that allows for testing or checking the culture or production. In another preferred embodiment, the system includes at least one port in the bag allowing for the connection of a device to the port. Such a device includes, but is not limited to, a tube, a filter, a connector, a probe, and a sampler. The incorporation of various ports into the bag allows for gas flow in and out of the bag as well as liquid flow in and out of the bag. Such ports also allow for sampling or testing the media or culture inside the bag. Tubing, filters, connectors, probes, samplers or other devices can be connected to the ports by using any desirable tubing connection technology. Pouches and ports that are sealed or affixed to the bag are disposable with the bag. The bag may also include a sparger (i.e., the component of a reactor that sprays air into the medium) sealed to the bag which can be disposed off with the bag.
- Particularly, ports may be incorporated at any place on the flexible bag to accommodate the following:
- Headspace gas in
- Headspace gas out
- Sparge gas in
- Temperature probe
- pH probe
- Dissolved oxygen probe
- Other desired probes
- Sample apparatus
- Media in
- Titrant in
- Inoculum in
- Nutrient feeds in
- Harvest out
- Each port may have flexible tubing attached to the port, to which media bags, sample devices, filters, gas lines, or harvest pumps may be attached with sterile or aseptic connections. In one embodiment, the ports are sealed onto the flexible bag during bag manufacture, and are sterilized with the bag assembly.
- Devices that may be used to make aseptic connections to the flexible tubing are the following:
- WAVE sterile tube fuser
- TERUMO sterile tubing welder
- PALL KLEENPAK connector
- Connection made under a laminar flow hood, using aseptic techniques
- BAXTER Hayward proprietary “HEAT-TO-HEAT” connection using metal tubing and an induction heater
- In another embodiment, flexible tubing that is attached to an appropriate stainless-steel valve assembly may be sterilized separately (e.g., via autoclave), and then used as a way to connect the disposable bioreactor to traditional reactors or process piping. The valve assembly is used to make a traditional steam-in-place (SIP) connection to a traditional reactor or other process, and the flexible tubing is used to make a sterile or aseptic connection to a port on the disposable reactor.
- Referring to the drawings,
FIG. 2 depicts a probe connection that can be employed with the stirred-tank reactor system of the instant invention. In one embodiment (as shown inFIG. 2 ), the probe (1) is connected to a flexible sleeve (2) or bag which extends to one half of a PALL connector (3). The PALL connector (3) can be connected to the other half of the PALL connector (5) to provide for a sterile connection between the probe and the stirred-tank reactor system. The PALL connectors (3), (5) include covers (4) and filters (7) to keep the connection site sterile. Sterile tubing (6) extends from the other half of the PALL connector (5) to a reactor port (8) of the reactor vessel (9) of the stirred-tank reactor system. In order to attach the probe, the PALL connection is made by removing the covers (4), mating the connectors (3, 5), removing the filters (7), and sliding the movable part of the connector into position. The probe sensor tip (12) is then pushed into the reactor as the flexible sleeve or bag bunches or compresses (10). The probe senor tip (12) is then in direct contact with the inside of the reactor vessel (9). A clamp (11) is placed around the probe and tubing to seal the reactor contents from the PALL connection assembly. Thus, when a sterile connection is made between the two halves of the PALL connectors (3, 5), the flexible sleeve (2) or bag becomes compressed (10) and the probe is in contact with the culture or production media. - In one embodiment, the probes may be sterilized separately (e.g., via autoclave) then attached to the reactor via a sterile or aseptic connection. For example, a probe assembly may be made by inserting a probe (1) into one half of a PALL KLEENPAK connector (3) and sealing the probe to the connector using a flexible sleeve or bag (2) as described above and shown in
FIG. 2 . The sleeve extends from the outside end of the probe to the barb of the PALL connector. This assembly is sterilized separately. The other half of the PALL connector (5) is connected to a port (8) on the reactor (9) via flexible tubing (6) that will accommodate the probe. This assembly is sterilized as part of the reactor. The PALL connector is described in detail in U.S. Pat. No. 6,655,655 and incorporated herein by reference in its entirety. - d) Cultures
- The stirred-tank reactor system is designed to hold a fluidic medium such as a biological fluid, a cell culture medium, a culture of microorganisms, a food production, or the like. When the fluidic medium is a cell culture the system can be operated in batch-mode, semi-batch mode, fed-batch mode, or continuous mode. A batch culture is a large scale cell culture in which a cell inoculum is cultured to a maximum density in a tank or fermenter, and harvested and processed as a batch. A fed-batch culture is a batch culture which is supplied with either fresh nutrients (e.g., growth-limiting substrates) or additives (e.g., precursors to products). A continuous culture is a suspension culture that is continuously supplied with nutrients by the inflow of fresh medium, wherein the culture volume is usually constant. Similarly, continuous fermentation refers to a process in which cells or micro-organisms are maintained in culture in the exponential growth phase by the continuous addition of fresh medium that is exactly balanced by the removal of cell suspension from the bioreactor. Furthermore, the stirred-tank reactor system can be used for suspension, perfusion or microcarrier cultures. Generally, the stirred-tank reactor system can be operated as any conventional stirred-tank reactor with any type of agitator such as a Rushton, hydrofoil, pitched blade, or marine. The agitation shaft (12) can be mounted at any angle or position relative to the housing (11), such as upright centered, upright offset, or 15° offset. The control of the stirred-tank reactor system can be by conventional means without the need for steam-in-place (SIP) or clean-in-place (CIP) control. In fact, the system of the instant invention is not limited to sterile bioreactor operation, but can be used in any operation in which a clean product is to be mixed using a stirred tank, for example, food production or any clean-room mixing without the need for a clean-room.
- e) The Kit
- The invention encompasses a kit that includes a stirred-tank reactor system and instructions for use. In a preferred embodiment, the kit includes a disposable stirred-tank reactor system. Accordingly, the kit includes at least one disposable element such as the bag, the shaft, the impeller, or the bearing. Preferably, the kit is entirely disposable. The flexible, disposable bag may be affixed to the shaft and the bearing through at least one seal or o-ring such that the inside of the bag remains sterile. In addition, the bag may include a pH sensor and a dissolved-oxygen sensor, wherein the sensors are incorporated into the bag and are disposable with the bag. The kit may also include one or more internal pouches that are sealed to the bag. The pouch has one end that can be opened to the outside of the bag such that a probe can be inserted into the reactor. The probe may be a temperature probe, a pH probe, a dissolved gas sensor, an oxygen sensor, a carbon dioxide (CO2) sensor, a cell mass sensor, a nutrient sensor, an osmometer, and the like. Furthermore, the system may include at least one port in the bag allowing for the connection of a device to the port, wherein the device includes, but is not limited to, a tube, a filter, a sampler, a probe, a connector, and the like. The port allows for sampling, titration, adding of chemostat reagents, sparging, and the like. The advantage of this kit is that it is optionally entirely disposable and easy-to-use by following the attached instructions. This kit comes in different sizes depending on the preferred culture volume and can be employed with any desired reaction chamber or barrel. This kit is pre-sterilized and requires no validation or cleaning. The kit can be used for cell culture, culture of microorganisms, culture of plant metabolites, food production, chemical production, biopharmaceutical production, and others.
- In another embodiment the kit includes a housing or barrel that holds the disposable bag. Such a housing or barrel can be supplied with the bag or provided separately.
- f) Examples
- The following specific examples are intended to illustrate the invention and should not be construed as limiting the scope of the claims.
- (i) A Disposable Bioreactor
- One example of a stirred-tank reactor system of the instant invention is a disposable bioreactor. The bioreactor is similar to a 600 liter media bag with built-in agitation and attachable sensors (e.g., pH sensors, temperature sensors, dissolved oxygen (dO2) sensors, etc.). The reactor is operated via conventional controllers. The agitator (e.g., agitation shaft and impeller) and bearing are disposable and built into the bag. The motor attaches to a support (e.g., motor and bearing support) or bracket(s) on the 600 liter barrel that holds the bag. In size, shape, and operation, this bioreactor appears similar to a stainless steel reactor with a sterile liner, however, the bioreactor of this invention provides a multitude of advantages compared to a conventional stainless steel reactor. Most importantly, the need for cleaning and steam sterilization is eliminated. The bag is pre-sterilized by irradiation and, thus, ready for use. In fact, no cleaning, sterilization, validation or testing is required at culture start-up or between culture runs. Consequently, the bioreactor provides a culture environment of zero cross-contamination between runs. In conventional systems, the majority of costs are related to clean-in-progress (CIP) and steam-in-progress (SIP) as well as the design of a skid and control system to oversee these functions. These costs are eliminated in the disposable bioreactor and multiple products may be cultured or manufactured simultaneously and with much greater ease.
- The disposable bioreactor can be easily scaled-up by using larger culture bags and larger barrels to hold the bags. Multiple bioreactors can be operated at the same time without any need for extensive engineering or cleaning. The bioreactor is a true stirred tank with well characterized mixing. As such, the bioreactor has the added advantage that it can be scaled and its contents transferred to a stainless steel reactor if desired. Notably, the bioreactor combines ease of use with low cost and flexibility and provides, thus, a new technical platform for cell culture.
- (ii) Cell Culture
- The disposable bioreactor of the instant invention can be used for a batch culture in which cells are inoculated into fresh media. As the cells grow, they consume the nutrients in the media and waste products accumulate. For a secreted product, when the culture has run its course, cells are separated from the product by a filtration or centrifugation step. For viral-vector production, cells are infected with a virus during the growth phase of the culture, allowing expression of the vector followed by harvest. Since there is zero cross-contamination in the bioreactor it works well with batch cultures.
- The bioreactor can also be used for perfusion cultures, wherein product and/or waste media is continuously removed and the volume removed is replaced with fresh media. The constant addition of fresh media, while eliminating waste products, provides the cells with the nutrients they require to achieve higher cell concentrations. Unlike the constantly changing conditions of a batch culture, the perfusion method offers the means to achieve and maintain a culture in a state of equilibrium in which cell concentration and productivity may be maintained in a steady-state condition. This can be accomplished in the disposable bag as easily as in any conventional stainless steel reactor. For viral-vector production, the perfusion process allows for an increase in the cell concentration and, thereby the post-infection virus titer. For a secreted product, perfusion in the bioreactor offers the user the opportunity to increase the productivity by simply increasing the size of the culture bag. Most importantly, there is no need for sterilization, validation, or cleaning because the system experiences zero cross-contamination during the production process.
- Various modifications and variations of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the claims.
Claims (42)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/064,252 US20050239198A1 (en) | 2004-04-27 | 2005-02-22 | Stirred-tank reactor system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US56590804P | 2004-04-27 | 2004-04-27 | |
US11/064,252 US20050239198A1 (en) | 2004-04-27 | 2005-02-22 | Stirred-tank reactor system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20050239198A1 true US20050239198A1 (en) | 2005-10-27 |
Family
ID=35242132
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/064,252 Abandoned US20050239198A1 (en) | 2004-04-27 | 2005-02-22 | Stirred-tank reactor system |
US11/112,834 Active 2026-04-20 US7384783B2 (en) | 2004-04-27 | 2005-04-22 | Stirred-tank reactor system |
US12/116,050 Active 2026-02-26 US7901934B2 (en) | 2004-04-27 | 2008-05-06 | Probe connector assembly and method of use |
US13/014,575 Expired - Lifetime US8187867B2 (en) | 2004-04-27 | 2011-01-26 | Probe connector assembly and method of use |
US13/443,391 Expired - Lifetime US8623640B2 (en) | 2004-04-27 | 2012-04-10 | Stirred tank reactor systems and methods of use |
US14/109,684 Expired - Lifetime US9540606B2 (en) | 2004-04-27 | 2013-12-17 | Stirred tank reactor systems and methods of use |
US15/376,362 Active 2025-12-25 US10640741B2 (en) | 2004-04-27 | 2016-12-12 | Stirred tank reactor systems and methods of use |
US16/863,702 Active 2025-09-02 US11591556B2 (en) | 2004-04-27 | 2020-04-30 | Stirred tank reactor systems and methods of use |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/112,834 Active 2026-04-20 US7384783B2 (en) | 2004-04-27 | 2005-04-22 | Stirred-tank reactor system |
US12/116,050 Active 2026-02-26 US7901934B2 (en) | 2004-04-27 | 2008-05-06 | Probe connector assembly and method of use |
US13/014,575 Expired - Lifetime US8187867B2 (en) | 2004-04-27 | 2011-01-26 | Probe connector assembly and method of use |
US13/443,391 Expired - Lifetime US8623640B2 (en) | 2004-04-27 | 2012-04-10 | Stirred tank reactor systems and methods of use |
US14/109,684 Expired - Lifetime US9540606B2 (en) | 2004-04-27 | 2013-12-17 | Stirred tank reactor systems and methods of use |
US15/376,362 Active 2025-12-25 US10640741B2 (en) | 2004-04-27 | 2016-12-12 | Stirred tank reactor systems and methods of use |
US16/863,702 Active 2025-09-02 US11591556B2 (en) | 2004-04-27 | 2020-04-30 | Stirred tank reactor systems and methods of use |
Country Status (12)
Country | Link |
---|---|
US (8) | US20050239198A1 (en) |
EP (2) | EP1763575A4 (en) |
JP (2) | JP2007534335A (en) |
KR (2) | KR20070015178A (en) |
CN (2) | CN1946835A (en) |
AU (2) | AU2005240969A1 (en) |
BR (2) | BRPI0510291A (en) |
CA (2) | CA2559496A1 (en) |
DK (1) | DK1756259T3 (en) |
IN (1) | IN2012DN01976A (en) |
MX (2) | MXPA06011837A (en) |
WO (2) | WO2005108546A2 (en) |
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050226794A1 (en) * | 2004-02-03 | 2005-10-13 | Geoffrey Hodge | System and method for manufacturing |
US20050239199A1 (en) * | 2004-04-27 | 2005-10-27 | Baxter International Inc. | Stirred-tank reactor system |
US20070159920A1 (en) * | 2006-01-11 | 2007-07-12 | Sartorius Ag | Container and method for the mixing of media |
US20070185472A1 (en) * | 2006-02-07 | 2007-08-09 | Sartorius Ag | Connector, connector system, and use thereof |
US20080032389A1 (en) * | 2006-08-02 | 2008-02-07 | Finesse Solutions, Llc. | Disposable bioreactor vessel port |
WO2008157181A1 (en) | 2007-06-16 | 2008-12-24 | Advanced Technology Materials, Inc. | Bioreactor probe connection system |
US20090075362A1 (en) * | 2006-05-11 | 2009-03-19 | Sartorius Stedim Biotech Gmbh | Disposable Bioreactor Comprising a Sensor Arrangement |
US20090135667A1 (en) * | 2004-01-07 | 2009-05-28 | Terentiev Alexandre N | Mixing bag with integral sparger and sensor receiver |
FR2924034A1 (en) * | 2007-11-27 | 2009-05-29 | Sartorius Stedim Biotech Sa | DEVICE FOR CONNECTING AN ACCESSORY TO A CONTAINER FOR SIMPLIFIED INSERTION OF THE ACCESSORY IN THE CONTAINER |
US20100028990A1 (en) * | 2007-02-15 | 2010-02-04 | Broadley-James Corporation | Sterile bioreactor bag with integrated drive unit |
US20100075405A1 (en) * | 2007-02-15 | 2010-03-25 | Broadley-James Corporation | Bioreactor jacket |
US20100105138A1 (en) * | 2008-10-27 | 2010-04-29 | Caridianbct, Inc. | Premounted fluid conveyance assembly for cell expansion system and method of use associated therewith |
US20100209966A1 (en) * | 2009-02-18 | 2010-08-19 | Biolex Therapeutics, Inc. | Aseptic bioreactor system for processing biological materials |
US20100261226A1 (en) * | 2009-04-14 | 2010-10-14 | Niazi Sarfaraz K | Universal bioreactors and methods of use |
EP2251407A1 (en) | 2009-05-12 | 2010-11-17 | Eppendorf Ag | Disposable bioreactor, kit for the same and method for its production |
US20110020923A1 (en) * | 2009-07-22 | 2011-01-27 | Becton, Dickinson And Company | Multilayer tissue culture vessel |
US20110117538A1 (en) * | 2009-11-13 | 2011-05-19 | Niazi Sarfaraz K | Bioreactors for fermentation and related methods |
US20110155256A1 (en) * | 2008-10-27 | 2011-06-30 | Caridianbct, Inc. | Air Removal Chamber for a Cell Expansion System and Method of Use Associated Therewith |
GB2479783A (en) * | 2010-04-23 | 2011-10-26 | Aber Instr Ltd | A bioreactor with an impedance or biomass measuring probe. |
WO2013011231A1 (en) | 2011-07-19 | 2013-01-24 | Sartorius Stedim Biotech S.A. | Improvement to the connection of an accessory to a receptacle |
US8895291B2 (en) | 2010-10-08 | 2014-11-25 | Terumo Bct, Inc. | Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions |
US9005550B2 (en) | 2012-10-29 | 2015-04-14 | Corning Incorporated | Multi-layered cell culture vessel with manifold grips |
US9127246B2 (en) | 2010-02-22 | 2015-09-08 | Life Technologies Corporation | Methods for condensing a humid gas |
CN105039737A (en) * | 2015-08-31 | 2015-11-11 | 长沙矿冶研究院有限责任公司 | Gold extraction technique method for low-grade refractory gold ores |
EP2949742A1 (en) * | 2014-05-29 | 2015-12-02 | Yokogawa Electric Corporation | Cell culture bag and method for manufacturing cell culture bag |
CN105148823A (en) * | 2015-08-17 | 2015-12-16 | 长沙矿冶研究院有限责任公司 | Inflatable stirring reaction device |
US9267100B2 (en) | 2006-08-02 | 2016-02-23 | Finesse Solutions, Inc. | Composite sensor assemblies for single use bioreactors |
US20160272931A1 (en) * | 2013-12-10 | 2016-09-22 | Abec, Inc. | Apparatus and methods of use |
US9457306B2 (en) | 2014-10-07 | 2016-10-04 | Life Technologies Corporation | Regulated vacuum off-gassing of gas filter for fluid processing system and related methods |
WO2017207822A1 (en) * | 2016-06-03 | 2017-12-07 | Lonza Limited | Single use bioreactor |
CN108165466A (en) * | 2017-11-29 | 2018-06-15 | 李丽明 | A kind of edible mushroom agitating device |
US10005005B2 (en) | 2014-03-21 | 2018-06-26 | Life Technologies Corporation | Condenser systems for fluid processing systems |
US10047337B2 (en) | 2015-03-31 | 2018-08-14 | Heliae Development Llc | Method of mixotrophic culturing of microalgae in a flexible bioreactor |
US10059918B2 (en) | 2015-03-31 | 2018-08-28 | Heliae Development Llc | Method of vitally supporting microalgae in a flexible bioreactor |
US10125346B2 (en) | 2015-03-31 | 2018-11-13 | Heliae Development Llc | Bioreactor sterilization method for multiple uses |
US10184105B2 (en) | 2015-03-31 | 2019-01-22 | Heliae Development Llc | Flexible bioreactor and support structure method |
US10184099B2 (en) | 2015-03-31 | 2019-01-22 | Heliae Development Llc | Flexible bioreactor and support structure system |
CN109423446A (en) * | 2017-08-24 | 2019-03-05 | 吴鹃 | A kind of crop straw pre-treatment reactor tank |
US10227555B2 (en) | 2006-08-02 | 2019-03-12 | Finesse Solutions, Inc. | Composite sensor assemblies for single use bioreactors |
GB2569326A (en) * | 2017-12-13 | 2019-06-19 | Aber Instruments Ltd | Probe |
EP2141224B1 (en) | 2008-06-11 | 2020-06-03 | EMD Millipore Corporation | Stirred tank bioreactor |
US10688429B2 (en) | 2014-03-21 | 2020-06-23 | Life Technologies Corporation | Gas filter systems for fluid processing systems |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US10724029B2 (en) | 2012-03-15 | 2020-07-28 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
WO2020161473A1 (en) * | 2019-02-04 | 2020-08-13 | Innospec Limited | Polymerisation method and apparatus therefor |
WO2020161472A1 (en) * | 2019-02-04 | 2020-08-13 | Innospec Limited | Polymeric materials |
US10785574B2 (en) | 2017-12-14 | 2020-09-22 | Flodesign Sonics, Inc. | Acoustic transducer driver and controller |
US10975368B2 (en) | 2014-01-08 | 2021-04-13 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
USRE48523E1 (en) | 2012-03-19 | 2021-04-20 | Algae To Omega Holdings, Inc. | System and method for producing algae |
US11007457B2 (en) | 2012-03-15 | 2021-05-18 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
US20210253994A1 (en) * | 2018-07-27 | 2021-08-19 | Emd Millipore Corporation | Installation for treating biological liquid |
CN113614001A (en) * | 2019-02-04 | 2021-11-05 | 因诺斯佩克有限公司 | Polymer material |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
CN113894958A (en) * | 2021-10-18 | 2022-01-07 | 陈昱 | Polyethylene particle system and method thereof |
US11268056B2 (en) | 2015-12-29 | 2022-03-08 | Life Technologies Corporation | Flexible bioprocessing container with partial dividing partition |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
CN114829576A (en) * | 2019-12-13 | 2022-07-29 | 瑞普利金公司 | Alternating tangential flow bioreactor with hollow fiber system and method of use |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11623200B2 (en) | 2017-10-03 | 2023-04-11 | Abec, Inc. | Reactor systems |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
EP3992277A4 (en) * | 2019-06-28 | 2023-10-04 | I Peace, Inc. | CELL CULTURE METHOD AND CELL CULTURE APPARATUS |
WO2023219497A1 (en) | 2022-05-10 | 2023-11-16 | Applikon Biotechnology B.V. | Drive shaft system for use with a container for mixing a fluid and a container holder |
US11827875B2 (en) | 2006-08-02 | 2023-11-28 | Finesse Solutions, Inc. | Method for manufacturing a composite sensor |
US11951452B2 (en) | 2019-02-04 | 2024-04-09 | Innospec Limited | Method of assembling an apparatus for containing reagents for a chemical reaction |
Families Citing this family (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100460513C (en) | 2000-01-19 | 2009-02-11 | 马泰克生物科学公司 | Solventless extraction process |
US7951557B2 (en) | 2003-04-27 | 2011-05-31 | Protalix Ltd. | Human lysosomal proteins from plant cell culture |
US7249880B2 (en) * | 2003-10-14 | 2007-07-31 | Advanced Technology Materials, Inc. | Flexible mixing bag for mixing solids, liquids and gases |
MXPA06014099A (en) * | 2004-06-04 | 2007-05-09 | Xcellerex Inc | Disposable bioreactor systems and methods. |
CA2605599A1 (en) | 2005-04-22 | 2006-11-02 | Hyclone Laboratories, Inc. | Tube ports and related container systems |
US7682067B2 (en) * | 2005-04-22 | 2010-03-23 | Hyclone Laboratories, Inc. | Mixing systems and related mixers |
US8603805B2 (en) * | 2005-04-22 | 2013-12-10 | Hyclone Laboratories, Inc. | Gas spargers and related container systems |
US7879599B2 (en) | 2005-04-22 | 2011-02-01 | Hyclone Laboratories, Inc. | Tube ports and related container systems |
US7547135B2 (en) * | 2005-09-07 | 2009-06-16 | Spx Corporation | Disposable sanitary mixing apparatus and method |
US8790913B2 (en) | 2005-10-26 | 2014-07-29 | Pbs Biotech, Inc. | Methods of using pneumatic bioreactors |
KR20080074896A (en) * | 2005-10-26 | 2008-08-13 | 레브테크 인크. | Bioreactor with Mixer and Injector |
US7487688B2 (en) | 2006-03-20 | 2009-02-10 | Hyclone Laboratories, Inc. | Sampling ports and related container systems |
SE531572C2 (en) * | 2006-04-05 | 2009-05-26 | Millipore Ab | Disposable unit for process products |
US8366311B2 (en) * | 2006-04-21 | 2013-02-05 | Atmi Bvba | Systems and devices for mixing substances and methods of making same |
WO2007124159A2 (en) * | 2006-04-21 | 2007-11-01 | Bayer Corporation | System and method for in situ measurements |
DE102006018824A1 (en) | 2006-04-22 | 2007-10-25 | Bayer Technology Services Gmbh | Disposable bioreactor |
EP2018416B1 (en) | 2006-05-13 | 2018-10-24 | Pall Life Sciences Belgium | Disposable bioreactor |
EP2044190B1 (en) | 2006-06-16 | 2017-09-13 | GE Healthcare Bio-Sciences Corp. | Gas delivery configurations, foam control systems, and bag molding methods and articles for collapsible bag vessels and bioreactors |
FR2902799B1 (en) | 2006-06-27 | 2012-10-26 | Millipore Corp | METHOD AND UNIT FOR PREPARING A SAMPLE FOR THE MICROBIOLOGICAL ANALYSIS OF A LIQUID |
JP5254226B2 (en) * | 2006-07-14 | 2013-08-07 | エクセレレックス インク. | Environmental protection containment system |
RU2487935C2 (en) | 2006-09-15 | 2013-07-20 | Медиммун, Ллк. | Cell lines of madin-derby canine kidney supporting virus growth to high tires and method to use these cells in bioreactor |
US8362217B2 (en) | 2006-12-21 | 2013-01-29 | Emd Millipore Corporation | Purification of proteins |
US8569464B2 (en) | 2006-12-21 | 2013-10-29 | Emd Millipore Corporation | Purification of proteins |
US20100267933A1 (en) | 2006-12-21 | 2010-10-21 | Moya Wilson | Purification of proteins |
KR100915605B1 (en) * | 2007-02-20 | 2009-09-07 | 피비에스 바이오텍 인코퍼레이티드 | Cell culture apparatus and cell culture system including the same |
EP2121896B8 (en) * | 2007-02-22 | 2017-07-12 | Eppendorf, Inc. | Torsionally flexible sealed drive apparatus and method |
WO2008106193A1 (en) * | 2007-02-28 | 2008-09-04 | Xcellerex, Inc. | Weight measurements of liquids in flexible containers |
KR100821376B1 (en) | 2007-03-20 | 2008-04-11 | (주)씨엔에스 | Indirect Sterilization Microbial Incubator |
US9101936B2 (en) * | 2007-04-27 | 2015-08-11 | Radiometer Medical Aps | Sealed oxygen reference fluid containing bag |
JP5023795B2 (en) * | 2007-04-27 | 2012-09-12 | 東洋製罐株式会社 | Cell culture method, cell culture system, and medium adjustment device |
US9868095B2 (en) | 2007-05-02 | 2018-01-16 | Finesse Solutions, Inc. | Disposable bioreactor system |
EP2150608B1 (en) * | 2007-05-07 | 2017-11-29 | Protalix Ltd. | Large scale disposable bioreactor |
JP5451600B2 (en) * | 2007-06-04 | 2014-03-26 | ジーイー・ヘルスケア・バイオサイエンス・バイオプロセス・コーポレイション | Device for mixing the contents of a container |
DK2155852T3 (en) * | 2007-06-15 | 2014-01-20 | Cellution Biotech B V | Improved flexible bioreactor |
US9109193B2 (en) * | 2007-07-30 | 2015-08-18 | Ge Healthcare Bio-Sciences Corp. | Continuous perfusion bioreactor system |
WO2009059645A1 (en) * | 2007-11-09 | 2009-05-14 | Metroglas Ag | Ph glass electrode for a disposable container |
US7832922B2 (en) | 2007-11-30 | 2010-11-16 | Levitronix Gmbh | Mixing apparatus and container for such |
DE102008010427B4 (en) | 2008-02-21 | 2010-05-12 | Sartorius Stedim Biotech Gmbh | bioreactor |
US20090233334A1 (en) * | 2008-03-11 | 2009-09-17 | Excellgene Sa | Cell cultivation and production of recombinant proteins by means of an orbital shake bioreactor system with disposable bags at the 1,500 liter scale |
JPWO2009116271A1 (en) * | 2008-03-18 | 2011-07-21 | 株式会社ニコン | Container carrying case and culture treatment apparatus |
US9044718B2 (en) * | 2008-03-19 | 2015-06-02 | Sartorius Stedim Biotech Gmbh | Mixing vessel |
DE102008025508A1 (en) * | 2008-05-28 | 2009-12-03 | Sartorius Stedim Biotech Gmbh | mixing system |
DE102008025507A1 (en) * | 2008-05-28 | 2009-12-03 | Sartorius Stedim Biotech Gmbh | mixing system |
EP2321052B1 (en) * | 2008-08-08 | 2019-09-25 | Broadley-James Corporation | Device for exposing a sensor to a cell culture population in a bioreactor vessel |
KR101103693B1 (en) * | 2008-09-26 | 2012-01-11 | 코아스템(주) | Syringe-shaped culture tube and cell culture device using the same |
US8152362B2 (en) * | 2008-10-17 | 2012-04-10 | Dci, Inc. | Mixer and methods of mixing |
GB0820779D0 (en) * | 2008-11-13 | 2008-12-17 | Artelis S A | Cell culture device and method of culturing cells |
EP2370561B1 (en) | 2008-12-16 | 2019-08-07 | EMD Millipore Corporation | Stirred tank reactor and method |
DE102009005962A1 (en) | 2009-01-23 | 2010-07-29 | Bayer Technology Services Gmbh | gassing |
EP2216395A1 (en) | 2009-02-09 | 2010-08-11 | Lonza Biologics plc. | Bioreactor for the cultivation of mammalian cells |
FR2943355B1 (en) * | 2009-03-18 | 2011-04-08 | Sartorius Stedim Biotech Sa | RECIPIENT-MIXER WITH SHAFT BEARING IN SUPERIOR PART |
ES2451505T3 (en) * | 2009-04-29 | 2014-03-27 | Smq Group B.V. | Folding bag and method of manufacturing a folding bag |
EP2429689A1 (en) * | 2009-05-11 | 2012-03-21 | EMD Millipore Corporation | Method for scaling mixing operations |
PL2437874T3 (en) | 2009-06-05 | 2015-10-30 | Hoffmann La Roche | Device for cultivating cells |
EP3287517B1 (en) * | 2009-07-01 | 2020-09-02 | The Automation Partnership (Cambridge) Limited | Bioreactor systems and associated methods of processing bioreactor vessels |
DE202010018640U1 (en) * | 2009-07-24 | 2019-11-14 | F. Hoffmann-La Roche Ag | stirrer system |
DE102009052266B4 (en) * | 2009-11-06 | 2015-05-28 | Eppendorf Ag | Sensor Adapter, Sensor Adapter Manufacturing Process, How to Insert a Sensor into This Sensor Adapter |
US9423351B2 (en) | 2009-12-17 | 2016-08-23 | Ge Healthcare Bio-Sciences Ab | Sensor attachment arrangement for flexible bags |
US8506198B2 (en) * | 2010-02-01 | 2013-08-13 | Hyclone Laboratories, Inc. | Self aligning coupling for mixing system |
EP2354581B1 (en) | 2010-02-01 | 2014-03-19 | HyClone Laboratories, Inc. | Quick coupling for drive shaft |
US8641314B2 (en) * | 2010-02-01 | 2014-02-04 | Hyclone Laboratories, Inc. | Quick coupling for drive shaft |
DE102010001779A1 (en) | 2010-02-10 | 2011-08-11 | Hamilton Bonaduz Ag | Calibratable sensor unit for reaction vessels |
ES2524887T3 (en) * | 2010-03-09 | 2014-12-15 | Emd Millipore Corporation | Treatment bag container with sensors |
US20110237762A1 (en) * | 2010-03-29 | 2011-09-29 | Sumitomo Chemical Company, Limited | Reactor, Process for Producing Prepolymerization Catalyst for Olefin Polymerization, and Process for Producing Olefin Polymer |
ES2754210T3 (en) | 2010-05-17 | 2020-04-16 | Emd Millipore Corp | Stimulus-sensitive polymers for biomolecule purification |
EP3617318A1 (en) | 2010-06-01 | 2020-03-04 | DSM IP Assets B.V. | Extraction of lipid from cells and products therefrom |
US8960486B2 (en) * | 2010-06-16 | 2015-02-24 | Life Technologies Corporation | Fluid mixing system with hangers |
JP5570913B2 (en) * | 2010-08-27 | 2014-08-13 | 株式会社日立製作所 | Biological cell culture container and culture apparatus |
CA2811226A1 (en) | 2010-09-17 | 2012-03-22 | Saint-Gobain Performance Plastics Corporation | Pre-slit donut break seal |
USD664262S1 (en) * | 2010-09-24 | 2012-07-24 | Lonza Ag | Impeller arrangement for fermenter |
US20120118919A1 (en) * | 2010-11-17 | 2012-05-17 | Millipore Corporation | Feed bag construction |
CN102068929B (en) * | 2010-12-09 | 2012-09-12 | 淮安市苏通市政机械有限公司 | Crushing stirrer of liquid shell |
US9314751B2 (en) | 2011-01-07 | 2016-04-19 | Life Technologies Corporation | Methods and apparatus for mixing and shipping fluids |
US8608369B2 (en) | 2011-01-07 | 2013-12-17 | Hyclone Laboratories, Inc. | Methods and systems for heating and mixing fluids |
JP2014501537A (en) * | 2011-01-11 | 2014-01-23 | エクセラレックス,インコーポレーテッド | Disposable bioreactor system with linear expandability |
MY164783A (en) * | 2011-03-15 | 2018-01-30 | Abec Inc | Reactor systems |
US20120295332A1 (en) * | 2011-05-19 | 2012-11-22 | Cheng Alan T | Systems and methods for delivering oxygen to a vessel |
US20120295333A1 (en) * | 2011-05-19 | 2012-11-22 | Cheng Alan T | Systems and methods for producing a gas dispersion in a biological substance in a disposable vessel |
WO2012170878A2 (en) * | 2011-06-10 | 2012-12-13 | Humacyte, Inc. | Apparatuses for tissue and organ production and storage |
KR101299178B1 (en) * | 2011-07-05 | 2013-08-21 | (주)코맥이엔씨 | Chemical reactor |
US9376655B2 (en) | 2011-09-29 | 2016-06-28 | Life Technologies Corporation | Filter systems for separating microcarriers from cell culture solutions |
WO2013049692A1 (en) | 2011-09-30 | 2013-04-04 | Hyclone Laboratories, Inc. | Container with film sparger |
US10435658B2 (en) * | 2011-10-25 | 2019-10-08 | Life Technologies Corporation | Fluid mixing systems with adjustable mixing element |
GB2495934A (en) * | 2011-10-25 | 2013-05-01 | Tap Biosystems Phc Ltd | Bioreactor outlet air conditioning systems and associated methods |
WO2013063550A1 (en) * | 2011-10-28 | 2013-05-02 | Xcellerex, Inc. | Probe assembly |
US20130145818A1 (en) * | 2011-12-09 | 2013-06-13 | Mettler-Toledo Ag | Sensor unit utilizing a clamping mechanism |
CN102583693A (en) * | 2012-01-18 | 2012-07-18 | 上海百顺交通器材有限公司 | High-efficient treatment device for decomposing swill-cooked dirty oil clinker |
BR302012004257S1 (en) * | 2012-02-20 | 2014-05-27 | Outotec Oyj | CONFIGURATION APPLIED TO A MIXER IMPULSOR |
US9700857B1 (en) | 2012-03-23 | 2017-07-11 | Life Technologies Corporation | Fluid mixing system with drive shaft steady support |
EP3628396B1 (en) | 2012-04-06 | 2024-11-20 | Life Technologies Corporation | Fluid mixing system |
US9388375B2 (en) * | 2012-04-18 | 2016-07-12 | Life Technologies Corporation | Methods and apparatus for gas stream mass transfer with a liquid |
US9339026B2 (en) | 2012-06-14 | 2016-05-17 | Therapeutic Proteins International, LLC | Pneumatically agitated and aerated single-use bioreactor |
US10035116B2 (en) | 2012-06-15 | 2018-07-31 | Life Technologies Corporation | Fluid mixing system with tiltable support housing |
KR101728183B1 (en) * | 2012-07-06 | 2017-04-18 | 한국전자통신연구원 | Real time water quality prediction apparatus and method using hydrodynamic model |
US8919210B2 (en) | 2012-11-27 | 2014-12-30 | Life Technologies Corporation | Load cell lockouts and related fluid dispensing systems |
JP6503299B2 (en) | 2012-11-29 | 2019-04-17 | イー・エム・デイー・ミリポア・コーポレイシヨン | 2D low level mixing bag for storage and transport |
US9827541B1 (en) * | 2012-11-29 | 2017-11-28 | Emd Millipore Corporation | 2D low level mixing bag for storage and shipping |
CN103042516B (en) * | 2012-12-26 | 2015-05-27 | 云南大红山管道有限公司 | Support device for demounting spindle bearing of thickener |
JP5958861B2 (en) * | 2013-01-18 | 2016-08-02 | エイブル株式会社 | Incubator |
US20140271413A1 (en) * | 2013-03-15 | 2014-09-18 | Perfect Lithium Corp. | Reactor Vessel for Complexecelle Formation |
CA2993564C (en) * | 2013-04-19 | 2019-10-22 | Emd Millipore Corporation | Flexible film baffle in single use bioreactor |
DE102013106680B3 (en) * | 2013-06-26 | 2014-08-14 | Sartorius Stedim Biotech Gmbh | container |
CN103439837B (en) * | 2013-09-13 | 2015-12-23 | 深圳市华星光电技术有限公司 | Liquid crystal drop process Liquid crystal bottle |
KR102338172B1 (en) | 2013-09-16 | 2021-12-09 | 제넨테크, 인크. | Bioreactors with multiple or adjustable-position agitator designs |
KR101863974B1 (en) * | 2013-10-31 | 2018-06-01 | 주식회사 엘지화학 | Improved mixing apparatus for slurry mixing process and mixing part for the same |
US20150136237A1 (en) * | 2013-11-20 | 2015-05-21 | Michael Richard Pluta | Container and liquid collection methods |
EP3071683A1 (en) * | 2013-11-21 | 2016-09-28 | Distek, Inc. | Disposable bioreactors and methods for construction and use thereof |
US9880067B2 (en) | 2013-12-03 | 2018-01-30 | Pall Corporation | Mechanical agitator with seal housing assembly |
US10557811B2 (en) | 2013-12-06 | 2020-02-11 | Pendotech | Sensor fitting for biotech process bag |
WO2015085214A1 (en) | 2013-12-06 | 2015-06-11 | Pendo TECH | Sensor fitting for biotech process bag |
US11181496B2 (en) | 2013-12-06 | 2021-11-23 | Pendotech | Sensor fitting for biotech process bag |
US9248420B2 (en) | 2013-12-16 | 2016-02-02 | Pall Corporation | High turndown impeller |
CA2934506C (en) | 2013-12-20 | 2022-05-03 | Dsm Ip Assets B.V. | Processes for obtaining microbial oil from microbial cells |
AU2014369042B2 (en) | 2013-12-20 | 2020-04-30 | Dsm Ip Assets B.V. | Processes for obtaining microbial oil from microbial cells |
EP3083545B1 (en) * | 2013-12-20 | 2023-08-02 | DSM IP Assets B.V. | Processes for obtaining microbial oil from microbial cells |
ES2909791T3 (en) | 2013-12-20 | 2022-05-10 | Dsm Ip Assets Bv | Processes to obtain microbial oil from microbial cells |
CN105960235B (en) | 2013-12-20 | 2021-01-08 | 帝斯曼知识产权资产管理有限公司 | Method for obtaining microbial oil from microbial cells |
CN103757591B (en) * | 2013-12-31 | 2016-03-30 | 深圳市华星光电技术有限公司 | A kind of Crucible equipment and the application in liquid crystal panel is produced thereof |
US9606077B2 (en) | 2014-01-16 | 2017-03-28 | Life Technologies Corporation | Reactor foam sensor systems and methods of use |
US8979357B1 (en) * | 2014-03-17 | 2015-03-17 | Advanced Scientifics, Inc. | Transportable mixing system for biological and pharmaceutical materials |
EP3122446B1 (en) * | 2014-03-22 | 2018-07-18 | Life Technologies Corporation | Impeller assemblies for fluid processing systems |
US20170096628A1 (en) * | 2014-04-14 | 2017-04-06 | Enevor Inc. | Conical Impeller and Applications Thereof |
US9360422B2 (en) | 2014-05-13 | 2016-06-07 | Asl Analytical, Inc. | Near-infrared optical probe and associated disposable sheath |
US9346578B2 (en) | 2014-05-30 | 2016-05-24 | Finesse Solutions, Inc. | Aseptic connectors for bio-processing containers |
SG11201610017SA (en) | 2014-05-30 | 2016-12-29 | Finesse Solutions Inc | Aseptic connectors for bio-processing containers |
JP6602796B2 (en) * | 2014-06-16 | 2019-11-06 | ライフ テクノロジーズ コーポレーション | Reagent mixer and fluid control device |
JP6409360B2 (en) * | 2014-06-24 | 2018-10-24 | 大日本印刷株式会社 | Culture device and culture bag |
US9079690B1 (en) | 2014-06-26 | 2015-07-14 | Advanced Scientifics, Inc. | Freezer bag, storage system, and method of freezing |
US9803695B2 (en) | 2014-07-14 | 2017-10-31 | Life Technologies Corporation | Drive shaft locking cap and related mixing system and method |
GB201415636D0 (en) | 2014-08-08 | 2014-10-22 | Ge Healthcare Bio Sciences | Sterile sensor insertion |
US10617070B2 (en) | 2014-10-06 | 2020-04-14 | Life Technologies Corporation | Methods and systems for culturing microbial and cellular seed cultures |
US9878144B2 (en) | 2014-10-14 | 2018-01-30 | Wilmarc Holdings, Llc | Connector system |
US10610804B2 (en) | 2014-10-24 | 2020-04-07 | Life Technologies Corporation | Acoustically settled liquid-liquid sample purification system |
JP6169127B2 (en) * | 2015-01-27 | 2017-07-26 | Ckd株式会社 | Pocket molding device and blister packaging machine |
DE102015210904B4 (en) * | 2015-03-11 | 2018-03-15 | Protechna S.A. | Stirring bar arrangement and transport and storage containers for liquids with a stirring bar arrangement |
CN107438663A (en) * | 2015-04-20 | 2017-12-05 | 通用电气医疗集团生物科学公司 | Inactivation of virus |
JP6764221B2 (en) * | 2015-07-22 | 2020-09-30 | 株式会社日立製作所 | Stirrer |
JP6605251B2 (en) * | 2015-08-07 | 2019-11-13 | 株式会社日立製作所 | Single-use cell culture device and culture bag |
US9920292B2 (en) | 2015-08-31 | 2018-03-20 | General Electric Company | System and method for initiating a cell culture |
DE102015011881B4 (en) * | 2015-09-10 | 2019-05-29 | Sartorius Stedim Biotech Gmbh | Mixing system and method for mixing a fluid and / or a solid |
US10836989B2 (en) | 2015-10-16 | 2020-11-17 | Global Life Sciences Solutions Usa Llc | Disposable container, mixing system and packaging |
US11426679B2 (en) | 2015-12-29 | 2022-08-30 | Life Technologies Corporation | Continuous sample purification systems and methods |
KR102649446B1 (en) | 2015-12-29 | 2024-03-20 | 라이프 테크놀로지스 코포레이션 | Fluid mixing system and method of use with laterally displaced flexible drive lines |
US20170191016A1 (en) * | 2015-12-31 | 2017-07-06 | Pbs Biotech, Inc. | Adjustable height harvest valve assembly for bioreactors |
KR102024894B1 (en) | 2016-01-04 | 2019-09-24 | 주식회사 엘지화학 | Continuous stirred-tank reactor with panel |
MX384540B (en) | 2016-01-19 | 2025-03-14 | Wilmarc Holdings Llc | CONNECTOR SYSTEM FOR RELEASEABLY CONNECTING FLUID CONDUITS |
BR112018014583A2 (en) * | 2016-01-22 | 2018-12-11 | Saint Gobain Performance Plastics Corp | fluid mixing system |
KR101761343B1 (en) | 2016-03-30 | 2017-07-26 | 한국해양과학기술원 | System that calibrate the device for measuring the sediment |
ES2574552B1 (en) * | 2016-05-27 | 2016-12-22 | Inbiolev, S.L. | Yeast multiplication system and adaptation for second fermentation in sparkling wine generation |
CH712595A1 (en) * | 2016-06-17 | 2017-12-29 | Drm Dr Müller Ag | Device for mixing liquids, liquids with gases or solids in flexible disposable containers. |
CN106110999A (en) * | 2016-08-02 | 2016-11-16 | 肇庆千江高新材料科技股份公司 | A kind of disposable a mixing bowl |
CN106390819A (en) * | 2016-10-28 | 2017-02-15 | 中国石油集团渤海钻探工程有限公司 | Fracturing fluid pH value regulator dissolving and preparing device |
DE102016120699B3 (en) | 2016-10-28 | 2018-03-08 | Trace Analytics Gmbh | Probe with two extraction openings |
EP4137227A1 (en) | 2016-11-01 | 2023-02-22 | Life Technologies Corporation | Liquid mixing system with vertically adjustable mixing element and method of use |
EP3548599A1 (en) | 2016-12-01 | 2019-10-09 | Life Technologies Corporation | Microcarrier filter bag assemblies and methods of use |
EP3333251A1 (en) * | 2016-12-08 | 2018-06-13 | Technische Universität München | A convertible bioreactor, a kit, and a method for converting a bioreactor |
EP3568455A2 (en) | 2017-01-16 | 2019-11-20 | Merck Patent GmbH | System and apparatus for discharging sterile media |
US10350401B2 (en) | 2017-03-08 | 2019-07-16 | Wilmarc Holdings, Llc | Catch assembly for releasably connecting fluid conduits |
US10656031B2 (en) * | 2017-03-21 | 2020-05-19 | Fluke Corporation | Rapid cooling device and method for a calibration bath |
US10724905B2 (en) * | 2017-03-21 | 2020-07-28 | Fluke Corporation | Device having tank shaped to produce flow direction and improve temperature stability and uniformity |
US10782192B2 (en) | 2017-03-21 | 2020-09-22 | Fluke Corporation | Calibration bath with stir motor closed-loop control and stirring viscosity detection and adjustment |
JP2020517699A (en) * | 2017-04-26 | 2020-06-18 | ブリストル−マイヤーズ スクイブ カンパニーBristol−Myers Squibb Company | Antibody production method that minimizes disulfide bond reduction |
WO2018209133A1 (en) * | 2017-05-12 | 2018-11-15 | Jerry Shevitz | Bioreactors |
KR102175817B1 (en) * | 2017-09-12 | 2020-11-06 | 주식회사 엘지화학 | Crystallizer |
WO2019060218A1 (en) | 2017-09-19 | 2019-03-28 | Life Technologies Corporation | Systems and methods for a collapsible chamber with foldable mixing element |
US11839859B2 (en) * | 2017-10-30 | 2023-12-12 | Woodman Agitator | Agitator impeller |
CN111526944B (en) | 2017-12-28 | 2022-08-19 | 环球生命科技咨询美国有限责任公司 | Probe assembly and method for securing and inserting a probe |
JP7241761B2 (en) | 2018-01-17 | 2023-03-17 | ライフ テクノロジーズ コーポレーション | Configurable fluid mixing system housing and supporting hardware |
DE102018001675A1 (en) | 2018-03-02 | 2019-09-05 | Thermo Electron Led Gmbh | Disposable centrifuge containers for separating biological suspensions and methods for their use |
EP3759208A1 (en) | 2018-03-02 | 2021-01-06 | Thermo Electron LED GmbH | Single-use centrifuge containers for separating biological suspensions and methods of use |
WO2019191763A1 (en) | 2018-03-30 | 2019-10-03 | Invista North America S.A.R.L. | Methods for controlling oxygen concentration during aerobic biosynthesis |
WO2019191761A1 (en) | 2018-03-30 | 2019-10-03 | Invista North America S.A.R.L. | Method for controlling dissolved oxygen concentration in a continuous aerobic fermentation |
EP3775182A1 (en) | 2018-03-30 | 2021-02-17 | INVISTA Textiles (U.K.) Limited | Materials and methods for biosynthetic manufacture of pimelic acid and utilization of synthetic polypeptides |
CN111886345B (en) | 2018-03-30 | 2023-09-15 | 英威达纺织(英国)有限公司 | High hydrogen utilization and gas recirculation |
WO2019191772A1 (en) | 2018-03-30 | 2019-10-03 | Invista North America S.A.R.L | Materials and methods for biosynthetic manufacture of carbon-based chemicals |
US11788055B2 (en) | 2018-05-02 | 2023-10-17 | Inv Nylon Chemicals Americas, Llc | Materials and methods for controlling oxidation and reduction in biosynthetic pathways of species of the genera ralstonia and cupriavidus and organisms related thereto |
US11999943B2 (en) | 2018-05-02 | 2024-06-04 | Inv Nylon Chemicals Americas, Llc | Materials and methods for maximizing biosynthesis through alteration of pyruvate-acetyl-CoA-TCA balance in species of the genera ralstonia and cupriavidus and organisms related thereto |
WO2019213028A1 (en) | 2018-05-02 | 2019-11-07 | Invista North America S.A.R.L. | Materials and methods for controlling regulation in biosynthesis in species of the genera ralstonia or cupriavidus and organisms related thereto |
WO2019213019A1 (en) | 2018-05-02 | 2019-11-07 | Invista North America S.A.R.L. | Materials and methods for differential biosynthesis in species of the genera ralstonia and cupriavidus and organisms related thereto |
US11702680B2 (en) * | 2018-05-02 | 2023-07-18 | Inv Nylon Chemicals Americas, Llc | Materials and methods for controlling PHA biosynthesis in PHA-generating species of the genera Ralstonia or Cupriavidus and organisms related thereto |
WO2019231949A1 (en) * | 2018-05-30 | 2019-12-05 | Life Technologies Corporation | Control system and method for a fluid mixing apparatus |
US12064735B2 (en) | 2018-08-21 | 2024-08-20 | Lifecycle Biotechnologies, Lp | Oscillating bioreactor system |
CA3125254A1 (en) * | 2019-01-04 | 2020-07-09 | Oribiotech Ltd | Cell processing device cell processing system and methods of use thereof |
EP3931298B1 (en) * | 2019-02-25 | 2023-08-02 | University of Maryland, Baltimore County | Adjustable fermentation and cell culture flasks |
WO2021130009A1 (en) * | 2019-12-23 | 2021-07-01 | Global Life Sciences Solutions Usa Llc | System having a tube shaft impeller and an associated method thereof |
IL294268A (en) * | 2020-01-02 | 2022-08-01 | Hoffmann La Roche | A disposable cell culture container with one or more on-site in-line sensors |
CN115003407A (en) | 2020-02-03 | 2022-09-02 | 生命科技股份有限公司 | Fluid mixing system with modular impeller and related method |
KR102354032B1 (en) * | 2020-03-16 | 2022-01-21 | 호산테크 주식회사 | Automatic sampling device |
EP4126317A1 (en) | 2020-04-02 | 2023-02-08 | Life Technologies Corporation | Powder hydration systems with mixing apparatus and methods of use |
AU2021264292A1 (en) | 2020-04-29 | 2022-12-08 | Sk Bioscience Co., Ltd. | Influenza virus production method using single-use culture process system and rapid confirmation test of influenza virus antigen purification condition |
US11555567B2 (en) | 2020-06-30 | 2023-01-17 | Wilmarc Holdings, Llc | Sanitary fitting |
US20220017845A1 (en) * | 2020-07-15 | 2022-01-20 | Entegris, Inc. | Kit for installing impeller into process vessel |
TWI751640B (en) * | 2020-08-06 | 2022-01-01 | 賽宇細胞科技股份有限公司 | Probe assembly and method of use |
CN111974332A (en) * | 2020-08-18 | 2020-11-24 | 淄博职业学院 | Reaction kettle with detachable temperature controller |
CN112007601A (en) * | 2020-08-31 | 2020-12-01 | 江苏康祥实业集团有限公司 | White carbon black synthesis reaction kettle with multilayer stirring function |
JP2023550124A (en) | 2020-11-19 | 2023-11-30 | ライフ テクノロジーズ コーポレイション | Centrifugal separator and skid for separating biological components and method of use |
CN113262732B (en) * | 2021-05-10 | 2022-06-21 | 深圳市真味生物科技有限公司 | Film changing device of stirring equipment |
CN113652339B (en) * | 2021-07-20 | 2023-10-31 | 安徽天马生物科技有限公司 | Health-care probiotic food fermentation machine |
EP4144826A1 (en) | 2021-09-06 | 2023-03-08 | Kolibri | Cell culture system comprising compartments and an acoustic actuation device and methods thereof |
CN113797587A (en) * | 2021-09-23 | 2021-12-17 | 江西德盛精细化学品有限公司 | Device is refined in extraction of acid fixing agent |
WO2023064187A1 (en) | 2021-10-13 | 2023-04-20 | Life Technologies Corporation | Scalable systems and methods for continuous transfection of cells |
WO2023069437A1 (en) * | 2021-10-18 | 2023-04-27 | Sudhin Biopharma | Particle settling devices inside bioreactors |
JP2025509154A (en) | 2022-03-08 | 2025-04-11 | エクアシールド メディカル リミテッド | Fluid transfer station in a robotic pharmaceutical preparation system |
US11976246B1 (en) * | 2023-02-10 | 2024-05-07 | Conversion Energy Systems, Inc. | Thermal conversion of plastic waste into energy |
WO2024226772A1 (en) | 2023-04-25 | 2024-10-31 | Wilmarc Holdings, Llc | Genderless aseptic connector |
GB202315923D0 (en) * | 2023-10-18 | 2023-11-29 | Cytiva Sweden Ab | A sensor arrangement for a bioprocessing system and method for the operation thereof |
KR102680679B1 (en) * | 2023-12-01 | 2024-07-03 | 주식회사 티센바이오팜 | Method for monitoring and controlling the condition of bio-ink and device for performing the same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2162400A (en) * | 1936-08-26 | 1939-06-13 | Emery A Heath | Removable motor mount and adapter for mixers, churns, and the like |
US4945060A (en) * | 1988-03-15 | 1990-07-31 | Akzo N. V. | Device for detecting microorganisms |
US5372936A (en) * | 1989-05-12 | 1994-12-13 | Avl Photoronics Corporation | Method for detecting biological activities in a specimen |
US5458771A (en) * | 1991-05-03 | 1995-10-17 | Todd; John J. | Apparatus for the gasification of liquids |
US6071005A (en) * | 1996-06-11 | 2000-06-06 | Merck & Co., Inc. | Disposable storage, transport and resuspension system |
US6245555B1 (en) * | 1998-09-01 | 2001-06-12 | The Penn State Research Foundation | Method and apparatus for aseptic growth or processing of biomass |
US6494613B2 (en) * | 2001-02-06 | 2002-12-17 | Levtech, Inc. | Apparatus and method for mixing materials sealed in a container under sterile conditions |
US6670171B2 (en) * | 2001-07-09 | 2003-12-30 | Wheaton Usa, Inc. | Disposable vessel |
US20040062140A1 (en) * | 2002-09-27 | 2004-04-01 | Cadogan David Phillip | Bioprocess container, bioprocess container mixing device and method of use thereof |
US7384783B2 (en) * | 2004-04-27 | 2008-06-10 | Baxter International Inc. | Stirred-tank reactor system |
Family Cites Families (604)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US255629A (en) | 1882-03-28 | Wolgott a | ||
US364470A (en) | 1887-06-07 | Apparatus for boiling or heating liquids or other substances | ||
US78365A (en) | 1868-05-26 | Improvement in chandeliers | ||
US714279A (en) | 1902-05-22 | 1902-11-25 | Mason Bradfield | Conveyer. |
US1127397A (en) | 1914-08-19 | 1915-02-09 | Kamaghiel G Boyajian | Sad-iron-balancing mechanism. |
US1976014A (en) | 1932-03-01 | 1934-10-09 | James A Forsythe | Container handling device |
US2035838A (en) | 1932-03-29 | 1936-03-31 | Pressed Steel Car Co | Container for bulk shipment of lading in less than carload lots |
US1993327A (en) | 1934-05-14 | 1935-03-05 | Claude A Henson | Tree transplanter and conveyance therefor |
US2140315A (en) * | 1936-07-27 | 1938-12-13 | Lewis L Dollinger | Mixing apparatus |
US2316384A (en) | 1940-11-25 | 1943-04-13 | Central States Paper & Bag Com | Container |
US2389601A (en) | 1943-08-06 | 1945-11-27 | Shoe Form Co Inc | Receptacle and method of making it |
US2722171A (en) | 1951-08-01 | 1955-11-01 | Smith Corp A O | Silo |
US2692692A (en) | 1951-10-26 | 1954-10-26 | Gen Motors Corp | Foundry equipment |
NL176719B (en) | 1952-03-11 | 1900-01-01 | Goodyear Aerospace Corp | MULTIPLE ACCESSIBLE INFORMATION MEMORY ARRAY. |
US2797903A (en) * | 1955-07-19 | 1957-07-02 | Universal Oil Prod Co | Contacting vessel |
US2815784A (en) | 1956-01-13 | 1957-12-10 | Us Rubber Co | Collapsible container |
CH340486A (en) | 1956-02-24 | 1959-08-31 | Der Ludwig Von Roll Schen Eise | Drive device |
FR1215335A (en) | 1958-11-18 | 1960-04-15 | Packaging consisting of the combination of a profiled flexible sheath and a rigid box | |
US3106441A (en) | 1960-01-04 | 1963-10-08 | Grace W R & Co | Method of making preforms or blanks from polyethylene |
US3117695A (en) | 1960-05-19 | 1964-01-14 | Inland Container Corp | Fluid dispensing container |
US3105617A (en) | 1961-04-05 | 1963-10-01 | Lund S A | Transportable containers for the handling of light-weight bulk materials |
US3119548A (en) | 1961-06-08 | 1964-01-28 | Dale Products Plastics Ltd | Plastic bags |
DE1245275B (en) | 1963-09-26 | 1967-07-20 | Korsnaes G M B H | Bottom for single or multi-layer sacks, bags, carrier bags or other containers made of paper, cardboard, plastic films, fabrics, metal foils or the like |
US3212681A (en) | 1963-10-09 | 1965-10-19 | Gen Films Inc | Container structure |
US3494897A (en) | 1963-12-05 | 1970-02-10 | Union Carbide Corp | Ethylene/bicyclo(2.2.1)hept-2-ene copolymers |
US3255923A (en) | 1964-02-03 | 1966-06-14 | Lacto Seal Inc | Disposable liquid storage and dispensing device |
US3367380A (en) | 1964-03-05 | 1968-02-06 | Dev Consultants Inc | Collapsible container |
US3319684A (en) | 1964-11-30 | 1967-05-16 | Pharmaseal Lab | Collapsible container |
US3375300A (en) | 1964-12-31 | 1968-03-26 | Hercules Inc | Compositions containing maleic anhydride-polypropylene graft copolymers, and a fatty acid polyamide or an amine aldehyde resin |
US3373915A (en) | 1965-06-28 | 1968-03-19 | Riegel Paper Corp | Moldable pouch material |
US3514359A (en) | 1965-10-11 | 1970-05-26 | Huels Chemische Werke Ag | Process of uniting objects of polybutene-(1) |
US3413898A (en) | 1966-04-25 | 1968-12-03 | Union Carbide Corp | Seal barriers for thermoplastic bags |
US3416898A (en) | 1966-07-30 | 1968-12-17 | Nippon Electric Co | Method for growing high-melting-point single crystals and an apparatus therefor |
US3528569A (en) | 1966-10-14 | 1970-09-15 | Leonard D Barry | Unit load hold-down and releasing lift |
US3536693A (en) | 1968-01-31 | 1970-10-27 | Eastman Kodak Co | Process for preparing polyethylene having improved properties |
GB1172653A (en) | 1968-02-13 | 1969-12-03 | Gerhard Kestermann Zahnraeder | Improvements in or relating to Driving Means for Agitators. |
US3549451A (en) | 1968-03-06 | 1970-12-22 | Emanuel Kugler | Method of manufacturing satchel bottom bags |
US3807901A (en) | 1968-11-15 | 1974-04-30 | R Wilson | Sewage lift station gas trap |
US3599539A (en) | 1969-04-15 | 1971-08-17 | Hoerner Waldofr Corp | Method of making a sewn closure square bottom bag |
US3599538A (en) | 1969-05-07 | 1971-08-17 | Continental Can Co | Three dimensional bag forming method and apparatus |
US3647397A (en) * | 1969-11-19 | 1972-03-07 | Charles M Coleman | Reagent solution preparation |
US3683595A (en) | 1970-04-14 | 1972-08-15 | Graham K Houghton | Counterweight bag tensioning device |
US3912843A (en) | 1970-06-29 | 1975-10-14 | Milprint Inc | Flexible packaging film |
US3658373A (en) | 1970-12-08 | 1972-04-25 | Sola Basic Ind Inc | Heat treating basket |
US3772136A (en) | 1971-04-20 | 1973-11-13 | Gen Mills Inc | Fibrous products from thermoplastic polyamide polymers |
US3693407A (en) | 1971-07-01 | 1972-09-26 | Kendall & Co | Vented sampling device |
GB1394226A (en) | 1971-10-18 | 1975-05-14 | False Creek Ind Ltd | Transport of ore concentrates |
US3827341A (en) | 1972-02-28 | 1974-08-06 | Arvey Corp | Method of making a package |
US3940018A (en) | 1972-09-25 | 1976-02-24 | Scholle Corporation | Combination liquid container and dispenser |
US3955040A (en) | 1973-01-29 | 1976-05-04 | W. R. Grace & Co. | Polyamide film laminate with entrapped liquid |
US3937758A (en) | 1973-03-26 | 1976-02-10 | Dart Industries Inc. | Process for the production of high impact compositions of polyethylene and polypropylene block copolymers |
US4030603A (en) | 1973-06-18 | 1977-06-21 | Angell And Associates | Protective package and method therefor |
US3829186A (en) | 1973-06-25 | 1974-08-13 | G Jonas | Demi-cubic structures |
US3995084A (en) | 1973-07-09 | 1976-11-30 | Allied Chemical Corporation | Films and bags of nylon 6 - nylon 6,6 blends |
USRE32303E (en) | 1973-07-31 | 1986-12-09 | American Medical Products Corp. | Peritoneal dialysis apparatus |
GB1455874A (en) | 1973-09-17 | 1976-11-17 | Nattrass Frank | Bulk material containers |
US3893595A (en) | 1973-09-21 | 1975-07-08 | False Creek Ind Ltd | Suspended flexible container with latched bottom opening |
US3924521A (en) | 1974-05-22 | 1975-12-09 | Violet M Hanson | Method for forming flat bottom plastic bags |
US4407877A (en) | 1974-07-05 | 1983-10-04 | Rasmussen O B | High-strength laminate |
AR207667A1 (en) | 1974-12-23 | 1976-10-22 | Grace W R & Co | PROCEDURE TO OBTAIN ORIENTED POLYAMIDE LAMINATES AND THE LAMINATE SO OBTAINED |
US4005710A (en) | 1975-02-12 | 1977-02-01 | Abbott Laboratories | Parenteral apparatus with one-way valve |
US4082877A (en) | 1975-02-14 | 1978-04-04 | W. R. Grace & Co. | Unoriented composite laminar film with an elastomeric layer and sealable layer |
US4058647A (en) | 1975-02-27 | 1977-11-15 | Mitsubishi Petrochemical Co., Ltd. | Process for preparing laminated resin product |
GB1489635A (en) | 1975-03-03 | 1977-10-26 | Toyo Seikan Kaisha Ltd | Packaging materials |
US4332655A (en) | 1975-04-15 | 1982-06-01 | Raychem Corporation | Adhesive compositions comprising ethylene/polar monomer copolymer and an elastomer |
US4027774A (en) | 1975-07-22 | 1977-06-07 | Cote Leopold J | Rubbish container |
US4087587A (en) | 1975-09-19 | 1978-05-02 | Chemplex Company | Adhesive blends |
US4087588A (en) | 1975-09-22 | 1978-05-02 | Chemplex Company | Adhesive blends |
US4064296A (en) | 1975-10-02 | 1977-12-20 | W. R. Grace & Co. | Heat shrinkable multi-layer film of hydrolyzed ethylene vinyl acetate and a cross-linked olefin polymer |
US4057211A (en) | 1976-02-13 | 1977-11-08 | The Moore Company, Inc. | Safety system for overhead support of weighted articles |
DE2613724A1 (en) | 1976-03-31 | 1977-10-06 | Hlavaty Dieter Juergen | Sack with lateral folds - has weldable sheet material rectangular bottom with front and rear wall inner folds butting against each other |
US4125697A (en) * | 1976-05-05 | 1978-11-14 | Bayer Aktiengesellschaft | Process for the production of polychloroprene |
US4110303A (en) | 1976-06-07 | 1978-08-29 | Shell Oil Company | Multicomponent polyolefin-block copolymer-polyamide blends |
US4041103A (en) | 1976-06-07 | 1977-08-09 | Shell Oil Company | Blends of certain hydrogenated block copolymers |
US4212956A (en) | 1976-11-25 | 1980-07-15 | Toyo Seikan Kaisha Limited | Olefin-vinyl alcohol-vinyl acetal copolymers, process for preparation thereof and laminate structures including said copolymers |
US4233367A (en) | 1977-01-06 | 1980-11-11 | American Can Company | Coextruded multilayer film |
US4103686A (en) | 1977-03-29 | 1978-08-01 | Burron Medical Products, Inc. | Dual valve assembly |
US4194652A (en) | 1977-07-07 | 1980-03-25 | Super Sack Manufacturing Corporation | Collapsible receptacle for flowable materials |
GB2007685B (en) | 1977-10-11 | 1982-05-12 | Asahi Dow Ltd | Composition for drawn film cold drawn film made of said composition and process for manufacture of said film |
US4147827A (en) | 1977-11-04 | 1979-04-03 | Mobil Oil Corporation | Coextruded heat sealable laminar thermoplastic films |
US4182386A (en) | 1977-11-30 | 1980-01-08 | Semi-Bulk Systems, Inc. | Closed system and container for dust free loading and unloading of powdered materials |
US4244378A (en) | 1978-05-30 | 1981-01-13 | The West Company | Pressure responsive one-way valve for medical systems |
JPS6035257B2 (en) | 1978-07-22 | 1985-08-13 | 三菱樹脂株式会社 | Process dome packaging materials |
US4212966A (en) | 1978-08-17 | 1980-07-15 | National Distillers & Chemical Corporation | Process of preparing finely divided thermoplastic resins |
US4227527A (en) | 1978-10-23 | 1980-10-14 | Baxter Travenol Laboratories, Inc. | Sterile air vent |
US4254169A (en) | 1978-12-28 | 1981-03-03 | American Can Company | Multi-layer barrier film |
US4239826A (en) | 1978-12-28 | 1980-12-16 | American Can Company | Multi-layer barrier film |
US4235196A (en) | 1979-01-26 | 1980-11-25 | Moliterni Samuel S | Bird feeder, cage and bag assembly |
US4220684A (en) | 1979-03-12 | 1980-09-02 | Mobil Oil Corporation | Coextruded laminar thermoplastic bags |
CA1122130A (en) | 1979-03-15 | 1982-04-20 | Graham Love | Bulk storage silo |
US4230830A (en) | 1979-03-30 | 1980-10-28 | E. I. Du Pont De Nemours And Company | Adhesive blends containing thermally grafted ethylene polymer |
US4573994A (en) | 1979-04-27 | 1986-03-04 | The Johns Hopkins University | Refillable medication infusion apparatus |
US4355721A (en) | 1979-05-11 | 1982-10-26 | American Can Company | Package for food products |
US4429076A (en) | 1979-06-13 | 1984-01-31 | Asahi Kasei Kogyo Kabushiki Kaisha | Thermoplastic polymer composition |
US4286628A (en) | 1979-06-21 | 1981-09-01 | Nypro, Inc. | Control of fluid flow using longitudinally movable disc |
US4327726A (en) | 1979-08-15 | 1982-05-04 | Baxter Travenol Laboratories, Inc. | Connector member for dissimilar materials |
JPS5910724B2 (en) | 1979-08-24 | 1984-03-10 | 旭化成株式会社 | Continuous polymerization of ethylene |
US4284674A (en) | 1979-11-08 | 1981-08-18 | American Can Company | Thermal insulation |
US4281045A (en) | 1979-11-29 | 1981-07-28 | Kyoraku Co., Ltd. | Multi-layer extruded article |
US4407888A (en) | 1979-12-07 | 1983-10-04 | Raychem Limited | Dimensionally recoverable article with adhesive portion |
US4387184A (en) | 1979-12-10 | 1983-06-07 | Rhone-Poulenc Industries | Heat stable polyphase polyamide compositions and preparation thereof |
US4770944A (en) | 1979-12-10 | 1988-09-13 | American Can Company | Polymeric structure having improved barrier properties and method of making same |
JPS5820976B2 (en) | 1979-12-17 | 1983-04-26 | 日本合成化学工業株式会社 | Melt-kneaded resin composition |
US4310017A (en) | 1980-01-30 | 1982-01-12 | Burron Medical Inc. | Backflow check valve for use with IV administration sets |
IT1141253B (en) | 1980-02-28 | 1986-10-01 | Montedison Spa | PROCEDURE FOR PROMOTING THE ADHESION OF POLYOLEFINS TO OTHER MATERIALS |
US4397916A (en) | 1980-02-29 | 1983-08-09 | Mitsui Petrochemical Industries, Ltd. | Laminated multilayer structure |
US4311807A (en) | 1980-07-22 | 1982-01-19 | Shell Oil Company | Polybutylene modified masterbatches for impact resistant polypropylene |
US4381039A (en) | 1980-08-06 | 1983-04-26 | Koppers Company, Inc. | Filter bag weighted holder |
US4373936A (en) | 1980-08-06 | 1983-02-15 | Koppers Company, Inc. | Filter bag tensioning device and method |
US4322465A (en) | 1980-08-08 | 1982-03-30 | Baxter Travenol Laboratories, Inc. | Clear, autoclavable, sealed container having good water vapor barrier properties and flex crack resistance |
US4338979A (en) | 1980-11-12 | 1982-07-13 | Dow Ray A | Bag holding device and process |
US4322480A (en) | 1980-12-29 | 1982-03-30 | Allied Chemical Corporation | Polyamide-polyethylene laminates |
US4397442A (en) | 1981-01-09 | 1983-08-09 | Abbott Laboratories | In-line sleeve valve |
US4702966A (en) | 1981-01-23 | 1987-10-27 | American Can Company | Oxygen scavenger |
US4536409A (en) | 1981-01-23 | 1985-08-20 | American Can Company | Oxygen scavenger |
US4369812A (en) | 1981-02-18 | 1983-01-25 | Nypro Inc. | Control of fluid flow using precisely positioned disc |
US4552714A (en) | 1981-02-20 | 1985-11-12 | American Can Company | Process for producing coextruded film of polypropylene, polypropylene blend, and nylon |
US4617240A (en) | 1981-02-20 | 1986-10-14 | American Can Company | Coextruded film of polypropylene, polypropylene blend, and nylon |
US4588648A (en) | 1981-02-20 | 1986-05-13 | American Can Company | Multiple layer plastic film having polypropylene adhered to nylon |
US4361628A (en) | 1981-02-20 | 1982-11-30 | American Can Company | Coextruded film of polypropylene, polypropylene blend, and nylon |
US4760114A (en) | 1981-02-26 | 1988-07-26 | General Electric Company | Polyphenylene ether compositions and process |
US4552801A (en) | 1981-04-01 | 1985-11-12 | American Can Company | Plasticized EVOH and process and products utilizing same |
DE3115355A1 (en) | 1981-04-16 | 1982-11-18 | Artur Dr.H.C. 7244 Waldachtal Fischer | CONNECTABLE, CASE-SHAPED CONTAINER TO BE USED AS EARLY BED |
US4417753A (en) | 1981-05-21 | 1983-11-29 | Baxter Travenol Laboratories, Inc. | Method and apparatus for joining materials |
US4731266A (en) | 1981-06-03 | 1988-03-15 | Rhone-Poulenc, S.A. | Water-resistant polyvinyl alcohol film and its application to the preparation of gas-impermeable composite articles |
US4465487A (en) | 1981-06-16 | 1984-08-14 | Terumo Kabushiki Kaisha | Container for medical use |
BR8207774A (en) | 1981-06-29 | 1983-05-31 | Abbott Lab | TRANSPARENT AUTOCLAVAVEL THERMOPLASTIC FORMULATION FOR MEDICINE LIQUID CONTAINER |
JPS5814742A (en) | 1981-07-18 | 1983-01-27 | 出光興産株式会社 | Laminate |
US4828915A (en) | 1981-08-05 | 1989-05-09 | American National Can Company | Oriented evoh/nylon blend film |
US4418841A (en) | 1982-11-23 | 1983-12-06 | American Can Company | Multiple layer flexible sheet structure |
US4468427A (en) | 1981-11-09 | 1984-08-28 | Allied Corporation | Blends of polyamide and ethylene vinyl alcohol copolymers |
ATE30673T1 (en) | 1982-01-07 | 1987-11-15 | Fresenius Ag | STORAGE POUCH. |
US4397917A (en) | 1982-01-11 | 1983-08-09 | Energy Research Corporation | Fuel cell pack with internal connection of fuel cells |
US4487885A (en) | 1982-01-18 | 1984-12-11 | Chemplex Company | Adhesive blends |
JPS58129035A (en) | 1982-01-29 | 1983-08-01 | Kishimoto Akira | Resin composition having excellent drawability |
US4705708A (en) | 1982-03-04 | 1987-11-10 | American Can Company | Multi-laminate structure containing a scrap layer and containers made therefrom |
US4902558A (en) | 1982-03-12 | 1990-02-20 | Henriksen Henning R | Method for protecting skin from hazardous chemicals |
US4457960A (en) | 1982-04-26 | 1984-07-03 | American Can Company | Polymeric and film structure for use in shrink bags |
US4460632A (en) | 1982-04-26 | 1984-07-17 | Chemplex Company | Adhesive blends and composite structures |
DE3310721A1 (en) | 1982-05-05 | 1983-11-10 | Andreas Von Dipl.-Rer.Pol. Bennigsen-Mackiewicz | HANGABLE FLEXIBLE SILO ON CARRIER |
US4672087A (en) | 1982-05-27 | 1987-06-09 | Miller Gerald W | Plasticized polyvinyl alcohol compositions, forming process and formed articles |
US4536532A (en) | 1982-05-27 | 1985-08-20 | Miller Gerald W | Plasticized polyvinyl alcohol compositions, forming process and formed articles |
AU565262B2 (en) | 1982-06-02 | 1987-09-10 | Du Pont Canada Inc. | Pouches of copolymer film |
NL8202894A (en) | 1982-07-16 | 1984-02-16 | Rijksuniversiteit | POLYESTER FILAMENT MATERIAL. |
US4407873A (en) | 1982-08-06 | 1983-10-04 | American Can Company | Retortable packaging structure |
US4405667A (en) | 1982-08-06 | 1983-09-20 | American Can Company | Retortable packaging structure |
US4445550B1 (en) | 1982-08-20 | 1999-03-09 | Scholle Corp | Flexible walled container having membrane fitment for use with aseptic filling apparatus |
FR2532653B1 (en) | 1982-09-06 | 1986-06-13 | Rhone Poulenc Spec Chim | COMPOSITIONS FOR MOLDING BASED ON SEMI-RIGID COPOLYAMIDES DERIVED FROM FATTY ACID DIMERS, ELASTOMERS AND POSSIBLY CONVENTIONAL POLYAMIDES |
US4479989A (en) | 1982-12-02 | 1984-10-30 | Cutter Laboratories, Inc. | Flexible container material |
JPS59136253A (en) | 1983-01-26 | 1984-08-04 | 東洋製罐株式会社 | Multilayer plastic laminated structure |
CH667041A5 (en) | 1983-03-07 | 1988-09-15 | Neste Oy | COMPOSITE FILM CONTAINING POLYOLEFINE LAYERS. |
DE3306189A1 (en) | 1983-02-23 | 1984-08-23 | Hoechst Ag, 6230 Frankfurt | MULTILAYER FILM WITH A GAS AND AROMA BARRIER, METHOD FOR THEIR PRODUCTION AND THEIR USE |
US4834755A (en) | 1983-04-04 | 1989-05-30 | Pfizer Hospital Products Group, Inc. | Triaxially-braided fabric prosthesis |
GB2137739B (en) | 1983-04-05 | 1986-12-10 | Bendix Ltd | Hand control lever for brake valve |
US4722725A (en) | 1983-04-12 | 1988-02-02 | Interface Biomedical Laboratories, Inc. | Methods for preventing the introduction of air or fluid into the body of a patient |
US4568333A (en) | 1983-04-12 | 1986-02-04 | Sawyer Philip Nicholas | Valve arrangement especially suitable for preventing introduction of air into vascular systems |
US4684364A (en) | 1983-04-12 | 1987-08-04 | Interface Biomedical Laboratories Corporation | Safety arrangement for preventing air embolism during intravenous procedures |
WO1984004037A1 (en) | 1983-04-13 | 1984-10-25 | Field Group Res Pty Ltd | Enema bag |
US4724028A (en) | 1983-04-15 | 1988-02-09 | Baxter Travenol Laboratories | Method of manufacturing disc-shaped rubber articles, such as injection sites |
US4464438A (en) | 1983-05-02 | 1984-08-07 | Mobil Oil Corporation | Blends of polyvinyl alcohol and ethylene-vinyl alcohol copolymer as grease resistant melt extrudable films |
US4501798A (en) | 1983-05-05 | 1985-02-26 | American Can Company | Unbalanced oriented multiple layer film |
US4527716A (en) | 1983-05-13 | 1985-07-09 | Cargill, Incorporated | Apparatus for dispensing material from a bag |
GB2143471B (en) | 1983-07-18 | 1987-08-12 | Metal Box Plc | Multilayer plastics structures and apparatus and methods for their manufacture |
FR2549406B1 (en) | 1983-07-22 | 1986-12-26 | Havre Chantiers | METHOD AND MACHINES FOR AUTOMATICALLY WELDING OR CUTTING THE JOINT BETWEEN A MAIN TUBE AND A SECONDARY BYPASS TUBE |
US4761080A (en) | 1983-07-29 | 1988-08-02 | W. R. Grace & Co., Cryovac Div. | Multilayer gusseted bag with reverse fin seals |
US4677017A (en) | 1983-08-01 | 1987-06-30 | Ausimont, U.S.A., Inc. | Coextrusion of thermoplastic fluoropolymers with thermoplastic polymers |
JPS6056547A (en) | 1983-09-08 | 1985-04-02 | 株式会社クラレ | Packaging containers with excellent crack resistance |
US4671992A (en) | 1983-09-12 | 1987-06-09 | The Dow Chemical Company | High frequency lamination of polymer foams |
US4635814A (en) | 1983-09-16 | 1987-01-13 | Rheem Manufacturing Company | Lined receptacles |
US4707389A (en) | 1983-09-30 | 1987-11-17 | Baxter Travenol Laboratories, Inc. | Multilayer tube, assembly and method |
NL8303379A (en) | 1983-10-01 | 1985-05-01 | Stamicarbon | LAMINATES BASED ON POLYPROPENE AND METHOD FOR MANUFACTURING SUCH LAMINATES. |
US4615922A (en) | 1983-10-14 | 1986-10-07 | American Can Company | Oriented polymeric film |
GB2149345B (en) | 1983-11-09 | 1987-03-11 | Grace W R & Co | Heat sterilizable laminate films |
JPS60120050A (en) | 1983-12-02 | 1985-06-27 | 呉羽化学工業株式会社 | Heat-shrinkable cylindrical laminated film |
US4552716A (en) | 1983-12-19 | 1985-11-12 | International Business Machines Corporation | Method for manufacturing a wire matrix print wire guiding device |
US4650721A (en) | 1983-12-23 | 1987-03-17 | Mobil Oil Corporation | Polypropylene barrier film and method of forming same |
JPH0788639B2 (en) | 1984-01-12 | 1995-09-27 | 日本ピー・エム・シー 株式会社 | Papermaking additives |
US4614778A (en) | 1984-02-03 | 1986-09-30 | Hirokazu Kajiura | Random copolymer |
US4561920A (en) | 1984-02-08 | 1985-12-31 | Norchem, Inc. Formerly Northern Petrochemical Company | Biaxially oriented oxygen and moisture barrier film |
JPS60173038A (en) | 1984-02-17 | 1985-09-06 | Toyo Seikan Kaisha Ltd | Packaging material |
US4548348A (en) | 1984-02-27 | 1985-10-22 | Solo Cup Company | Disposable cup assembly |
DE3581422D1 (en) | 1984-03-09 | 1991-02-28 | Ant Nachrichtentech | CIRCUIT ARRANGEMENT FOR FORMING THE RUNNING DIGITAL SUM FOR A DIGITAL DATA SIGNAL. |
JPS60247557A (en) | 1984-05-09 | 1985-12-07 | 株式会社クラレ | Laminate and its manufacturing method |
US4550442A (en) | 1984-05-31 | 1985-10-29 | Champion International Corporation | Multiwall gussetted bag with seamless tubular liner |
JPS60259441A (en) | 1984-06-06 | 1985-12-21 | 大倉工業株式会社 | heat shrinkable laminated film |
US4647483A (en) | 1984-06-29 | 1987-03-03 | American Can Company | Nylon copolymer and nylon blends and films made therefrom |
US4615926A (en) | 1984-07-20 | 1986-10-07 | American Can Company | Film and package having strong seals and a modified ply-separation opening |
US4881649A (en) | 1984-07-20 | 1989-11-21 | American National Can Company | Package having inseparable seals and a modified ply-separation opening |
US4684576A (en) | 1984-08-15 | 1987-08-04 | The Dow Chemical Company | Maleic anhydride grafts of olefin polymers |
JPS6181448A (en) | 1984-09-06 | 1986-04-25 | Kuraray Co Ltd | Resin composition with impact resistance |
US5176956A (en) | 1984-09-26 | 1993-01-05 | Medtronic, Inc. | Biomedical apparatus having fatty acid dimer derived skin compatible adhesive composition thereon |
US4692361A (en) | 1984-09-28 | 1987-09-08 | Baxter Travenol Laboratories, Inc. | Film laminate with gas barrier for sterile flexible containers |
US4686125A (en) | 1984-09-28 | 1987-08-11 | Baxter Travenol Laboratories, Inc. | Film laminate for sterile flexible containers |
US4605576B1 (en) | 1984-10-22 | 1999-08-24 | Owens Brockway Plastic Prod | Multilayer plastic article |
US4568723A (en) | 1984-11-08 | 1986-02-04 | Mobil Oil Company | Blends of polypropylene, polycarbonate and a saturated styrene-ethylene-butylene-styrene rubber |
US4818592A (en) | 1984-11-28 | 1989-04-04 | American National Can Company | Multiple layer films containing oriented layers of nylon and ethylene vinyl alcohol copolymer |
DE3542565C2 (en) | 1984-12-03 | 1994-03-31 | Asahi Chemical Ind | Plastic bag and process for its manufacture |
IT1181945B (en) | 1984-12-31 | 1987-09-30 | Manuli Autoadesivi Spa | IMPROVEMENT IN SELF-ADHESIVE TAPES |
US5372669A (en) | 1985-02-05 | 1994-12-13 | Avery Dennison Corporation | Composite facestocks and liners |
US5143570A (en) | 1985-02-05 | 1992-09-01 | Avery Dennison Corporation | Composite facestocks and liners |
US4857409A (en) | 1985-02-08 | 1989-08-15 | Exxon Chemical Patents Inc. | Clear barrier composites containing polyisobutylene/polyolefin alloy components |
US4729476A (en) | 1985-02-21 | 1988-03-08 | W.R. Grace & Co., Cryovac Div. | Easy open shrinkable laminate |
US4828395A (en) | 1985-02-21 | 1989-05-09 | Yamato Scientific Company, Limited | Continuous flow type homogenizer |
US4875587A (en) | 1985-02-21 | 1989-10-24 | W. R. Grace & Co.-Conn. | Easy open shrinkable laminate |
US4684573A (en) | 1985-03-07 | 1987-08-04 | W. R. Grace & Co., Cryovac Div. | High oxygen barrier composite film |
US4588177A (en) | 1985-03-22 | 1986-05-13 | Burroughs Corporation | Fastener for holding SIPs on PC boards during soldering |
FR2579601B1 (en) | 1985-03-28 | 1987-12-11 | Rhone Poulenc Spec Chim | LOW TEMPERATURE FLEXIBLE TECHNICAL COPOLYETHERAMIDES |
US4923470A (en) | 1985-04-25 | 1990-05-08 | American Cyanamid Company | Prosthetic tubular article made with four chemically distinct fibers |
US4650452A (en) | 1985-04-29 | 1987-03-17 | Squibb Corporation | Method for joining a tube to a collection pouch |
US4643926A (en) | 1985-04-29 | 1987-02-17 | W. R. Grace & Co., Cryovac Div. | Flexible medical solution pouches |
US5208094A (en) | 1985-05-06 | 1993-05-04 | Sun Joseph Z | Multilayered film for packaging |
JPH0657444B2 (en) | 1986-01-07 | 1994-08-03 | 三井石油化学工業株式会社 | Laminate |
CA1278899C (en) | 1985-05-24 | 1991-01-08 | Mitsui Chemicals, Inc. | Random copolymer, and process for production thereof |
US4720872A (en) | 1985-05-28 | 1988-01-19 | Mobil Oil Corporation | Thermoplastic bag and method of forming the same |
US4726984A (en) | 1985-06-28 | 1988-02-23 | W. R. Grace & Co. | Oxygen barrier oriented film |
GB8518564D0 (en) | 1985-07-23 | 1985-08-29 | Drg Uk Ltd | Multi-layer packaging material |
US5371141A (en) | 1985-07-31 | 1994-12-06 | Shell Oil Company | High impact resistant blends of thermoplastic polyamides and modified block copolymers |
GB8519451D0 (en) | 1985-08-02 | 1985-09-11 | Purpose Eng | Weighing apparatus |
EP0216509B1 (en) | 1985-08-23 | 1991-09-18 | Showa Denko Kabushiki Kaisha | Medical bag |
US4724185A (en) | 1985-09-17 | 1988-02-09 | W. R. Grace & Co., Cryovac Div. | Oxygen barrier oriented film |
GB2182334B (en) | 1985-09-20 | 1989-09-13 | Toyo Seikan Kaisha Ltd | Vessel comprising resin composition |
FI73386C (en) | 1985-09-25 | 1987-10-09 | Wihuri Oy | A strong vapor-sterilizable multilayer film and packaging made of physiological solutions. |
JP2740159B2 (en) | 1985-09-30 | 1998-04-15 | 東芝ライテック株式会社 | Discharge lamp lighting device |
USRE35285E (en) | 1985-09-30 | 1996-06-25 | W. R. Grace & Co.-Conn. | Thermoplastic multi-layer packaging film and bags made therefrom |
CA1296852C (en) | 1985-10-11 | 1992-03-10 | Henry George Schirmer | High oxygen barrier coextruded film |
US4671029A (en) | 1985-10-28 | 1987-06-09 | Kelley Company, Inc. | Dock shelter |
JPS62174262A (en) | 1985-10-28 | 1987-07-31 | Toyobo Co Ltd | Thermoplastic polymer composition |
US4627844A (en) | 1985-10-30 | 1986-12-09 | High Voltage Engineering Corporation | Tri-layer tubing |
DE3541478A1 (en) | 1985-11-23 | 1987-05-27 | Beiersdorf Ag | HEART VALVE PROSTHESIS AND METHOD FOR THE PRODUCTION THEREOF |
US4937139A (en) | 1987-04-30 | 1990-06-26 | American National Can Company | Peelable packaging and sheet materials and compositions for use therein |
US4778697A (en) | 1985-11-29 | 1988-10-18 | American National Can Company | Polymeric films |
US4764404A (en) | 1985-11-29 | 1988-08-16 | American National Can Company | Films having a polypropylene blend layer |
US4966795A (en) | 1985-11-29 | 1990-10-30 | American National Can Company | Multiple layer sheet structures and package |
US4910085A (en) | 1985-11-29 | 1990-03-20 | American National Can Company | Multiple layer packaging films and packages formed thereof |
US4803102A (en) | 1985-11-29 | 1989-02-07 | American National Can Company | Multiple layer packaging films and packages formed therefrom |
US5137763A (en) | 1985-11-29 | 1992-08-11 | American National Can Company | Multiple layer packaging sheet material |
US5110642A (en) | 1985-11-29 | 1992-05-05 | American National Can Company | Films using blends of polypropylene and polyisobutylene |
US5071686A (en) | 1985-11-29 | 1991-12-10 | Genske Roger P | Films of polypropylene blends and polyethylene blends and articles made therewith |
US5093164A (en) | 1985-11-29 | 1992-03-03 | Bauer Frank T | Multiple layer packaging sheet material |
JPS62139626A (en) | 1985-12-13 | 1987-06-23 | オリンパス光学工業株式会社 | Flexible tube for endoscope |
US4628969A (en) | 1985-12-20 | 1986-12-16 | Mallinckrodt, Inc. | Method of producing prefilled sterile plastic syringes |
US5066290A (en) | 1986-02-07 | 1991-11-19 | Baxter International Inc. | Sterilizable multi-layer plastic materials for medical containers and the like |
US4687688A (en) | 1986-02-18 | 1987-08-18 | American Can Company | Oriented multiple layer films and bags made therefrom |
US4746562A (en) | 1986-02-28 | 1988-05-24 | W. R. Grace & Co., Cryovac Div. | Packaging film |
US4755419A (en) | 1986-03-21 | 1988-07-05 | W. R. Grace & Co., Cryovac Div. | Oxygen barrier oriented shrink film |
DE3752186T2 (en) | 1986-02-28 | 1998-08-20 | Grace W R & Co | Packaging oxygen barrier film |
US5004647A (en) | 1986-03-21 | 1991-04-02 | W. R. Grace & Co.-Conn. | Oxygen barrier biaxially oriented film |
EP0263854A4 (en) | 1986-03-24 | 1988-11-02 | Amoco Corp | Laminates containing coextruded scrap. |
US4721003A (en) | 1986-03-31 | 1988-01-26 | General Signal Corp. | Mixer drive apparatus |
US4668571A (en) | 1986-05-02 | 1987-05-26 | The Dow Chemical Company | Coextrustion tie layer and process for producing such tie layer |
US4839235A (en) | 1986-06-30 | 1989-06-13 | W. R. Grace & Co. | Oxygen barrier film |
JPH0442105Y2 (en) | 1986-07-25 | 1992-10-05 | ||
US4842947A (en) | 1986-07-28 | 1989-06-27 | Quantum Chemical Corporation | Adhesive blends and composite structures |
US4735855A (en) | 1986-08-04 | 1988-04-05 | W. R. Grace & Co., Cryovac Div. | Thermoformable laminate |
US4726997A (en) | 1986-08-26 | 1988-02-23 | W. R. Grace & Co., Cryovac Div. | Chemically stabilized film |
US4885119A (en) | 1986-08-26 | 1989-12-05 | W. R. Grace & Co. | Method of making a multilayer film |
AU597472B2 (en) | 1986-08-30 | 1990-05-31 | Lb Europe Limited | Device facilitating filling and unfolding of bag within outer casing |
US4683916A (en) | 1986-09-25 | 1987-08-04 | Burron Medical Inc. | Normally closed automatic reflux valve |
US5006601A (en) | 1986-09-25 | 1991-04-09 | Shell Oil Company | Impact resistant blends of thermoplastic polyamides, polyolefins and elastomers |
US4795782A (en) | 1986-09-25 | 1989-01-03 | Shell Oil Company | Impact resistant blends of thermoplastic polyamides, functionalized polyolefins and functionalized elastomers |
US4950515A (en) | 1986-10-20 | 1990-08-21 | Allied-Signal Inc. | Blends of polyamide, polyolefin, and ethylene vinyl alcohol copolymer |
JPH0645225B2 (en) | 1986-11-01 | 1994-06-15 | 日本合成化学工業株式会社 | Laminated structure |
JPH01501299A (en) | 1986-11-06 | 1989-05-11 | イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー | Plastic composite barrier structure |
US5039565A (en) | 1986-11-06 | 1991-08-13 | E. I. Du Pont De Nemours And Company | Plastic composite barrier structures |
US4711582A (en) * | 1986-11-07 | 1987-12-08 | Kennedy Richard B | Rotary mixing of two component resins in disposable plastic bag |
US4817824A (en) | 1986-12-08 | 1989-04-04 | Custom Packaging Systems, Inc. | Collapsible bulk container |
US4758463A (en) | 1986-12-29 | 1988-07-19 | Viskase Corporation | Cook-in shrink film |
US4857408A (en) | 1986-12-29 | 1989-08-15 | Viskase Corporation | Meat adherable cook-in shrink film |
US4857399A (en) | 1986-12-29 | 1989-08-15 | Viskase Corporation | Shrink film |
US4734327A (en) | 1986-12-29 | 1988-03-29 | Viskase Corporation | Cook-in shrink film |
JPH0222052A (en) | 1987-02-05 | 1990-01-24 | Kureha Chem Ind Co Ltd | Heat shrinkable laminated film and preparation thereof |
US5003019A (en) | 1987-03-02 | 1991-03-26 | Mitsui Petrochemical Industries, Ltd. | Cyclo-olefinic random copolymer, olefinic random copolymer, and process for producing cyclo-olefinic random copolymers |
JPS63224727A (en) | 1987-03-10 | 1988-09-19 | バウコ バウコ−ポレ−シヨン ゲ−エムベ−ハ− | Agitator |
DE3787275T2 (en) | 1987-03-18 | 1994-03-17 | Asahi Chemical Ind | Impact-resistant polyamide resin composition and process for its production. |
GB2202549A (en) * | 1987-03-20 | 1988-09-28 | Philip John Whitney | Foldable fermenter |
US4800129A (en) | 1987-03-26 | 1989-01-24 | E. I. Du Pont De Nemours And Company | Multi-layer plastic container |
SG64882A1 (en) | 1987-05-01 | 2001-06-19 | Mitsui Chemicals Inc | Cycloolefin type random copolymer compositions and uses thereof |
USRE33376E (en) | 1987-05-29 | 1990-10-09 | International Paper Company | Non-foil composite structures for packaging juice |
US4789575A (en) | 1987-05-29 | 1988-12-06 | International Paper Company | Non-foil composite structures for packaging juice |
JP2607883B2 (en) | 1987-06-10 | 1997-05-07 | 住友化学工業株式会社 | Thermoplastic resin composition |
US4983432A (en) | 1987-07-30 | 1991-01-08 | E. I. Du Pont De Nemours And Company | Ethylene vinyl alcohol copolymers containing platelet-type mica fillers of multi-layer containers |
DE3726064A1 (en) | 1987-08-06 | 1989-02-16 | Fresenius Ag | PACKING UNIT FOR MEDICAL PURPOSES |
US4929479A (en) | 1987-08-10 | 1990-05-29 | Showa Denko Kabushiki Kaisha | Medical bag |
US4911963A (en) | 1987-08-31 | 1990-03-27 | Viskase Corporation | Multilayer film containing amorphous nylon |
US5077109A (en) | 1987-08-31 | 1991-12-31 | Viskase Corporation | Oriented multilayer film and process for making same |
JP2667830B2 (en) | 1987-09-07 | 1997-10-27 | 株式会社クラレ | Ethylene-vinyl alcohol copolymer composition |
JPS6475527A (en) | 1987-09-18 | 1989-03-22 | Sumitomo Chemical Co | Production of thermoplastic resin composition |
USRE34537E (en) | 1987-09-23 | 1994-02-08 | E. I. Du Pont De Nemours And Company | Plastic composite barrier structures |
DE3735188A1 (en) | 1987-10-17 | 1989-04-27 | Philips Patentverwaltung | PHASE CONTROL CIRCUIT WITH A VOLTAGE CONTROLLED OSCILLATOR |
IT1232929B (en) * | 1987-10-28 | 1992-03-10 | Bravo Spa | ELLIPSOIDAL PASTEURIZER FOR FOOD MIXTURES |
US4781472A (en) | 1987-11-06 | 1988-11-01 | Custom Packaging Systems, Inc. | Large bag with liner |
US5165988A (en) | 1987-12-14 | 1992-11-24 | American National Can Company | Laminates and laminated tubes and packages |
US4873287A (en) | 1987-12-30 | 1989-10-10 | General Electric Company | Flame retardant ternary blends of polyetherimide, polyphenylene ether and block copolymer of a vinyl aromatic hydrocarbon and an alkene compound |
US4855356A (en) | 1987-12-30 | 1989-08-08 | General Electric Company | Ternary polymer blends containing a polyetherimide, a polyphthalate carbonate, and rubber modified vinyl aromatic polymer |
JP2510872B2 (en) * | 1988-01-11 | 1996-06-26 | 旭エンジニアリング株式会社 | Stirrer for moving tank |
DK8289A (en) | 1988-01-12 | 1989-07-13 | Raychem Ltd | COMPOSITE |
JPH0751609B2 (en) | 1988-01-20 | 1995-06-05 | 日本石油株式会社 | Random copolymer and method for producing the same |
US4826955A (en) | 1988-01-21 | 1989-05-02 | Allied-Signal Inc. | Amorphous copolyamide article of manufacture with moisture-insensitive oxygen barrier properties |
US4999254A (en) | 1988-01-28 | 1991-03-12 | Rampart Packaging Inc. | Increased regrind use in coextruded structures |
US5049449A (en) | 1988-01-28 | 1991-09-17 | Ofstein David E | Increased regrind usage in coextruded structures |
EP0400071A1 (en) | 1988-02-05 | 1990-12-05 | Raychem Limited | Laminar polymeric sheet |
CA1335127C (en) | 1988-02-15 | 1995-04-04 | Motonobu Furuta | Thermoplastic resin composition |
US4805799A (en) * | 1988-03-04 | 1989-02-21 | Robbins Edward S Iii | Container with unitary bladder |
JPH01225550A (en) | 1988-03-04 | 1989-09-08 | Kureha Chem Ind Co Ltd | heat shrinkable multilayer film |
JPH01137726U (en) * | 1988-03-11 | 1989-09-20 | ||
US5342886A (en) | 1988-03-24 | 1994-08-30 | Atochem | α-monoolefinic graft copolymers |
JPH01245052A (en) | 1988-03-26 | 1989-09-29 | Sumitomo Chem Co Ltd | thermoplastic resin composition |
US5040583A (en) | 1988-04-11 | 1991-08-20 | Hercules Incorporated | Tire innerliner |
US5156921A (en) | 1988-04-11 | 1992-10-20 | Hercules Incorporated | Tire innerliner |
IL86442A (en) * | 1988-05-19 | 1992-02-16 | Plant Biotec Ltd | Air lift fermenter formed from flexible plastic sheets |
US4883837A (en) | 1988-06-24 | 1989-11-28 | The Dow Chemical Company | Compatible blends of polyolefins with thermoplastic polyurethanes |
JP2570393B2 (en) | 1988-06-30 | 1997-01-08 | 住友化学工業株式会社 | Thermoplastic resin composition |
US5206290A (en) | 1988-07-06 | 1993-04-27 | Sumitomo Chemical Company | Thermoplastic resin composition |
US5071911A (en) | 1988-07-19 | 1991-12-10 | Sumitomo Chemical Company, Limited | Thermoplastic resin composition and process for producing the same |
JPH0235925A (en) * | 1988-07-27 | 1990-02-06 | Hitachi Ltd | Stirrer drive device |
CH675559A5 (en) | 1988-07-29 | 1990-10-15 | Vifor Sa | |
US5149739A (en) | 1988-08-01 | 1992-09-22 | The Bfgoodrich Company | Fiber-reinforced thermoplastic elastomer polyurethane compositions with either modified and/or unmodified polyolefins |
US4975207A (en) | 1988-08-01 | 1990-12-04 | The B. F. Goodrich Company | Impact modified polyurethane blends |
US5127904A (en) | 1988-08-11 | 1992-07-07 | Loo George D H | Improved needle-less parenteral fluid injector |
JP2722697B2 (en) | 1988-08-17 | 1998-03-04 | 住友化学工業株式会社 | Thermoplastic propylene resin composition |
JPH0677517B2 (en) * | 1988-08-22 | 1994-10-05 | 株式会社ニッショー | Floating cell culture device |
US5053259A (en) | 1988-08-23 | 1991-10-01 | Viskase Corporation | Amorphous nylon copolymer and copolyamide films and blends |
US5079295A (en) | 1988-08-24 | 1992-01-07 | Sumitomo Chemical Company, Limited | Thermoplastic resin composition |
US4992511A (en) | 1988-09-30 | 1991-02-12 | Mitsui Petrochemical Industries, Ltd. | Cyclo-olefinic random copolymer composition and reaction product thereof |
US5382631A (en) | 1988-09-30 | 1995-01-17 | Exxon Chemical Patents Inc. | Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions |
US4856260A (en) | 1988-10-17 | 1989-08-15 | Baxter International Inc. | Apparatus for sealing a web of film in a packaging |
US4856259A (en) | 1988-10-17 | 1989-08-15 | Baxter International Inc. | Appratus for sealing and severing a web of film |
JPH0816129B2 (en) | 1988-11-14 | 1996-02-21 | 日本ゼオン株式会社 | Method for producing norbornene ring-opening polymer |
CA2002910A1 (en) | 1988-11-18 | 1990-05-18 | Motonobu Furuta | Thermoplastic resin composition |
GB8828774D0 (en) | 1988-12-09 | 1989-01-18 | Flomat Ltd | Materials handling equipment |
CA2003882C (en) | 1988-12-19 | 1997-01-07 | Edwin Rogers Smith | Heat shrinkable very low density polyethylene terpolymer film |
DE3842948A1 (en) | 1988-12-21 | 1990-06-28 | Wolff Walsrode Ag | HOT-COATABLE, GAS-DENSITY MULTILAYER FILMS |
US5212238A (en) | 1988-12-22 | 1993-05-18 | Ferro Corporation | Toughened compositions of polyamide and functionalized rubber block or graft copolymers |
US4936617A (en) | 1989-01-11 | 1990-06-26 | John A. Dalsin & Son, Inc. | Apparatus for detachably coupling a load to a crane |
JPH02185553A (en) | 1989-01-12 | 1990-07-19 | Sumitomo Chem Co Ltd | thermoplastic resin composition |
US4948643A (en) | 1989-01-23 | 1990-08-14 | W. R. Grace & Co.-Conn. | Flexible medical solution tubing |
JP2674181B2 (en) | 1989-02-09 | 1997-11-12 | 住友化学工業株式会社 | Thermoplastic resin composition |
US5216062A (en) | 1989-02-18 | 1993-06-01 | Basf Aktiengesellschaft | Thermoplastic polyurethane molding composition |
CA2010320C (en) | 1989-02-20 | 2001-04-17 | Yohzoh Yamamoto | Sheet or film of cyclo-olefin polymer |
NO166358C (en) | 1989-02-28 | 1991-07-10 | Norsk Hydro As | LARGE BAG WITH IMPROVED BOTTOM AND TOP. |
US5070143A (en) | 1989-03-09 | 1991-12-03 | Morton International, Inc. | Adhesive blend of polyolefins and grafted block copolymer of polystyrene |
DE3926613A1 (en) | 1989-03-11 | 1990-09-13 | Bayer Ag | THERMOPLASTIC ALLOYS WITH POLYCARBONATES BASED ON SUBSTITUTED CYCLOHEXYLIDEN BISPHENOLS |
CA1332265C (en) | 1989-03-14 | 1994-10-11 | Walter Berndt Mueller | Impact modified medical film |
IE62767B1 (en) | 1989-03-17 | 1995-02-22 | Baxter Int | Pre-slit injection site and tapered cannula |
DE3910103A1 (en) | 1989-03-29 | 1990-10-11 | Wolff Walsrode Ag | METAL LAYER-FREE COMPOSITE FILMS |
DE3911695A1 (en) | 1989-04-10 | 1990-10-11 | Inventa Ag | COMPOSITIONS AND THEIR USE |
US4968624A (en) | 1989-04-25 | 1990-11-06 | Baxter International Inc. | Large volume flexible containers |
US5189091A (en) | 1989-05-04 | 1993-02-23 | The Dow Chemical Company | Polycarbonate/aromatic polyester blends modified with a grafted olefin copolymer |
US5085816A (en) | 1989-05-15 | 1992-02-04 | E. I. Du Pont De Nemours And Company | Process for preparing laminar articles from a mixture of a polyolefin and ethylene/vinyl alcohol copolymers |
US4971864A (en) | 1989-05-15 | 1990-11-20 | E. I. Du Pont De Nemours And Company | Laminar articles made from mixtures of a polyolefin and ethylene/vinyl alcohol copolymers |
FR2647391B1 (en) | 1989-05-24 | 1991-08-30 | Solvay | LAMINATE COMPLEX CONSISTING OF A CARRIER SHEET COATED WITH A FILM COMPRISING AT LEAST ONE LAYER OF A SEMI-AROMATIC POLYAMIDE AND METHOD FOR OBTAINING SAME |
EP0400604B1 (en) | 1989-05-30 | 1996-01-24 | Kuraray Co., Ltd. | Multilayered structure |
US5053457A (en) | 1989-06-13 | 1991-10-01 | E. I. Du Pont De Nemours And Company | Coextrudable adhesives and products therefrom |
DE3922546A1 (en) | 1989-07-08 | 1991-01-17 | Hoechst Ag | METHOD FOR THE PRODUCTION OF CYCLOOLEFINPOLYMERS |
DE3927656A1 (en) | 1989-08-22 | 1991-02-28 | Bayer Ag | POLYCARBONATES FROM SUBSTITUTED CYCLOHEXYLIDENBISPHENOLS |
US4993574A (en) | 1990-05-21 | 1991-02-19 | Edgar King | Cargo container with improved panels |
US4936477A (en) | 1989-08-30 | 1990-06-26 | Edgar King | Cargo container |
TW408155B (en) | 1989-08-31 | 2000-10-11 | Dow Chemical Co | Blends of <alpha>-olefin/vinylidene aromatic monomer or hindered aliphatic vinylidene monomer interpolymers with polymers of vinylidene aromatic monomers |
JP2720406B2 (en) | 1989-09-07 | 1998-03-04 | 三井化学株式会社 | Adhesive for cyclic olefin resin |
US5093194A (en) | 1989-11-01 | 1992-03-03 | Mobil Oil Corporation | Oriented multilayer heat sealable packaging film |
US5234903A (en) | 1989-11-22 | 1993-08-10 | Enzon, Inc. | Chemically modified hemoglobin as an effective, stable non-immunogenic red blood cell substitute |
US5106920A (en) | 1989-11-27 | 1992-04-21 | Nippon Zeon Co., Ltd. | Hydrogenated ring-opening polymer and process for producing same |
JP2926513B2 (en) | 1989-12-11 | 1999-07-28 | 住友化学工業株式会社 | Resin composition and method for producing the same |
US5108844A (en) | 1989-12-28 | 1992-04-28 | American National Can Company | Blended films, structures therefrom, and methods of making and using them |
US5274030A (en) | 1990-01-15 | 1993-12-28 | Atochem | Hot water/superheated steam-resistance EVOH barrier films |
DE69125319T2 (en) | 1990-01-30 | 1997-10-30 | Nippon Petrochemicals Co Ltd | MONOAXIAL ORIENTED MULTILAYER PACKAGING MATERIAL |
US5348794A (en) | 1990-01-30 | 1994-09-20 | Nippon Petrochemicals Company, Limited | Monoaxially oriented multilayered packaging material |
US5139831A (en) | 1990-03-02 | 1992-08-18 | W. R. Grace & Co.-Conn. | Impact modified medical film with ph control |
ATE212042T1 (en) | 1990-03-06 | 2002-02-15 | Mitsui Chemicals Inc | STATISTICAL CYCLOOLEFIN COPOLYMERS AND METHOD FOR THE PRODUCTION THEREOF |
US5108807A (en) | 1990-03-14 | 1992-04-28 | First Brands Corporation | Degradable multilayer thermoplastic articles |
US5213900A (en) | 1990-03-23 | 1993-05-25 | W. R. Grace & Co.-Conn. | Cook-in film with improved seal strength |
US5006114A (en) | 1990-04-20 | 1991-04-09 | Rogers Bobby E | Medical valve assembly |
US5278231A (en) | 1990-05-24 | 1994-01-11 | Ferro Corporation | Impact-resistant compatibilized polymer blends of olefin polymers and polyamides |
US5169697A (en) | 1990-05-25 | 1992-12-08 | Kappler Safety Group | Seaming tape for composite chemical barrier fabrics and method of forming bonded seams |
US5234731A (en) | 1990-05-25 | 1993-08-10 | W.R. Grace & Co.-Conn. | Thermoplastic multi-layer packaging film and bags made therefrom having two layers of very low density polyethylene |
DE4017046A1 (en) | 1990-05-26 | 1991-11-28 | Hoechst Ag | MULTILAYER, TUBULAR PACKAGING |
GB2244973A (en) | 1990-06-15 | 1991-12-18 | Concertainer Ltd | Container apparatus for the storage and transportation of fluid material |
EP0535029B1 (en) | 1990-06-19 | 1994-09-14 | Dylec Ltd. | Status-reporting device for reporting a temperature, with a suitable temperature sensor and method of manufacture of said sensor |
US5230935A (en) | 1990-06-22 | 1993-07-27 | Solvay & Cie (Societe Anonyme) | Multilayer composites coextruded with the use of impact-reinforced impervious resin compositions and their use for the manufacture of fuel storage vessels |
JPH0455795A (en) | 1990-06-26 | 1992-02-24 | Ishikawajima Harima Heavy Ind Co Ltd | Nuclear reactor containment vessel |
NZ238706A (en) | 1990-06-27 | 1994-12-22 | Gunze Kk | Stretched multi-layer films having at least one polyamide layer of 50-95% crystalline polyamide and 5-50% amorphous polyamide |
US5744664A (en) | 1990-07-05 | 1998-04-28 | Hoechst Aktiengesellschaft | Cycloolefin copolymers (COCS) as substrate material for liquid-crystal displays |
US5317059A (en) | 1990-07-09 | 1994-05-31 | Ferro Corporation | Impact-resistant polymer blends of olefin polymers, polyamides, and terpolymer compatibilizers |
US5208082A (en) | 1990-07-12 | 1993-05-04 | E. I. Du Pont De Nemours And Company | Blends and structures based on ethylene vinyl alcohol copolymer and selected amorphous polyamides |
WO1992001723A1 (en) | 1990-07-24 | 1992-02-06 | Mitsui Toatsu Chemicals, Incorporated | CATALYST FOR α-OLEFIN POLYMERIZATION AND PRODUCTION OF POLY-α-OLEFIN THEREWITH |
US5176634A (en) | 1990-08-02 | 1993-01-05 | Mcgaw, Inc. | Flexible multiple compartment drug container |
US5491009A (en) | 1990-08-03 | 1996-02-13 | W. R. Grace & Co.-Conn. | Amorphous nylon composition and films |
US5183706A (en) | 1990-08-03 | 1993-02-02 | W. R. Grace & Co.-Conn. | Forming web for lining a rigid container |
US5352773A (en) | 1990-08-06 | 1994-10-04 | Baxter International Inc. | Stable hemoglobin based composition and method to store same |
US5135785A (en) | 1990-08-13 | 1992-08-04 | Colgate-Palmolive Company | Pouch containers and films therefor |
CA2048296C (en) | 1990-08-13 | 2002-09-24 | Henry G. Schirmer | Blends of polypropylene and ethylene copolymer and films made from the blend |
US5422043A (en) * | 1990-08-31 | 1995-06-06 | Burris; William A. | Diffuser and diffusing method using dual surface tensions |
US5387645A (en) | 1990-09-20 | 1995-02-07 | Amoco Corporation | Polyphthalamide composition |
DE69129405T3 (en) | 1990-10-05 | 2001-10-04 | Idemitsu Kosan Co. Ltd., Tokio/Tokyo | METHOD FOR PRODUCING CYCLOOLEFIN POLYMERS AND CYCLOOLEFIN COPOLYMERS |
JP2960520B2 (en) | 1990-10-09 | 1999-10-06 | 株式会社細川洋行 | Barrier infusion packaging material |
US5186782A (en) | 1990-10-17 | 1993-02-16 | Avery Dennison Corporation | Method for high speed labelling of deformable substrates |
US5164258A (en) | 1990-10-29 | 1992-11-17 | Mitsuzo Shida | Multi-layered structure |
DE59107926D1 (en) | 1990-11-12 | 1996-07-18 | Hoechst Ag | Metallocenes with ligands from 2-substituted indenyl derivatives, processes for their preparation and their use as catalysts |
US5085649A (en) | 1990-11-21 | 1992-02-04 | Flynn Vincent J | Torque controlled tubing |
GB2250016B (en) | 1990-11-22 | 1994-01-26 | Flomat Ltd | Materials handling equipment |
US5171640A (en) | 1990-11-26 | 1992-12-15 | Atochem | Multilayer polymer materials with barrier properties |
EP0561886B1 (en) | 1990-12-12 | 1995-11-02 | Du Pont Canada Inc. | Terephthalic acid copolyamides |
US5552212A (en) | 1990-12-13 | 1996-09-03 | Mobil Oil Corporation | High barrier film combination |
JP3185293B2 (en) | 1990-12-27 | 2001-07-09 | 日本ゼオン株式会社 | Alkylidene norbornene-based polymer and method for producing the same |
US5288560A (en) | 1991-01-30 | 1994-02-22 | Daikyo Gomu Seiko, Ltd. | Laminated sanitary rubber article |
CA2061003C (en) | 1991-02-12 | 1999-02-09 | Mitsui Chemicals, Inc. | Process for isomerizing endo-form of aromatic group-containing norbornenes to exo-form thereof, isomer mixture of aromatic group-containing norbornenes and process for preparing same, and ethylene/aromatic group-contain ng norbornene copolymer and process for preparing same |
ES2127199T3 (en) | 1991-02-27 | 1999-04-16 | Ticona Gmbh | PROCESS FOR THE PREPARATION OF (CO) CYCLOOLEFIN POLYMERS WITH A NARROW DISTRIBUTION OF MOLECULAR WEIGHTS. |
JPH0767790B2 (en) | 1991-02-27 | 1995-07-26 | 東洋製罐株式会社 | Plastic container with a matt appearance |
EP0503422B1 (en) | 1991-03-09 | 1998-06-03 | TARGOR GmbH | Process for the preparation of chemically homogenous cycloolefinic copolymers |
DE69226893T2 (en) | 1991-03-20 | 1999-01-28 | Kuraray Co., Ltd., Kurashiki, Okayama | Multi-layer composite film and its production |
US5149315A (en) | 1991-04-12 | 1992-09-22 | American Packaging Corporation | Method of making lined square bottom bag |
CA2066501C (en) | 1991-04-22 | 1998-12-01 | Kazuhiko Murata | Thermoplastic elastomer laminates and glass run channels molded therefrom |
EP0513692A1 (en) | 1991-05-17 | 1992-11-19 | Air Products And Chemicals, Inc. | Water soluble multilayer film for packaging alkaline materials |
DE4122211A1 (en) | 1991-07-04 | 1993-01-21 | Inventa Ag | THERMOPLASTIC MOLDINGS OF SEMICRISTALLINE AND AMORPHOUS POLYAMIDE, THEIR USE AND METHOD FOR THE PRODUCTION THEREOF |
US5248613A (en) * | 1991-07-08 | 1993-09-28 | Roubicek Rudolf V | Nonhomogeneous centrifugal film bioreactor |
EP0524802B2 (en) | 1991-07-22 | 2009-10-07 | Daikyo Gomu Seiko Ltd. | A container for a sanitary article |
US5244971A (en) | 1991-07-22 | 1993-09-14 | Exxon Chemical Patents Inc. | Graft polymers for use in engineering thermoplastic blends |
JP2914826B2 (en) | 1991-07-22 | 1999-07-05 | 株式会社大協精工 | Hygiene container |
US5288531A (en) | 1991-08-09 | 1994-02-22 | The Dow Chemical Company | Pouch for packaging flowable materials |
DE4130485A1 (en) | 1991-08-23 | 1993-02-25 | Wolff Walsrode Ag | COEXTRUDED BIAXIAL STRETCHED TUBE FILM |
TW212771B (en) | 1991-09-20 | 1993-09-11 | Ube Reikisen Kk | |
US5238997A (en) | 1991-10-07 | 1993-08-24 | The Goodyear Tire & Rubber Company | Polyolefin/nylon reinforced rubber |
US5232754A (en) | 1991-11-06 | 1993-08-03 | Allied Signal Inc. | Barrier label for beverage bottle |
JPH07502219A (en) | 1991-12-18 | 1995-03-09 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Multilayer barrier structure |
DE4142271A1 (en) | 1991-12-20 | 1993-06-24 | Danubia Petrochem Deutschland | High-frequency welding of polyolefin-polyamide moulded prods. - with addn. of coupling agent, esp. maleic anhydride-grafted olefin (co)polymer, to improve HF welding and mechanical properties |
US5604042A (en) | 1991-12-23 | 1997-02-18 | Mobil Oil Corporation | Cellulose material containing barrier film structures |
EP0618864A1 (en) | 1991-12-23 | 1994-10-12 | Mobil Oil Corporation | Low oxygen transmissive film |
US5487940A (en) | 1991-12-23 | 1996-01-30 | Mobil Oil Corp. | Oxygen and moisture barrier metallized film structure |
US5207983A (en) | 1992-01-29 | 1993-05-04 | Sterling Winthrop Inc. | Method of terminal steam sterilization |
US6149997A (en) | 1992-01-30 | 2000-11-21 | Baxter International Inc. | Multilayer coextruded material for medical grade products and products made therefrom |
US6007520A (en) | 1992-02-12 | 1999-12-28 | Daikyo Gomu Seiko, Ltd. | Medical instrument |
US5331057A (en) | 1992-02-22 | 1994-07-19 | Hoechst Aktiengesellschaft | Cycloolefin block copolymers and a process for their preparation |
US5475060A (en) | 1993-02-18 | 1995-12-12 | Hoechst Ag | Cycloolefin block copolymers and a process for their preparation |
FR2688511B1 (en) | 1992-03-13 | 1994-04-29 | Benatre Gerard | MIXTURE OF RESIN BASED ON POLYOLEFIN AND COPOLYMER OF ETHYL VINYL ACETATE AND OR OF ETHYLENE-ESTER ACRYLIC, SUSCEPTIBLE TO BE EXTRUDED INTO FILM AND WELDED AT HIGH FREQUENCY CURRENTS. |
JP3104885B2 (en) | 1992-03-13 | 2000-10-30 | 大倉工業株式会社 | Heat shrinkable laminated film |
US5283128A (en) | 1992-03-23 | 1994-02-01 | Viskase Corporation | Biaxially oriented heat shrinkable film |
JP3212679B2 (en) | 1992-03-31 | 2001-09-25 | 出光興産株式会社 | Medical infusion bag |
JPH05284966A (en) * | 1992-04-08 | 1993-11-02 | Kobe Steel Ltd | Two-stage cultivation under aeration and agitation |
US5290856A (en) | 1992-04-16 | 1994-03-01 | Himont Incorporated | Engineering resin-propylene polymer graft composition |
US5258230A (en) | 1992-05-04 | 1993-11-02 | Rohm And Haas Company | High gas barrier co-extruded multiplayer films |
US5356709A (en) | 1992-05-14 | 1994-10-18 | Baxter International, Inc. | Non-PVC coextruded medical grade port tubing |
WO1993024568A1 (en) | 1992-05-29 | 1993-12-09 | Ferro Corporation | Radio frequency weldable polymer articles |
US5269579A (en) | 1992-06-25 | 1993-12-14 | Decrane Charles E | Lifting adapter for bulk bags |
US5346732A (en) | 1992-08-04 | 1994-09-13 | The Dow Chemical Company | Performance super high flow ethylene polymer compositions |
US5482771A (en) | 1992-09-18 | 1996-01-09 | W. R. Grace & Co.-Conn. | Moisutre barrier film |
ATE223307T1 (en) | 1992-10-26 | 2002-09-15 | Cryovac Inc | PASTEURIZABLE MULTI-LAYER FILM FOR PRODUCTS COOKED IN THE PACKAGING |
US5482770A (en) | 1992-11-03 | 1996-01-09 | W. R. Grace & Co.-Conn. | Highly oriented multilayer film |
US5534577A (en) | 1992-11-11 | 1996-07-09 | Nippon Paper Industries Co., Ltd. | Aqueous polyolefin resin composition |
JP3172005B2 (en) | 1992-11-27 | 2001-06-04 | 株式会社大協精工 | Syringe and container |
US5604043A (en) | 1993-09-20 | 1997-02-18 | W.R. Grace & Co.-Conn. | Heat shrinkable films containing single site catalyzed copolymers having long chain branching |
CA2085813C (en) | 1992-12-18 | 2001-06-12 | Bankim B. Desai | Formulation of high abuse, high shrink barrier bags for meat packaging |
US5306542A (en) | 1993-02-11 | 1994-04-26 | Owens-Illinois Closure Inc. | Plastic closure with compression molded sealing liner |
DE4304310A1 (en) | 1993-02-12 | 1994-08-18 | Hoechst Ag | Semi-crystalline cycloolefin copolymer film |
DE4304308A1 (en) | 1993-02-12 | 1994-08-18 | Hoechst Ag | Rigid cycloolefin copolymer film |
DE4304309A1 (en) | 1993-02-12 | 1994-08-18 | Hoechst Ag | Flexible cycloolefin copolymer film |
DE4304311C2 (en) | 1993-02-12 | 1998-08-06 | Hoechst Ag | Cycloolefin copolymers for extrusion and injection molding articles and process for the preparation of a cycloolefin copolymer |
DE59408260D1 (en) | 1993-02-12 | 1999-06-24 | Ticona Gmbh | Process for the preparation of cycloolefin polymers |
DE4304291A1 (en) | 1993-02-12 | 1994-08-18 | Hoechst Ag | Cycloolefin copolymers with low melt viscosity and low optical attenuation |
US5584577A (en) * | 1993-03-25 | 1996-12-17 | Whirlpool Corporation | Seal for a food blender |
JP3177551B2 (en) * | 1993-04-06 | 2001-06-18 | カワセインダストリィー株式会社 | Mixer and its stirring device |
US5374459A (en) | 1993-04-06 | 1994-12-20 | W. R. Grace & Co.-Conn. | Packaging material for long-term storage of food products |
US5434007A (en) | 1993-09-20 | 1995-07-18 | Dow Corning Corporation | Silane coated flavor/aroma barrier film |
US5372880A (en) | 1993-05-14 | 1994-12-13 | Dow Corning Corporation | Barrier film for packaging |
US5792824A (en) | 1993-05-21 | 1998-08-11 | Asahi Kasei Kogyo Kabushiki Kaisha | Cyclic conjugated diene polymer and method of producing same |
US5358335A (en) | 1993-06-01 | 1994-10-25 | Custom Packaging Systems, Inc. | Bulk bag with conical top |
US5795945A (en) | 1993-06-16 | 1998-08-18 | Asahi Kasei Kogyo Kabushiki Kaisha | Polymer containing a cyclic olefin monomer unit |
US5462807A (en) | 1993-08-20 | 1995-10-31 | Exxon Chemical Patents Inc. | Heat sealable films and articles |
US5547765A (en) | 1993-09-07 | 1996-08-20 | Alliedsignal Inc. | Retortable polymeric films |
CA2122677A1 (en) | 1993-10-18 | 1995-04-19 | Robert Babrowicz | Multilayer packaging laminate |
US5620425A (en) | 1993-11-03 | 1997-04-15 | Bracco International B.V. | Method for the preparation of pre-filled plastic syringes |
US5998019A (en) | 1993-11-16 | 1999-12-07 | Baxter International Inc. | Multi-layered polymer structure for medical products |
US5849843A (en) | 1993-11-16 | 1998-12-15 | Baxter International Inc. | Polymeric compositions for medical packaging and devices |
US6964798B2 (en) | 1993-11-16 | 2005-11-15 | Baxter International Inc. | Multi-layered polymer based thin film structure for medical grade products |
US6461696B1 (en) | 1993-11-16 | 2002-10-08 | Baxter International Inc. | Multi-layered polymer based moisture barrier structure for medical grade products |
US5348771A (en) | 1993-11-19 | 1994-09-20 | Dow Corning Corporation | Method of producing an oxygen barrier coating containing trimethoxysilyl functional pentadienoate |
US5458593A (en) | 1993-11-24 | 1995-10-17 | Bayer Corporation | Dockable bag system and method |
US5506011A (en) | 1993-12-01 | 1996-04-09 | Westvaco Corporation | Paperboard packaging containing a PVOH barrier |
FI945959A7 (en) | 1993-12-21 | 1995-06-22 | Targor Gmbh | Metallocenes and their use as catalysts |
DE59408355D1 (en) | 1993-12-24 | 1999-07-08 | Ticona Gmbh | Cycloolefin copolymers and process for their manufacture |
TW364910B (en) | 1993-12-27 | 1999-07-21 | Hoechst Ag | Polymer alloy |
US5491011A (en) | 1994-01-25 | 1996-02-13 | Colgate-Palmolive Company | Thermoplastic multilayer ethylene polymer sheet for containment of odoriferous product components |
CN1128005A (en) | 1994-03-15 | 1996-07-31 | 株式会社大塚制药工场 | Anti-pollution sealing film and its products |
US5473952A (en) | 1994-03-22 | 1995-12-12 | The United States Of America As Represented By The Secretary Of The Navy | Benthic flux sampling device |
US5382117A (en) | 1994-03-28 | 1995-01-17 | Henkel Kommanditgesellschaft Auf Aktien | Apparatus for holding a powder container |
DE4420744C2 (en) | 1994-06-15 | 1997-07-31 | Trw Fahrwerksyst Gmbh & Co | Method and device for mounting a servo valve |
US5558930A (en) | 1994-06-23 | 1996-09-24 | Tredegar Industries, Inc. | Heat sealable, high moisture barrier film and method of making same |
DE4422157A1 (en) | 1994-06-24 | 1996-01-04 | Hoechst Ag | Process for the preparation of cycloolefin copolymers |
DE4425408A1 (en) | 1994-07-13 | 1996-01-18 | Hoechst Ag | cycloolefin |
US5814382A (en) | 1994-07-22 | 1998-09-29 | American Packaging Corporation | Bag and method of making the same |
US5464691A (en) | 1994-07-22 | 1995-11-07 | Arizona Chemical Company | Laminated barrier film |
US5534351A (en) | 1994-09-27 | 1996-07-09 | Minnesota Mining And Manufacturing Company | Laminar articles made from blends of ethylene-vinyl alcohol copolymers and olefin polymers |
JP2889134B2 (en) | 1994-10-12 | 1999-05-10 | 新東科学株式会社 | Vertical rotary agitator |
TW278124B (en) | 1994-10-14 | 1996-06-11 | Toyota Motor Co Ltd | |
DE4438360C2 (en) | 1994-10-27 | 1999-05-20 | Schott Glas | Pre-fillable, low-particle, sterile disposable syringe for the injection of preparations and methods for their manufacture |
US5935847A (en) | 1994-10-28 | 1999-08-10 | Baxter International Inc. | Multilayer gas-permeable container for the culture of adherent and non-adherent cells |
TW367297B (en) | 1994-11-18 | 1999-08-21 | Hosokawa Yoko Kk | Bag for bag-in-box and bag-in-box |
DE4445969C1 (en) | 1994-12-22 | 1996-03-14 | Schott Glaswerke | Syringe cylinder with two compartments for two constituents |
US5547764A (en) | 1994-12-22 | 1996-08-20 | Mobil Oil Corporation | Method of producing PVOH coatings with enhanced properties |
TW387904B (en) | 1994-12-28 | 2000-04-21 | Hoechst Ag | Cycloolefin copolymer composition |
JP3517471B2 (en) | 1994-12-28 | 2004-04-12 | 三井化学株式会社 | Method for producing cyclic olefin copolymer |
US5554135A (en) | 1995-02-17 | 1996-09-10 | Menyhay; Steve Z. | Sterile medical injection port and cover method and apparatus |
US5695840A (en) | 1995-03-22 | 1997-12-09 | W. R. Grace & Co.-Conn. | Films for medical solution pouches |
US6271351B1 (en) | 1995-03-23 | 2001-08-07 | Biopure Corporation | Method for preserving a hemoglobin blood substitute |
US6288027B1 (en) | 1995-03-23 | 2001-09-11 | Biopure Corporation | Preserving a hemoglobin blood substitute with a transparent overwrap |
US5618254A (en) | 1995-04-27 | 1997-04-08 | Super Sack Mfg. Corp. | Gusseted bulk bag liner and method of manufacture |
US5929031A (en) | 1995-05-02 | 1999-07-27 | Baxter Biotech Technology Sarl | Storage stable hemoglobin solutions |
CN1077028C (en) | 1995-06-07 | 2002-01-02 | 巴克斯特国际有限公司 | Multi-layer, halogen-free, autoclavable barrier film |
US6189195B1 (en) | 1995-08-22 | 2001-02-20 | Medrad, Inc. | Manufacture of prefilled syringes |
DE19536043A1 (en) | 1995-09-28 | 1997-04-10 | Hoechst Ag | Polyolefin film with cycloolefin polymer, process for its production and its use |
DE19546500A1 (en) | 1995-12-13 | 1997-06-19 | Hoechst Ag | Production of cyclo-olefin copolymers e.g. for pipes |
JP3615289B2 (en) | 1995-12-19 | 2005-02-02 | 藤森工業株式会社 | Grain insecticide storage method and grain storage container |
JP3247833B2 (en) | 1996-01-23 | 2002-01-21 | シャープ株式会社 | Transfer device |
DE69715935T2 (en) | 1996-02-08 | 2003-02-20 | Becton Dickinson And Co., Franklin Lakes | Modular stand system for packaging and handling syringe barrels |
US5618599A (en) | 1996-02-15 | 1997-04-08 | Ford Motor Company | Multi-layer molded polymer compositions |
US5725119A (en) | 1996-02-28 | 1998-03-10 | Bradford Company | Collapsible container with integrally supported |
SE9601092L (en) | 1996-03-21 | 1997-04-07 | Alfapac Ab | Liner for fluid container |
US6225426B1 (en) | 1996-04-10 | 2001-05-01 | Uniroyal Chemical Company, Inc. | Process for producing polyolefin elastomer employing a metallocene catalyst |
US5695286A (en) | 1996-04-16 | 1997-12-09 | Super Sack Mfg. Corp. | Bottom lift bulk bag |
US5836696A (en) | 1996-05-02 | 1998-11-17 | H.G. Weber And Companu, Inc. | Sack having outwardly expandable walls |
US5690341A (en) * | 1996-06-17 | 1997-11-25 | Ahlstrom Machinery Inc. | Method and apparatus for the facilitating the servicing of drive-shaft assemblies for pressurized vessels |
DE19628429C2 (en) | 1996-07-15 | 1999-03-11 | Klaus Wilhelm | Emptying device for free-flowing bulk goods |
US5918984A (en) | 1996-08-29 | 1999-07-06 | Custom Packaging Systems, Inc. | Collapsible bag with handle |
FR2754307B1 (en) | 1996-10-09 | 1999-05-07 | Schlumberger Services Petrol | METHOD AND DEVICE FOR COLLECTING AND STORING A HYDROCARBON SAMPLE |
US5727878A (en) * | 1996-10-17 | 1998-03-17 | Cdf Corporation | Liner for a mixing container and an assembly and method for mixing fluid components |
US5799830A (en) * | 1996-11-08 | 1998-09-01 | Carroll; David C. | Pressure vessel access port |
US5858283A (en) * | 1996-11-18 | 1999-01-12 | Burris; William Alan | Sparger |
US5851072A (en) | 1996-11-26 | 1998-12-22 | Custom Packaging Systems, Inc. | Spout construction for bulk box liquid liner |
DE19652708C2 (en) | 1996-12-18 | 1999-08-12 | Schott Glas | Process for producing a filled plastic syringe body for medical purposes |
ATE215348T1 (en) | 1996-12-23 | 2002-04-15 | Novo Nordisk As | A POLYMERIC CYCLIC HYDROCARBONS CONTAINER FOR STORING LIQUID MEDICATIONS |
JP3042470U (en) | 1997-02-04 | 1997-10-21 | 東邦機械工業株式会社 | Mixing head |
TW514537B (en) * | 1997-03-25 | 2002-12-21 | Kanegafuchi Chemical Ind | Adsorbent for removing hepatitis c virus and adsorption apparatus |
US6111019A (en) | 1997-03-31 | 2000-08-29 | Exxon Chemical Patents, Inc. | LLDPE blends with an ethylene-norbornene copolymer for resins of improved toughness and processibility for film production |
US5971613A (en) | 1997-04-11 | 1999-10-26 | Kapak Corp. | Bag constructions having inwardly directed side seal portions |
DE19717033A1 (en) | 1997-04-23 | 1998-11-12 | Schott Glas | Needle cap for a prefillable disposable syringe |
EP1716885A3 (en) * | 1997-05-09 | 2006-11-15 | Pall Corporation | Connector assemblies, fluid systems, and methods for making a connection |
US5957898A (en) | 1997-05-20 | 1999-09-28 | Baxter International Inc. | Needleless connector |
US5941635A (en) * | 1997-06-11 | 1999-08-24 | Hyclone Labortories, Inc. | Mixing block for resuspension system |
JPH1123346A (en) | 1997-07-03 | 1999-01-29 | Sumitomo Metal Mining Co Ltd | Electrode-type level gage |
JPH1128346A (en) * | 1997-07-08 | 1999-02-02 | Aikoushiya Seisakusho:Kk | Hermetically sealing structure of stirring mixer |
US6478182B2 (en) | 1997-07-29 | 2002-11-12 | Ladislav Stephan Karpisek | Inspection side panel for a container |
JPH1171554A (en) | 1997-08-29 | 1999-03-16 | Yokohama Rubber Co Ltd:The | Bonding of norbornene-based resin molded product |
US6083587A (en) | 1997-09-22 | 2000-07-04 | Baxter International Inc. | Multilayered polymer structure for medical products |
DE19749352B4 (en) | 1997-11-07 | 2012-05-24 | Nittel Halle Gmbh | Stabilized, cubic, flexible container |
US6079934A (en) | 1997-11-14 | 2000-06-27 | Beale; Aldon E. | Lift-liner apparatus |
US6086574A (en) | 1997-11-21 | 2000-07-11 | Hyclone Laboratories, Inc. | Fluid delivery systems with diptube connector |
US6610392B1 (en) | 1998-03-04 | 2003-08-26 | Cryovac, Inc. | Heat-shrinkable multilayer packaging film comprising inner layer comprising a polyester |
WO1999048990A1 (en) | 1998-03-24 | 1999-09-30 | Nippon Zeon Co., Ltd. | Adhesive resin composition |
US6500505B2 (en) | 1998-05-15 | 2002-12-31 | Cryovac, Inc. | Thermoplastic film with good interply adhesion |
US5957585A (en) | 1998-06-08 | 1999-09-28 | Jerzy Y. Dabrowski | Gutter trolley with bag |
FR2780708B1 (en) | 1998-07-02 | 2001-01-12 | Stedim Sa | RIGID TRANSPORT CONTAINERS FOR POUCHES OF BIO-PHARMACEUTICAL FLUID PRODUCTS |
FR2781202B1 (en) | 1998-07-16 | 2001-01-12 | Stedim Sa | POCKETS FOR BIO-PHARMACEUTICAL FLUID PRODUCTS |
EP1121415A1 (en) * | 1998-08-28 | 2001-08-08 | Addavita Limited | Photobioreactor |
US6135630A (en) | 1998-09-02 | 2000-10-24 | Color Access, Inc. | Mixer mounting system |
US6479116B1 (en) | 1998-09-09 | 2002-11-12 | Eastman Chemical Company | Multi-layered polymeric structures including a layer of ethylene copolymer |
US6225427B1 (en) | 1998-10-15 | 2001-05-01 | Uniroyal Chemical Company, Inc. | Olefin polymerization process employing metallocene catalyst provided by cocatalyst activation of a metallocene procatalyst |
US6280431B1 (en) | 1998-10-23 | 2001-08-28 | Abbott Laboratories | Sterile formed, filled and sealed flexible container and draining administration port therefor |
US6139482A (en) | 1999-02-12 | 2000-10-31 | Custom Packaging Systems, Inc. | Bulk bag or liner and method of making it |
US6046443A (en) | 1999-05-03 | 2000-04-04 | International Paper Company | Gusseted bag with anti-leak feature |
US6085807A (en) | 1999-06-04 | 2000-07-11 | Vector Corporation | Constant drop tablet receptacle |
US6255396B1 (en) | 1999-09-09 | 2001-07-03 | Baxter International Inc. | Cycloolefin blends and method for solvent bonding polyolefins |
JP2001224938A (en) * | 2000-02-18 | 2001-08-21 | Sumitomo Heavy Ind Ltd | Stirring shaft drive mechanism for vertical type stirring machine |
US20020115795A1 (en) | 2000-03-16 | 2002-08-22 | Sherwin Shang | Autoclavable, non-adherent, heat sealable polymer films for fabricating monolayer and multiple layered films and containers |
US6773678B2 (en) * | 2000-03-20 | 2004-08-10 | Endress + Hauser Conducta Gesellschaft Fur Mess Und Regeltechnik Mbh + Co. | Mounting system and retractable sensor holder for analytical sensors |
US6427955B1 (en) | 2000-04-07 | 2002-08-06 | Flexicon Corporation | Bag lifting frame retainers |
US7070318B2 (en) | 2000-05-02 | 2006-07-04 | Renfro Charles K | Mixing apparatus having rotational and axial motion |
US6371646B1 (en) | 2000-07-26 | 2002-04-16 | Scholle Custom Packaging, Inc. | Bulk bag with multiple ply walls and a method of forming it from tubular blanks |
US6837613B2 (en) * | 2001-04-10 | 2005-01-04 | Levtech, Inc. | Sterile fluid pumping or mixing system and related method |
US7481572B2 (en) * | 2001-10-03 | 2009-01-27 | Levtech, Inc. | Mixing bag or vessel having a receiver for a fluid-agitating element |
US20020131654A1 (en) | 2001-03-19 | 2002-09-19 | Smith Sidney T. | Large volume flexible container |
US7025318B2 (en) | 2001-03-19 | 2006-04-11 | Baxter International Inc. | Container support |
US6659132B2 (en) | 2001-03-19 | 2003-12-09 | Baxter International Inc. | Gas permeable sterile closure |
DE10201811C1 (en) | 2002-01-18 | 2003-07-24 | Hubert Franke | Biomass fermentation tank has submerged hydraulic motor linked to hydraulic generator |
US6749331B1 (en) * | 2002-03-28 | 2004-06-15 | Hughes Product Designs | Fluid driven rotary agitator with suction conduit |
US7168459B2 (en) * | 2002-04-12 | 2007-01-30 | Hynetics Llc | Feed bags and methods of use |
US6908223B2 (en) * | 2002-04-12 | 2005-06-21 | Hynetics Llc | Systems for mixing liquid solutions and methods of manufacture |
US6981794B2 (en) * | 2002-04-12 | 2006-01-03 | Hynetics Llc | Methods for mixing solutions |
ES2208127B1 (en) * | 2002-11-28 | 2005-09-01 | Universitat Politecnica De Catalunya | MODULAR SYSTEM OF MULTIPLES AUTOMATED MINIBIOR REACTORS FOR MULTIFUNCTIONAL SCREENNING (HTS) IN BIOTECHNOLOGY. |
US20040136873A1 (en) * | 2003-01-09 | 2004-07-15 | Argonaut Technologies, Inc. | Modular reactor system |
US7153021B2 (en) | 2003-03-28 | 2006-12-26 | Hyclone Laboratories, Inc. | Container systems for mixing fluids with a magnetic stir bar |
CA2439645C (en) * | 2003-09-04 | 2014-03-18 | Hygiene-Technik Inc. | Automated biological growth and dispensing system |
US7249880B2 (en) * | 2003-10-14 | 2007-07-31 | Advanced Technology Materials, Inc. | Flexible mixing bag for mixing solids, liquids and gases |
CA2552717C (en) * | 2004-01-07 | 2011-11-29 | Levtech, Inc. | Mixing bag with integral sparger and sensor receiver |
US20050276158A1 (en) | 2004-05-26 | 2005-12-15 | Scott Thomas | Systems and devices for industrial mixing applications |
MXPA06014099A (en) | 2004-06-04 | 2007-05-09 | Xcellerex Inc | Disposable bioreactor systems and methods. |
US7682067B2 (en) | 2005-04-22 | 2010-03-23 | Hyclone Laboratories, Inc. | Mixing systems and related mixers |
CN101321857A (en) | 2005-09-30 | 2008-12-10 | 诺维信股份有限公司 | Methods for enhancing the degradation or conversion of cellulosic material |
WO2008040567A1 (en) | 2006-10-03 | 2008-04-10 | Artelis | Flexible mixing bag, mixing device and mixing system |
DE102005062052B4 (en) | 2005-12-22 | 2009-06-04 | Sartorius Stedim Biotech Gmbh | Disposable bioreactor for the cultivation of cells in a nutrient medium |
US7487688B2 (en) | 2006-03-20 | 2009-02-10 | Hyclone Laboratories, Inc. | Sampling ports and related container systems |
DE102006020706B4 (en) | 2006-05-03 | 2008-08-21 | Sartorius Stedim Biotech Gmbh | Baffle arrangement for bioreactors |
EP2018416B1 (en) | 2006-05-13 | 2018-10-24 | Pall Life Sciences Belgium | Disposable bioreactor |
EP2044190B1 (en) | 2006-06-16 | 2017-09-13 | GE Healthcare Bio-Sciences Corp. | Gas delivery configurations, foam control systems, and bag molding methods and articles for collapsible bag vessels and bioreactors |
US7348783B1 (en) * | 2006-08-18 | 2008-03-25 | Chung Yuan Christian University | Multi-functional pH meter and fabrication thereof |
US8321579B2 (en) | 2007-07-26 | 2012-11-27 | International Business Machines Corporation | System and method for analyzing streams and counting stream items on multi-core processors |
US9109193B2 (en) | 2007-07-30 | 2015-08-18 | Ge Healthcare Bio-Sciences Corp. | Continuous perfusion bioreactor system |
US9044718B2 (en) | 2008-03-19 | 2015-06-02 | Sartorius Stedim Biotech Gmbh | Mixing vessel |
US9340763B2 (en) | 2008-03-25 | 2016-05-17 | Ge Healthcare Bio-Sciences Corp. | Temperature controlling surfaces and support structures |
US20090242173A1 (en) | 2008-03-25 | 2009-10-01 | Peter Mitchell | Temperature control system |
US20120132549A1 (en) | 2009-03-16 | 2012-05-31 | George Dewey | Gun Barrel Cleaner |
US8960486B2 (en) | 2010-06-16 | 2015-02-24 | Life Technologies Corporation | Fluid mixing system with hangers |
CN103037959B (en) | 2010-07-30 | 2014-11-05 | Emd密理博公司 | Disposable vortex breaker |
WO2012090201A2 (en) * | 2010-12-26 | 2012-07-05 | Carmel-Haifa University Economic Corp. | Methods of improving cognitive function |
MY164783A (en) | 2011-03-15 | 2018-01-30 | Abec Inc | Reactor systems |
US9700857B1 (en) * | 2012-03-23 | 2017-07-11 | Life Technologies Corporation | Fluid mixing system with drive shaft steady support |
-
2005
- 2005-02-22 WO PCT/US2005/005707 patent/WO2005108546A2/en active Application Filing
- 2005-02-22 KR KR1020067022278A patent/KR20070015178A/en not_active Withdrawn
- 2005-02-22 CN CNA2005800131986A patent/CN1946835A/en active Pending
- 2005-02-22 MX MXPA06011837A patent/MXPA06011837A/en not_active Application Discontinuation
- 2005-02-22 AU AU2005240969A patent/AU2005240969A1/en not_active Abandoned
- 2005-02-22 EP EP05754066A patent/EP1763575A4/en not_active Withdrawn
- 2005-02-22 BR BRPI0510291-0A patent/BRPI0510291A/en not_active IP Right Cessation
- 2005-02-22 US US11/064,252 patent/US20050239198A1/en not_active Abandoned
- 2005-02-22 JP JP2007510720A patent/JP2007534335A/en not_active Withdrawn
- 2005-02-22 CA CA002559496A patent/CA2559496A1/en not_active Abandoned
- 2005-04-22 AU AU2005237512A patent/AU2005237512A1/en not_active Abandoned
- 2005-04-22 WO PCT/US2005/013920 patent/WO2005104706A2/en active Application Filing
- 2005-04-22 BR BRPI0510376-2A patent/BRPI0510376A/en not_active IP Right Cessation
- 2005-04-22 US US11/112,834 patent/US7384783B2/en active Active
- 2005-04-22 IN IN1976DEN2012 patent/IN2012DN01976A/en unknown
- 2005-04-22 MX MXPA06011832A patent/MXPA06011832A/en active IP Right Grant
- 2005-04-22 DK DK05739820.8T patent/DK1756259T3/en active
- 2005-04-22 JP JP2008519763A patent/JP4960351B2/en not_active Expired - Lifetime
- 2005-04-22 CN CN2005800131971A patent/CN1997730B/en not_active Expired - Lifetime
- 2005-04-22 KR KR1020067022279A patent/KR20070006864A/en not_active Withdrawn
- 2005-04-22 EP EP05739820.8A patent/EP1756259B1/en not_active Expired - Lifetime
- 2005-04-22 CA CA2559537A patent/CA2559537C/en not_active Expired - Lifetime
-
2008
- 2008-05-06 US US12/116,050 patent/US7901934B2/en active Active
-
2011
- 2011-01-26 US US13/014,575 patent/US8187867B2/en not_active Expired - Lifetime
-
2012
- 2012-04-10 US US13/443,391 patent/US8623640B2/en not_active Expired - Lifetime
-
2013
- 2013-12-17 US US14/109,684 patent/US9540606B2/en not_active Expired - Lifetime
-
2016
- 2016-12-12 US US15/376,362 patent/US10640741B2/en active Active
-
2020
- 2020-04-30 US US16/863,702 patent/US11591556B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2162400A (en) * | 1936-08-26 | 1939-06-13 | Emery A Heath | Removable motor mount and adapter for mixers, churns, and the like |
US4945060A (en) * | 1988-03-15 | 1990-07-31 | Akzo N. V. | Device for detecting microorganisms |
US5372936A (en) * | 1989-05-12 | 1994-12-13 | Avl Photoronics Corporation | Method for detecting biological activities in a specimen |
US5458771A (en) * | 1991-05-03 | 1995-10-17 | Todd; John J. | Apparatus for the gasification of liquids |
US6071005A (en) * | 1996-06-11 | 2000-06-06 | Merck & Co., Inc. | Disposable storage, transport and resuspension system |
US6245555B1 (en) * | 1998-09-01 | 2001-06-12 | The Penn State Research Foundation | Method and apparatus for aseptic growth or processing of biomass |
US6494613B2 (en) * | 2001-02-06 | 2002-12-17 | Levtech, Inc. | Apparatus and method for mixing materials sealed in a container under sterile conditions |
US6670171B2 (en) * | 2001-07-09 | 2003-12-30 | Wheaton Usa, Inc. | Disposable vessel |
US20040062140A1 (en) * | 2002-09-27 | 2004-04-01 | Cadogan David Phillip | Bioprocess container, bioprocess container mixing device and method of use thereof |
US7384783B2 (en) * | 2004-04-27 | 2008-06-10 | Baxter International Inc. | Stirred-tank reactor system |
Cited By (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8550439B2 (en) | 2004-01-07 | 2013-10-08 | Atmi Packaging, Inc. | Mixing bag with integral sparger and sensor receiver |
US20090135667A1 (en) * | 2004-01-07 | 2009-05-28 | Terentiev Alexandre N | Mixing bag with integral sparger and sensor receiver |
US20130274929A1 (en) * | 2004-02-03 | 2013-10-17 | Xcellerex, Inc. | System and method for manufacturing |
US8298054B2 (en) * | 2004-02-03 | 2012-10-30 | Xcellerex, Inc. | System and method for manufacturing |
US20050226794A1 (en) * | 2004-02-03 | 2005-10-13 | Geoffrey Hodge | System and method for manufacturing |
US9671798B2 (en) * | 2004-02-03 | 2017-06-06 | Ge Healthcare Bio-Sciences Corp. | System and method for manufacturing |
US20050239199A1 (en) * | 2004-04-27 | 2005-10-27 | Baxter International Inc. | Stirred-tank reactor system |
US7384783B2 (en) | 2004-04-27 | 2008-06-10 | Baxter International Inc. | Stirred-tank reactor system |
US20070159920A1 (en) * | 2006-01-11 | 2007-07-12 | Sartorius Ag | Container and method for the mixing of media |
US8123397B2 (en) * | 2006-01-11 | 2012-02-28 | Sartorius Stedim Biotech Gmbh | Disposable container having sensor mounts sealed to the container and sensors in the sensor mounts for measuring at least one parameter of media in the container |
US7674254B2 (en) * | 2006-02-07 | 2010-03-09 | Sartorius Stedim Biotech Gmbh | Connector, connector system, and use thereof |
US20070185472A1 (en) * | 2006-02-07 | 2007-08-09 | Sartorius Ag | Connector, connector system, and use thereof |
US20090075362A1 (en) * | 2006-05-11 | 2009-03-19 | Sartorius Stedim Biotech Gmbh | Disposable Bioreactor Comprising a Sensor Arrangement |
US8252582B2 (en) * | 2006-05-11 | 2012-08-28 | Sartorius Stedim Biotech Gmbh | Disposable bioreactor comprising a sensor arrangement |
EP2046941B1 (en) | 2006-08-02 | 2017-08-23 | Finesse Solutions, Inc. | Improved disposable bioreactor vessel port |
US11827875B2 (en) | 2006-08-02 | 2023-11-28 | Finesse Solutions, Inc. | Method for manufacturing a composite sensor |
US12227733B2 (en) | 2006-08-02 | 2025-02-18 | Finesse Solutions, Inc. | Method for manufacturing a composite sensor |
EP3246393B1 (en) | 2006-08-02 | 2024-05-01 | Finesse Solutions, Inc. | Improved disposable bioreactor vessel port |
US9267100B2 (en) | 2006-08-02 | 2016-02-23 | Finesse Solutions, Inc. | Composite sensor assemblies for single use bioreactors |
US20080032389A1 (en) * | 2006-08-02 | 2008-02-07 | Finesse Solutions, Llc. | Disposable bioreactor vessel port |
US11060055B2 (en) | 2006-08-02 | 2021-07-13 | Finesse Solutions, Inc. | Composite sensor assemblies for single use bioreactors |
US10227555B2 (en) | 2006-08-02 | 2019-03-12 | Finesse Solutions, Inc. | Composite sensor assemblies for single use bioreactors |
US8008065B2 (en) * | 2006-08-02 | 2011-08-30 | Finesse Solutions, Llc. | Disposable bioreactor vessel port |
US20100028990A1 (en) * | 2007-02-15 | 2010-02-04 | Broadley-James Corporation | Sterile bioreactor bag with integrated drive unit |
US20100075405A1 (en) * | 2007-02-15 | 2010-03-25 | Broadley-James Corporation | Bioreactor jacket |
US8568657B2 (en) * | 2007-06-16 | 2013-10-29 | Atmi Bvba | Bioreactor probe connection system |
US20100255526A1 (en) * | 2007-06-16 | 2010-10-07 | Atmi Packaging, N.V. | Bioreactor probe connection system |
WO2008157181A1 (en) | 2007-06-16 | 2008-12-24 | Advanced Technology Materials, Inc. | Bioreactor probe connection system |
EP2167637A4 (en) * | 2007-06-16 | 2014-07-23 | Advanced Tech Materials | BIOREACTOR PROBE CONNECTION SYSTEM |
WO2009071829A3 (en) * | 2007-11-27 | 2009-07-30 | Sartorius Stedim Biotech Sa | Connection of an accessory to a vessel |
US8631716B2 (en) | 2007-11-27 | 2014-01-21 | Sartorius Stedim Biotech | Connection of an accessory to a vessel |
FR2924034A1 (en) * | 2007-11-27 | 2009-05-29 | Sartorius Stedim Biotech Sa | DEVICE FOR CONNECTING AN ACCESSORY TO A CONTAINER FOR SIMPLIFIED INSERTION OF THE ACCESSORY IN THE CONTAINER |
US20100301060A1 (en) * | 2007-11-27 | 2010-12-02 | Sartorius Stedim Biotech | Connection of an accessory to a vessel |
EP2141224B1 (en) | 2008-06-11 | 2020-06-03 | EMD Millipore Corporation | Stirred tank bioreactor |
US8999046B2 (en) | 2008-10-27 | 2015-04-07 | Terumo Bct, Inc. | Air removal chamber for a cell expansion system and method of use associated therewith |
US20100105138A1 (en) * | 2008-10-27 | 2010-04-29 | Caridianbct, Inc. | Premounted fluid conveyance assembly for cell expansion system and method of use associated therewith |
US20110155256A1 (en) * | 2008-10-27 | 2011-06-30 | Caridianbct, Inc. | Air Removal Chamber for a Cell Expansion System and Method of Use Associated Therewith |
US9284523B2 (en) * | 2008-10-27 | 2016-03-15 | Terumo Bct, Inc. | Premounted fluid conveyance assembly for cell expansion system and method of use associated therewith |
US20100209966A1 (en) * | 2009-02-18 | 2010-08-19 | Biolex Therapeutics, Inc. | Aseptic bioreactor system for processing biological materials |
US20100261226A1 (en) * | 2009-04-14 | 2010-10-14 | Niazi Sarfaraz K | Universal bioreactors and methods of use |
US9550971B2 (en) | 2009-04-14 | 2017-01-24 | Therapeutic Proteins International, LLC | Universal bioreactors and methods of use |
US20100291674A1 (en) * | 2009-05-12 | 2010-11-18 | Jochen Beese | Disposable bioreactor, kit for the same and method for its production |
US8522996B2 (en) | 2009-05-12 | 2013-09-03 | Eppendorf Ag | Disposable bioreactor, kit for the same and method for its production |
EP2251407A1 (en) | 2009-05-12 | 2010-11-17 | Eppendorf Ag | Disposable bioreactor, kit for the same and method for its production |
US20110020923A1 (en) * | 2009-07-22 | 2011-01-27 | Becton, Dickinson And Company | Multilayer tissue culture vessel |
US9976114B2 (en) | 2009-07-22 | 2018-05-22 | Corning Incorporated | Multilayer tissue cell culture vessel |
US10053661B2 (en) | 2009-07-22 | 2018-08-21 | Corning Incorporated | Multilayer tissue culture vessel |
US10155924B2 (en) | 2009-07-22 | 2018-12-18 | Corning Incorporated | Multilayer tissue culture vessel |
US8778669B2 (en) | 2009-07-22 | 2014-07-15 | Corning Incorporated | Multilayer tissue culture vessel |
US20110117538A1 (en) * | 2009-11-13 | 2011-05-19 | Niazi Sarfaraz K | Bioreactors for fermentation and related methods |
US9127246B2 (en) | 2010-02-22 | 2015-09-08 | Life Technologies Corporation | Methods for condensing a humid gas |
US9528083B2 (en) | 2010-02-22 | 2016-12-27 | Life Technologies Corporation | Heat exchanger system with flexible bag |
US10711233B2 (en) | 2010-02-22 | 2020-07-14 | Life Technologies Corporation | Heat exchanger system with flexible bag |
US12012579B2 (en) | 2010-02-22 | 2024-06-18 | Life Technologies Corporation | Heat exchanger system with flexible bag |
US9284524B2 (en) | 2010-02-22 | 2016-03-15 | Life Technologies Corporation | Heat exchanger system with flexible bag |
US11492582B2 (en) | 2010-02-22 | 2022-11-08 | Life Technologies Corporation | Heat exchanger system with flexible bag |
GB2479783A (en) * | 2010-04-23 | 2011-10-26 | Aber Instr Ltd | A bioreactor with an impedance or biomass measuring probe. |
US8988082B2 (en) | 2010-04-23 | 2015-03-24 | Aber Instruments Limited | Biomass monitor probes and bioreactors incorporating such probes |
US8895291B2 (en) | 2010-10-08 | 2014-11-25 | Terumo Bct, Inc. | Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions |
US9670451B2 (en) | 2010-10-08 | 2017-06-06 | Terumo Bct, Inc. | Methods and systems of growing and harvesting cells in a hollow fiber bioreactor system with control conditions |
US9056695B2 (en) | 2011-07-19 | 2015-06-16 | Sartorius Stedim Fmt Sas | Connection of an accessory to a receptacle |
WO2013011231A1 (en) | 2011-07-19 | 2013-01-24 | Sartorius Stedim Biotech S.A. | Improvement to the connection of an accessory to a receptacle |
US11007457B2 (en) | 2012-03-15 | 2021-05-18 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US10724029B2 (en) | 2012-03-15 | 2020-07-28 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
USRE48523E1 (en) | 2012-03-19 | 2021-04-20 | Algae To Omega Holdings, Inc. | System and method for producing algae |
US9005550B2 (en) | 2012-10-29 | 2015-04-14 | Corning Incorporated | Multi-layered cell culture vessel with manifold grips |
US10519415B2 (en) * | 2013-12-10 | 2019-12-31 | Abec, Inc. | Attachment device for single use containers |
US11168296B2 (en) * | 2013-12-10 | 2021-11-09 | Abec, Inc. | Attachment device for single use containers |
US11649426B2 (en) | 2013-12-10 | 2023-05-16 | Abec, Inc. | Attachment device for single use containers |
US11976264B2 (en) * | 2013-12-10 | 2024-05-07 | Abec, Inc. | Attachment device for single use containers |
US20230235265A1 (en) * | 2013-12-10 | 2023-07-27 | Abec, Inc. | Attachment device for single use containers |
US20160272931A1 (en) * | 2013-12-10 | 2016-09-22 | Abec, Inc. | Apparatus and methods of use |
US10975368B2 (en) | 2014-01-08 | 2021-04-13 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
US11229855B2 (en) | 2014-03-21 | 2022-01-25 | Life Technologies Corporation | Condenser systems for processing a fluid |
US12285713B2 (en) | 2014-03-21 | 2025-04-29 | Life Technologies Corporation | Condenser bag for processing a fluid |
US12076681B2 (en) | 2014-03-21 | 2024-09-03 | Life Technologies Corporation | Methods for gas filtration in fluid processing systems |
US10005005B2 (en) | 2014-03-21 | 2018-06-26 | Life Technologies Corporation | Condenser systems for fluid processing systems |
US10688429B2 (en) | 2014-03-21 | 2020-06-23 | Life Technologies Corporation | Gas filter systems for fluid processing systems |
US11717768B2 (en) | 2014-03-21 | 2023-08-08 | Life Technologies Corporation | Condenser bag for processing a fluid |
US11554335B2 (en) | 2014-03-21 | 2023-01-17 | Life Technologies Corporation | Methods for gas filteration in fluid processing systems |
US10113143B2 (en) | 2014-05-29 | 2018-10-30 | Yokogawa Electric Corporation | Cell culture bag and method for manufacturing cell culture bag |
EP2949742A1 (en) * | 2014-05-29 | 2015-12-02 | Yokogawa Electric Corporation | Cell culture bag and method for manufacturing cell culture bag |
US11685886B2 (en) | 2014-10-07 | 2023-06-27 | Life Technologies Corporation | Regulated vacuum off-gassing of gas filter for fluid processing system and related methods |
US10822582B2 (en) | 2014-10-07 | 2020-11-03 | Life Technologies Corporation | Regulated vacuum off-gassing of gas filter for fluid processing system and related methods |
US9457306B2 (en) | 2014-10-07 | 2016-10-04 | Life Technologies Corporation | Regulated vacuum off-gassing of gas filter for fluid processing system and related methods |
US12188000B2 (en) | 2014-10-07 | 2025-01-07 | Life Technologies Corporation | Regulated vacuum off-gassing of gas filter for fluid processing system and related methods |
US10059916B2 (en) | 2014-10-07 | 2018-08-28 | Life Technologies Corporation | Regulated vacuum off-gassing of gas filter for fluid processing system and related methods |
US10184099B2 (en) | 2015-03-31 | 2019-01-22 | Heliae Development Llc | Flexible bioreactor and support structure system |
US10047337B2 (en) | 2015-03-31 | 2018-08-14 | Heliae Development Llc | Method of mixotrophic culturing of microalgae in a flexible bioreactor |
US10184105B2 (en) | 2015-03-31 | 2019-01-22 | Heliae Development Llc | Flexible bioreactor and support structure method |
US10125346B2 (en) | 2015-03-31 | 2018-11-13 | Heliae Development Llc | Bioreactor sterilization method for multiple uses |
US10059918B2 (en) | 2015-03-31 | 2018-08-28 | Heliae Development Llc | Method of vitally supporting microalgae in a flexible bioreactor |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
CN105148823A (en) * | 2015-08-17 | 2015-12-16 | 长沙矿冶研究院有限责任公司 | Inflatable stirring reaction device |
CN105039737A (en) * | 2015-08-31 | 2015-11-11 | 长沙矿冶研究院有限责任公司 | Gold extraction technique method for low-grade refractory gold ores |
US12226561B2 (en) | 2015-12-29 | 2025-02-18 | Life Technologies Corporation | Magnetic particle separation system with flexible bioprocessing container |
US11268056B2 (en) | 2015-12-29 | 2022-03-08 | Life Technologies Corporation | Flexible bioprocessing container with partial dividing partition |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
US11371002B2 (en) | 2016-06-03 | 2022-06-28 | Lonza Ltd | Single use bioreactor |
WO2017207822A1 (en) * | 2016-06-03 | 2017-12-07 | Lonza Limited | Single use bioreactor |
US10801003B2 (en) | 2016-06-03 | 2020-10-13 | Lonza Ltd | Single use bioreactor |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
CN109423446A (en) * | 2017-08-24 | 2019-03-05 | 吴鹃 | A kind of crop straw pre-treatment reactor tank |
US11623200B2 (en) | 2017-10-03 | 2023-04-11 | Abec, Inc. | Reactor systems |
CN108165466A (en) * | 2017-11-29 | 2018-06-15 | 李丽明 | A kind of edible mushroom agitating device |
GB2569326B (en) * | 2017-12-13 | 2022-09-14 | Aber Instruments Ltd | Probe |
WO2019116043A1 (en) * | 2017-12-13 | 2019-06-20 | Aber Instruments Limited | Probe |
GB2569326A (en) * | 2017-12-13 | 2019-06-19 | Aber Instruments Ltd | Probe |
US12098360B2 (en) | 2017-12-13 | 2024-09-24 | Aber Instruments Limited | Probe |
US10785574B2 (en) | 2017-12-14 | 2020-09-22 | Flodesign Sonics, Inc. | Acoustic transducer driver and controller |
US11970687B2 (en) * | 2018-07-27 | 2024-04-30 | Emd Millipore Corporation | Installation for treating biological liquid |
US20210253994A1 (en) * | 2018-07-27 | 2021-08-19 | Emd Millipore Corporation | Installation for treating biological liquid |
GB2582443B (en) * | 2019-02-04 | 2022-11-02 | Innospec Ltd | Chemical reactions |
CN113614001A (en) * | 2019-02-04 | 2021-11-05 | 因诺斯佩克有限公司 | Polymer material |
AU2020217893B2 (en) * | 2019-02-04 | 2025-06-12 | Innospec Limited | Polymeric materials |
AU2020218854B2 (en) * | 2019-02-04 | 2025-05-29 | Innospec Limited | Polymerisation method and apparatus therefor |
WO2020161472A1 (en) * | 2019-02-04 | 2020-08-13 | Innospec Limited | Polymeric materials |
US11951452B2 (en) | 2019-02-04 | 2024-04-09 | Innospec Limited | Method of assembling an apparatus for containing reagents for a chemical reaction |
WO2020161473A1 (en) * | 2019-02-04 | 2020-08-13 | Innospec Limited | Polymerisation method and apparatus therefor |
GB2582216A (en) * | 2019-02-04 | 2020-09-16 | Innospec Ltd | Polymeric materials |
GB2613058A (en) * | 2019-02-04 | 2023-05-24 | Innospec Ltd | Chemical reactions |
US12269024B2 (en) | 2019-02-04 | 2025-04-08 | Innospec Limited | Polymerization method and apparatus therefor |
EP4375305A3 (en) * | 2019-02-04 | 2024-08-21 | Innospec Limited | Polymerisation method and apparatus therefor |
US20220033532A1 (en) * | 2019-02-04 | 2022-02-03 | Innospec Limited | Polymeric materials |
GB2613058B (en) * | 2019-02-04 | 2023-08-09 | Innospec Ltd | Chemical reactions |
GB2582216B (en) * | 2019-02-04 | 2023-01-18 | Innospec Ltd | Polymeric materials |
US12234952B2 (en) | 2019-02-04 | 2025-02-25 | Innospec Limited | Polymeric materials |
US12227601B2 (en) * | 2019-02-04 | 2025-02-18 | Innospec Limited | Polymeric materials |
US11813602B2 (en) | 2019-02-04 | 2023-11-14 | Innospec Limited | Polymerisation method and apparatus therefor |
EP3992277A4 (en) * | 2019-06-28 | 2023-10-04 | I Peace, Inc. | CELL CULTURE METHOD AND CELL CULTURE APPARATUS |
CN114829576A (en) * | 2019-12-13 | 2022-07-29 | 瑞普利金公司 | Alternating tangential flow bioreactor with hollow fiber system and method of use |
CN113894958A (en) * | 2021-10-18 | 2022-01-07 | 陈昱 | Polyethylene particle system and method thereof |
NL2031815B1 (en) * | 2022-05-10 | 2023-11-17 | Applikon Biotechnology B V | Drive shaft system for use with a container for mixing a fluid and a container holder |
WO2023219497A1 (en) | 2022-05-10 | 2023-11-16 | Applikon Biotechnology B.V. | Drive shaft system for use with a container for mixing a fluid and a container holder |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050239198A1 (en) | Stirred-tank reactor system | |
US20100028990A1 (en) | Sterile bioreactor bag with integrated drive unit | |
US20180362909A1 (en) | Method for Using a Disposable Bioreactor | |
WO2011090781A1 (en) | A single use cell culture bioreactor manifold system | |
WO2005108549A9 (en) | Bioreactor | |
EA008157B1 (en) | Cell culture system | |
WO2019077623A1 (en) | An improved disposable bioreactor | |
HK1099336A (en) | Stirred-tank reactor system | |
KR102473972B1 (en) | Single use cell culture system | |
RU2797021C1 (en) | Asymmetric conical bioreactor system and method for its use | |
Rosemann et al. | Single-use systems for flexible cell cultivation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAXTER INTERNATIONAL, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUNAS, KURT T.;OAKLEY, ROBERT;REEL/FRAME:016337/0576 Effective date: 20050609 Owner name: BAXTER HEALTHCARE S.A., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUNAS, KURT T.;OAKLEY, ROBERT;REEL/FRAME:016337/0576 Effective date: 20050609 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: BAXALTA GMBH, SWITZERLAND Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNORS:BAXTER INTERNATIONAL INC.;BAXTER HEALTHCARE SA;REEL/FRAME:036705/0909 Effective date: 20150930 Owner name: BAXALTA INCORPORATED, ILLINOIS Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNORS:BAXTER INTERNATIONAL INC.;BAXTER HEALTHCARE SA;REEL/FRAME:036705/0909 Effective date: 20150930 |