US20040062951A1 - Electroluminescent material, electroluminescent element and color conversion filter - Google Patents
Electroluminescent material, electroluminescent element and color conversion filter Download PDFInfo
- Publication number
- US20040062951A1 US20040062951A1 US10/661,857 US66185703A US2004062951A1 US 20040062951 A1 US20040062951 A1 US 20040062951A1 US 66185703 A US66185703 A US 66185703A US 2004062951 A1 US2004062951 A1 US 2004062951A1
- Authority
- US
- United States
- Prior art keywords
- light
- group
- electroluminescent
- layer
- fluorescent substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 title claims abstract description 163
- 238000006243 chemical reaction Methods 0.000 title abstract description 80
- 239000000126 substance Substances 0.000 claims abstract description 120
- 238000010521 absorption reaction Methods 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims description 88
- 125000001424 substituent group Chemical group 0.000 claims description 44
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 33
- 150000002910 rare earth metals Chemical class 0.000 claims description 33
- 125000005841 biaryl group Chemical group 0.000 claims description 30
- 125000003118 aryl group Chemical group 0.000 claims description 28
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 26
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 238000003980 solgel method Methods 0.000 claims description 9
- 238000005401 electroluminescence Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 224
- 238000002347 injection Methods 0.000 description 83
- 239000007924 injection Substances 0.000 description 83
- 239000011799 hole material Substances 0.000 description 52
- -1 2-pyrimidyl group Chemical group 0.000 description 49
- 239000000523 sample Substances 0.000 description 48
- 239000011777 magnesium Substances 0.000 description 44
- 238000000034 method Methods 0.000 description 44
- 229910052749 magnesium Inorganic materials 0.000 description 38
- 229910052751 metal Inorganic materials 0.000 description 33
- 239000002184 metal Substances 0.000 description 33
- 239000000758 substrate Substances 0.000 description 33
- 239000000203 mixture Substances 0.000 description 32
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 30
- 230000009467 reduction Effects 0.000 description 28
- 229910052709 silver Inorganic materials 0.000 description 25
- 239000004332 silver Substances 0.000 description 24
- 239000000872 buffer Substances 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 20
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 20
- 229910052782 aluminium Inorganic materials 0.000 description 19
- 125000004429 atom Chemical group 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- 239000007850 fluorescent dye Substances 0.000 description 15
- 150000002391 heterocyclic compounds Chemical class 0.000 description 15
- 238000002360 preparation method Methods 0.000 description 15
- 0 *CC(C[Ar])c(*)N.[Y] Chemical compound *CC(C[Ar])c(*)N.[Y] 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- 239000013078 crystal Substances 0.000 description 14
- 125000000623 heterocyclic group Chemical group 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 229910052909 inorganic silicate Inorganic materials 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 229910001873 dinitrogen Inorganic materials 0.000 description 12
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 11
- 239000012298 atmosphere Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 125000004430 oxygen atom Chemical group O* 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 10
- 125000004434 sulfur atom Chemical group 0.000 description 10
- 150000001450 anions Chemical class 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 239000012190 activator Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 239000011701 zinc Substances 0.000 description 8
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N 1-naphthalen-1-ylnaphthalene Chemical group C1=CC=C2C(C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 230000005525 hole transport Effects 0.000 description 7
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 7
- 125000004433 nitrogen atom Chemical group N* 0.000 description 7
- 229910052712 strontium Inorganic materials 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000003081 coactivator Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 125000005259 triarylamine group Chemical group 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 5
- 150000004696 coordination complex Chemical class 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 5
- 239000013110 organic ligand Substances 0.000 description 5
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- FQJQNLKWTRGIEB-UHFFFAOYSA-N 2-(4-tert-butylphenyl)-5-[3-[5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]phenyl]-1,3,4-oxadiazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=C(C=CC=2)C=2OC(=NN=2)C=2C=CC(=CC=2)C(C)(C)C)O1 FQJQNLKWTRGIEB-UHFFFAOYSA-N 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 229910052688 Gadolinium Inorganic materials 0.000 description 4
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 150000004703 alkoxides Chemical class 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 4
- AULRAJQDSBIZBZ-UHFFFAOYSA-N 1-bromo-4-naphthalen-1-ylnaphthalene Chemical group C12=CC=CC=C2C(Br)=CC=C1C1=CC=CC2=CC=CC=C12 AULRAJQDSBIZBZ-UHFFFAOYSA-N 0.000 description 3
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 3
- YDGYALVXLOSEBN-UHFFFAOYSA-N CC(C)C.[Y] Chemical compound CC(C)C.[Y] YDGYALVXLOSEBN-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 239000005084 Strontium aluminate Substances 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- 229910052769 Ytterbium Inorganic materials 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 150000001721 carbon Chemical group 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000006081 fluorescent whitening agent Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 150000003852 triazoles Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052844 willemite Inorganic materials 0.000 description 3
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical group C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 2
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- QPQKUYVSJWQSDY-UHFFFAOYSA-N 4-phenyldiazenylaniline Chemical compound C1=CC(N)=CC=C1N=NC1=CC=CC=C1 QPQKUYVSJWQSDY-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- YHCRDKKRTOFGNJ-UHFFFAOYSA-N C1=CC=C2C(=C1)C=CC=C2C1=C2C=CC=CC2=CC=C1.C1=CC=C2C(=C1)C=CC=C2C1=CC=CC2=C1C=CC=C2 Chemical compound C1=CC=C2C(=C1)C=CC=C2C1=C2C=CC=CC2=CC=C1.C1=CC=C2C(=C1)C=CC=C2C1=CC=CC2=C1C=CC=C2 YHCRDKKRTOFGNJ-UHFFFAOYSA-N 0.000 description 2
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 2
- 229910052692 Dysprosium Inorganic materials 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910009372 YVO4 Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- YXVFYQXJAXKLAK-UHFFFAOYSA-N biphenyl-4-ol Chemical group C1=CC(O)=CC=C1C1=CC=CC=C1 YXVFYQXJAXKLAK-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 150000003983 crown ethers Chemical class 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- 125000003003 spiro group Chemical group 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- XKWRJEBRBGIQBA-BISOHRNISA-N (3e,5e,7e)-deca-1,3,5,7,9-pentaene Chemical compound C=C\C=C\C=C\C=C\C=C XKWRJEBRBGIQBA-BISOHRNISA-N 0.000 description 1
- MTJSGULCIKMNJD-UPHRSURJSA-N (Z)-2,4-diamino-3-chloro-4-oxobut-2-enoic acid Chemical compound NC(=O)C(\Cl)=C(\N)C(O)=O MTJSGULCIKMNJD-UPHRSURJSA-N 0.000 description 1
- XHUSGUDNNQOOPJ-HYXAFXHYSA-N (z)-4-(methylamino)-3-(methylaminomethyl)-4-oxobut-2-enoic acid Chemical compound CNC\C(=C\C(O)=O)C(O)=NC XHUSGUDNNQOOPJ-HYXAFXHYSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- TXVWTOBHDDIASC-UHFFFAOYSA-N 1,2-diphenylethene-1,2-diamine Chemical compound C=1C=CC=CC=1C(N)=C(N)C1=CC=CC=C1 TXVWTOBHDDIASC-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N 1,3,5-triazine Chemical compound C1=NC=NC=N1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- YNGDWRXWKFWCJY-UHFFFAOYSA-N 1,4-Dihydropyridine Chemical compound C1C=CNC=C1 YNGDWRXWKFWCJY-UHFFFAOYSA-N 0.000 description 1
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 1
- KZEVSDGEBAJOTK-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[5-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CC=1OC(=NN=1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O KZEVSDGEBAJOTK-UHFFFAOYSA-N 0.000 description 1
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- WFJFGMLKAISFOZ-UHFFFAOYSA-N 1-amino-3-iminourea Chemical compound NN=C(O)N=N WFJFGMLKAISFOZ-UHFFFAOYSA-N 0.000 description 1
- QWENRTYMTSOGBR-UHFFFAOYSA-N 1H-1,2,3-Triazole Chemical compound C=1C=NNN=1 QWENRTYMTSOGBR-UHFFFAOYSA-N 0.000 description 1
- MALKDETVJPZAOQ-UHFFFAOYSA-N 2,2-dimethoxyethylsilyl prop-2-enoate Chemical compound C(C=C)(=O)O[SiH2]CC(OC)OC MALKDETVJPZAOQ-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- UOCMXZLNHQBBOS-UHFFFAOYSA-N 2-(1,3-benzoxazol-2-yl)phenol zinc Chemical group [Zn].Oc1ccccc1-c1nc2ccccc2o1.Oc1ccccc1-c1nc2ccccc2o1 UOCMXZLNHQBBOS-UHFFFAOYSA-N 0.000 description 1
- RFCQDOVPMUSZMN-UHFFFAOYSA-N 2-Naphthalenethiol Chemical compound C1=CC=CC2=CC(S)=CC=C21 RFCQDOVPMUSZMN-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2 ZRPAUEVGEGEPFQ-UHFFFAOYSA-N 0.000 description 1
- JVKRKMWZYMKVTQ-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]pyrazol-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JVKRKMWZYMKVTQ-UHFFFAOYSA-N 0.000 description 1
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- ZPSJGADGUYYRKE-UHFFFAOYSA-N 2H-pyran-2-one Chemical compound O=C1C=CC=CO1 ZPSJGADGUYYRKE-UHFFFAOYSA-N 0.000 description 1
- CAAMSDWKXXPUJR-UHFFFAOYSA-N 3,5-dihydro-4H-imidazol-4-one Chemical compound O=C1CNC=N1 CAAMSDWKXXPUJR-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- SVOSWEYVOJNMTC-UHFFFAOYSA-N 3-[3-prop-2-enoyloxypropyl(dipropoxy)silyl]propyl prop-2-enoate Chemical compound C=CC(=O)OCCC[Si](OCCC)(CCCOC(=O)C=C)OCCC SVOSWEYVOJNMTC-UHFFFAOYSA-N 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- HGEKXQRHZRDGKO-UHFFFAOYSA-N 3-tripropoxysilylpropyl prop-2-enoate Chemical compound CCCO[Si](OCCC)(OCCC)CCCOC(=O)C=C HGEKXQRHZRDGKO-UHFFFAOYSA-N 0.000 description 1
- HCCNHYWZYYIOFM-UHFFFAOYSA-N 3h-benzo[e]benzimidazole Chemical compound C1=CC=C2C(N=CN3)=C3C=CC2=C1 HCCNHYWZYYIOFM-UHFFFAOYSA-N 0.000 description 1
- RZPBZEISZUFQSV-UHFFFAOYSA-N 4-(4-aminonaphthalen-1-yl)naphthalen-1-amine Chemical class C12=CC=CC=C2C(N)=CC=C1C1=CC=C(N)C2=CC=CC=C12 RZPBZEISZUFQSV-UHFFFAOYSA-N 0.000 description 1
- BGNGWHSBYQYVRX-UHFFFAOYSA-N 4-(dimethylamino)benzaldehyde Chemical compound CN(C)C1=CC=C(C=O)C=C1 BGNGWHSBYQYVRX-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- HCSXGHIWQVZBJK-UHFFFAOYSA-N 4-aminobenzo[de]isoquinoline-1,3-dione Chemical compound C1=CC=C2C(=O)NC(=O)C3=C2C1=CC=C3N HCSXGHIWQVZBJK-UHFFFAOYSA-N 0.000 description 1
- YXYUIABODWXVIK-UHFFFAOYSA-N 4-methyl-n,n-bis(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 YXYUIABODWXVIK-UHFFFAOYSA-N 0.000 description 1
- LQYYDWJDEVKDGB-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]ethenyl]phenyl]ethenyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(C=CC=2C=CC(C=CC=3C=CC(=CC=3)N(C=3C=CC(C)=CC=3)C=3C=CC(C)=CC=3)=CC=2)=CC=1)C1=CC=C(C)C=C1 LQYYDWJDEVKDGB-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- SCZWJXTUYYSKGF-UHFFFAOYSA-N 5,12-dimethylquinolino[2,3-b]acridine-7,14-dione Chemical compound CN1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3N(C)C1=C2 SCZWJXTUYYSKGF-UHFFFAOYSA-N 0.000 description 1
- FTZIFMBRFOOQIU-UHFFFAOYSA-N 5-oxodibenzothiophene-1,2-diamine Chemical compound C1=CC=C2S(=O)C3=CC=C(N)C(N)=C3C2=C1 FTZIFMBRFOOQIU-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- VESMRDNBVZOIEN-UHFFFAOYSA-N 9h-carbazole-1,2-diamine Chemical compound C1=CC=C2C3=CC=C(N)C(N)=C3NC2=C1 VESMRDNBVZOIEN-UHFFFAOYSA-N 0.000 description 1
- SKKKJNPBIGQNEJ-UHFFFAOYSA-N 9h-fluorene-1,9-diamine Chemical compound C1=CC(N)=C2C(N)C3=CC=CC=C3C2=C1 SKKKJNPBIGQNEJ-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UHDVQGBAGLJNDQ-UHFFFAOYSA-F B1OC2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2/N1=C\C=C/3.C/C1=C/C=N2/[AlH]OC3=CC=C(C4=CC=CC5=C4C=CC=C5)C1=C32.C1=CC2=C(C=C1)C(C1=CC=C3O[AlH]/N4=C/C=C\C1=C34)=CC=C2.C1=CC2=C(C=C1)C(C1=CC=C3O[AlH]N4=CC=CC5=C4C3=C1/C=C\5)=CC=C2.C1=CC2=C(C=C1)C(C1=CC=C3O[GaH]/N4=C/C=C\C1=C34)=CC=C2.C1=CC2=C(C=C1)C(C1=CC=C3O[Zn]/N4=C/C=C\C1=C34)=CC=C2.C1=CC2=CC3=C(C=CC=C3)C(C3=CC=C4O[AlH]/N5=C/C=C\C3=C45)=C2C=C1.COC1=CC=C(C2=C(C3=CC=C(OC)C=C3)ON(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)O2)C=C1.[Be]1OC2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2/N1=C\C=C/3.[Be]1OC2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2C2=C(C=CC=N12)/C=C\3 Chemical compound B1OC2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2/N1=C\C=C/3.C/C1=C/C=N2/[AlH]OC3=CC=C(C4=CC=CC5=C4C=CC=C5)C1=C32.C1=CC2=C(C=C1)C(C1=CC=C3O[AlH]/N4=C/C=C\C1=C34)=CC=C2.C1=CC2=C(C=C1)C(C1=CC=C3O[AlH]N4=CC=CC5=C4C3=C1/C=C\5)=CC=C2.C1=CC2=C(C=C1)C(C1=CC=C3O[GaH]/N4=C/C=C\C1=C34)=CC=C2.C1=CC2=C(C=C1)C(C1=CC=C3O[Zn]/N4=C/C=C\C1=C34)=CC=C2.C1=CC2=CC3=C(C=CC=C3)C(C3=CC=C4O[AlH]/N5=C/C=C\C3=C45)=C2C=C1.COC1=CC=C(C2=C(C3=CC=C(OC)C=C3)ON(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)O2)C=C1.[Be]1OC2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2/N1=C\C=C/3.[Be]1OC2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2C2=C(C=CC=N12)/C=C\3 UHDVQGBAGLJNDQ-UHFFFAOYSA-F 0.000 description 1
- 229910016010 BaAl2 Inorganic materials 0.000 description 1
- 229910015802 BaSr Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OWNRRUFOJXFKCU-UHFFFAOYSA-N Bromadiolone Chemical group C=1C=C(C=2C=CC(Br)=CC=2)C=CC=1C(O)CC(C=1C(OC2=CC=CC=C2C=1O)=O)C1=CC=CC=C1 OWNRRUFOJXFKCU-UHFFFAOYSA-N 0.000 description 1
- NMOPNCIJNICPLZ-JYQVJILQSA-M C.C1=CC2=C3C(=C1)O[AlH]/N3=C/C=C\2.C1=CC=C(C2=CC=C(C3=CC=C(C4=CC=CC=C4)C=C3)C=C2)C=C1.CC1=CC=CC(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC(C)=C4)C=C3)C=C2)=C1.[2H]P([V])[BiH2].[2H]P[3H].[H]C(C1=CC=C(C2=CC=C(C([H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C=C2)C=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C.C1=CC2=C3C(=C1)O[AlH]/N3=C/C=C\2.C1=CC=C(C2=CC=C(C3=CC=C(C4=CC=CC=C4)C=C3)C=C2)C=C1.CC1=CC=CC(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC(C)=C4)C=C3)C=C2)=C1.[2H]P([V])[BiH2].[2H]P[3H].[H]C(C1=CC=C(C2=CC=C(C([H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C=C2)C=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1 NMOPNCIJNICPLZ-JYQVJILQSA-M 0.000 description 1
- IJZOTLAMUVAXEX-UHFFFAOYSA-N C1(=CC=CC=C1)N(C1=CC=C(C=C1)C=1C(=CC(=CC=1)N(C1=CC=CC=C1)C1=CC=CC=C1)C=1C(=CC=CC=1)C1=CC=CC=C1)C1=CC=CC=C1 Chemical group C1(=CC=CC=C1)N(C1=CC=C(C=C1)C=1C(=CC(=CC=1)N(C1=CC=CC=C1)C1=CC=CC=C1)C=1C(=CC=CC=1)C1=CC=CC=C1)C1=CC=CC=C1 IJZOTLAMUVAXEX-UHFFFAOYSA-N 0.000 description 1
- AMYWMHLPIWDIAT-FMEJXERMSA-C C1=C/C2=C/C=C3/C=CC=N4[Eu+2]N(=C1)C2=C34.C1=C/C2=C/C=C3/C=CC=N4[Eu+3]N(=C1)C2=C34.C1=CCC2C3CC=CC=N3[Tb+3]N2=C1.CC1=CC(C)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Ce]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C(F)(F)F)=O[Tb]2(O1)N1=CC=CCC1C1CC=CC=N12.[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-] Chemical compound C1=C/C2=C/C=C3/C=CC=N4[Eu+2]N(=C1)C2=C34.C1=C/C2=C/C=C3/C=CC=N4[Eu+3]N(=C1)C2=C34.C1=CCC2C3CC=CC=N3[Tb+3]N2=C1.CC1=CC(C)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Ce]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C(F)(F)F)=O[Tb]2(O1)N1=CC=CCC1C1CC=CC=N12.[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-] AMYWMHLPIWDIAT-FMEJXERMSA-C 0.000 description 1
- AMVXMXQFVVTRTK-UHFFFAOYSA-L C1=CC2=C(C=C1)C(/C1=C/C=C(C3=C/C=C4/O[AlH]N5=CC=CC/3=C45)\C3=C1C=CC=C3)=CC=C2.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=C(C5=C6C=CC=CC6=C(C6=C7C=CC=CC7=CC=C6)C=C5)C=C4)C=C3)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=CC=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=C2)C=C1.O=C1C2=C3C(=CC=C4C5=CC=C6C(=O)N7C(=NC8=C7C=CC(C7=CC=C(C9=C%10C=CC=CC%10=CC=C9)C9=C7C=CC=C9)=C8)/C7=C/C=C(/C(=C43)/C=C\2)C5=C67)C2=NC3=C(C=CC(C4=C5C=CC=CC5=C(C5=CC=CC6=CC=CC=C65)C=C4)=C3)N12.O=C1OC2=C(C=C1C1=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C1C=CC=C3)C1=C(C=CC=C1)C=C2.[Be]1O/C2=C/C=C(C3=C/C=C(/C4=CC=CC5=C4C=CC=C5)C4=C/3C=CC=C4)\C3=C2C2=C(C=C3)/C=C\C=N\12 Chemical compound C1=CC2=C(C=C1)C(/C1=C/C=C(C3=C/C=C4/O[AlH]N5=CC=CC/3=C45)\C3=C1C=CC=C3)=CC=C2.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=C(C5=C6C=CC=CC6=C(C6=C7C=CC=CC7=CC=C6)C=C5)C=C4)C=C3)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=CC=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=C2)C=C1.O=C1C2=C3C(=CC=C4C5=CC=C6C(=O)N7C(=NC8=C7C=CC(C7=CC=C(C9=C%10C=CC=CC%10=CC=C9)C9=C7C=CC=C9)=C8)/C7=C/C=C(/C(=C43)/C=C\2)C5=C67)C2=NC3=C(C=CC(C4=C5C=CC=CC5=C(C5=CC=CC6=CC=CC=C65)C=C4)=C3)N12.O=C1OC2=C(C=C1C1=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C1C=CC=C3)C1=C(C=CC=C1)C=C2.[Be]1O/C2=C/C=C(C3=C/C=C(/C4=CC=CC5=C4C=CC=C5)C4=C/3C=CC=C4)\C3=C2C2=C(C=C3)/C=C\C=N\12 AMVXMXQFVVTRTK-UHFFFAOYSA-L 0.000 description 1
- IDYXYGNRBSPIMZ-WFPIFNONSA-L C1=CC2=C(C=C1)C(C1=C3C=CC=CC3=C(C3=CC4=C(C=C3)OC(C3=CC=C(C5=NC6=C(C=CC=C6)O5)S3)=N4)C=C1)=CC=C2.CCC1=C(C2=CC=CC3=C2C=CC=C3C2=CC=CC3=C2C=CC=C3)/C2=C/C3=C(CC)C(C4=C5C=CC=CC5=C(C5=CC=CC6=C5C=CC=C6)C=C4)=C4/C=C5/C(CC)=C(C6=CC=CC7=C6C=CC=C7C6=C7C=CC=CC7=CC=C6)C6/C=C7/C(CC)=C(C8=CC=CC9=C8C=CC=C9C8=C9C=CC=CC9=CC=C8)/C8=C/C1=N2[Pt@@](N34)(N78)N56.CCN(CC)C1=CC2=C(C=C1)C(C1=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C1)=C1C=CC(=[N+](CC)CC)C=C1O2.CCOC(=O)C1=C(C2=C3C=C(Br)C(=O)C(Br)=C3OC3=C2C=C(Br)C(O[Na])=C3C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)C=CC=C1.O=C1C2=CC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)C3=C2/C(=C\C=C/3)C(=O)N1C1=CC=CC=C1.[Cl-] Chemical compound C1=CC2=C(C=C1)C(C1=C3C=CC=CC3=C(C3=CC4=C(C=C3)OC(C3=CC=C(C5=NC6=C(C=CC=C6)O5)S3)=N4)C=C1)=CC=C2.CCC1=C(C2=CC=CC3=C2C=CC=C3C2=CC=CC3=C2C=CC=C3)/C2=C/C3=C(CC)C(C4=C5C=CC=CC5=C(C5=CC=CC6=C5C=CC=C6)C=C4)=C4/C=C5/C(CC)=C(C6=CC=CC7=C6C=CC=C7C6=C7C=CC=CC7=CC=C6)C6/C=C7/C(CC)=C(C8=CC=CC9=C8C=CC=C9C8=C9C=CC=CC9=CC=C8)/C8=C/C1=N2[Pt@@](N34)(N78)N56.CCN(CC)C1=CC2=C(C=C1)C(C1=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C1)=C1C=CC(=[N+](CC)CC)C=C1O2.CCOC(=O)C1=C(C2=C3C=C(Br)C(=O)C(Br)=C3OC3=C2C=C(Br)C(O[Na])=C3C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)C=CC=C1.O=C1C2=CC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)C3=C2/C(=C\C=C/3)C(=O)N1C1=CC=CC=C1.[Cl-] IDYXYGNRBSPIMZ-WFPIFNONSA-L 0.000 description 1
- RVIZNLJXXHJOPW-UHFFFAOYSA-N C1=CC2=C(C=C1)C(C1=CC=C(C3=CC=C(C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)O3)C3=C1C=CC=C3)=CC=C2.C1=CC2=C(C=C1)C1=C(C=CC=N1)C(C1=CC3=C(C=CC=C3)C3=C1C=CC=N3)=C2.C1=CC2=C(N=C1)C1=C(C=CC=N1)C(C1=CC3=C(N=CC=C3)C3=C1C=CC=N3)=C2.C1=CC2=CC=CC(C3=NC4=C(C=CC=C4)N=C3C3=CC(C4=NC5=C(C=CC=C5)N=C4C4=C5C=CC=CC5=CC=C4)=CC(C4=NC5=C(C=CC=C5)N=C4C4=C5C=CC=CC5=CC=C4)=C3)=C2C=C1.C1=CC=C(C2=CC=CC3=C2C2=C(C=CC=N2)C(C2=CC4=C(C=CC=C4)C4=C2C=CC=N4)=C3)C=C1.C1=CC=C(N(C2=CC=C(C3=CC=C(C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=C7C=CC=CC7=C(C7=CC=CC8=C7C=CC=C8)C=C6)C=C5)S4)S3)C=C2)C2=CC=CC3=C(C4=CC=CC5=C4C=CC=C5)C=CC=C23)C=C1.CC1=CC2=NC(C3=CC=CC4=C3C=CC=C4)=C(C3=C4C=CC=CC4=CC=C3)N=C2C=C1C Chemical compound C1=CC2=C(C=C1)C(C1=CC=C(C3=CC=C(C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)O3)C3=C1C=CC=C3)=CC=C2.C1=CC2=C(C=C1)C1=C(C=CC=N1)C(C1=CC3=C(C=CC=C3)C3=C1C=CC=N3)=C2.C1=CC2=C(N=C1)C1=C(C=CC=N1)C(C1=CC3=C(N=CC=C3)C3=C1C=CC=N3)=C2.C1=CC2=CC=CC(C3=NC4=C(C=CC=C4)N=C3C3=CC(C4=NC5=C(C=CC=C5)N=C4C4=C5C=CC=CC5=CC=C4)=CC(C4=NC5=C(C=CC=C5)N=C4C4=C5C=CC=CC5=CC=C4)=C3)=C2C=C1.C1=CC=C(C2=CC=CC3=C2C2=C(C=CC=N2)C(C2=CC4=C(C=CC=C4)C4=C2C=CC=N4)=C3)C=C1.C1=CC=C(N(C2=CC=C(C3=CC=C(C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=C7C=CC=CC7=C(C7=CC=CC8=C7C=CC=C8)C=C6)C=C5)S4)S3)C=C2)C2=CC=CC3=C(C4=CC=CC5=C4C=CC=C5)C=CC=C23)C=C1.CC1=CC2=NC(C3=CC=CC4=C3C=CC=C4)=C(C3=C4C=CC=CC4=CC=C3)N=C2C=C1C RVIZNLJXXHJOPW-UHFFFAOYSA-N 0.000 description 1
- HZXNWULRYMDDOQ-AIEXQSIOSA-D C1=CC2=C(C=C1)C(C1=CC=C3O[GaH]N4=CC=CC5=C4C3=C1/C=C\5)=CC=C2.C1=CC2=CC=CC(C3=C4C=CC=CC4=C4C(=C3)O[Zn]N3=C4OC4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=O[Eu@]3(OC(C4=CC=CC=C4)=C2C2=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C2)N2=CC=CC4=C2C2=N3C=CC=C2C=C4)C=C1.C1=CC=C(N2C3=C(C=CC=C3)N3=C2C2=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C2O[AlH]3)C=C1.C1=CC=C2C(=C1)O[AlH]N1=C2OC(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)=N1.CC1=C2O[Al](OC3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)/N3=C/C=C\C(=C23)C(C2=CC=CC3=C2C=CC=C3)=C1.CC1=C2O[Al](OC3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)/N3=C/C=C\C(=C23)C=C1.CN1C2=C(C=CC=C2C2=CC=CC3=C2C=CC=C3)N2=C1C1=C3C=CC=CC3=CC=C1O[AlH]2 Chemical compound C1=CC2=C(C=C1)C(C1=CC=C3O[GaH]N4=CC=CC5=C4C3=C1/C=C\5)=CC=C2.C1=CC2=CC=CC(C3=C4C=CC=CC4=C4C(=C3)O[Zn]N3=C4OC4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=O[Eu@]3(OC(C4=CC=CC=C4)=C2C2=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C2)N2=CC=CC4=C2C2=N3C=CC=C2C=C4)C=C1.C1=CC=C(N2C3=C(C=CC=C3)N3=C2C2=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C2O[AlH]3)C=C1.C1=CC=C2C(=C1)O[AlH]N1=C2OC(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)=N1.CC1=C2O[Al](OC3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)/N3=C/C=C\C(=C23)C(C2=CC=CC3=C2C=CC=C3)=C1.CC1=C2O[Al](OC3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)/N3=C/C=C\C(=C23)C=C1.CN1C2=C(C=CC=C2C2=CC=CC3=C2C=CC=C3)N2=C1C1=C3C=CC=CC3=CC=C1O[AlH]2 HZXNWULRYMDDOQ-AIEXQSIOSA-D 0.000 description 1
- DIYRUMBDYYOYTI-UHFFFAOYSA-N C1=CC2=C(C=C1)C(N1C3=C(C=CC=C3)C3=C1C=CC=C3)=CC=C2N(C1=CC=C(N2C3=C(C=CC=C3)C3=C2C=CC=C3)C2=C1C=CC=C2)C1=CC=C(N2C3=C(C=CC=C3)C3=C2C=CC=C3)C2=C1C=CC=C2.C1=CC2=C(C=CC=N2)C(C2=CC=C(N(C3=CC=C(C4=CC=CC5=C4C=CC=N5)C4=C3N=CC=C4)C3=CC=C(C4=CC=CC5=C4C=CC=N5)C4=C3N=CC=C4)C3=C2C=CC=N3)=C1.C1=CC2=CC3=C(C=CC=C3)C(C3=C4C=CC=CC4=C(N(C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC6=C5C=CC=C6)C5=C4C=CC=C5)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC6=C5C=CC=C6)C5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=NN=C(C3=CC=CC=C3)N2C2=CC=C(N(C3=C4C=CC=CC4=C(N4C(C5=CC=CC=C5)=NN=C4C4=CC=CC=C4)C=C3)C3=C4C=CC=CC4=C(N4C(C5=CC=CC=C5)=NN=C4C4=CC=CC=C4)C=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C=C3)C=C2)C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(N(C2=CC=C(N(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)C=C2)C2=CC(C3=C4C=CC=CC4=CC=C3)=C3C=CC=CC3=C2)C=C1 Chemical compound C1=CC2=C(C=C1)C(N1C3=C(C=CC=C3)C3=C1C=CC=C3)=CC=C2N(C1=CC=C(N2C3=C(C=CC=C3)C3=C2C=CC=C3)C2=C1C=CC=C2)C1=CC=C(N2C3=C(C=CC=C3)C3=C2C=CC=C3)C2=C1C=CC=C2.C1=CC2=C(C=CC=N2)C(C2=CC=C(N(C3=CC=C(C4=CC=CC5=C4C=CC=N5)C4=C3N=CC=C4)C3=CC=C(C4=CC=CC5=C4C=CC=N5)C4=C3N=CC=C4)C3=C2C=CC=N3)=C1.C1=CC2=CC3=C(C=CC=C3)C(C3=C4C=CC=CC4=C(N(C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC6=C5C=CC=C6)C5=C4C=CC=C5)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC6=C5C=CC=C6)C5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=NN=C(C3=CC=CC=C3)N2C2=CC=C(N(C3=C4C=CC=CC4=C(N4C(C5=CC=CC=C5)=NN=C4C4=CC=CC=C4)C=C3)C3=C4C=CC=CC4=C(N4C(C5=CC=CC=C5)=NN=C4C4=CC=CC=C4)C=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C=C3)C=C2)C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(N(C2=CC=C(N(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)C=C2)C2=CC(C3=C4C=CC=CC4=CC=C3)=C3C=CC=CC3=C2)C=C1 DIYRUMBDYYOYTI-UHFFFAOYSA-N 0.000 description 1
- YEXRIMXOILWZJL-UHFFFAOYSA-L C1=CC2=C(C=C1)C1=N(C3=C(C=CC=C3)O1)[Zn]1(O2)OC2=C(C=CC=C2)C2=N1C1=C(C=CC=C1)O2.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC=C(C2=NN=C(C3=CC=CC(C4=NN=C(C5=CC=C(C(C)(C)C)C=C5)O4)=C3)O2)C=C1 Chemical compound C1=CC2=C(C=C1)C1=N(C3=C(C=CC=C3)O1)[Zn]1(O2)OC2=C(C=CC=C2)C2=N1C1=C(C=CC=C1)O2.C1=CC=C(N(C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC=C(C2=NN=C(C3=CC=CC(C4=NN=C(C5=CC=C(C(C)(C)C)C=C5)O4)=C3)O2)C=C1 YEXRIMXOILWZJL-UHFFFAOYSA-L 0.000 description 1
- LKPINUURAWFXAF-UHFFFAOYSA-N C1=CC2=C(C=C1)OCCOCCOCCOCCO2.C1=CC2=C(C=C1)OCCOCCOCCOCCO2.C1=CC=C(C2OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC2C2=CC=CC=C2)C=C1.C1=CC=C2OCCOCCOC3=CC=CC=C3OCCOCCOC2=C1.C1COCCOCCOCCOCCN1.C1COCCOCCOCCOCCO1.[Ce+3].[Eu+2].[Eu+2].[Eu+2].[Eu+2].[Tb+3] Chemical compound C1=CC2=C(C=C1)OCCOCCOCCOCCO2.C1=CC2=C(C=C1)OCCOCCOCCOCCO2.C1=CC=C(C2OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC(C3=CC=CC=C3)C(C3=CC=CC=C3)OC2C2=CC=CC=C2)C=C1.C1=CC=C2OCCOCCOC3=CC=CC=C3OCCOCCOC2=C1.C1COCCOCCOCCOCCN1.C1COCCOCCOCCOCCO1.[Ce+3].[Eu+2].[Eu+2].[Eu+2].[Eu+2].[Tb+3] LKPINUURAWFXAF-UHFFFAOYSA-N 0.000 description 1
- LBTSTRJBEQUTEB-UHFFFAOYSA-N C1=CC2=CC=CC(C3=C4C=CC=CC4=C(B(C4=CC=C(C5=CC=C(B(C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)S5)S4)C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=C4C=CC=CC4=C(B(C4=CC=C(C5=CC=C(C6=CC=C(B(C7=C8C=CC=CC8=C(C8=C9C=CC=CC9=CC=C8)C=C7)C7=C8C=CC=CC8=C(C8=C9C=CC=CC9=CC=C8)C=C7)S6)S5)S4)C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=CN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)S4)C4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=CN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)S4)C4=C3C=CC=C4)=C2C=C1.CC(C)(C)C1=CC=C(C2=NC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)S2)C=C1.CC1=C(C2=CC=C(C(C)(C)C)C=C2)SC(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)=N1 Chemical compound C1=CC2=CC=CC(C3=C4C=CC=CC4=C(B(C4=CC=C(C5=CC=C(B(C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)S5)S4)C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=C4C=CC=CC4=C(B(C4=CC=C(C5=CC=C(C6=CC=C(B(C7=C8C=CC=CC8=C(C8=C9C=CC=CC9=CC=C8)C=C7)C7=C8C=CC=CC8=C(C8=C9C=CC=CC9=CC=C8)C=C7)S6)S5)S4)C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=CN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)S4)C4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=CN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)S4)C4=C3C=CC=C4)=C2C=C1.CC(C)(C)C1=CC=C(C2=NC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)S2)C=C1.CC1=C(C2=CC=C(C(C)(C)C)C=C2)SC(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)=N1 LBTSTRJBEQUTEB-UHFFFAOYSA-N 0.000 description 1
- LVFNWPLEJZUZTD-UHFFFAOYSA-N C1=CC2=CC=CC(C3=C4C=CC=CC4=C(C4=CC=C(N(C5=CC=C(C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)C=C5)C5=CC=C(C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)C=C5)C=C4)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=C4C=CC=CC4=C(N(C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(N(C4=CC=C(C5=CC=C(N(C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C=C5)C=C4)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=CC=C(N(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C=C1.C1=CC=C(N(C2=CC=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=CC=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C=C1 Chemical compound C1=CC2=CC=CC(C3=C4C=CC=CC4=C(C4=CC=C(N(C5=CC=C(C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)C=C5)C5=CC=C(C6=C7C=CC=CC7=C(C7=C8C=CC=CC8=CC=C7)C=C6)C=C5)C=C4)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=C4C=CC=CC4=C(N(C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(N(C4=CC=C(C5=CC=C(N(C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C=C5)C=C4)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=CC=C(N(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C=C1.C1=CC=C(N(C2=CC=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C2=CC=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C=C2)C=C1 LVFNWPLEJZUZTD-UHFFFAOYSA-N 0.000 description 1
- IGFINIFESYAMAE-SQFOKGOASA-N C1=CC2=CC=CC(C3=C4C=CC=CC4=C(C4=NC(C5=C6C=CC=CC6=C(C6=C7C=CC=CC7=CC=C6)C=C5)=NC(C5=C6C=CC=CC6=C(C6=C7C=CC=CC7=CC=C6)C=C5)=N4)C=C3)=C2C=C1.C1=CC=C(C2=CC=CC3=C2C2=C(C=CC=N2)C(C2=CC4=C(C(C5=CC=CC=C5)=CC=C4)C4=C2C=CC=N4)=C3)C=C1.O=C1C2=CC3=C(C=C2N(C2=C4C=CC=CC4=CC=C2)C2=C1C=CC=C2)C(=O)C1=CC=CC=C1N3C1=C2C=CC=CC2=CC=C1.O=C1C2=CC=CC3=C2C(=CC=C3C2=C3C=CC=CC3=CC=C2)C(=O)N1C1=CC=CC=C1.[H]CCCC/C(C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1)=C(/CCC[H])C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.[H]CCCCCCC(C1=C2C=CC=CC2=C(C2=CC=C(C(CCCC[H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C3=C2C=CC=C3)C=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound C1=CC2=CC=CC(C3=C4C=CC=CC4=C(C4=NC(C5=C6C=CC=CC6=C(C6=C7C=CC=CC7=CC=C6)C=C5)=NC(C5=C6C=CC=CC6=C(C6=C7C=CC=CC7=CC=C6)C=C5)=N4)C=C3)=C2C=C1.C1=CC=C(C2=CC=CC3=C2C2=C(C=CC=N2)C(C2=CC4=C(C(C5=CC=CC=C5)=CC=C4)C4=C2C=CC=N4)=C3)C=C1.O=C1C2=CC3=C(C=C2N(C2=C4C=CC=CC4=CC=C2)C2=C1C=CC=C2)C(=O)C1=CC=CC=C1N3C1=C2C=CC=CC2=CC=C1.O=C1C2=CC=CC3=C2C(=CC=C3C2=C3C=CC=CC3=CC=C2)C(=O)N1C1=CC=CC=C1.[H]CCCC/C(C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1)=C(/CCC[H])C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.[H]CCCCCCC(C1=C2C=CC=CC2=C(C2=CC=C(C(CCCC[H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C3=C2C=CC=C3)C=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1 IGFINIFESYAMAE-SQFOKGOASA-N 0.000 description 1
- HYINQTIURWNQGU-UHFFFAOYSA-N C1=CC2=CC=CC(C3=C4C=CC=CC4=C(N(C4=CC5=C(C=CC=C5)C=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)=C2C=C1.C1=CN=C(C2=C(C3=NC=CC=C3)C(C3=NC=CC=C3)=C(C3=NC=CC=C3)C(C3=NC=CC=C3)=C2C2=NC=CC=C2)C=C1.C1=CN=C(C2=C(C3=NC=CC=C3)C=CC=C2)C=C1.C1=CN=C2C(=C1)C=CC1=CC=CC(C3=CC4=C(C=CC=C4)C=C3)=C12.CC1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.CC1=CC=CN=C1C1=C(C2=CC=C(C3=CC=CC=C3)C=C2)C=CC=C1.CC1=NC(C2=C(C3=CC=CC=C3)SC=C2)=C(C)N1C1=CC=CC=C1.COC1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.FC1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.[C-]#[N+]C1=C(C2=C(C3=NC=CC=C3C)C=CC=C2)C=CC=C1 Chemical compound C1=CC2=CC=CC(C3=C4C=CC=CC4=C(N(C4=CC5=C(C=CC=C5)C=C4)C4=C5C=CC=CC5=C(C5=C6C=CC=CC6=CC=C5)C=C4)C=C3)=C2C=C1.C1=CN=C(C2=C(C3=NC=CC=C3)C(C3=NC=CC=C3)=C(C3=NC=CC=C3)C(C3=NC=CC=C3)=C2C2=NC=CC=C2)C=C1.C1=CN=C(C2=C(C3=NC=CC=C3)C=CC=C2)C=C1.C1=CN=C2C(=C1)C=CC1=CC=CC(C3=CC4=C(C=CC=C4)C=C3)=C12.CC1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.CC1=CC=CN=C1C1=C(C2=CC=C(C3=CC=CC=C3)C=C2)C=CC=C1.CC1=NC(C2=C(C3=CC=CC=C3)SC=C2)=C(C)N1C1=CC=CC=C1.COC1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.FC1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.[C-]#[N+]C1=C(C2=C(C3=NC=CC=C3C)C=CC=C2)C=CC=C1 HYINQTIURWNQGU-UHFFFAOYSA-N 0.000 description 1
- YMNUPZMUSDQNJC-UHFFFAOYSA-N C1=CC2=CC=CC(C3=CC=C(C4=CN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)O4)C4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=NN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)O4)C4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=NC4=C(C=CC=C4)N3C3=CC=C(C4=CC=CC5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=CC=C(C3=CC=C(C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)S3)C=C2)C=C1.CC(C)(C)C1=CC=C(C2=CN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)O2)C=C1.CC(C)(C)C1=CC=C(C2=NC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=C3C=CC=CC3=C(C3=C4C=CC=CC4=CC=C3)C=C2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=CC=C(C3=C([N+](=O)[O-])C=CC=C3)C(N=[Os])=C2)C=C1 Chemical compound C1=CC2=CC=CC(C3=CC=C(C4=CN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)O4)C4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=NN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)O4)C4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=NC4=C(C=CC=C4)N3C3=CC=C(C4=CC=CC5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(C2=CC=C(C3=CC=C(C4=CC=C(C5=CC=CC6=C5C=CC=C6)C5=C4C=CC=C5)S3)C=C2)C=C1.CC(C)(C)C1=CC=C(C2=CN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)O2)C=C1.CC(C)(C)C1=CC=C(C2=NC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=C3C=CC=CC3=C(C3=C4C=CC=CC4=CC=C3)C=C2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=CC=C(C3=C([N+](=O)[O-])C=CC=C3)C(N=[Os])=C2)C=C1 YMNUPZMUSDQNJC-UHFFFAOYSA-N 0.000 description 1
- NTTDTYDMIRAFMH-UHFFFAOYSA-N C1=CC2=CC=CC(C3=CC=C(C4=NN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)O4)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=NN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)S4)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(N2C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)=NN=C2C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC(C4=NN=C(C5=CC=C(C(C)(C)C)C=C5)O4)=C(C4=CC=C(C5=CC=CC6=CC=CC=C65)C5=C4C=CC=C5)C=C3)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)N2C2=CC=CC=C2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)S2)C=C1.CC1=CC=CC=C1C1=C(C)C=C(C2=NN=C(C3=CC=C(C4=C(C)C=CC=C4)C(C)=C3)O2)C=C1 Chemical compound C1=CC2=CC=CC(C3=CC=C(C4=NN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)O4)C=C3)=C2C=C1.C1=CC2=CC=CC(C3=CC=C(C4=NN=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)S4)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(N2C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)=NN=C2C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC(C4=NN=C(C5=CC=C(C(C)(C)C)C=C5)O4)=C(C4=CC=C(C5=CC=CC6=CC=CC=C65)C5=C4C=CC=C5)C=C3)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)N2C2=CC=CC=C2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)O2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)S2)C=C1.CC1=CC=CC=C1C1=C(C)C=C(C2=NN=C(C3=CC=C(C4=C(C)C=CC=C4)C(C)=C3)O2)C=C1 NTTDTYDMIRAFMH-UHFFFAOYSA-N 0.000 description 1
- OQXZLQCKPJJZRU-UHFFFAOYSA-N C1=CC2=CC=CC(C3=CC=C(N(C4=CC=C(C5=CC=C(N(C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C6=C5C=CC=C6)C5=C4C=CC=C5)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.CC1=CC=C(N(C2=CC=C(C)C(C3=C(C)C=CC=C3)=C2)C2=CC=C(C)C(C3=C(C)C=CC=C3)=C2)C=C1C1=C(C)C=CC=C1.CC1=CC=CC=C1C1=C(C)C=C(N(C2=CC(C)=C(C3=CC=CC=C3C)C=C2)C2=CC(C)=C(C3=C(C)C=CC=C3)C=C2)C=C1.CC1=CC=CC=C1C1=C(C)C=C(N(C2=CC=C(C3=CC=C(N(C4=CC=C(C5=C(C)C=CC=C5)C(C)=C4)C4=CC=C(C5=C(C)C=CC=C5)C(C)=C4)C=C3)C=C2)C2=CC(C)=C(C3=CC=CC=C3C)C=C2)C=C1 Chemical compound C1=CC2=CC=CC(C3=CC=C(N(C4=CC=C(C5=CC=C(N(C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C6=CC=C(C7=C8C=CC=CC8=CC=C7)C7=C6C=CC=C7)C6=C5C=CC=C6)C5=C4C=CC=C5)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)=C2C=C1.C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.CC1=CC=C(N(C2=CC=C(C)C(C3=C(C)C=CC=C3)=C2)C2=CC=C(C)C(C3=C(C)C=CC=C3)=C2)C=C1C1=C(C)C=CC=C1.CC1=CC=CC=C1C1=C(C)C=C(N(C2=CC(C)=C(C3=CC=CC=C3C)C=C2)C2=CC(C)=C(C3=C(C)C=CC=C3)C=C2)C=C1.CC1=CC=CC=C1C1=C(C)C=C(N(C2=CC=C(C3=CC=C(N(C4=CC=C(C5=C(C)C=CC=C5)C(C)=C4)C4=CC=C(C5=C(C)C=CC=C5)C(C)=C4)C=C3)C=C2)C2=CC(C)=C(C3=CC=CC=C3C)C=C2)C=C1 OQXZLQCKPJJZRU-UHFFFAOYSA-N 0.000 description 1
- OBOCWRZQLURWEA-UHFFFAOYSA-N C1=CC2=CC=CC(C3=CC=CC4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=CC=CC4=C3C=CC=C4)=C2C=C1.CCC.CCC.CCC.CCC.CCC.CCC.CCC Chemical compound C1=CC2=CC=CC(C3=CC=CC4=C3C=CC=C4)=C2C=C1.C1=CC2=CC=CC(C3=CC=CC4=C3C=CC=C4)=C2C=C1.CCC.CCC.CCC.CCC.CCC.CCC.CCC OBOCWRZQLURWEA-UHFFFAOYSA-N 0.000 description 1
- MMMGALZMKWUADG-IWLYPTDSSA-L C1=CC=C(/C=C/C2=CC=C3O[AlH]/N4=C/C=C\C2=C34)C=C1.C1=CC=C(C2=CC=C3O[AlH]/N4=C/C=C\C2=C34)C=C1 Chemical compound C1=CC=C(/C=C/C2=CC=C3O[AlH]/N4=C/C=C\C2=C34)C=C1.C1=CC=C(C2=CC=C3O[AlH]/N4=C/C=C\C2=C34)C=C1 MMMGALZMKWUADG-IWLYPTDSSA-L 0.000 description 1
- AJWUKVSFTTYIEI-UHFFFAOYSA-N C1=CC=C(C2=C(C3=NC4=C(C=CC=C4)C=C3)CCC=C2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C3=CC=CC=C3C=C2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C=CC=C2)C=C1.C1=CC=C(C2=C3C(=CC=C2)/C=C\C2=CC=CN=C23)C=C1.CC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C(C2=CC=CC=C2)=C1.CC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C=C1.CC1=CC=CC(C2=CC=CC=C2)=C1C1=NC=CC=C1.CC1=CC=CN=C1C1=C(C2=CC=CC=C2)C=CC=C1.FC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C(C2=CC=CC=C2)=C1.FC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C=C1.O#CC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C=C1 Chemical compound C1=CC=C(C2=C(C3=NC4=C(C=CC=C4)C=C3)CCC=C2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C3=CC=CC=C3C=C2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C=C3C=CC=CC3=C2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C=CC=C2)C=C1.C1=CC=C(C2=C3C(=CC=C2)/C=C\C2=CC=CN=C23)C=C1.CC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C(C2=CC=CC=C2)=C1.CC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C=C1.CC1=CC=CC(C2=CC=CC=C2)=C1C1=NC=CC=C1.CC1=CC=CN=C1C1=C(C2=CC=CC=C2)C=CC=C1.FC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C(C2=CC=CC=C2)=C1.FC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C=C1.O#CC1=CC(C2=CC=CC=C2)=C(C2=NC=CC=C2)C=C1 AJWUKVSFTTYIEI-UHFFFAOYSA-N 0.000 description 1
- YSUPYIBRYFUSKZ-UHFFFAOYSA-N C1=CC=C(C2=C(C3=NC=CC=C3)C=CO2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C=CS2)C=C1.C1=CC=C(C2=CC=CC(C3=CC=CC=C3)=C2C2=NN=C(C3=C(C4=CC=CC=C4)C=CC=C3C3=CC=CC=C3)O2)C=C1.C1=CC=C(C2=CC=CC=C2C2=NC(C3=CC=CC=C3C3=CC=CC=C3)=NC(C3=CC=CC=C3C3=CC=CC=C3)=N2)C=C1.C1=CC=C(C2=CC=CC=C2C2=NC3=CC=CC=C3N=C2C2=C(C3=CC=CC=C3)C=CC=C2)C=C1.C1=CC=C(C2=CC=CC=C2C2=NN=C(C3=CC=CC=C3C3=CC=CC=C3)O2)C=C1.C1=CC=C(C2=COC(C3=CC=CC=C3)=C2C2=NC=CC=C2)C=C1.C1=CC=C(C2=CSC(C3=CC=CC=C3)=C2C2=NC=CC=C2)C=C1.COC1=CC=C(C2=C(C3=NC=CC=C3)C=CC=C2)C=C1.COC1=CC=C(C2=CC=CC(C3=CC=C(OC)C=C3)=C2C2=NC=CC=C2)C=C1 Chemical compound C1=CC=C(C2=C(C3=NC=CC=C3)C=CO2)C=C1.C1=CC=C(C2=C(C3=NC=CC=C3)C=CS2)C=C1.C1=CC=C(C2=CC=CC(C3=CC=CC=C3)=C2C2=NN=C(C3=C(C4=CC=CC=C4)C=CC=C3C3=CC=CC=C3)O2)C=C1.C1=CC=C(C2=CC=CC=C2C2=NC(C3=CC=CC=C3C3=CC=CC=C3)=NC(C3=CC=CC=C3C3=CC=CC=C3)=N2)C=C1.C1=CC=C(C2=CC=CC=C2C2=NC3=CC=CC=C3N=C2C2=C(C3=CC=CC=C3)C=CC=C2)C=C1.C1=CC=C(C2=CC=CC=C2C2=NN=C(C3=CC=CC=C3C3=CC=CC=C3)O2)C=C1.C1=CC=C(C2=COC(C3=CC=CC=C3)=C2C2=NC=CC=C2)C=C1.C1=CC=C(C2=CSC(C3=CC=CC=C3)=C2C2=NC=CC=C2)C=C1.COC1=CC=C(C2=C(C3=NC=CC=C3)C=CC=C2)C=C1.COC1=CC=C(C2=CC=CC(C3=CC=C(OC)C=C3)=C2C2=NC=CC=C2)C=C1 YSUPYIBRYFUSKZ-UHFFFAOYSA-N 0.000 description 1
- HFFOXDLDOMMUDA-BWPZAFIVSA-L C1=CC=C(C2=CC(C3=CC=C(C4=NN(C5=C6C=CC=CC6=C(C6=CC=CC7=CC=CC=C76)C=C5)C(C5=CC=CC=C5)=C4)C=C3)=NN2C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(C2=CC(C3=CC=CC=C3)=O[Eu@]3(O2)N2=CC=C4C=CC=CC4=C2C2=N3C=CC3=C2C=CC=C3)C=C1.C1=CC=C(C2=CC(C3=CC=CC=C3)=O[Tb@]3(O2)N2=CC=C4C=CC=CC4=C2C2=N3C=CC3=C2C=CC=C3)C=C1.C1=CC=C(C2CC(C3=CC=C(C4=NN(C5=C6C=CC=CC6=C(C6=CC=CC7=CC=CC=C76)C=C5)C(C5=CC=CC=C5)C4)C=C3)=NN2C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.CC1=CC=CC(N(C2=CC=C(C3=CC=C(N(C4=CC=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)C=C4)C4=CC=CC(C)=C4)C=C3)C=C2)C2=CC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)C=C2)=C1 Chemical compound C1=CC=C(C2=CC(C3=CC=C(C4=NN(C5=C6C=CC=CC6=C(C6=CC=CC7=CC=CC=C76)C=C5)C(C5=CC=CC=C5)=C4)C=C3)=NN2C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.C1=CC=C(C2=CC(C3=CC=CC=C3)=O[Eu@]3(O2)N2=CC=C4C=CC=CC4=C2C2=N3C=CC3=C2C=CC=C3)C=C1.C1=CC=C(C2=CC(C3=CC=CC=C3)=O[Tb@]3(O2)N2=CC=C4C=CC=CC4=C2C2=N3C=CC3=C2C=CC=C3)C=C1.C1=CC=C(C2CC(C3=CC=C(C4=NN(C5=C6C=CC=CC6=C(C6=CC=CC7=CC=CC=C76)C=C5)C(C5=CC=CC=C5)C4)C=C3)=NN2C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=C1.CC1=CC=CC(N(C2=CC=C(C3=CC=C(N(C4=CC=C(C5=CC=C(C6=C7C=CC=CC7=CC=C6)C6=C5C=CC=C6)C=C4)C4=CC=CC(C)=C4)C=C3)C=C2)C2=CC=C(C3=CC=C(C4=C5C=CC=CC5=CC=C4)C4=C3C=CC=C4)C=C2)=C1 HFFOXDLDOMMUDA-BWPZAFIVSA-L 0.000 description 1
- MUOUTHMEZANPAT-UHFFFAOYSA-N C1=CC=C(C2=CC=C(C3=CC=C(N(C4=CC=C(C5=CC=C(C6=CC=CC=C6)C=C5)C=C4)C4=CC=C(C5=CC=C(C6=CC=CC=C6)C=C5)C=C4)C=C3)C=C2)C=C1.C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.CC1=CC=C(N(C2=CC=C(C)C=C2)C2=C(C)C=C(C3=CC(C)=C(N(C4=CC=C(C)C=C4)C4=CC=C(C)C=C4)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.CC1=CC=CC(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(C(C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=CC(C)=CC=C6)C=C5)C=C4)C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=CC(C)=CC=C6)C=C5)C=C4)C=C3)C=C2)=C1.CC1=CC=CC(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=CC(C)=CC=C6)C=C5)C=C4)C=C3)C=C2)=C1 Chemical compound C1=CC=C(C2=CC=C(C3=CC=C(N(C4=CC=C(C5=CC=C(C6=CC=CC=C6)C=C5)C=C4)C4=CC=C(C5=CC=C(C6=CC=CC=C6)C=C5)C=C4)C=C3)C=C2)C=C1.C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=CC=C4)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.CC1=CC=C(N(C2=CC=C(C)C=C2)C2=C(C)C=C(C3=CC(C)=C(N(C4=CC=C(C)C=C4)C4=CC=C(C)C=C4)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.CC1=CC=CC(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(C(C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=CC(C)=CC=C6)C=C5)C=C4)C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=CC(C)=CC=C6)C=C5)C=C4)C=C3)C=C2)=C1.CC1=CC=CC(N(C2=CC=CC=C2)C2=CC=C(C3=CC=C(N(C4=CC=CC=C4)C4=CC=C(C5=CC=C(N(C6=CC=CC=C6)C6=CC(C)=CC=C6)C=C5)C=C4)C=C3)C=C2)=C1 MUOUTHMEZANPAT-UHFFFAOYSA-N 0.000 description 1
- DNCWQPAREFWAKA-UHFFFAOYSA-N C1=CC=C(C2=NC=CC=C2)C=C1.CC.CC.CC.CC.CC.CC.[Ar]C1=C(C2=NC=CC=C2)C=CC=C1.[Ar]C1=CC=CC([Ar])=C1C1=NC=CC=C1 Chemical compound C1=CC=C(C2=NC=CC=C2)C=C1.CC.CC.CC.CC.CC.CC.[Ar]C1=C(C2=NC=CC=C2)C=CC=C1.[Ar]C1=CC=CC([Ar])=C1C1=NC=CC=C1 DNCWQPAREFWAKA-UHFFFAOYSA-N 0.000 description 1
- YVNCOAQYPRAQET-WJVNYJCBSA-K C1=CC=C(CN2CCOCCOCCN(CC3=CC=CC=C3)CCOCCOCC2)C=C1.C1=CC=C2OCCSCCOC3=C(C=CC=C3)OCCSCCOC2=C1.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C2=CC=CS2)=O[Tb]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.[Eu+2].[Eu+3] Chemical compound C1=CC=C(CN2CCOCCOCCN(CC3=CC=CC=C3)CCOCCOCC2)C=C1.C1=CC=C2OCCSCCOC3=C(C=CC=C3)OCCSCCOC2=C1.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C2=CC=CS2)=O[Tb]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.[Eu+2].[Eu+3] YVNCOAQYPRAQET-WJVNYJCBSA-K 0.000 description 1
- UKABRWDSONGYDE-UHFFFAOYSA-N C1=CC=C(N(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C2=CC=C(C3=C4C=CC=CC4=C(N(C4=CC=CC=C4)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C=C3)C3=C2C=CC=C3)C=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=C(C4=CC=CC=C4)C=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(C2=C3C=CC=CC3=CC=C2)C=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=CC=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=CC=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=CC=C1 Chemical compound C1=CC=C(N(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C2=CC=C(C3=C4C=CC=CC4=C(N(C4=CC=CC=C4)C4=CC=C(C5=C6C=CC=CC6=CC=C5)C5=C4C=CC=C5)C=C3)C3=C2C=CC=C3)C=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=C(C4=CC=CC=C4)C=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4)C=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(C2=C3C=CC=CC3=CC=C2)C=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=CC=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=CC=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=CC=C1 UKABRWDSONGYDE-UHFFFAOYSA-N 0.000 description 1
- RMGKBJAIKPPXSP-UHFFFAOYSA-N C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C=CC3=CC=C(C4=C5C=CC=CC5=C(C=CC5=CC=C(N(C6=CC=CC=C6)C6=CC=CC=C6)C=C5)C=C4)C4=C3C=CC=C4)C=C2)C=C1.CCN1C2=CC(C=CC3=C4C=CC=CC4=C(C4=CC=C(C=CC5=CC6=C(C=C5)C5=C(C=CC=C5)N6CC)C5=C4C=CC=C5)C=C3)=CC=C2C2=C1C=CC=C2.COC1=CC=C(N(C2=CC=C(C=CC3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=C2)C2=CC=C(OC)C=C2)C=C1.[C-]#[N+]C1=CC=C(C=CC2=C3C=CC=CC3=C(C3=C4C=CC=CC4=C(C=CC4=CC=C(C#N)C=C4)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.[C-]#[N+]C1=CC=C(C=CC2=CC=C(C3=C4C=CC=CC4=C(C=CC4=CC=C(C#N)C=C4)C=C3)C3=C2C=CC=C3)C=C1 Chemical compound C1=CC=C(N(C2=CC=CC=C2)C2=CC=C(C=CC3=CC=C(C4=C5C=CC=CC5=C(C=CC5=CC=C(N(C6=CC=CC=C6)C6=CC=CC=C6)C=C5)C=C4)C4=C3C=CC=C4)C=C2)C=C1.CCN1C2=CC(C=CC3=C4C=CC=CC4=C(C4=CC=C(C=CC5=CC6=C(C=C5)C5=C(C=CC=C5)N6CC)C5=C4C=CC=C5)C=C3)=CC=C2C2=C1C=CC=C2.COC1=CC=C(N(C2=CC=C(C=CC3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=C2)C2=CC=C(OC)C=C2)C=C1.[C-]#[N+]C1=CC=C(C=CC2=C3C=CC=CC3=C(C3=C4C=CC=CC4=C(C=CC4=CC=C(C#N)C=C4)C4=C3C=CC=C4)C3=C2C=CC=C3)C=C1.[C-]#[N+]C1=CC=C(C=CC2=CC=C(C3=C4C=CC=CC4=C(C=CC4=CC=C(C#N)C=C4)C=C3)C3=C2C=CC=C3)C=C1 RMGKBJAIKPPXSP-UHFFFAOYSA-N 0.000 description 1
- SGVUUNQVSWNFJH-UHFFFAOYSA-N C1CCCCC1.CC Chemical compound C1CCCCC1.CC SGVUUNQVSWNFJH-UHFFFAOYSA-N 0.000 description 1
- QLKSIGHVBGAQHJ-UHFFFAOYSA-N CC(=O)C1=CC=C(N(=O)O)C=C1.CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC=C(N([Ar])[Ar])C=C1.O=C(C1=CC=C(N([Ar])[Ar])C=C1)C1=CC=C(N(=O)O)C=C1.O=C([Y])C1=CC=C(N(=O)O)C=C1.[Ar].[Ar] Chemical compound CC(=O)C1=CC=C(N(=O)O)C=C1.CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC=C(N([Ar])[Ar])C=C1.O=C(C1=CC=C(N([Ar])[Ar])C=C1)C1=CC=C(N(=O)O)C=C1.O=C([Y])C1=CC=C(N(=O)O)C=C1.[Ar].[Ar] QLKSIGHVBGAQHJ-UHFFFAOYSA-N 0.000 description 1
- GKHRFWVWIDWCFM-UHFFFAOYSA-N CC(=O)C1=CC=C(N(=O)O)C=C1.O=C(C1=CC=C(N(=O)O)C=C1)N([Ar])/B=N\P.[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[H]N([H])[Ar] Chemical compound CC(=O)C1=CC=C(N(=O)O)C=C1.O=C(C1=CC=C(N(=O)O)C=C1)N([Ar])/B=N\P.[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[H]N([H])[Ar] GKHRFWVWIDWCFM-UHFFFAOYSA-N 0.000 description 1
- ZBZSWHPYHBDTPW-UHFFFAOYSA-N CC(=O)C1=CC=C(N(=O)O)C=C1.O=C(C1=CC=C(N(=O)O)C=C1)N([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[H]N([Ar])[Ar] Chemical compound CC(=O)C1=CC=C(N(=O)O)C=C1.O=C(C1=CC=C(N(=O)O)C=C1)N([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[H]N([Ar])[Ar] ZBZSWHPYHBDTPW-UHFFFAOYSA-N 0.000 description 1
- XMYQBVBHXYNPFF-UHFFFAOYSA-N CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=CC=CC=C2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)O2)C=C1.CC1=CC=C(C2=NC3=C(C=C(C)C(C)=C3)N=C2C2=CC(C3=NC4=C(C=C(C)C(C)=C4)N=C3C3=CC=C(C)C=C3)=CC(C3=NC4=C(C=C(C)C(C)=C4)N=C3C3=CC=C(C(C)(C)C)C=C3)=C2)C=C1.[H]C(C1=CC=C(C2=CC=C(C([H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C=C2)C=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)N2C2=CC=CC=C2)C=C1.CC(C)(C)C1=CC=C(C2=NN=C(C3=CC=C(C4=CC=CC=C4)C=C3)O2)C=C1.CC1=CC=C(C2=NC3=C(C=C(C)C(C)=C3)N=C2C2=CC(C3=NC4=C(C=C(C)C(C)=C4)N=C3C3=CC=C(C)C=C3)=CC(C3=NC4=C(C=C(C)C(C)=C4)N=C3C3=CC=C(C(C)(C)C)C=C3)=C2)C=C1.[H]C(C1=CC=C(C2=CC=C(C([H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C=C2)C=C1)=C(C1=CC=CC=C1)C1=CC=CC=C1 XMYQBVBHXYNPFF-UHFFFAOYSA-N 0.000 description 1
- OVBYIOQOGXAYMG-UHFFFAOYSA-N CC.CC(=O)C1=CC=C(N(=O)O)C=C1.CC(=O)C1=CC=C(N(=O)O)C=C1.O=C([Y])C1=CC=C(N(=O)O)C=C1 Chemical compound CC.CC(=O)C1=CC=C(N(=O)O)C=C1.CC(=O)C1=CC=C(N(=O)O)C=C1.O=C([Y])C1=CC=C(N(=O)O)C=C1 OVBYIOQOGXAYMG-UHFFFAOYSA-N 0.000 description 1
- QENBDNIOZQGYNJ-UHFFFAOYSA-N CC1=C(C)C(N(C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC4=C3C=CC=C4)C(C)=C2C)C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC4=C3C=CC=C4)C(C)=C2C)=C(C)C(C)=C1C1=C2C=CC=CC2=CC2=C1C=CC=C2.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C(C)=C2C)C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC=C3)C(C)=C2)=C(C)C(C)=C1C1=C2C=CC=CC2=CC=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1 Chemical compound CC1=C(C)C(N(C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC4=C3C=CC=C4)C(C)=C2C)C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC4=C3C=CC=C4)C(C)=C2C)=C(C)C(C)=C1C1=C2C=CC=CC2=CC2=C1C=CC=C2.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C(C)=C2C)C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC=C3)C(C)=C2)=C(C)C(C)=C1C1=C2C=CC=CC2=CC=C1.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1 QENBDNIOZQGYNJ-UHFFFAOYSA-N 0.000 description 1
- UZCMLNKLJFXOKU-UHFFFAOYSA-N CC1=C2C=CC=CC2=C(C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)C=C1.CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC(C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)=CC=C1.CC1=CC(C2=CC=CC3=C2C=CC=C3)=C2C=CC=CC2=C1.CC1=CC2=C(C3=CC=CC4=C3C=CC=C4)C=CC=C2C=C1.CC1=CC=C(C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)C=C1.CC1=CC=C2C=CC=CC2=C1C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC=C2C=CC=CC2=C1C1=CC=CC2=C1C=CC=C2.CC1=CC=CC2=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=CC=C12.CC1=CC=CC=C1C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1 Chemical compound CC1=C2C=CC=CC2=C(C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)C=C1.CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC(C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)=CC=C1.CC1=CC(C2=CC=CC3=C2C=CC=C3)=C2C=CC=CC2=C1.CC1=CC2=C(C3=CC=CC4=C3C=CC=C4)C=CC=C2C=C1.CC1=CC=C(C2=C3C=CC=CC3=C(C3=CC=CC4=C3C=CC=C4)C=C2)C=C1.CC1=CC=C2C=CC=CC2=C1C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=CC=C2C=CC=CC2=C1C1=CC=CC2=C1C=CC=C2.CC1=CC=CC2=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=CC=C12.CC1=CC=CC=C1C1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1 UZCMLNKLJFXOKU-UHFFFAOYSA-N 0.000 description 1
- ZVJYYJORNGKILY-UHFFFAOYSA-N CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CCC.CCC.CCC.CCC Chemical compound CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CC1=C2C=CC=CC2=C(C2=CC=CC3=C2C=CC=C3)C=C1.CCC.CCC.CCC.CCC ZVJYYJORNGKILY-UHFFFAOYSA-N 0.000 description 1
- FDVQJEZAYCSURU-KOARIGNMSA-I CC1=CC(C)=O[Tb]2(O1)N1=CC=CCC1C1CC=CC=N12.CC1=CC2=C(O[Ce]3(O=C2C2=CC=CS2)N2=CC=C/C4=C/C=C5/C=CC=N3C5=C42)C(C)=C1.CC1=CC2=C(O[Eu](C)O=C2C(F)(F)F)C(C)=C1.CC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C(C4=CC=CC=C4)/C4=C/C=C5/C(C6=CC=CC=C6)=CC=N3C5=C42)C(C)=C1.CC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C/C4=C/C=C5/C=CC=N3C5=C42)C(C)=C1 Chemical compound CC1=CC(C)=O[Tb]2(O1)N1=CC=CCC1C1CC=CC=N12.CC1=CC2=C(O[Ce]3(O=C2C2=CC=CS2)N2=CC=C/C4=C/C=C5/C=CC=N3C5=C42)C(C)=C1.CC1=CC2=C(O[Eu](C)O=C2C(F)(F)F)C(C)=C1.CC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C(C4=CC=CC=C4)/C4=C/C=C5/C(C6=CC=CC=C6)=CC=N3C5=C42)C(C)=C1.CC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C/C4=C/C=C5/C=CC=N3C5=C42)C(C)=C1 FDVQJEZAYCSURU-KOARIGNMSA-I 0.000 description 1
- DDPRLEUATTUPRO-UHFFFAOYSA-N CC1=CC(C2=C3C=CC=CC3=CC=C2)=C2C=CC=CC2=C1C1=CC=CC2=C1C=CC=C2.CC1=CC2=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=CC=C2C=C1 Chemical compound CC1=CC(C2=C3C=CC=CC3=CC=C2)=C2C=CC=CC2=C1C1=CC=CC2=C1C=CC=C2.CC1=CC2=C(C3=C4C=CC=CC4=C(C4=CC=CC5=C4C=CC=C5)C=C3)C=CC=C2C=C1 DDPRLEUATTUPRO-UHFFFAOYSA-N 0.000 description 1
- NPLBNEKUMIOELC-UHFFFAOYSA-N CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4C)C=C3C)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4C)C=C3C)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(C2=C3C=CC=CC3=CC=C2C)C=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=C(F)C=C3C)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(F)C=C3C)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(F)C=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2C)C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2)=C(C)C(C)=C1C1=C2C=CC=CC2=CC=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3C)C(F)=C2C)C2=C(C)C(F)=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2)=C(C)C(F)=C1C1=C2C=CC=CC2=CC=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3C)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=CC=C1C Chemical compound CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4C)C=C3C)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(C4=C5C=CC=CC5=CC=C4C)C=C3C)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(C2=C3C=CC=CC3=CC=C2C)C=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=C(F)C=C3C)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=C(F)C=C3C)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=C(F)C=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2C)C2=C(C)C(C)=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2)=C(C)C(C)=C1C1=C2C=CC=CC2=CC=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3C)C(F)=C2C)C2=C(C)C(F)=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2)=C(C)C(F)=C1C1=C2C=CC=CC2=CC=C1C.CC1=CC(N(C2=CC(C)=C(C3=C4C=CC=CC4=CC=C3C)C=C2C)C2=C(C)C=C(C3=C4C=CC=CC4=CC=C3C)C(C)=C2)=C(C)C=C1C1=C2C=CC=CC2=CC=C1C NPLBNEKUMIOELC-UHFFFAOYSA-N 0.000 description 1
- SHQHPBKJGXHHRZ-UHFFFAOYSA-I CC1=CC2=C(O[Eu](C)O=C2C2=CC=CS2)C(C)=C1.CC1=CC2=C(O[Eu]3(O=C2C2=CC=CS2)N2=CC=C(C4=CC=CC=C4)/C4=C/C=C5/C(C6=CC=CC=C6)=CC=N3C5=C42)C(C)=C1.C[Eu]1OC2=C(C=NC=C2)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1C=NC=C3)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1C=NC=C3)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31 Chemical compound CC1=CC2=C(O[Eu](C)O=C2C2=CC=CS2)C(C)=C1.CC1=CC2=C(O[Eu]3(O=C2C2=CC=CS2)N2=CC=C(C4=CC=CC=C4)/C4=C/C=C5/C(C6=CC=CC=C6)=CC=N3C5=C42)C(C)=C1.C[Eu]1OC2=C(C=NC=C2)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1C=NC=C3)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1C=NC=C3)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31 SHQHPBKJGXHHRZ-UHFFFAOYSA-I 0.000 description 1
- VAOWLYQKWHMXEB-TXGNLWCYSA-N CC1=CC=C(/C=C/C2=CC=C(N(C3=CC=C(/C=C/C4=CC=C(C)C=C4)C=C3)C3=C(C)C=C(C4=CC(C)=C(N(C5=CC=C(/C=C/C6=CC=C(C)C=C6)C=C5)C5=CC=C(/C=C/C6=CC=C(C)C=C6)C=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)C=C2)C=C1 Chemical compound CC1=CC=C(/C=C/C2=CC=C(N(C3=CC=C(/C=C/C4=CC=C(C)C=C4)C=C3)C3=C(C)C=C(C4=CC(C)=C(N(C5=CC=C(/C=C/C6=CC=C(C)C=C6)C=C5)C5=CC=C(/C=C/C6=CC=C(C)C=C6)C=C5)C5=C4C=CC=C5)C4=C3C=CC=C4)C=C2)C=C1 VAOWLYQKWHMXEB-TXGNLWCYSA-N 0.000 description 1
- HUCFYNVIWMOGHF-UHFFFAOYSA-N CN([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar] Chemical compound CN([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar] HUCFYNVIWMOGHF-UHFFFAOYSA-N 0.000 description 1
- NJNUAQCQWXFOPC-UHFFFAOYSA-N CN([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar] Chemical compound CN([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar] NJNUAQCQWXFOPC-UHFFFAOYSA-N 0.000 description 1
- HTCSDUDXMDULLJ-UHFFFAOYSA-N CN([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar] Chemical compound CN([Ar])[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar].[Ar] HTCSDUDXMDULLJ-UHFFFAOYSA-N 0.000 description 1
- NTDVWOWIZPSXPB-UHFFFAOYSA-I C[Eu]1OC2=C(C=C(F)C=C2F)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1C=CC1=C3C=CC=C1)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1C=CC1=C3C=CC=C1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C(C4=CC=CC=C4)/C4=C/C=C5/C(C6=CC=CC=C6)=CC=N3C5=C42)C(F)=C1.FC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C/C4=C/C=C5/C=CC=N3C5=C42)C(F)=C1 Chemical compound C[Eu]1OC2=C(C=C(F)C=C2F)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1C=CC1=C3C=CC=C1)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1C=CC1=C3C=CC=C1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C(C4=CC=CC=C4)/C4=C/C=C5/C(C6=CC=CC=C6)=CC=N3C5=C42)C(F)=C1.FC1=CC2=C(O[Eu]3(O=C2C(F)(F)F)N2=CC=C/C4=C/C=C5/C=CC=N3C5=C42)C(F)=C1 NTDVWOWIZPSXPB-UHFFFAOYSA-I 0.000 description 1
- BMQROHJRRVQAPI-UHFFFAOYSA-I C[Eu]1OC2=C(C=CC3=C2C=CC=C3)C(C(F)(F)F)=O1.C[Eu]1OC2=C(CCC3=C2C=CC=C3)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=C3C=CC=CC3=C1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=CC=C1)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=CC=C1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31 Chemical compound C[Eu]1OC2=C(C=CC3=C2C=CC=C3)C(C(F)(F)F)=O1.C[Eu]1OC2=C(CCC3=C2C=CC=C3)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=C3C=CC=CC3=C1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=CC=C1)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=CC=C1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31 BMQROHJRRVQAPI-UHFFFAOYSA-I 0.000 description 1
- LEHZNRMRHCQQFE-UHFFFAOYSA-L C[Eu]1OC2=C(CCC3=C2C=C2C=CC=CC2=C3)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=C3C=CC=CC3=C1)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31 Chemical compound C[Eu]1OC2=C(CCC3=C2C=C2C=CC=CC2=C3)C(C(F)(F)F)=O1.FC(F)(F)C1=O[Eu]2(OC3=C1CCC1=C3C=C3C=CC=CC3=C1)N1=CC=C(C3=CC=CC=C3)/C3=C/C=C4/C(C5=CC=CC=C5)=CC=N2C4=C31 LEHZNRMRHCQQFE-UHFFFAOYSA-L 0.000 description 1
- YVVQHRLOHPYXFS-UHFFFAOYSA-N C[NH+]1NCCC[IH][IH]CCC[N-]1 Chemical compound C[NH+]1NCCC[IH][IH]CCC[N-]1 YVVQHRLOHPYXFS-UHFFFAOYSA-N 0.000 description 1
- 239000005132 Calcium sulfide based phosphorescent agent Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- YHSLIXBUDAMJCW-UVALPXJQSA-H FC(F)(F)C1=CC(C(F)(F)F)=O[Ce]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C(F)(F)F)=O[Tb]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31 Chemical compound FC(F)(F)C1=CC(C(F)(F)F)=O[Ce]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C(F)(F)F)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C(F)(F)F)=O[Tb]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31 YHSLIXBUDAMJCW-UVALPXJQSA-H 0.000 description 1
- ATBWXNVQILPGNW-JWJRLAEKSA-I FC(F)(F)C1=CC(C2=CC=CS2)=O[Ce]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C2=CC=CS2)=O[Ce]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C2=CC=CS2)=O[Tb]2(O1)N1=CC=CCC1C1CC=CC=N12 Chemical compound FC(F)(F)C1=CC(C2=CC=CS2)=O[Ce]2(O1)N1=CC=C/C3=C/C=C4/C=CC=N2C4=C31.FC(F)(F)C1=CC(C2=CC=CS2)=O[Ce]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C2=CC=CS2)=O[Eu]2(O1)N1=CC=CCC1C1CC=CC=N12.FC(F)(F)C1=CC(C2=CC=CS2)=O[Tb]2(O1)N1=CC=CCC1C1CC=CC=N12 ATBWXNVQILPGNW-JWJRLAEKSA-I 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- UDFSJHJKINSRFV-UHFFFAOYSA-N N1N=CN2N=CC=C21 Chemical compound N1N=CN2N=CC=C21 UDFSJHJKINSRFV-UHFFFAOYSA-N 0.000 description 1
- 229930182559 Natural dye Natural products 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical compound N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910007271 Si2O3 Inorganic materials 0.000 description 1
- 229910020489 SiO3 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000394605 Viola striata Species 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- ZYMXUMXINSBRMP-LYYOSKLGSA-N [H]CCCC/C(C1=CC=C(/C(CCCC[H])=C(\C2=CC=CC=C2)C2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2C=CC=C3)C=C1)=C(/C1=CC=CC=C1)C1=CC=C(C2=CC=CC3=C2C=CC=C3)C2=C1C=CC=C2.[H]CCCCC(C1=CC(OC)=C(C2=C3C=CC=CC3=C(C(CCCC[H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C=C2OC)C2=C1C=CC=C2)=C(C1=CC=CC=C1)C1=CC=CC=C1.[H]CCCCCCC(C1=C2C=CC=CC2=C(C2=CC=C(C(CCCC[H])=C(C3=CC=C(C)C=C3)C3=CC=C(C)C=C3)C3=C2C=CC=C3)C=C1)=C(C1=CC=C(C)C=C1)C1=CC=C(C)C=C1.[H]CCCCCCC(C1=C2C=CC=CC2=C(C2=CC=C(C(CCCC[H])=C(C3=CC=C(C)C=C3)C3=CC=C(C)C=C3)C3=C2C=CC=C3)C=C1)=C(C1=CC=C(C)C=C1)C1=CC=C(C)C=C1 Chemical compound [H]CCCC/C(C1=CC=C(/C(CCCC[H])=C(\C2=CC=CC=C2)C2=CC=C(C3=CC=CC4=C3C=CC=C4)C3=C2C=CC=C3)C=C1)=C(/C1=CC=CC=C1)C1=CC=C(C2=CC=CC3=C2C=CC=C3)C2=C1C=CC=C2.[H]CCCCC(C1=CC(OC)=C(C2=C3C=CC=CC3=C(C(CCCC[H])=C(C3=CC=CC=C3)C3=CC=CC=C3)C=C2OC)C2=C1C=CC=C2)=C(C1=CC=CC=C1)C1=CC=CC=C1.[H]CCCCCCC(C1=C2C=CC=CC2=C(C2=CC=C(C(CCCC[H])=C(C3=CC=C(C)C=C3)C3=CC=C(C)C=C3)C3=C2C=CC=C3)C=C1)=C(C1=CC=C(C)C=C1)C1=CC=C(C)C=C1.[H]CCCCCCC(C1=C2C=CC=CC2=C(C2=CC=C(C(CCCC[H])=C(C3=CC=C(C)C=C3)C3=CC=C(C)C=C3)C3=C2C=CC=C3)C=C1)=C(C1=CC=C(C)C=C1)C1=CC=C(C)C=C1 ZYMXUMXINSBRMP-LYYOSKLGSA-N 0.000 description 1
- KXDWERLIGQNTTL-UHFFFAOYSA-N [Ir]N1=C(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=CC=C1.[Ir]N1=C(C2=CC=CC3=C2C=CC=C3)C2=C(C=CC=C2)C=C1 Chemical compound [Ir]N1=C(C2=CC=C(C3=C4C=CC=CC4=CC=C3)C3=C2C=CC=C3)C=CC=C1.[Ir]N1=C(C2=CC=CC3=C2C=CC=C3)C2=C(C=CC=C2)C=C1 KXDWERLIGQNTTL-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- XEPMXWGXLQIFJN-UHFFFAOYSA-K aluminum;2-carboxyquinolin-8-olate Chemical compound [Al+3].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1.C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 XEPMXWGXLQIFJN-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 239000000298 carbocyanine Substances 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000005606 carbostyryl group Chemical group 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 150000001787 chalcogens Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 1
- 229910052589 chlorapatite Inorganic materials 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 150000004683 dihydrates Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 1
- VYXSBFYARXAAKO-UHFFFAOYSA-N ethyl 2-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]benzoate;hydron;chloride Chemical compound [Cl-].C1=2C=C(C)C(NCC)=CC=2OC2=CC(=[NH+]CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LNBHUCHAFZUEGJ-UHFFFAOYSA-N europium(3+) Chemical compound [Eu+3] LNBHUCHAFZUEGJ-UHFFFAOYSA-N 0.000 description 1
- 235000020280 flat white Nutrition 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 150000002244 furazanes Chemical class 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- RBBOWEDMXHTEPA-UHFFFAOYSA-N hexane;toluene Chemical compound CCCCCC.CC1=CC=CC=C1 RBBOWEDMXHTEPA-UHFFFAOYSA-N 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 239000000990 laser dye Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- BBDFECYVDQCSCN-UHFFFAOYSA-N n-(4-methoxyphenyl)-4-[4-(n-(4-methoxyphenyl)anilino)phenyl]-n-phenylaniline Chemical group C1=CC(OC)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC(OC)=CC=1)C1=CC=CC=C1 BBDFECYVDQCSCN-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- AODWRBPUCXIRKB-UHFFFAOYSA-N naphthalene perylene Chemical group C1=CC=CC2=CC=CC=C21.C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 AODWRBPUCXIRKB-UHFFFAOYSA-N 0.000 description 1
- 239000000978 natural dye Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 229930184652 p-Terphenyl Natural products 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- QWYZFXLSWMXLDM-UHFFFAOYSA-M pinacyanol iodide Chemical compound [I-].C1=CC2=CC=CC=C2N(CC)C1=CC=CC1=CC=C(C=CC=C2)C2=[N+]1CC QWYZFXLSWMXLDM-UHFFFAOYSA-M 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000032554 response to blue light Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- RWJUTPORTOUFDY-UHFFFAOYSA-N triethoxy-[2-(oxiran-2-ylmethoxy)ethyl]silane Chemical compound CCO[Si](OCC)(OCC)CCOCC1CO1 RWJUTPORTOUFDY-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- VKLOKHJKPPJQMM-UHFFFAOYSA-N xanthene-9-thione Chemical compound C1=CC=C2C(=S)C3=CC=CC=C3OC2=C1 VKLOKHJKPPJQMM-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 150000004798 β-ketoamides Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/007—Squaraine dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/66—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
- C09K11/661—Chalcogenides
- C09K11/663—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7715—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
- C09K11/7716—Chalcogenides
- C09K11/7718—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
- C09K11/7731—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/77342—Silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7737—Phosphates
- C09K11/7738—Phosphates with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7737—Phosphates
- C09K11/7738—Phosphates with alkaline earth metals
- C09K11/7739—Phosphates with alkaline earth metals with halogens
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/774—Borates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7784—Chalcogenides
- C09K11/7786—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7783—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
- C09K11/7794—Vanadates; Chromates; Molybdates; Tungstates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/351—Metal complexes comprising lanthanides or actinides, e.g. comprising europium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/633—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/656—Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
- H10K85/6565—Oxadiazole compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1033—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
- C09K2211/1037—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
- C09K2211/1048—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1088—Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/182—Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/186—Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/188—Metal complexes of other metals not provided for in one of the previous groups
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/322—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/346—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/621—Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/653—Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/655—Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Definitions
- This invention relates to an electro luminescent element, specifically relates to an electroluminescent element useful in a civil or industrial displaying device such as a light-emission type multi- or full-color display, or a displaying panel, and color image forming method and a color filter (color conversion filter).
- Electronic display device include a light-emission type and a light-receiving type.
- Examples of the light-emission type include a CRT (cathode ray tube), a PDP (plasma display), an ELD (electroluminescent display), a VFD (fluorescent display tube) and a LED (light-emitting diode).
- the LED is a light emission element comprising a light emission material emitting light in an electric field or combination of several number of such the element.
- the elements are classified into an organic element and an inorganic element according to the material and into a carrier injection type and an accelerated electron type according to the light emission mechanism.
- the recombination of an electron and a positive hole is utilized in the carrier injection type element and collision energy of an accelerated electron is utilized in the accelerated electron type element.
- the inorganic material is longer in the life time and more stable than the organic material.
- the recombination type has advantage that the driving voltage is lower than that for the electron accelerate type. Recently, therefore, the carrier injection type LED is extensively developed.
- the LED include the following three types.
- Inorganic LED comprising a inorganic compound such as GaN and GaInN: the light emission mechanism thereof is recombination type. It is simply called also as LED (light emission diode).
- Organic LED comprising an organic compound such as a triarylamine derivative and a stilbene derivative: the light emission mechanism thereof is recombination type. It is called as an organic EL (electroluminescent or OLED.
- Inorganic EL comprising an inorganic material such as ZnS:Mn and ZnS:Tb: the light emission mechanism is the accelerated electron type. It is called simply as an electroluminescent element since the element of such the type is historically old.
- the “electroluminescent material” in the invention includes the above-mentioned (1) and (2). Therefore, (3) is not subject of the invention.
- a fluorescent substance which emits fluorescent light by absorbing light emitted from the electroluminescent material.
- the method using such the fluorescent substance to emit various colors light by means of an electroluminescent material is applied for the CRT, PDP, VFD, etc.
- light emitted from the electroluminescent material must be a high energy ray (i.e., short wavelength emission) such as an electron ray or a far ultraviolet ray.
- the fluorescent substances described above are essentially inorganic fluorescent substances. There are known a number of the inorganic fluorescent substances which are superior in stability, exhibiting long shelf-life. However, there has not been found a long wavelength excitation type inorganic fluorescent substance exhibiting an excitation wavelength in the region of near ultraviolet to visible light, specifically, red light.
- a near ultraviolet ray capable of being emitted from the electroluminescent material is contemplated to be a light having a peak of wavelength within the range of from approximately 350 nm to 400 nm, and the use of an organic fluorescent dye as the fluorescent substance capable of excited such the near ultraviolet ray is disclosed in JP O.P.I. Nos. 3-152897, 9-245511 and 5-258860.
- the organic fluorescent dye is generally tends to be influenced by the circumstance condition, for example, change in the wavelength or quenching tends to be occurred depending on the kind of solvent or medium such as a resin.
- a fluorescent dye which absorbs light of blue or blue-green light region emitted from the electroluminescent material and converts the light to red light.
- a fluorescent conversion layer which emits light in green region has characteristics that the Stokes shift (the difference between the wavelength of the absorbed light and that of the emitted light) is small, and a part of light emitted from the electroluminescent material can be permeated therethrough, and the light from the light emission material can be converted with a relative high efficiency.
- the conversion to the fluorescent to light of red region caused problems that the conversion efficiency is considerably low since a large Stokes shift is needed and the light from the light emitting material almost cannot be utilized.
- the combined use of a few fluorescent dyes different in excitation wavelength is needed and it is necessary to utilize light-to-light conversion (i.e., photoluminescence) of plural fluorescent dyes, such as a fluorescent dye emitting yellow light in response to blue light and a fluorescent dye emitting red light in response to yellow light.
- light-to-light conversion i.e., photoluminescence
- the inventors can obtain an electroluminescent element capable of emitting a high luminance light and having a high storage ability, and can provide a color filter with a high luminance by the use of such the electroluminescent element.
- Ar is an aryl group
- A is a carbon atom, a nitrogen atom, a sulfur atom or an oxygen atom
- X is a group of atoms necessary to form a 5- or 6-member nitrogen containing aromatic heterocyclic ring together with A and N
- Y is a group of atoms necessary to form a 5- or 6-member aromatic hydrocarbon or aromatic heterocyclic ring
- the bond of C—N, C-A or C—C in the formula is a single or double bond
- R is a hydrogen atom, a substituent or Ar; provided that the nitrogen-containing aromatic heterocyclic ring represented by
- each may be condensed with a hydrocarbon ring or a heterocyclic ring.
- Ar 11 , Ar 12 and Ar 13 are each an aryl group or an aromatic heterocyclic group, and a biaryl group having a bond capable of giving at least two internal rotational isomerism is in the molecule of the compound represented by Formula A1.
- Ar 21 , Ar 22 and Ar 23 are each an aryl group or an aromatic heterocyclic group, each of which has a bond exhibiting C 2 rotation symmetry and capable of giving an internal rotational isomerism.
- Ar 31 , Ar 32 and Ar 33 are each an aryl group or an aromatic heterocyclic group, provided that at least two of Ar 31 , Ar 32 and Ar 33 are each an aryl group having a 1,1′-binaphthyl moiety.
- Ar 41 and Ar 42 are each independently an aryl group or an aromatic heterocyclic group;
- L 11 , L 12 and L 13 is each a group of atoms necessary to form an aromatic heterocyclic ring, provided that at least one of L 11 , L 12 and L 13 is ⁇ N—, —N(R 41 )—, —S— or —O—;
- R 41 is a hydrogen atom or a substituent, provided that at least one of Ar 41 , Ar 42 and R 41 is a biaryl group having a bonding axis capable of giving an internal rotational isomerism or a group having such a biaryl group, and the adjacent substituents may be condensed with each other to form a saturated or unsaturated ring.
- Ar 51 is an aryl group or an aromatic heterocyclic group; n is an integer of from 0 to 6, the plural groups represented by Ar 51 may be the same or different when n is 2 or more; L 21 , L 22 , L 23 , L 24 , L 25 and L 26 are a group of atoms necessary to form a 6-member nitrogen-containing aromatic heterocyclic group, provided that at least one of L 21 , L 22 , L 23 , L 24 , L 25 , and L 26 is ⁇ N—, or —N(R 51 )—; R 51 is a hydrogen atom or a substituent, provided that at least one of Ar 51 and R 51 is a biaryl group having a bonding axis capable of giving a internal rotation isomerism or a group having such a biaryl group, and the adjacent substituents may be condensed with each other to form a saturated or unsaturated ring.
- Ar 61 and Ar 62 are each an aryl group or an aromatic heterocyclic group; R 61 and R 62 are each a hydrogen atom or a substituent, provided that at least one of Ar 61 , Ar 62 , R 61 and R 62 is a biaryl group having a bonding axis capable of giving a internal rotational isomerism or a group having such a biaryl group, and the adjacent substituents may be condensed with each other to form a saturated or unsaturated ring.
- M is a metal atom capable of taking an ionized state of from 1- to 4-valent (i.e., giving 1- to 4-valent ions);
- n′ is a natural number of from 1 to 4;
- L 71 ⁇ is a monovalent anion capable of forming an ionic bonding with M and having a portion capable of coordinating with M;
- m is a natural number of the same as n′ or less;
- R 71 ⁇ is a monovalent anion capable of forming an ionic bond with M, provided that at least one of L 17 ⁇ and R 71 ⁇ is a group having a moiety of biaryl group having a bonding axis capable of giving an internal rotational isomerism.
- Z 1 and Z 2 are each independently a monovalent residue of a light emitting compound
- Z 3 is a k-valent residue of a light emitting compound
- k is a natural number of from 1 to 8
- x is a natural number of from 1 to 3
- y is an integer of from 0 to 3, provided that plural groups represented by Z i may be the same or different when x is 2 or more, plural groups represented by Z 2 may be the same or different when y is 2 or more, and groups represented by Z 1 and Z 2 may be the same or different when both of x and y are each 1 or more
- R 81 and R 82 are each independently a substituent, n is an integer of from 0 to 4, m is an integer of from 0 to 4, provided that plural groups represented by R 81 may be the same or different and may be condensed with each other to form a ring when n is 2 or more, plural groups represented by R 82 may be the same or different and may be condensed with each other to form a
- X 91 is a halogen atom; R 91 and R 92 are each a substituent; n is an integer of 0 to 4; and m is an integer of 0 to 4, provided that when n is 2 or more, plural R 91 , may be the same or different, or condensed with each other, when m is 2 or more, plural R 92 s may be the same or different, or condensed with each other, and when n and m are both 1 or more, R 91 and R 92 may be the same or different.
- An electroluminescent element comprising an electroluminescent material and an inorganic fluorescent substance which absorbs light emitted from the electroluminescent material and fluoresces at the maximum emission wavelength different from that of light emitted from the electroluminescent material.
- An electroluminescent element which comprises an electroluminescent material and a rare earth metal complex fluorescent substance which absorbs light emitted from the electroluminescent material and fluoresces at the maximum wavelength different from that of the light emitted from the electroluminescent material.
- An electroluminescent element comprising a substrate, provided thereon, a layer containing at least an electroluminescent material and a color conversion layer, wherein the color conversion layer contains an inorganic fluorescent substance which absorbs light emitted from the electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, an inorganic fluorescent substance emits light having the maximum emission wavelength of from 501 nm to 600 nm, and an inorganic fluorescent substance emits light having the maximum emission wavelength of from 601 nm to 700 nm.
- An electroluminescent element comprising a substrate, provided thereon, a layer containing an electroluminescent material and a color conversion layer, wherein the color conversion layer contains a rare earth metal complex fluorescent substance which absorbs light emitted from the electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, a rare earth metal complex fluorescent substance emits light having the maximum emission wavelength of from 501 nm to 600 nm, and a rare earth metal complex fluorescent substance emits light having the maximum emission wavelength of from 601 nm to 700 nm.
- a color conversion filter which contains at least an inorganic fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 700 nm.
- a color conversion filter which contains an inorganic fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, an inorganic fluorescent substance emitting light having the maximum emission wavelength of from 501 nm to 600 nm, and an inorganic fluorescent substance emitting light having the maximum emission wavelength of from 601 nm to 700 nm.
- a color conversion filter which contains at least an rare earth metal complex fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 700 nm.
- a color conversion filter which contains a rare earth metal complex fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, a rare earth metal complex fluorescent substance emitting light having the maximum emission wavelength of from 501 nm to 600 nm, and a rare earth metal complex fluorescent substance emitting light having the maximum emission wavelength of from 601 nm to 700 nm.
- a color conversion method comprising conversion of a light in a wavelength region shorter than a red light to the red light using an inorganic fluorescent substance which has been prepared by a sol-gel method.
- a color conversion method comprising conversion of a light in a wavelength region shorter than a red light to the red light using a rare earth metal fluorescent substance.
- R 101 is a hydrogen atom or a substituent
- Y 101 is an oxygen atom, a sulfur atom or —N(R 102 ), in which R 102 is a hydrogen atom or a substituent
- Z 101 is a group of atoms necessary to form a 4- to 8-membered ring together with a carbon-carbon double bond.
- FIG. 1 illustrates a cross sectional view of the structure of an electroluminescent element.
- the electroluminescent material is a material which emits light by applying an electric field.
- it is a material which emits light when a positive hole injected from a anode and an electron injected from a cathode are recombined, and is different from a material emitting light by collision energy of an accelerated electron (so-called inorganic electroluminescence).
- the electroluminescent material relating to the invention includes materials of the (1) and (2) afore-mentioned and does not include those of the afore-mentioned (3)
- the light emission by the electric field is a light emission of an electroluminescent material when an electric current is applied to the electroluminescent material contained in a light emission layer through a pair of electrodes arranged on both sides of a light emission layer light emission layer so as to be faced to each other through the light emission layer. It is considered that such the light-emission is occurred by the following mechanism; the energy level of the electroluminescent material is excited by recombination of an electron injected from one of the electrodes and a positive hole injected from the other electrode in the light-emission layer, and the energy is emitted in a form of light when the energy level of the excited electroluminescent material is restored to the fundamental state.
- Materials capable of emitting light by an electric field are usable in the invention without any limitation, for example, both of an inorganic electroluminescent material or inorganic LED such as gallium nitride GaN and an organic electroluminescent material or organic LED may be used.
- the organic LED is preferred from the view point of the light emission efficiency.
- the electroluminescent material is preferably one which emits light having the maximum emission wavelength of 340 nm or less, more preferably from 400 nm to 430 nm, by the electric field.
- electroluminescent material preferably usable in the invention is described in concrete below.
- the electroluminescent material preferably usable in the invention includes compounds represented by the foregoing Formula N1, A1, B1, C1, D1, E1, F1 or F2.
- the aryl group represented by Ar, Ar 11 , Ar 12 , Ar 13 , Ar 41 , Ar 42 , Ar 51 , Ar 61 or Ar 62 may be any one without any limitation as long as the number of ⁇ -electron thereof is 4n+2 in which n is a natural number, and it may be a single ring or condensed ring.
- the aryl group may be substituted with a substituent such as an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an amino group, a halogen atom, a hydroxyl group, a mercapto group, a carboxyl group, an acylamino group, a sulfonamido group, a phopsphonamido group, a carbamoyl group, an ester group, an alkoxyl group, an aryloxyl group, a nitro group, a cyano group and a silyl group.
- a substituent such as an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an amino group, a halogen atom, a hydroxyl group, a mercapto group,
- the substituents When plural substituents are substituted at adjacent positions of the aryl group, the substituents may be condensed with each other to form a carbon hydride ring or a heterocyclic ring, a moiety having a spiro structure may be further contained.
- the aromatic heterocyclic group represented by Ar, Ar 11 , Ar 12 , Ar 13 , Ar 41 , Ar 42 , Ar 51 , Ar 61 or Ar 62 is a residue formed by removing one hydrogen atoms from an optional position of a single or condensed ring heterocyclic compound having a number of ⁇ -electron of 4n+2 in which n is a natural number.
- heterocyclic compound examples include furan, thiophene, pyrrol, imidazole, pyrazole, 1,2,4-triazole, 1,2,3-triazole, oxazole, thiazole, isooxazole, isothiazole, furazane, pyridine, pyrazine, pyrimidine, pyridazine and 1,3,5-triazine, these heterocyclic ring each may further form a condensed ring.
- R 41 , R 51 , R 61 , R 71 , R 81 , R 82 , R 91 , R 92 , R 101 and R 102 may be a group capable of substituting without any limitation.
- substituents include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, a heterocyclic group, an amino group, a halogen atom, a hydroxyl group, a mercapto group, a carboxyl group, an acylamino group, a sulfonamido group, a phosphonamido group, a carbamoyl group, an ester group, an alkoxyl group, an aryloxyl group, a nitro group, a cyano group and a silyl group.
- the substituents may be condensed with each other to form a carbon hydride ring or a heterocyclic ring, a moiety having a spiro structure may be further contained.
- [0080] is preferably a 5- or 6-member 6 ⁇ -type aromatic heterocyclic ring such as a 2-pyridyl group, a 2-pyrimidyl group, a 6-pyrimidyl group, a 2-pyradyl group, a 3-pyridazyl group, a 2-oxazolyl group, a 2-thiazolyl group, a 3-isooxazolyl group, a 3-isothiazolyl group, a 3-furazanyl group, a 3-pyrazolyl group, a 2-imidazolyl group, a 4-imidazolyl group, a 2-pyrrolo group, a 2-oxadiazolyl group, a 2-thiadiazolyl group, a 2-(1,2,4-triazyl) group, a 2-(1,3,5-triazyl) group and a 3-(1,2,4-triazyl) group.
- a 2-pyridyl group such as a 2-pyridyl group,
- the nitrogen-containing heterocyclic group may be substituted with a substituent such as those described regarding R 41 .
- the nitrogen-containing heterocyclic group may form a condensed ring, such as a 6-(1H-pyrazolo[5,1-c][1,2,4]triazolyl) group which is formed by condensing 2-quinolyl or 3-pyrazolyl ring, which are the condensing product of a 2-pyridyl group and a carbon hydride ring, with a heterocyclic ring.
- [0082] is a group formed by removing one hydrogen atom from an optional position of a 4n-2 ⁇ type aromatic carbon hydride compound.
- the aromatic carbon hydride group include a phenyl group, a 1-naphthyl phenyl group, a 2-naphthyl phenyl group, a 9-antholyl group, a 1-antholyl group, a 9-phenantholyl group, a 2-triphenylenyl group and a 3-peryrenyl group.
- the carbon hydride group may be substituted with a substituent such as those described regarding R 41 .
- the carbon hydride group may form a condensed ring such as a 9-pyrenyl group and a 8-quinolyl group each formed by condensation of the carbon hydride ring with 9-phenantholyl group and condensation of a phenyl group with a heterocyclic group, respectively.
- [0084] may be a aromatic heterocyclic group without any limitation as long as the group is a 4n+2 ⁇ type group and the atoms adjacent to the carbon atoms bonded with the nitrogen-containing aromatic heterocyclic group are carbon atoms.
- the aromatic heterocyclic group include a 3-pyridyl group, a 5-pyrimidyl group, a, 4-pyridazyl group, a 5-pyridazyl group, a 4-isooxazolyl group, a 4-isothiazolyl group, a 4-pyrazolyl group, a 3-pyrrolo group, a 3-furyl group and a 3-ethinyl group.
- the aromatic heterocyclic group may be substituted with a substituent such as those described regarding R 41 , and may form a condensed ring.
- a bonding axis capable of giving the internal rotation isomerism is a bonding axis which cannot freely rotate for 360° by the steric hindrance under an ordinary temperature and pressure, such as the axis bonding the naphthalene nuclei in the following 1,1′-binaphthyl. Practically, a bonding axis cannot be rotated in a CPK-model is the “bonding axis capable of giving the internal rotation isomerism”.
- an isomer in the compound having the bonding axis capable of giving the internal rotation isomerism is termed an atrop isomer or an internal rotation optical isomer, c.f. Kagaku Daijiten vol. 6, p. 588.
- the compound or substituent having the axis capable of giving the internal rotation isomerism can be defined as a compound or substituent having an atrop isomer or internal rotation optical isomer.
- the substituent is formed by removing one hydrogen atom from the compound shown below,
- the basic skeleton structure may be substituted with a substituent those described regarding R 4 , and may form a condensed ring.
- substituents represented by R 101 to R 137 are those which have a Taft's stereo-parameter of not more than ⁇ 1.00, including a bromone atom, iodine atom, straight-chained alkyl group such as methyl, ethyl, or propyl, a branched alkyl group such as isopropyl or t-butyl, cyclic alkyl such as cyclopentyl or cyclobutyl, an aromatic hydrocarbon group such as phenyl or naphthyl, heterocyclic group such as pydidyl, imidazolyl or furyl, nitro and mercapto group.
- a bromone atom, iodine atom straight-chained alkyl group such as methyl, ethyl, or propyl
- a branched alkyl group such as isopropyl or t-butyl
- cyclic alkyl such as cyclopentyl
- the Taft's stereo-parameter is referred to S. H. Unger, Phys. Org. Chem. 12, 91 (1976) and “Yakubutsu no Kozokassei-sokan” (Kagaku no Ryoiki Zokan No. 122, published by Nankodo), pages 124-126.
- the aryl group having a 1,1′-binaphthyl moiety which is represented by Ar 21 , Ar 22 or Ar 2 , is:
- a binaphthyl group i.e., one in which hydrogen is removed from an arbitrary position of the 11′-binaphthyl
- the metal element represented by M may be ones capable of taking an ion structure of from 1- to 4-valent without any limitation.
- the metal element is preferably Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Pd, Cu, B, Al, Ga, In, Tl, Si and Ga, more preferably Be, Mg, Ca, Sr, Ba, Zn, Cu, B, Al, Ga and In, and most preferably Be, Al, Zn and Ga.
- the monovalent anion represented by L 73 ⁇ which forms an ion bonding with M and has a portion capable of coordinating with M, is one capable of taking a state under an acidic condition in which a proton is added to an oxygen atom, a sulfur atom or a nitrogen atom, in another word, one capable of taking a state formed by removing a proton from a compound having a dissociable group such as —OH, —NH or —SH, and the anion also has an atom capable of coordinating with a metal such as a nitrogen atom and a chalcogen atom (O, S, Se, Te) at a position away 2 or 3 atoms from the oxygen atom, the sulfur atom or the nitrogen atom.
- a metal such as a nitrogen atom and a chalcogen atom (O, S, Se, Te)
- anion examples include an oxygen anion formed by removing a proton from the hydroxyl group of 8-hydroxyquinoline and a nitrogen anion formed by removing a proton from the NH at position-1 of 1H-2-(1-pyrazolyl)-imidazole.
- the monovalent anion capable of forming an ionic bond with M represented by R 71 ⁇ may be one capable of forming an anion under a basic condition of pH of 8 or less, such as an anion formed by removing a proton from 4-hydroxy-1,1′-biphenyl, 2-mercaptonaphthalene or 1H-pyrazolo[5,1-c][1,2,4]triazole.
- the monovalent light emitting compound residue represented by Z 1 or Z 2 is one formed by removing a hydrogen atom or a substituent from an optional portion of a compound which emits light at an ordinary temperature.
- the k-valent light emitting compound residue represented by Z 3 is one formed by removing k atoms of hydrogen or k substituents from an optional portion of a compound which emits light at an ordinary temperature.
- the light emission of the light emitting compound under an ordinary temperature may be fluorescence or phosphorescence.
- the light emitting compound capable of forming the light-emitting compound residue includes a fluorescent dye having a absorption band in the visible region such as a laser dye, a fluorescent compound having a absorption band in the ultraviolet region such as a fluorescent whitening agent, and a phosphorescent substance such as a platinum complex of porphyrin and biacetyl.
- a fluorescent dye having a absorption band in the visible region such as a laser dye
- a fluorescent compound having a absorption band in the ultraviolet region such as a fluorescent whitening agent
- a phosphorescent substance such as a platinum complex of porphyrin and biacetyl.
- a condensed aromatic carbon hydride cyclic compound such as triphenylene and perylene
- a linear conjugate multi-ring carbon hydride compound such as p-terphenyl and quaterphenyl
- a condensed aromatic heterocyclic compound such as acrydine, quinoline, carbazole, carbazone, fluorene, xanthione, aroxazine, acrydone, furabone, coumarin, naphthoimidazole, benzoxazole and dibenzophenazine
- an aromatic heterocyclic compound such as thiazole, oxazole, oxadiazole, thiadiazole and triazole
- a conjugate aliphatic compound such as aminochloromale
- electroluminescent material of the invention is not limited thereto.
- the electroluminescent element in the invention is an element comprises a substrate, provided thereon, the foregoing electroluminescent material and an inorganic fluorescent substance or a rare-earth metal complex fluorescent substance which absorbs light emitted from the electroluminescent material and fluoresces light, and a pare of electrodes arranged so as to be faced to each other through the layer containing the electroluminescent material.
- the electroluminescent material and the inorganic fluorescent substance or the rare-earth metal complex fluorescent substance are separately contained in different layers, and are not contained in the same layer.
- the electroluminescent material used in the invention may be an emission material, a hole-injection material or an electron-injection material, and the emission material is preferred.
- the emission material may have capabilities of hole-injection and electron-injection in combination.
- a doping material also called a dopant or guest
- the electroluminescent material is present in any one of the emission layer, hole-injection layer and electron-injection layer; and the inorganic and/or rare-earth metal complex fluorescent substance are present in the color conversion layer.
- An electron injection layer or a positive hole injection layer may be provided in the electroluminescent element of the invention according to necessity.
- Substrates used in the electroluminescent element used in the invention are not specifically limited so far as they are transparent, such as glass and plastic resins.
- Typical examples of the material usable as the substrate of the electroluminescent element according to the invention include glass, quartz, and an optically transparent plastic film even though any material can be used without any limitation as long as the material is transparent.
- Examples of the transparent plastic film include a film of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfon (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), and cellulose acetate- propionate.
- the electroluminescent material according to the invention is preferably contained in the emission layer.
- Commonly known emission material may be used. Examples thereof include low molecular type emission material described in “Yuki-EL-Soshi to Kogyoka-saizensen” (published N.T.S. Co. Ltd, 1998, hereinafter, denoted Reference A), Sect. 1, Chapter 3, page 35-51; dye doping materials described in the reference A, Sect. 1, Chapter 4, pages 55-79; and high molecular type materials described in the reference A, Sect. 1, Chapter 5, pages 81-100.
- the electroluminescent element is usually constituted by a single or plural layers which are sandwiched between two electrodes.
- the constituting layers include, additionally to the light emission layer, a positive hole injection layer which is also referred to a charge injection layer, a hole injection layer, a charge transportation layer or a hole transportation layer, and an electron injection layer which is also referred to an electron transportation layer.
- the positive hole injection layer and the electron injection layer each may have a multi-layered structure, for example the following layer structure may be taken: Anode/1st positive hole injection layer/2nd positive hole injection layer (positive hole transportation layer)/Light emission layer/2nd electron injection layer (electron transportation layer) 1st electron injection layer/Cathode
- the positive hole injection layer and the electron injection layer each may be a layer composed of laminated layers of plural compound as above-mentioned even though description regarding the plural laminated positive hole injection layers and/or the plural laminated electron injection layers are omitted.
- the substrate contacting with the color conversion layer and that contacting with the anode may be the same or different. Outside of the element may be covered with the substrate.
- a buffer layer (electrode interface layer) may be arranged between the anode and the light emission layer or the positive hole injection layer, and between the cathode and the light emission layer or the electron injection layer.
- the buffer layer is a layer provided between the electrode and the organic compound layer for lowering the driving voltage or raising the light emission efficiency, which are described in Vol. 2, Section 2, p.p. 123-166 of Publication A.
- the buffer layer includes an anode buffer layer and a cathode buffer layer.
- anode buffer layer examples include a phthalocyanine buffer layer typically comprising copper phthalocyanine, an oxide buffer layer typically comprising vanadium oxide, an amorphous carbon buffer layer and a polymer buffer layer comprising an electroconductive polymer such as polyaniline (Emeraldine) and polythiophene.
- cathode layer buffer examples include a metal cathode buffer typically comprising a metal strontium and aluminum, an alkali metal compound buffer layer typically comprising lithium fluoride, an alkali-earth metal compound buffer layer typically comprising magnesium fluoride and an oxide buffer layer typically comprising aluminum oxide.
- the buffer layer is desirably a extremely thin layer and the thickness thereof is preferably from 0.1 to 100 nm depending on the material.
- the emission layer, hole-injection layer, electron-injection layer and buffer layer can be prepared as a thin layer by a known method such as a evaporation method, a spin-coat method, a casting method and a LB method.
- the layer is preferably a sedimented molecule layer.
- the sedimented molecule layer is a thin layer formed by sedimentation of the compound from a gas phase or a layer formed by solidifying from the molten or liquid phase of the compound.
- the sedimented molecule layer can be distinguished from a thin layer formed by the LB method (cumulative molecule layer) based on the difference in the coagulation structure and the high dimensional structure, and in the functional difference thereof caused by the structural difference.
- the light emission layer can be formed by the method such as that described in JP O.P.I. No. 57-51781, by which the light emission material is dissolved in a solvent together with a binder such as a resin, and thus obtained solution is formed into a thin layer by a method such as spin-coat method. It is preferred that the thickness is within the range of from 5 nm to 5 ⁇ m, although the thickness of the layer thus formed may be optionally selected according to necessity without any limitation.
- the anode of the electroluminescent element a metal, an alloy and an electroconductive compound each having a high working function of not less than 4 eV, and mixture thereof are preferably used as the electrode material.
- the electrode material include a metal such as Au, and a transparent electroconductive material such as CuI, indium oxide (ITO), SnO 2 , ZnO and Zn-doped indium oxide (IZO).
- the anode may be prepared by evaporating or spattering such the electrode material to form a thin layer, and forming the layer into a desired form by a photolithographic method. When required precision of the pattern is not so high (not less than 100 mm), the pattern may be formed by evaporating or spattering through a mask having a desired form.
- the transparence of the anode is 10% or more
- the sheet resistivity of the anode is preferably not more than 10 3 ⁇ / ⁇ . It is preferably within the range of from approximately 10 nm to 1 ⁇ m, more preferably from 10 to 200 nm, although the thickness of the anode may be optionally selected.
- a metal also referred to an electron injection metal
- an alloy also referred to an electroconductive compound each having a low working function (not more than 4 eV)
- a mixture thereof are used as the material of electrode.
- the electrode material include sodium, potassium, sodium-potassium alloy, magnesium, lithium, a magnesium/copper mixture, a magnesium/silver mixture, a magnesium/aluminum mixture, magnesium/indium mixture, a aluminum/aluminum oxide (Al 2 O 3 ) mixture, indium, a lithium/aluminum mixture and a rare-earth metal.
- a mixture of an electron injection metal and a metal higher in the working function than that of the electron injection metal such as the magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (Al 2 O 3 ) and lithium/aluminum mixture, is suitable from the view point of the electron injection ability and the resistivity to oxidation.
- the limitation of the working function is released when the cathode buffer layer is coated on the surface of the cathode.
- a material having a high working function such as ITO, SnO 2 , In 2 O 3 and Zno:Al can be used as the cathode which are usually used a the cathode when a fluoride of an alkali metal or an alkali-earth metal is used as the cathode buffer layer (in the publication described as an electron injection layer).
- cathode material when lithium fluoride is used as the cathode buffer layer (thickness: 0.5 to 1 ⁇ m) as described in Publication (A), page 145, lines 15-28.
- an element defined as “metal” in the Periodical Table such as silver, copper, platinum and gold is usable additionally to the above-mentioned metal oxides and aluminum.
- the cathode can be prepared by making such the material to a thin layer by a method such as an evaporation or spattering mehtod.
- it may be formed by a plating method such as described in JP O.P.I. No. 11-8074.
- the sheet resistivity of the cathode is preferably not more than 10 3 ⁇ / ⁇ , and the thickness of the cathode is preferably from 10 nm to 1 ⁇ m, more preferably from 50 to 2,000 nm.
- the electrode arranged between the light emission layer and the color conversion layer is transparent or semi-transparent so as to permeate light therethrough.
- the expression, the electrode being transparent or semi-transparent means that the transmittance of the total visible region of 400 to 700 nm is 20% or more, and preferably 50% or more.
- a positive hole injection layer may be provided according to necessity.
- the positive hole injection layer has a function of transporting the positive hole injected from the anode to the light emission layer.
- Many positive holes can be injected in a lowered electric field by the presence of the positive hole injection layer between the anode and the light emission layer.
- the light emission ability of the element is made excellent by raising the light emission efficiency since the electrons injected into the light emission layer from the cathode or the electron injection layer are accumulated at the interface in the light emission layer by a barrier to electron existing at the interface between the light emission layer and the positive hole injection layer.
- the material to be used for the positive hole injection layer (hereinafter referred to a positive hole injection material) can be optionally selected from known materials without any limitation.
- the positive hole injection material may be either an organic substance or an inorganic substance as long as it has a positive hole injection ability or an ability to form a barrier to electron.
- Various kinds of organic compounds for example, those described in JP O.P.I. Nos. 63-295695, 2-191694, 3-792, 5-234681, 5-239455, 5-299174, 7-126225, 7-126226, 8-100172 and EP No. 0650955 A1, can be used as the positive injection hole material.
- examples of them include a phthalocyanine derivative, a tetraarylbenzidine compound, an aromatic tertiary amine, a hydrazone derivative, a carbazole derivative, a triazole derivative, an imidazole derivative an oxadiazole derivative having an amino group and polythiophene.
- These compounds may be used in combination of two or more. When the compounds are used in combination, they may be formed in a separated layers or mixed with together.
- the positive hole injection layer is formed by lamination (in the case of the functions of positive hole injection and positive hole transportation are separately allocated), a preferable combination can be selected from these materials. In such the case, it is preferable to laminate the compounds in the order of small ionized potential from the anode such as ITO.
- the compound having a high thin film forming ability is preferably used such as the starburst type compounds described in JP O.P.I. No. 4-308688.
- Typical examples of the aromatic tertiary amine compound include N,N,N′,N′-tetraphenyl-4,4′-diaminophenyl, N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′-diamine (TPD), 2,2′-bis(4-di-p-tolylaminophenyl)propane, 1,1′-bis(4-di-p-tolylaminophenyl)cyclohexane, N,N,N′,N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1′-bis(4-di-p-tolylaminophenyl)-4-phenylcyclohexane, bis(4-dimethylamino-2-methylphenyl)-phenylmethane, bis(4-di-p-toly
- Pat. No. 5,061,569 which have two condensed aromatic rings in the molecule thereof such as 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD), and compounds described in JP O.P.I. No. 4-308688 such as 4,4′,4′′-tris[N-(3-methylphenyl)-N-phenylamino]-triphenylamine (MTDATA) in which three triphenylamine units are bonded in a starburst form.
- NPD 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl
- MTDATA 4,4′,4′′-tris[N-(3-methylphenyl)-N-phenylamino]-triphenylamine
- p-Si and p-SiC are usable.
- the positive hole injection layer can be formed by making the positive hole injection material to a thin layer by a known method such as a vacuum evaporation method, a spin coat method a casting method and a LB method.
- the thickness of the positive hole injection layer is preferably approximately from 5 nm to 5 ⁇ m even though there is no specific limitation thereon.
- the electron injection layer which is provided according to necessity is a layer having a function of transporting electrons injected to the cathode to the light emission layer.
- the material of the electron injection layer may be optionally selected from known compounds.
- the electron injection layer has a function of to easily inject electron from the cathode, a function of to transport electron and to inhibit positive hole, and is provided when a compound having a relatively low electron transportation is used in the light emission layer.
- the electron injection layer may be separated into a layer having the electron injection ability and a layer having a electron transportation ability.
- Examples of the material of the electron injection layer include a nitro-substituted fluorene derivative, a diphenylquinone derivative, a thiopyrane dioxide derivative, a heterocyclic tetracroxylic acid anhydride such as naphthaleneperylene, a carbodiimide, a fluolenylidenemethane derivative, an anthraquinodimethane and anthorone derivative, and a oxadiazole derivative. It is found by the inventors that a series of electron transmission compounds described in JP O.P.I. No.
- 59-194393 can be used as the electron injection material even though the compounds are described in the publication as the material for making the light emission layer.
- a thiadiazole derivative which is formed by substituting the oxygen atom in the oxadiazole ring of the foregoing oxadiazole derivative by a sulfur atom, arylamino- or alkylamino-substituted triazole derivatives and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are usable as the electron injection material.
- a metal complex of 8-quinolynol derivative such as aluminum tris-(8-quinolynol) (Alq), aluminum tris-(5,7-dichloro-8-quinolynol), aluminum tris-(5,7-dibromo-8-quinolynol), aluminum tris-(2-methyl-8-quinolynol), aluminum tris-(5-methyl-8-quinolynol), zinc bis-(8-quinolynol) (Znq), and a metal complex formed by replacing the central metal of the foregoing complexes with another metal atom such as In, Mg, Cu, Ca, Sn, Ga or Pb, can be used as the electron injection material.
- another metal atom such as In, Mg, Cu, Ca, Sn, Ga or Pb
- metal complex type materials described in the reference A at pages 38-48 a metal free and metal-containing phthalocyanine, and a derivative thereof in which the terminal of each of the compounds is replaced by a substituent such as an alkyl group or a sulfonic acid group are also preferably used as the electron injection material.
- An inorganic semiconductor such as n-Si and n-SiC may also be used as the electron injection material.
- the electron injection layer can be formed by making the electron injection material to a thin layer by a known method such as a vacuum evaporation method, a spin coat method a casting method and a LB method.
- the thickness of the positive hole injection layer is preferably approximately from 5 nm to 5 ⁇ m even though there is no specific limitation thereon.
- the electron injection layer may have a single layer structure containing one or more kinds of the electron injection material or a multi-layered structure composed of plural layers having the same or different composition.
- a substance capable of absorbing light emitted from the electroluminescent material and emitting light different from the light emitted from the electroluminescent material in the maximum emission wavelength thereof may be used as the inorganic fluorescent substance and the rare-metal complex fluorescent substance.
- the difference between the maximum emission wavelength of the light emitted from the fluorescent substance and that of the light emitted from the electroluminescent material is 10 nm or more.
- the inorganic fluorescent substance or the rare-earth metal fluorescent substance to be contained in the electroluminescent element according to the invention is preferably one emitting fluorescent light having the maximum emission wavelength within the range of from 400 nm to 700 nm.
- the inorganic fluorescent substance or the rare-earth metal fluorescent substance to be contained in the electroluminescent element according to the invention preferably contains at least one capable of emitting light having the maximum emission wavelength larger by 180 nm or more than the maximum emission wavelength of light emitted from the electroluminescent material.
- the electroluminescent element of the invention has a color conversion layer containing at least one kind of the inorganic fluorescent substance or the rare-earth metal fluorescent substance emitting light having the maximum emission wavelength of from 400 nm to 500 nm, at least one kind of those emitting light having the maximum emission wavelength of from 501 nm to 600 nm and at least one kind of those emitting light having the maximum emission wavelength of from 601 nm to 700 nm when absorbs the light emitted from the electroluminescent material.
- the color conversion layer may be take various forms according to the use.
- the fluorescent substances may be uniformly coated without any pattern.
- a fluorescent substance emitting light having required color is patterned in a form of stripe, dot or mosaic.
- the patterning can be carried out by the method usually applied for producing usual color filter of liquid display. In concrete, the method such as a pigment dispersion method, printing method and an ink-jet method may be applied.
- the inorganic fluorescent substance or the rare-earth metal fluorescent substance to be used in the invention ones comprised of a combination of metal oxide such as YO 2 S, Zn 2 SiO 4 and Ca 5 (PO 4 ) 3 Cl, or a sulfide such as ZnS, SrS and CaS as the mother crystal and an ion of rare-earth metal such as Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb or an ion of metal such as Ag, Al, Mn and Sb as an activator or a coactivator is preferred.
- metal oxide such as YO 2 S, Zn 2 SiO 4 and Ca 5 (PO 4 ) 3 Cl
- a sulfide such as ZnS, SrS and CaS
- an ion of rare-earth metal such as Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb or
- the metal oxide is preferable as the mother crystal, for example, aluminum oxide, silicon oxide, phosphate and halophosphate each substituted with an alkali-earth metal such as (X) 3 Al 16 O 27 , (X) 4 Al 14 O 25 , (X) 3 Al 2 Si 2 ,O, (X) 4 Si 2 O 3 , (X) Si 2 O 4 , (X) 2 P 2 O 3 , (X) 2 P 2 O 5 , (X) 5 (PO 4 )Cl and (X) 2 Si 3 O 8 -2(X)Cl 2 are cited as the typical mother crystal, wherein X is an alkali-earth metal and the alkali-earth metal may be single metal composition or a mixture of 2 or more kinds of the metal.
- an alkali-earth metal such as (X) 3 Al 16 O 27 , (X) 4 Al 14 O 25 , (X) 3 Al 2 Si 2 ,O, (X) 4 Si 2 O 3 , (X) Si 2 O 4 ,
- Preferable mother crystal other than those includes an oxide or sulfide of zinc, an oxide of a rare-earth metal such as yttrium, gadolinium and lanthanum, or one in which a part of the oxide atoms is replaced by a sulfur atom, a sulfide of rare-earth metal and the oxide or the sulfide of such the rare-earth metal in which an optional metal element is combined.
- a rare-earth metal such as yttrium, gadolinium and lanthanum
- the mother crystal Preferable examples of the mother crystal are shown below; ZnS, Y 2 O 2 S, Y 3 A; 5 O 12 , Y 3 SiO 3 , Zn 2 SiO 4 , Y 2 O 3 , BaMgAl 10 O 17 , BaAl 12 O 19 , (Ba,Sr,Mg)O.aAl 2 O 3 , (Y,Gd)BO 3 , YO 3 , (Zn, Cd) S, SrGa 2 S 4 , SrS, GaS, SnO 2 .
- a part of the element of the above-listed mother crystal, the activator and the coactivator each may be replaced by an element of the same tribe in the periodic table, and there is no limitation on the element composition thereof as long as one capable of emitting visible light by absorbing ultraviolet or violet region of light.
- an ion of lanthanoid element such as La, Eu, Tb, Ce, Yb and Pr, and an ion of metal such as Ag, Mn, Cu, In and Al is preferred as the activator or coactivator of the inorganic fluorescent substance.
- the doping amount of the activator or the coactivator is preferably from 0.001 to 100 mole-%, more preferably 0.01 to 50 mole-% of the mother crystal.
- the activator and the coactivator are doped in the crystal by replacing a part of the ion constituting the mother crystal by the ion such as the lanthanoid ion.
- the exact composition of the crystal of the fluorescent substance can be described as follows. However, the value of x and y in the following formulas are not described except in the case a specific note is attached since the amount of the activator tends to no influence on the fluorescent property of the substance. For example, Sr 4-x Al 14 O 25 :Eu 2+ x is described in Sr 4 Al 14 O 25 :Eu 2 ⁇ .
- the fluorescent substance usable in the invention is not limited to them: (Ba x Mg 1-x ) 3-x-z Al 16 O 27 :EU 2+ x , Mn 2+ y , Sr 4-x Al 14 O 25 :EU 2+ x , (Sr 1-x Ba x ) 1-x Al 2 Si 2 O 8 :Eu 2+ x , Ba 2-x SiO 4 :Eu 2+ x , Sr 2-x-y SiO 4 EU 2+ x , Mg 2 ⁇ SO 4 :EU 2+ x , (BaSr) x SiO 4 :Eu 2+ x , Y 2-x-y SiO 5 : Ce 3+ x , Tb 3+ y , Sr 2-x P 2 O:Eu 2+ , Sr 2-x P 2 O:Eu 2+ x , (Ba y Ca 2 Mg 1-
- Inorganic fluorescent substances preferably usable in the invention are shown below.
- the inorganic fluorescent substance usable in the invention is not limited to these compound.
- Blue light-emissive inorganic fluorescent compound (BL-1) Sr 2 P 2 O 7 :Sn 4+ (BL-2) Sr 4 Al 14 O 25 :Eu 2+ (BL-3) BaMgAl 10 O 17 :Eu 2+ (BL-4) SrGa 2 S 4 :Ce 3+ (BL-5) CaGa 2 S 4 :Ce 3+ (BL-6)
- BaAl 2 SiO 8 [Green light-emissive inorganic fluorescent compound] (GL-1) (BaMg)Al 16 O 27 :Eu 2+ , Mn 2+ (GL-8)
- an inorganic fluorescent substance prepared by a buildup method without mechanical crushing process in the production course is preferably used for emitting high luminance light.
- a liquid phase methods such as a Sol-Gel method are particularly preferred.
- the composition thereof ones having an inorganic oxide as the mother crystal are preferred.
- the Sol-Gel synthesis method is a method in which the synthesis basically started from a solution and the material is synthesized at a temperature lower than the melting point thereof through a sol and gel states as described in detail—in Sumio Sakka “Application of Sol-Gel Method” 1997, Agnes Shofuusha.
- the Sol-Gel method in the invention is a method in which a reaction in a liquid phase is carried out in at least one step thereof. Such the method can be established from the method carried out by a reaction in a molten state applied for producing an usual inorganic fluorescent substance.
- the production procedure by Sol-Gel method is a method in which necessary amounts of elements to be used as the mother crystal, activator or coactivator in a form of metal alkoxide such as tetramethoxysilane Si(OCH 3 ) 4 and europium-2,4-pentanedionate Eu 3+ (CH 3 COCH ⁇ C(OCH 3 ) 3 , metal complex, double alkoxide prepared by addition of an elemental metal to an organic solvent solution of the above metal alkoxide or metal complex such as Mg[Al(OBu) 3 ] 2 which is prepared by addition of metallic magnesium to a 2-butanol solution of Al(OBu) 3 , metal halide, organic acid salt of metal or elemental metal are mixed and thermally or chemically polymerized or condensed.
- the product may be subjected to a baking or reducing treatment according to necessity.
- the Metal in the metal alkoxide, metal halide, metal salt and metal to be used in the invention includes “metals” defined in the Periodical Table, all element of “transition metals”, all elements of actinoid and boron, carbon and silicon which are usually defined as “non metals”.
- the inorganic fluorescent substance may be subjected to a surface property improving treatment.
- the method for such the treatment includes a chemical treatment by silane coupling agent, a physical treatment by an addition of fine particle having a size of submicron, and a combination thereof.
- silane coupling agent in the invention.
- examples of such the compound include ⁇ -(3,4-epoxycyclohexyl)ethyltrialkoxysilane, glycidyloxyethyltriethoxysilane, ⁇ -acryloyloxy-n-propyl-tri-n-propyloxysilane, ⁇ -methacryloyloxy-n-propyl-n-porpyloxysilane, di-( ⁇ -acryloyloxy-n-propyl)-di-n-propyloxysilane, acryloyloxydimethoxyethylsilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -(aminoethy
- the fine particle usable in the invention is preferably an inorganic fine particle such as silica, titania, zirconia and zinc oxide.
- a procedure may be applied in which a precursory solution of the fluorescent substance or a solution containing a primary particle of the fluorescent substance is patterned on a transparent substrate by a printing method or an ink-jet method and then the pattern is subjected to a crystallizing treatment such as a baking or reduction treatment or a treatment for making a high luminance emission ability.
- the rare-earth metal complex fluorescent substance usable in the invention includes ones containing Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb.
- the organic ligand composing the complex may be either an aromatic one or non aromatic one, and an aromatic organic ligand having a absorption in the region of not less than 250 nm is preferred. Compounds represented by the following Formula 1 or Formula R2 is more preferable.
- La, Lb and Lc are each independently an atom having 2 or more bonds, n is 0 or 1, Xa is a substituent having an atom capable of coordinating at a position adjacent to La, and Ya is a substituent having an atom capable of coordinating at a position adjacent to Lc.
- An optional portion of Xa and La, or an optional portion of Ya and Lc, each may be bonded with together to form a ring.
- an aromatic carbon hydride ring and an aromatic heterocyclic ring exists in the complex molecule, provided that the aromatic carbon hydride ring and the aromatic heterocyclic ring may be absent when Xa-(La)-(Lb)n-(Lc)-Ya represents ⁇ -diketone derivatives, ⁇ -ketoester derivatives, ⁇ -ketoamide deriavatives, crown ether in which an oxygen atom of the above-described ketone is replaced by an optional number of sulfur atoms or —N(R 1 )— groups, an aza-crown ether, a thia-crown ether or a crown ether in which an oxygen atom is replaced by an optional number of sulfur atoms or —N(R 1 )— groups.
- the atom capable of coordinating represented by Xa or Ya is preferably an oxygen atom, a nitrogen atom, a sulfur atom, a selenium atom or a tellurium atom, and an oxygen atom, a nitrogen atom and a sulfur atom are particularly preferred.
- the atom having two or more bonding hand represented by La, Lb or Lc in Formula 1 are preferably a carbon atom, an oxygen atom, a nitrogen atom, a silicon atom and a titanium atom, although there is no limitation on such the atom.
- the carbon atom is preferred among them.
- an alkyl group, a cycloalkyl group, an aryl group and a heterocyclic group are preferred, and an alkyl group substituted with a fluorine atom, a cycloalkyl group substituted with a fluorine atom, an aryl group and an aromatic heterocyclic group are particularly preferred.
- a benzene ring, a pyridine ring a thiophene ring and furan ring are preferable among the 4- to 8-member rings formed by Z 101 and the double bonded carbon atoms.
- the color conversion filter is a wavelength conversion element for changing the color of light emitted from a light source to a required color, which is basically a wavelength conversion element capable of converting the wavelength of the light from the light source to a wavelength longer 10 nm or more than that of the light of the light source.
- Such the color filter is practically used, for example, as a filter for color display (a color conversion filter capable of emitting blue, green and red light which is composed of strips of elements each converting blue light from the light source to green or red light) described in JP O.P.I. Nos.
- a white light emission filter (a color conversion filter for emitting wide range visible light from 400 nm to 700 nm) for lighting or a back light of liquid crystal display, a filter for partially lighting of a neon sign or a meter of a car (a color conversion filter for displaying required color at a required portion).
- a pattern was formed on a substrate composed of a glass plate on which a layer of 150 nm of ITO was formed (NA-45 manufactured by NH Technoglass Co. Ltd.) to prepare an anode.
- a substrate composed of a glass plate on which a layer of 150 nm of ITO was formed (NA-45 manufactured by NH Technoglass Co. Ltd.) to prepare an anode.
- prepared transparent substrate carrying the transparent ITO electrode was subjected to ultrasonic washing by isopropyl alcohol, and dried by dried nitrogen gas. Then the substrate was cleaned for 5 minutes by UV and ozone.
- Thus obtained transparent substrate was fixed on a substrate holder of an usual vacuum evaporation apparatus available on the market.
- TPD N,N′-diphenyl-N,N′-bis[3-methylphenyl)(1,1′-biphenyl]-4,4′-diamine
- PQP p-quaterphenyl
- Alq 3 tris(8-hydroxyquinolinate)- aluminum
- a positive hole injection layer having a thickness of 60 nm was provided.
- the heating boat carrying PQP was heated by 220° C. by applying an electric current to evaporate PQP on the positive hole injection layer with a evaporation rate of from 0.1 to 0.3 nm/sec.
- a light emission layer having a thickness of 40 nm was prepared.
- the heating boat carrying Alq 3 was heated by 250° C. by applying an electric current to evaporate Alq 3 on the light emission layer with a evaporation rate of 0.1 nm/sec.
- an electron injection layer having a thickness of 20 nm was prepared.
- the temperature of the substrate at the evaporation was a room temperature.
- electroluminescent element UV-1 was prepared having a facing electrode composed of a mixture of magnesium and silver.
- the element was set so that the ITO electrode was made as anode and the facing electrode was set as cathode, and applied a direct current of 10 V. Light having the maximum emission at a wavelength of 380 nm was emitted.
- Comparative electroluminescent element B-1 was prepared in the same manner as in electroluminescent element 1-1 except that the light emission compound p-quaterphenyl (PQP) was replaced by 4,4′-bis (2,2′-diphenylvinyl)biphenyl (DPVBi) The element was set so that the ITO electrode was made as anode and the facing electrode was set as cathode, and applied a direct current of 10 V. Blue light having the maximum emission at a wavelength of 475 nm was emitted.
- PQP light emission compound p-quaterphenyl
- DPVBi 4,4′-bis (2,2′-diphenylvinyl)biphenyl
- An alkaline solution was prepared by adding 150 ml of ethanol and 150 ml of water to an ammonia water containing 0.016 moles of ammonia. Then a solution composed of 150 ml of ethanol and, dissolver therein, 8.33 g of tetraethoxysilane (0.04 moles) and 0.079 g (0.2 mmoles) of europium (III) acetylacetonate complex dihydrate was dropped into the alkaline solution in a rate of 1 ml/min while stirring at a room temperature so as to form a sol liquid. Thus obtained sol liquid was concentrated about 15 times (about 30 ml) in an evaporator, and 295 ml of 0.3 moles/l barium nitrate aqueous solution was added for gelling the sol liquid.
- composition of GL-10 was analyzed by XRD spectrum. It was found that the main composition was Ba 2 SiO 4 , and the slightly contained sub-composition was BaSiO 4 and Ba 3 SiO 5 .
- GL-10 was a green light emitting fluorescent substance having an average diameter of 10.5 ⁇ m and the maximum emission wavelength thereof was 500 nm when excited by light of 405 nm.
- Red light emission fine particle inorganic fluorescent substance RL-5 (average diameter: approximately 0.85 ⁇ m) emitting light having the maximum emission at 610 nm (exciting light: 375 nm)
- Blue light emission fine particle inorganic fluorescent substance BL-3 (average diameter: approximately 0.90 ⁇ m) emitting light having the maximum emission at 432 nm (exciting light: 375 nm) were prepared in a manner similar to that in GL-10.
- Comparative fluorescent substance KX-605 Zn 2 SiO 4 :Mn 2+ , manufactured by Kasei-Optonics Co., Ltd.
- inorganic fluorescent substance RL-5 was replace by KX-605.
- KX-605 was a fluorescent substance having an average particle size of 7 ⁇ m and emitting light having the maximum emission wavelength of 570 nm when excited by light of 343 nm.
- Color Conversion Filters F-2 and F-3 each coated with green light emission inorganic fluorescent substance GL-10 and blue light emission inorganic substance BL-3, respectively, in a manner similar to that in color conversion filter F-1 were prepared.
- comparative color conversion filter F-4 coated with comparative inorganic fluorescent substance KX-605 was prepared in the same manner.
- Color conversion filters F-1, F-2 and F-3 according to the invention were almost colorless and transparent.
- comparative color conversion filter F-4 was whitely turbid and had almost no light transparency.
- green light emission color conversion filter F-6 according to the invention was prepared in the same manner as in F-5 except that RE-23 was used in place of RE-17.
- green light emission color conversion filter F-7 according to the invention was prepared in the same manner as in F-5 except that RE-1 was used in place of RE-17.
- Comparative color conversion filter F-8 which emits green light when excited by blue light was prepared in the same manner as in Example 3-2 except that RE-17 was replaced by 2.0 g of Coumalin 6 and 0.5 g of fluorescent pigment Solvent Yellow 116.
- Comparative color conversion filter F-9 which emits red light when excited by blue light was prepared in the same manner as in Example 3-2 except that RE-17 was replaced by 1.0 g of fluorescent pigment Solvent Yellow 116 and 0.5 g of Basic Violet 110 and 0.5 g of Rhodamine 6G.
- UV-1 F-1 71 Red 169 Inv. 2
- UV-1 F-5 68 Red 156 Inv. 3
- B-1 F-9 25 Red 103
- UV-1 F-2 168 Green 186
- UV-1 F-4 15 Green 161
- 6 UV-1 F-6 155 Green 162 Inv. 7
- B-1 F-8 100 Green 100
- Comp. 8 UV-1 F-3 111 Blue 186 Inv. 9
- UV-1 F-7 108 Blue 169 Inv.
- Color conversion filter F-1 or F-5 according to the invention were each placed on an ultraviolet emission LED element (UV LED Lamp manufactured by Nichia Kagaku Co., Ltd.) so that the fluorescent substance layer was placed near the LED element, and an electric voltage was applied to emit light. Red light having a high luminance and good tone was emitted.
- color conversion filter F-2 and F-6 according to the invention were each placed on the LED element and an electric voltage was applied. Green light having a high luminance and good tone was emitted.
- Color conversion filter F-3 and F-7 according to the invention were each placed on the LED element and an electric voltage was applied. Blue light having a high luminance and good tone was emitted.
- An electroluminescent element S-N7 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quarterphenyl (PQP) was replaced by compound N-7 according to the invention.
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted.
- An electroluminescent element S-A3 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound A-3 according to the invention.
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Pale violet light was emitted.
- a electroluminescent element S-B1 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound B-1 according to the invention.
- PQP light emission substance
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted
- An electroluminescent element S-D5 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound D-5 according to the invention.
- PQP light emission substance
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted.
- An electroluminescent element S-Fl was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound F-1 according to the invention.
- PQP light emission substance
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted.
- Color conversion filter F-2 according to the invention was placed on each of the near ultraviolet or violet light emission electroluminescent elements 6-1 to 6-5 and electroluminescent element UV-1 so as to face the fluorescent substance layer of the color conversion filter to the light emission surface of the electroluminescent element.
- the elements were each continuously lighted by applying a direct current of 15V at 23° C. in a dried nitrogen gas atmosphere.
- electroluminescent elements S-N7, A3, S-B1, S-D5 and S-Fl each using the compounds N-7, A-3, B-1, D-5 and F-1 according to the invention, respectively, each emit considerably higher luminance and have a improved life time compared with electroluminescent element using the usual light emission material UV-1 when the same color conversion filter is applied.
- An electroluminescent element S-A3 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound C-8 according to the invention.
- PQP light emission substance
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10-V was applied through the electrodes. Blue-green light was emitted.
- An electroluminescent element S-El was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound E-1 according to the invention.
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Green light was emitted.
- An electroluminescent element S—F7 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound F-7 according to the invention.
- PQP light emission substance
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Blue light was emitted.
- An electroluminescent element having the structure shown in FIG. 101 was prepared in the same manner as in Example 1-1.
- Comparative electroluminescent element CF-1 was prepared in the same manner as in electroluminescent element UV-1 except that a layer of NPB having a thickness of 70 nm was laminated at the first layer or a positive hole transport layer, a layer of Zn(BOX) having a thickness of 50 nm was laminated at the second layer or light emission layer and a layer of OXD-7 having a thickness of 30 nm was laminated at the third layer or electron transport layer.
- the element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Blue light was emitted.
- Electroluminescent elements 9201 to 9214 were prepared in the same manner as in elecroluminescent element CF-1 prepared in Example 9-1 except that the positive hole transporting material in the first layer NPB was replaced by each of the compounds shown in Table 3.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the luminance of light were measured.
- the luminance of light was described in a relative value when that of Sample 9201 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9201 was set at 100. Results of the experiments are shown in Table 3.
- sample using compound A-3 according to the invention having three bonding axes shows two times higher in the luminance and two or more times longer in the life time compared with Sample No. 9201 using N,N,N-tri-p-terphenylamine.
- the electroluminescent elements using compounds A-6, A-18, A-19 and F-1 according to the invention in the positive hole transport layer are each have both of a higher luminance and a longer light emission life time compared with comparative compounds QA-1 and QA-6 which are benzidine (naphthidine) derivative.
- the electroluminescent elements in which the triarylamine compound of the invention having biaryl group containing two or more atrop bonding axes are used as the positive hole transport material generally show a higher positive hole transport ability and a longer life time compared with the compound having no or only one biaryl group containing the atrop bonding axis.
- Organic EL Nos. 9300 to 9312 having the first layer (positive hole transportation-light emisulsion layer) and the third layer (electron transportation layer), as shown below were prepared in the same manner as in the electroluminescent elements in Examples 9-1 and 9-2 except that the second layer was omitted.
- the cross section thereof is as follows.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the light were measured.
- the luminance of emitted light was described in a relative value when that of Sample 9301 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9301 was set at 100. Results of the evaluation are shown in Table 4.
- both of a high luminance and a long life time can be obtained by the electroluminescent elements using the compound having two or more biaryl group containing the antrope bonding axis according to the invention.
- Electroluminescent elements Nos. 9401 to 9411 were prepared in the same manner as in electroluminescent element CF-1 except that the electron transportation material in the third layer OXD-7 was only replaced by the compounds shown in Table 5.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the light were measured.
- the luminance of light was described in a relative value when that of Sample 9401 was set at 100, and the time for 50%-reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9401 was set at 100. Results of the experiments are shown in Table 5.
- Organic EL Nos. 9500 to 9511 having the first layer (positive hole transportation layer) and the third layer (electron transportation-light emission layer),as shown below were prepared in the same manner as in the electroluminescent elements in Example 9-4 except that the second layer was omitted.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the light were measured.
- the luminance of light was described in a relative value when that of Sample 9501 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9501 was set at 100. Results of the experiments are shown in Table 6.
- Electroluminescent elements Nos. 9601 to 9605 were prepared in the same manner as in electroluminescent element CF-1 prepared in Example 9-1 except that the electron transportation material OXD contained in the third layer was only replaced by the compounds shown in Table 7.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the light were measured.
- the luminance of light was described in a relative value when that of Sample 9601 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9601 was set at 100.
- Results of the experiments are shown in Table 7. TABLE 7 Luminance Half-life Electron of emitted Color time of transport light of luminance Sample material in (relative emitted (relative No.
- Organic EL sample Nos. 9701 to 9705 were prepared by removing the second layer (light emission layer) electroluminescent elements Nos. 9601 to 9605 prepared in Example 9-6.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the light were measured.
- the luminance of light was described in a relative value when that of Sample 9701 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9701 was set at 100. Results of the experiments are shown in Table 8.
- compound C-6 according to the invention was usable as a yellow green light emission substance.
- Electroluminescent elements Nos. 9901 to 9908 were prepared in the same manner as in electroluminescent element CF-1 prepared in Example 9-1 except that the light emission substance Zn(BOX) in the second layer was only replaced by the compounds shown in Table 9.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the light were measured.
- the luminance of light was described in a relative value when that of Sample 9901 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9901 was set at 100.
- Results of the experiments are shown in Table 9. TABLE 9 Light Luminance Half-life emission of emitted Color time of material light of luminance Sample in 2nd (relative emitted (relative No.
- Electroluminescent elements Nos. 91001 to 91008 having the positive hole transportation layer or the first layer and the electron transport-light emission layer or the second layer were prepared in the same manner as in electroluminescent element CF-1 except that the light emission substance Zn(BOX) 2 was replaced by the compound shown in Table 10 and the electron transportation layer or the third layer was removed.
- the elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere.
- the luminance (cd/m 2 ) at the start of light emission and the time for 50% reduction of the light were measured.
- the luminance of light was described in a relative value when that of Sample 91001 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 91001 was set at 100. Results of the experiments are shown in Table 10.
- 2-arylphenylpridine derivative represented by Formula N1 can be synthesized by the method described in Shuichi Oi, Susumu Fukita and Yoshio Inoue, Chem. Comumn., 1998., 1439-2440.
- the first effect of the invention is to obtain a color conversion filter using a fine particle of inorganic fluorescent substance or a rare-earth metal complex coordinated with an organic ligand according to the invention.
- the second effect of the invention is to confirm that the wavelength of light can be converted into visible wavelength by the use of a combination of a color conversion filter according to the invention and a known near-ultraviolet light emission organic electro-luminescent element.
- the third effect of the invention is to confirm that suitable light is emitted by a combination of a color conversion filter of the invention and an organic electroluminescent element using a compound of the invention and that the light emission from such the combination has a long life time.
- the fourth effect of the invention is to confirm that both of a high luminance and a long life time by the organic electroluminescent element using a compound of the invention having a biaryl group in which a bonding axis capable of giving an internal rotation isomerism.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
- Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
An electroluminescent element with an electroluminescent material and a fluorescent substance. The fluorescent substance emits light having an emission maximum at a wavelength different from that of light emitted from the electroluminescent material upon absorption of the light emitted from the electroluminescent material. A color conversion filter is also disclosed. The color conversion filter has a fluorescent substance emitting light having an emission maximum at the wavelengths of 400 to 700 nm upon absorption of the light emitted from the electroluminescent material.
Description
- This is a Divisional Application of application Ser. No. 09/466,949 filed Dec. 20, 1999, now allowed.
- This invention relates to an electro luminescent element, specifically relates to an electroluminescent element useful in a civil or industrial displaying device such as a light-emission type multi- or full-color display, or a displaying panel, and color image forming method and a color filter (color conversion filter).
- Electronic display device include a light-emission type and a light-receiving type. Examples of the light-emission type include a CRT (cathode ray tube), a PDP (plasma display), an ELD (electroluminescent display), a VFD (fluorescent display tube) and a LED (light-emitting diode).
- Among them, the LED will be described below.
- The LED is a light emission element comprising a light emission material emitting light in an electric field or combination of several number of such the element. The elements are classified into an organic element and an inorganic element according to the material and into a carrier injection type and an accelerated electron type according to the light emission mechanism. The recombination of an electron and a positive hole is utilized in the carrier injection type element and collision energy of an accelerated electron is utilized in the accelerated electron type element. Generally, the inorganic material is longer in the life time and more stable than the organic material. However, it is a shortcoming of the inorganic material that the choice of the material is narrow and there is a limitation on the molecular design thereof. The recombination type has advantage that the driving voltage is lower than that for the electron accelerate type. Recently, therefore, the carrier injection type LED is extensively developed.
- The LED include the following three types.
- (1) Inorganic LED comprising a inorganic compound such as GaN and GaInN: the light emission mechanism thereof is recombination type. It is simply called also as LED (light emission diode).
- (2) Organic LED comprising an organic compound such as a triarylamine derivative and a stilbene derivative: the light emission mechanism thereof is recombination type. It is called as an organic EL (electroluminescent or OLED.
- (3) Inorganic EL comprising an inorganic material such as ZnS:Mn and ZnS:Tb: the light emission mechanism is the accelerated electron type. It is called simply as an electroluminescent element since the element of such the type is historically old.
- The “electroluminescent material” in the invention includes the above-mentioned (1) and (2). Therefore, (3) is not subject of the invention.
- In the field of the carrier-injection type organic electroluminescent element which has been particularly noted in recent years, ones emitting high luminance light have been becoming to be obtained after a thin layer of organic compound has been used. For example, U.S. Pat. No. 3,530,325 discloses one using a single crystal of anthracene as the light-emission substance, Japanese Patent Publication Open for Public Inspection (JP O.P.I.) No. 59-194393 discloses one having a combination of a positive hole injection layer and an organic light emission layer, JP O.P.I. No. 63-295695 discloses one having a combination of a positive hole injection layer and an organic electron injection layer, and Jpn. Journal of Applied Physics, Vol. 127, No. 2, p.p. 269-271, discloses one having a combination of a positive hole transportation layer and an electron transportation layer. The luminance of emission light is improved by such the means.
- Besides, a fluorescent substance has been known, which emits fluorescent light by absorbing light emitted from the electroluminescent material. The method using such the fluorescent substance to emit various colors light by means of an electroluminescent material is applied for the CRT, PDP, VFD, etc. However, in such the case, there is a problem that light emitted from the electroluminescent material must be a high energy ray (i.e., short wavelength emission) such as an electron ray or a far ultraviolet ray. The fluorescent substances described above are essentially inorganic fluorescent substances. There are known a number of the inorganic fluorescent substances which are superior in stability, exhibiting long shelf-life. However, there has not been found a long wavelength excitation type inorganic fluorescent substance exhibiting an excitation wavelength in the region of near ultraviolet to visible light, specifically, red light.
- A near ultraviolet ray capable of being emitted from the electroluminescent material is contemplated to be a light having a peak of wavelength within the range of from approximately 350 nm to 400 nm, and the use of an organic fluorescent dye as the fluorescent substance capable of excited such the near ultraviolet ray is disclosed in JP O.P.I. Nos. 3-152897, 9-245511 and 5-258860.
- However, it is known that the organic fluorescent dye is generally tends to be influenced by the circumstance condition, for example, change in the wavelength or quenching tends to be occurred depending on the kind of solvent or medium such as a resin.
- In the methods disclosed in the foregoing publications, a fluorescent dye which absorbs light of blue or blue-green light region emitted from the electroluminescent material and converts the light to red light. A fluorescent conversion layer which emits light in green region has characteristics that the Stokes shift (the difference between the wavelength of the absorbed light and that of the emitted light) is small, and a part of light emitted from the electroluminescent material can be permeated therethrough, and the light from the light emission material can be converted with a relative high efficiency. However, the conversion to the fluorescent to light of red region caused problems that the conversion efficiency is considerably low since a large Stokes shift is needed and the light from the light emitting material almost cannot be utilized. Exemplarily, the combined use of a few fluorescent dyes different in excitation wavelength is needed and it is necessary to utilize light-to-light conversion (i.e., photoluminescence) of plural fluorescent dyes, such as a fluorescent dye emitting yellow light in response to blue light and a fluorescent dye emitting red light in response to yellow light.
- Accordingly, there is a problem that the visual perceivability and the luminance of color displaying by such the element are lowered since the luminance balance between blue, green and red light emission is unsuitable and the above-mentioned quenching and decoloration are occurred.
- The inventors can obtain an electroluminescent element capable of emitting a high luminance light and having a high storage ability, and can provide a color filter with a high luminance by the use of such the electroluminescent element.
- The above-mentioned object of the invention can be attained by the following constitution:
- (1) An electroluminescent material represented by the following Formula N1:
-
- wherein Ar is an aryl group; A is a carbon atom, a nitrogen atom, a sulfur atom or an oxygen atom; X is a group of atoms necessary to form a 5- or 6-member nitrogen containing aromatic heterocyclic ring together with A and N; Y is a group of atoms necessary to form a 5- or 6-member aromatic hydrocarbon or aromatic heterocyclic ring; the bond of C—N, C-A or C—C in the formula is a single or double bond; and R is a hydrogen atom, a substituent or Ar; provided that the nitrogen-containing aromatic heterocyclic ring represented by
-
- each may be condensed with a hydrocarbon ring or a heterocyclic ring.
-
- wherein Ar11, Ar12 and Ar13 are each an aryl group or an aromatic heterocyclic group, and a biaryl group having a bond capable of giving at least two internal rotational isomerism is in the molecule of the compound represented by Formula A1.
-
- wherein Ar21, Ar22 and Ar23 are each an aryl group or an aromatic heterocyclic group, each of which has a bond exhibiting C2 rotation symmetry and capable of giving an internal rotational isomerism.
-
- wherein Ar31, Ar32 and Ar33 are each an aryl group or an aromatic heterocyclic group, provided that at least two of Ar31, Ar32 and Ar33 are each an aryl group having a 1,1′-binaphthyl moiety.
-
- wherein Ar41 and Ar42 are each independently an aryl group or an aromatic heterocyclic group; L11, L12 and L13 is each a group of atoms necessary to form an aromatic heterocyclic ring, provided that at least one of L11, L12 and L13 is ═N—, —N(R41)—, —S— or —O—; R41 is a hydrogen atom or a substituent, provided that at least one of Ar41, Ar42 and R41 is a biaryl group having a bonding axis capable of giving an internal rotational isomerism or a group having such a biaryl group, and the adjacent substituents may be condensed with each other to form a saturated or unsaturated ring.
-
- wherein Ar51 is an aryl group or an aromatic heterocyclic group; n is an integer of from 0 to 6, the plural groups represented by Ar51 may be the same or different when n is 2 or more; L21, L22, L23, L24, L25 and L26 are a group of atoms necessary to form a 6-member nitrogen-containing aromatic heterocyclic group, provided that at least one of L21, L22, L23, L24, L25, and L26 is ═N—, or —N(R51)—; R51 is a hydrogen atom or a substituent, provided that at least one of Ar51 and R51 is a biaryl group having a bonding axis capable of giving a internal rotation isomerism or a group having such a biaryl group, and the adjacent substituents may be condensed with each other to form a saturated or unsaturated ring.
-
- wherein Ar61 and Ar62 are each an aryl group or an aromatic heterocyclic group; R61 and R62 are each a hydrogen atom or a substituent, provided that at least one of Ar61, Ar62, R61 and R62 is a biaryl group having a bonding axis capable of giving a internal rotational isomerism or a group having such a biaryl group, and the adjacent substituents may be condensed with each other to form a saturated or unsaturated ring.
- (8) An electroluminescent material represented by the following Formula E1,
- Formula E1
- Mn′+(L71—)m(R71−)n′-m
- wherein M is a metal atom capable of taking an ionized state of from 1- to 4-valent (i.e., giving 1- to 4-valent ions); n′ is a natural number of from 1 to 4; L71 − is a monovalent anion capable of forming an ionic bonding with M and having a portion capable of coordinating with M; m is a natural number of the same as n′ or less; R71 − is a monovalent anion capable of forming an ionic bond with M, provided that at least one of L17 − and R71 − is a group having a moiety of biaryl group having a bonding axis capable of giving an internal rotational isomerism.
-
- wherein Z1 and Z2 are each independently a monovalent residue of a light emitting compound; Z3 is a k-valent residue of a light emitting compound; k is a natural number of from 1 to 8, x is a natural number of from 1 to 3; y is an integer of from 0 to 3, provided that plural groups represented by Zi may be the same or different when x is 2 or more, plural groups represented by Z2 may be the same or different when y is 2 or more, and groups represented by Z1 and Z2 may be the same or different when both of x and y are each 1 or more; R81 and R82 are each independently a substituent, n is an integer of from 0 to 4, m is an integer of from 0 to 4, provided that plural groups represented by R81 may be the same or different and may be condensed with each other to form a ring when n is 2 or more, plural groups represented by R82 may be the same or different and may be condensed with each other to form a ring when m is 2 or more, and R81 and R82 may be the same or different when both of n and m are 1 or more. The substituent of each of Z1, Z2, R81 and R82 may form a condensed ring with the naphthalene ring.
-
- wherein X91 is a halogen atom; R91 and R92 are each a substituent; n is an integer of 0 to 4; and m is an integer of 0 to 4, provided that when n is 2 or more, plural R91, may be the same or different, or condensed with each other, when m is 2 or more, plural R92s may be the same or different, or condensed with each other, and when n and m are both 1 or more, R91 and R92 may be the same or different.
- (11) An electroluminescent element comprising an electroluminescent material and an inorganic fluorescent substance which absorbs light emitted from the electroluminescent material and fluoresces at the maximum emission wavelength different from that of light emitted from the electroluminescent material.
- (12) The electroluminescent element described in (11), wherein the inorganic fluorescent substance is an inorganic fluorescent substance prepared by a Sol-Gel method.
- (13) The electroluminescent element described in (11) or (12), in which the inorganic fluorescent substance emits light having the maximum emission wavelength of from 400 nm to 700 nm.
- (14) The electroluminescent element described in any one of from (11) to (13), wherein at least one of the inorganic fluorescent substance emits light having the maximum fluorescence wavelength of from 600 nm to 700 nm.
- (15) An electroluminescent element which comprises an electroluminescent material and a rare earth metal complex fluorescent substance which absorbs light emitted from the electroluminescent material and fluoresces at the maximum wavelength different from that of the light emitted from the electroluminescent material.
- (16) The electroluminescent element described in (15), wherein the maximum emission wavelength of light emitted from the rare-earth metal complex fluorescent substance is within the range of from 400 nm to 700 nm.
- (17) The electroluminescent element described in (15) or (16), wherein the maximum emission wavelength of light emitted from the rare-earth metal complex fluorescent substance is within the range of from 600 nm to 700 nm.
- (18) The electroluminescent element described in any one of (11) to (17), wherein the maximum emission wavelength of light emitted from the electroluminescent material is not more than 430 nm.
- (19) The electroluminescent element described in (18), wherein the maximum emission wavelength of light emitted from the electroluminescent material is within the range of from 400 nm to 430 nm.
- (20) The electroluminescent element described in any one of (11) to (19), wherein the electroluminescent material is an organic LED material.
- (21) The electroluminescent element described in any one of (11) to (19) wherein the electroluminescent material is an inorganic LED material.
- (22) The electroluminescent element described in any one of (11) to (21), wherein the electroluminescent material is a compound selected from the group consisting of compounds represented by Formula N1, A1, A2, A3, B1, C1, D1, E1, F1 or F2, as described in (1) to (9) or a compound as described in (10).
- (23) An electroluminescent element comprising a substrate, provided thereon, a layer containing at least an electroluminescent material and a color conversion layer, wherein the color conversion layer contains an inorganic fluorescent substance which absorbs light emitted from the electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, an inorganic fluorescent substance emits light having the maximum emission wavelength of from 501 nm to 600 nm, and an inorganic fluorescent substance emits light having the maximum emission wavelength of from 601 nm to 700 nm.
- (24) An electroluminescent element comprising a substrate, provided thereon, a layer containing an electroluminescent material and a color conversion layer, wherein the color conversion layer contains a rare earth metal complex fluorescent substance which absorbs light emitted from the electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, a rare earth metal complex fluorescent substance emits light having the maximum emission wavelength of from 501 nm to 600 nm, and a rare earth metal complex fluorescent substance emits light having the maximum emission wavelength of from 601 nm to 700 nm.
- (25) A color conversion filter which contains at least an inorganic fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 700 nm.
- (26) A color conversion filter which contains an inorganic fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, an inorganic fluorescent substance emitting light having the maximum emission wavelength of from 501 nm to 600 nm, and an inorganic fluorescent substance emitting light having the maximum emission wavelength of from 601 nm to 700 nm.
- (27) The color conversion filter described in (24) or (25) wherein at least one of the inorganic fluorescent substance is one prepared by a Sol-Gel method.
- (28) A color conversion filter which contains at least an rare earth metal complex fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 700 nm.
- (29) A color conversion filter which contains a rare earth metal complex fluorescent substance which absorbs light emitted from an electroluminescent material and emits light having the maximum emission wavelength of from 400 nm to 500 nm, a rare earth metal complex fluorescent substance emitting light having the maximum emission wavelength of from 501 nm to 600 nm, and a rare earth metal complex fluorescent substance emitting light having the maximum emission wavelength of from 601 nm to 700 nm.
- (30) A color conversion method, comprising conversion of a light in a wavelength region shorter than a red light to the red light using an inorganic fluorescent substance which has been prepared by a sol-gel method.
- (31) A color conversion method, comprising conversion of a light in a wavelength region shorter than a red light to the red light using a rare earth metal fluorescent substance.
- (32) The color conversion method described in (31), wherein the rare earth metal complex has the maximum absorption wavelength of not less than 340 nm.
-
- wherein R101 is a hydrogen atom or a substituent; Y101 is an oxygen atom, a sulfur atom or —N(R102), in which R102 is a hydrogen atom or a substituent; Z101 is a group of atoms necessary to form a 4- to 8-membered ring together with a carbon-carbon double bond.
- FIG. 1 illustrates a cross sectional view of the structure of an electroluminescent element.
- In the invention, the electroluminescent material is a material which emits light by applying an electric field. In concrete, it is a material which emits light when a positive hole injected from a anode and an electron injected from a cathode are recombined, and is different from a material emitting light by collision energy of an accelerated electron (so-called inorganic electroluminescence). Thus, the electroluminescent material relating to the invention includes materials of the (1) and (2) afore-mentioned and does not include those of the afore-mentioned (3)
- The light emission by the electric field is a light emission of an electroluminescent material when an electric current is applied to the electroluminescent material contained in a light emission layer through a pair of electrodes arranged on both sides of a light emission layer light emission layer so as to be faced to each other through the light emission layer. It is considered that such the light-emission is occurred by the following mechanism; the energy level of the electroluminescent material is excited by recombination of an electron injected from one of the electrodes and a positive hole injected from the other electrode in the light-emission layer, and the energy is emitted in a form of light when the energy level of the excited electroluminescent material is restored to the fundamental state.
- Materials capable of emitting light by an electric field are usable in the invention without any limitation, for example, both of an inorganic electroluminescent material or inorganic LED such as gallium nitride GaN and an organic electroluminescent material or organic LED may be used. The organic LED is preferred from the view point of the light emission efficiency.
- In the invention, the electroluminescent material is preferably one which emits light having the maximum emission wavelength of 340 nm or less, more preferably from 400 nm to 430 nm, by the electric field.
- Specifically, in the CIE chromaticity coordinates are preferred the region corresponding to Purplish Blue, Bluish Purple and Purple, as shown in FIG. 4. 16 “Relationship of Color Name of Color stimulus (color of light) and Chromaticity Coordinates” of “Shikisaikagaku Handbook” (Handbook of Color Science), Fourth edition (edited by Nihon Shikisai Gakkai), page 105.
- The electroluminescent material preferably usable in the invention is described in concrete below.
- The electroluminescent material preferably usable in the invention includes compounds represented by the foregoing Formula N1, A1, B1, C1, D1, E1, F1 or F2.
- In Formulas N1, A1, B1, C1 and D1, the aryl group represented by Ar, Ar11, Ar 12, Ar13, Ar41, Ar42, Ar51, Ar61 or Ar62 may be any one without any limitation as long as the number of π-electron thereof is 4n+2 in which n is a natural number, and it may be a single ring or condensed ring. The aryl group may be substituted with a substituent such as an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heterocyclic group, an amino group, a halogen atom, a hydroxyl group, a mercapto group, a carboxyl group, an acylamino group, a sulfonamido group, a phopsphonamido group, a carbamoyl group, an ester group, an alkoxyl group, an aryloxyl group, a nitro group, a cyano group and a silyl group. When plural substituents are substituted at adjacent positions of the aryl group, the substituents may be condensed with each other to form a carbon hydride ring or a heterocyclic ring, a moiety having a spiro structure may be further contained.
- In Formulas N1, A1, B1, C1 and D1, the aromatic heterocyclic group represented by Ar, Ar11, Ar12, Ar13, Ar41, Ar42, Ar51, Ar61 or Ar62 is a residue formed by removing one hydrogen atoms from an optional position of a single or condensed ring heterocyclic compound having a number of π-electron of 4n+2 in which n is a natural number. Examples of such the heterocyclic compound include furan, thiophene, pyrrol, imidazole, pyrazole, 1,2,4-triazole, 1,2,3-triazole, oxazole, thiazole, isooxazole, isothiazole, furazane, pyridine, pyrazine, pyrimidine, pyridazine and 1,3,5-triazine, these heterocyclic ring each may further form a condensed ring.
- In Formulas B1, C1, D1, E1, F1 and F2, the substituent represented by R41, R51, R61, R71, R81, R82, R91, R92, R101 and R102 may be a group capable of substituting without any limitation. Typical examples of the substituent include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, a heterocyclic group, an amino group, a halogen atom, a hydroxyl group, a mercapto group, a carboxyl group, an acylamino group, a sulfonamido group, a phosphonamido group, a carbamoyl group, an ester group, an alkoxyl group, an aryloxyl group, a nitro group, a cyano group and a silyl group.
- When plural substituents are substituted at adjacent positions of the aryl group, the substituents may be condensed with each other to form a carbon hydride ring or a heterocyclic ring, a moiety having a spiro structure may be further contained.
-
- is preferably a 5- or 6-member 6π-type aromatic heterocyclic ring such as a 2-pyridyl group, a 2-pyrimidyl group, a 6-pyrimidyl group, a 2-pyradyl group, a 3-pyridazyl group, a 2-oxazolyl group, a 2-thiazolyl group, a 3-isooxazolyl group, a 3-isothiazolyl group, a 3-furazanyl group, a 3-pyrazolyl group, a 2-imidazolyl group, a 4-imidazolyl group, a 2-pyrrolo group, a 2-oxadiazolyl group, a 2-thiadiazolyl group, a 2-(1,2,4-triazyl) group, a 2-(1,3,5-triazyl) group and a 3-(1,2,4-triazyl) group. The nitrogen-containing heterocyclic group may be substituted with a substituent such as those described regarding R41. The nitrogen-containing heterocyclic group may form a condensed ring, such as a 6-(1H-pyrazolo[5,1-c][1,2,4]triazolyl) group which is formed by condensing 2-quinolyl or 3-pyrazolyl ring, which are the condensing product of a 2-pyridyl group and a carbon hydride ring, with a heterocyclic ring.
-
- is a group formed by removing one hydrogen atom from an optional position of a 4n-2π type aromatic carbon hydride compound. Concrete examples of the aromatic carbon hydride group include a phenyl group, a 1-naphthyl phenyl group, a 2-naphthyl phenyl group, a 9-antholyl group, a 1-antholyl group, a 9-phenantholyl group, a 2-triphenylenyl group and a 3-peryrenyl group. The carbon hydride group may be substituted with a substituent such as those described regarding R41. The carbon hydride group may form a condensed ring such as a 9-pyrenyl group and a 8-quinolyl group each formed by condensation of the carbon hydride ring with 9-phenantholyl group and condensation of a phenyl group with a heterocyclic group, respectively.
-
- may be a aromatic heterocyclic group without any limitation as long as the group is a 4n+2π type group and the atoms adjacent to the carbon atoms bonded with the nitrogen-containing aromatic heterocyclic group are carbon atoms. Exemplary examples of the aromatic heterocyclic group include a 3-pyridyl group, a 5-pyrimidyl group, a, 4-pyridazyl group, a 5-pyridazyl group, a 4-isooxazolyl group, a 4-isothiazolyl group, a 4-pyrazolyl group, a 3-pyrrolo group, a 3-furyl group and a 3-ethinyl group. The aromatic heterocyclic group may be substituted with a substituent such as those described regarding R41, and may form a condensed ring.
- In Formulas A1, B1, C1, D1, E1, F1 and F2, “a bonding axis capable of giving the internal rotation isomerism” is a bonding axis which cannot freely rotate for 360° by the steric hindrance under an ordinary temperature and pressure, such as the axis bonding the naphthalene nuclei in the following 1,1′-binaphthyl. Practically, a bonding axis cannot be rotated in a CPK-model is the “bonding axis capable of giving the internal rotation isomerism”.
- There is an isomer in the compound having the bonding axis capable of giving the internal rotation isomerism. Such the isomer is termed an atrop isomer or an internal rotation optical isomer, c.f. Kagaku Daijiten vol. 6, p. 588. In another word, the compound or substituent having the axis capable of giving the internal rotation isomerism can be defined as a compound or substituent having an atrop isomer or internal rotation optical isomer.
- Although an example of the basic skeleton structure of the substituent having a biaryl group which has the axis capable of giving the internal rotation isomerism is shown in the followings, the invention is not limited to this example. The substituent is formed by removing one hydrogen atom from the compound shown below, The basic skeleton structure may be substituted with a substituent those described regarding R4, and may form a condensed ring.
- In the formulas, substituents represented by R101 to R137 are those which have a Taft's stereo-parameter of not more than −1.00, including a bromone atom, iodine atom, straight-chained alkyl group such as methyl, ethyl, or propyl, a branched alkyl group such as isopropyl or t-butyl, cyclic alkyl such as cyclopentyl or cyclobutyl, an aromatic hydrocarbon group such as phenyl or naphthyl, heterocyclic group such as pydidyl, imidazolyl or furyl, nitro and mercapto group. The Taft's stereo-parameter is referred to S. H. Unger, Phys. Org. Chem. 12, 91 (1976) and “Yakubutsu no Kozokassei-sokan” (Kagaku no Ryoiki Zokan No. 122, published by Nankodo), pages 124-126.
-
- (1) a binaphthyl group, i.e., one in which hydrogen is removed from an arbitrary position of the 11′-binaphthyl,
- (2) a substituted 1,1′-binaphthyl group, in which one hydrogen atom is removed and substituent(s) are substituted for arbitrary m hydrogen atoms are removed, and
- (3) an aryl group substituted by the above described 1,1′-binaphthyl group.
-
- In Formula E1, the metal element represented by M may be ones capable of taking an ion structure of from 1- to 4-valent without any limitation. The metal element is preferably Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Pd, Cu, B, Al, Ga, In, Tl, Si and Ga, more preferably Be, Mg, Ca, Sr, Ba, Zn, Cu, B, Al, Ga and In, and most preferably Be, Al, Zn and Ga.
- In Formula E1, the monovalent anion represented by L73 −, which forms an ion bonding with M and has a portion capable of coordinating with M, is one capable of taking a state under an acidic condition in which a proton is added to an oxygen atom, a sulfur atom or a nitrogen atom, in another word, one capable of taking a state formed by removing a proton from a compound having a dissociable group such as —OH, —NH or —SH, and the anion also has an atom capable of coordinating with a metal such as a nitrogen atom and a chalcogen atom (O, S, Se, Te) at a position away 2 or 3 atoms from the oxygen atom, the sulfur atom or the nitrogen atom. Examples of such the anion include an oxygen anion formed by removing a proton from the hydroxyl group of 8-hydroxyquinoline and a nitrogen anion formed by removing a proton from the NH at position-1 of 1H-2-(1-pyrazolyl)-imidazole.
- In Formula E1, the monovalent anion capable of forming an ionic bond with M represented by R71 − may be one capable of forming an anion under a basic condition of pH of 8 or less, such as an anion formed by removing a proton from 4-hydroxy-1,1′-biphenyl, 2-mercaptonaphthalene or 1H-pyrazolo[5,1-c][1,2,4]triazole.
- In Formula F1, the monovalent light emitting compound residue represented by Z1 or Z2 is one formed by removing a hydrogen atom or a substituent from an optional portion of a compound which emits light at an ordinary temperature. In Formula F2, the k-valent light emitting compound residue represented by Z3 is one formed by removing k atoms of hydrogen or k substituents from an optional portion of a compound which emits light at an ordinary temperature. The light emission of the light emitting compound under an ordinary temperature may be fluorescence or phosphorescence.
- The light emitting compound capable of forming the light-emitting compound residue includes a fluorescent dye having a absorption band in the visible region such as a laser dye, a fluorescent compound having a absorption band in the ultraviolet region such as a fluorescent whitening agent, and a phosphorescent substance such as a platinum complex of porphyrin and biacetyl. In concrete, the organic fluorescent substances described in Kunio Yagi, Zenichi Yoshida, Riichi Oota, “Keikou -Riron-Sokutei-Ouyou” (Fluorescence—Theory•Determination•Application-), p.p. 99-122, Nankodo, the fluorescent whitening agent described in ibid., p.p. 251-270, and the fluorescent dyes described in ibid., p.p. 274-287. The followings are particularly preferable; a condensed aromatic carbon hydride cyclic compound such as triphenylene and perylene, a linear conjugate multi-ring carbon hydride compound such as p-terphenyl and quaterphenyl, a condensed aromatic heterocyclic compound such as acrydine, quinoline, carbazole, carbazone, fluorene, xanthione, aroxazine, acrydone, furabone, coumarin, naphthoimidazole, benzoxazole and dibenzophenazine, an aromatic heterocyclic compound such as thiazole, oxazole, oxadiazole, thiadiazole and triazole, a conjugate aliphatic compound such as aminochloromaleic amide, methylaminocitraconic methylimide, decapentaene carboxylic acid and decapentaene dicarboxylic acid, A fluorescent dye such as Acrydine Orange NO, Methylene Blue, Fluorescein, Eosine, Rhodamine and Benzoflabine, a light sensitive dye compound such as oxacarbocyanine, carbocyanine, thiacarbocyanine and 2-(anilinopolyethynyl)-benzothiazole, a natural dye compound such as porphiline, chlorophile and liboflabine, and a fluorescent whitening agent such as diaminostilbene type, distyrylbenzene type, benzidine type, diaminocarbazole type, triazole type, imidazole type, oxazole type, imidazolone type, dihydropyridine type, coumarine type, carbostyryl type, diaminodibenzothiophene oxide type, diaminofluorene type, oxacyanine type, aminonaphthalimide type, pyrazoline type and oxazole type. These compounds each may have a substituent and may form a condensed ring.
-
- The electroluminescent element in the invention is an element comprises a substrate, provided thereon, the foregoing electroluminescent material and an inorganic fluorescent substance or a rare-earth metal complex fluorescent substance which absorbs light emitted from the electroluminescent material and fluoresces light, and a pare of electrodes arranged so as to be faced to each other through the layer containing the electroluminescent material. The electroluminescent material and the inorganic fluorescent substance or the rare-earth metal complex fluorescent substance are separately contained in different layers, and are not contained in the same layer. The electroluminescent material used in the invention may be an emission material, a hole-injection material or an electron-injection material, and the emission material is preferred. The emission material may have capabilities of hole-injection and electron-injection in combination. In cases where the electroluminescent material used in the invention is employed as an emission material, a doping material (also called a dopant or guest) may be optionally employed for the electroluminescent material used as a host. In the followings, the electroluminescent material is present in any one of the emission layer, hole-injection layer and electron-injection layer; and the inorganic and/or rare-earth metal complex fluorescent substance are present in the color conversion layer. An electron injection layer or a positive hole injection layer may be provided in the electroluminescent element of the invention according to necessity.
- Substrates used in the electroluminescent element used in the invention are not specifically limited so far as they are transparent, such as glass and plastic resins. Typical examples of the material usable as the substrate of the electroluminescent element according to the invention include glass, quartz, and an optically transparent plastic film even though any material can be used without any limitation as long as the material is transparent. Examples of the transparent plastic film include a film of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfon (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), and cellulose acetate- propionate.
- In the electroluminescent element, the electroluminescent material according to the invention is preferably contained in the emission layer. Commonly known emission material may be used. Examples thereof include low molecular type emission material described in “Yuki-EL-Soshi to Kogyoka-saizensen” (published N.T.S. Co. Ltd, 1998, hereinafter, denoted Reference A), Sect. 1, Chapter 3, page 35-51; dye doping materials described in the reference A, Sect. 1, Chapter 4, pages 55-79; and high molecular type materials described in the reference A, Sect. 1, Chapter 5, pages 81-100.
- The electroluminescent element is usually constituted by a single or plural layers which are sandwiched between two electrodes. The constituting layers include, additionally to the light emission layer, a positive hole injection layer which is also referred to a charge injection layer, a hole injection layer, a charge transportation layer or a hole transportation layer, and an electron injection layer which is also referred to an electron transportation layer.
- The positive hole injection layer and the electron injection layer each may have a multi-layered structure, for example the following layer structure may be taken: Anode/1st positive hole injection layer/2nd positive hole injection layer (positive hole transportation layer)/Light emission layer/2nd electron injection layer (electron transportation layer) 1st electron injection layer/Cathode
- Examples of layer structure of the electroluminescent element of the invention are shown below. In the followings, the positive hole injection layer and the electron injection layer each may be a layer composed of laminated layers of plural compound as above-mentioned even though description regarding the plural laminated positive hole injection layers and/or the plural laminated electron injection layers are omitted.
- (i) Substrate/Color conversion layer/Substrate/Anode/Light emission layer/Cathode
- (ii) Substrate/Color conversion layer/Substrate/Anode/Positive hole injection layer/Light emission layer/Cathode
- (iii) Substrate/Color conversion layer/Substrate/Anode/Light emission layer/Electron injection layer/Cathode
- (iv) Substrate/Color conversion layer/Substrate/Anode/Positive hole injection layer/Light emission layer/Electron injection layer/Cathode
- (v) Substrate/Anode/light emission layer/Cathode/Color conversion layer/Substrate
- (vi) Substrate/Anode/Positive hole injection layer/Light emission layer/Cathode/Cover conversion layer/Substrate
- (Vii) Substrate/Anode/Light emission layer/Electron injection layer/Cathode/Color conversion layer/Substrate
- (viii) Substrate/Anode/Positive hole injection layer/Light emission Layer/Electron injection layer/Cathode/Color conversion layer/Substrate
- In the above-mentioned, the substrate contacting with the color conversion layer and that contacting with the anode may be the same or different. Outside of the element may be covered with the substrate.
- A buffer layer (electrode interface layer) may be arranged between the anode and the light emission layer or the positive hole injection layer, and between the cathode and the light emission layer or the electron injection layer.
- The buffer layer is a layer provided between the electrode and the organic compound layer for lowering the driving voltage or raising the light emission efficiency, which are described in Vol. 2, Section 2, p.p. 123-166 of Publication A. The buffer layer includes an anode buffer layer and a cathode buffer layer.
- Examples of the anode buffer layer include a phthalocyanine buffer layer typically comprising copper phthalocyanine, an oxide buffer layer typically comprising vanadium oxide, an amorphous carbon buffer layer and a polymer buffer layer comprising an electroconductive polymer such as polyaniline (Emeraldine) and polythiophene.
- Examples of the cathode layer buffer include a metal cathode buffer typically comprising a metal strontium and aluminum, an alkali metal compound buffer layer typically comprising lithium fluoride, an alkali-earth metal compound buffer layer typically comprising magnesium fluoride and an oxide buffer layer typically comprising aluminum oxide.
- The buffer layer is desirably a extremely thin layer and the thickness thereof is preferably from 0.1 to 100 nm depending on the material.
- The emission layer, hole-injection layer, electron-injection layer and buffer layer can be prepared as a thin layer by a known method such as a evaporation method, a spin-coat method, a casting method and a LB method. The layer is preferably a sedimented molecule layer. The sedimented molecule layer is a thin layer formed by sedimentation of the compound from a gas phase or a layer formed by solidifying from the molten or liquid phase of the compound. The sedimented molecule layer can be distinguished from a thin layer formed by the LB method (cumulative molecule layer) based on the difference in the coagulation structure and the high dimensional structure, and in the functional difference thereof caused by the structural difference.
- Moreover, the light emission layer can be formed by the method such as that described in JP O.P.I. No. 57-51781, by which the light emission material is dissolved in a solvent together with a binder such as a resin, and thus obtained solution is formed into a thin layer by a method such as spin-coat method. It is preferred that the thickness is within the range of from 5 nm to 5 μm, although the thickness of the layer thus formed may be optionally selected according to necessity without any limitation.
- For the anode of the electroluminescent element, a metal, an alloy and an electroconductive compound each having a high working function of not less than 4 eV, and mixture thereof are preferably used as the electrode material. Concrete examples of such the electrode material include a metal such as Au, and a transparent electroconductive material such as CuI, indium oxide (ITO), SnO2, ZnO and Zn-doped indium oxide (IZO). The anode may be prepared by evaporating or spattering such the electrode material to form a thin layer, and forming the layer into a desired form by a photolithographic method. When required precision of the pattern is not so high (not less than 100 mm), the pattern may be formed by evaporating or spattering through a mask having a desired form.
- When light is output through the anode, it is desired that the transparence of the anode is 10% or more, and the sheet resistivity of the anode is preferably not more than 103 Ω/□. It is preferably within the range of from approximately 10 nm to 1 μm, more preferably from 10 to 200 nm, although the thickness of the anode may be optionally selected.
- On the other hand, for the cathode, a metal (also referred to an electron injection metal), an alloy, and an electroconductive compound each having a low working function (not more than 4 eV), and a mixture thereof are used as the material of electrode. Concrete examples of such the electrode material include sodium, potassium, sodium-potassium alloy, magnesium, lithium, a magnesium/copper mixture, a magnesium/silver mixture, a magnesium/aluminum mixture, magnesium/indium mixture, a aluminum/aluminum oxide (Al2O3) mixture, indium, a lithium/aluminum mixture and a rare-earth metal.
- Among then, a mixture of an electron injection metal and a metal higher in the working function than that of the electron injection metal, such as the magnesium/silver mixture, magnesium/aluminum mixture, magnesium/indium mixture, aluminum/aluminum oxide (Al2O3) and lithium/aluminum mixture, is suitable from the view point of the electron injection ability and the resistivity to oxidation.
- However, the limitation of the working function is released when the cathode buffer layer is coated on the surface of the cathode. For example, such described as in JP O.P.I. No. 11-224783, a material having a high working function such as ITO, SnO2, In2O3 and Zno:Al can be used as the cathode which are usually used a the cathode when a fluoride of an alkali metal or an alkali-earth metal is used as the cathode buffer layer (in the publication described as an electron injection layer). Moreover, it has been known that aluminum can be used as the cathode material when lithium fluoride is used as the cathode buffer layer (thickness: 0.5 to 1 μm) as described in Publication (A), page 145, lines 15-28. When such the cathode material is used, an element defined as “metal” in the Periodical Table such as silver, copper, platinum and gold is usable additionally to the above-mentioned metal oxides and aluminum.
- The cathode can be prepared by making such the material to a thin layer by a method such as an evaporation or spattering mehtod.
- Moreover, it may be formed by a plating method such as described in JP O.P.I. No. 11-8074.
- The sheet resistivity of the cathode is preferably not more than 103 Ω/ψ, and the thickness of the cathode is preferably from 10 nm to 1 μm, more preferably from 50 to 2,000 nm.
- It is preferable for raising the light emission efficiency that the electrode arranged between the light emission layer and the color conversion layer is transparent or semi-transparent so as to permeate light therethrough. Herein, the expression, the electrode being transparent or semi-transparent means that the transmittance of the total visible region of 400 to 700 nm is 20% or more, and preferably 50% or more.
- In the invention, a positive hole injection layer may be provided according to necessity. The positive hole injection layer has a function of transporting the positive hole injected from the anode to the light emission layer. Many positive holes can be injected in a lowered electric field by the presence of the positive hole injection layer between the anode and the light emission layer. Moreover, the light emission ability of the element is made excellent by raising the light emission efficiency since the electrons injected into the light emission layer from the cathode or the electron injection layer are accumulated at the interface in the light emission layer by a barrier to electron existing at the interface between the light emission layer and the positive hole injection layer.
- The material to be used for the positive hole injection layer (hereinafter referred to a positive hole injection material) can be optionally selected from known materials without any limitation.
- The positive hole injection material may be either an organic substance or an inorganic substance as long as it has a positive hole injection ability or an ability to form a barrier to electron.
- Various kinds of organic compounds, for example, those described in JP O.P.I. Nos. 63-295695, 2-191694, 3-792, 5-234681, 5-239455, 5-299174, 7-126225, 7-126226, 8-100172 and EP No. 0650955 A1, can be used as the positive injection hole material. Examples of them include a phthalocyanine derivative, a tetraarylbenzidine compound, an aromatic tertiary amine, a hydrazone derivative, a carbazole derivative, a triazole derivative, an imidazole derivative an oxadiazole derivative having an amino group and polythiophene. These compounds may be used in combination of two or more. When the compounds are used in combination, they may be formed in a separated layers or mixed with together.
- When the positive hole injection layer is formed by lamination (in the case of the functions of positive hole injection and positive hole transportation are separately allocated), a preferable combination can be selected from these materials. In such the case, it is preferable to laminate the compounds in the order of small ionized potential from the anode such as ITO. The compound having a high thin film forming ability is preferably used such as the starburst type compounds described in JP O.P.I. No. 4-308688.
- Typical examples of the aromatic tertiary amine compound include N,N,N′,N′-tetraphenyl-4,4′-diaminophenyl, N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′-diamine (TPD), 2,2′-bis(4-di-p-tolylaminophenyl)propane, 1,1′-bis(4-di-p-tolylaminophenyl)cyclohexane, N,N,N′,N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1′-bis(4-di-p-tolylaminophenyl)-4-phenylcyclohexane, bis(4-dimethylamino-2-methylphenyl)-phenylmethane, bis(4-di-p-tolylaminophenyl)-phenylmethane, N,N′-diphenyl-N,N′-di(4-methoxyphenyl)-4,4′-diaminobiphenyl, N,N,N′,N′-tetraphenyl-4,4′-diaminodiphenylether, 4,4′-bis(diphenylamino)quaterphenyl, N,N,N-tri(p-tolyl)amine, 4-(di-p-tolylamino)-4′-[4-(di-p-tolylamino)styryl]stilbene, 4-N,N-diphenylamino-(2-diphenylvinyl)benzene, N-phenylcarbazole, compounds described in U.S. Pat. No. 5,061,569 which have two condensed aromatic rings in the molecule thereof such as 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPD), and compounds described in JP O.P.I. No. 4-308688 such as 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]-triphenylamine (MTDATA) in which three triphenylamine units are bonded in a starburst form.
- As the inorganic positive hole-injection material, p-Si and p-SiC are usable.
- The positive hole injection layer can be formed by making the positive hole injection material to a thin layer by a known method such as a vacuum evaporation method, a spin coat method a casting method and a LB method. The thickness of the positive hole injection layer is preferably approximately from 5 nm to 5 μm even though there is no specific limitation thereon.
- The electron injection layer which is provided according to necessity is a layer having a function of transporting electrons injected to the cathode to the light emission layer. The material of the electron injection layer may be optionally selected from known compounds.
- The electron injection layer has a function of to easily inject electron from the cathode, a function of to transport electron and to inhibit positive hole, and is provided when a compound having a relatively low electron transportation is used in the light emission layer.
- The electron injection layer may be separated into a layer having the electron injection ability and a layer having a electron transportation ability.
- Examples of the material of the electron injection layer (hereinafter referred to electron injection material) include a nitro-substituted fluorene derivative, a diphenylquinone derivative, a thiopyrane dioxide derivative, a heterocyclic tetracroxylic acid anhydride such as naphthaleneperylene, a carbodiimide, a fluolenylidenemethane derivative, an anthraquinodimethane and anthorone derivative, and a oxadiazole derivative. It is found by the inventors that a series of electron transmission compounds described in JP O.P.I. No. 59-194393 can be used as the electron injection material even though the compounds are described in the publication as the material for making the light emission layer. Moreover, a thiadiazole derivative which is formed by substituting the oxygen atom in the oxadiazole ring of the foregoing oxadiazole derivative by a sulfur atom, arylamino- or alkylamino-substituted triazole derivatives and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group are usable as the electron injection material.
- A metal complex of 8-quinolynol derivative such as aluminum tris-(8-quinolynol) (Alq), aluminum tris-(5,7-dichloro-8-quinolynol), aluminum tris-(5,7-dibromo-8-quinolynol), aluminum tris-(2-methyl-8-quinolynol), aluminum tris-(5-methyl-8-quinolynol), zinc bis-(8-quinolynol) (Znq), and a metal complex formed by replacing the central metal of the foregoing complexes with another metal atom such as In, Mg, Cu, Ca, Sn, Ga or Pb, can be used as the electron injection material. Furthermore, metal complex type materials described in the reference A at pages 38-48, a metal free and metal-containing phthalocyanine, and a derivative thereof in which the terminal of each of the compounds is replaced by a substituent such as an alkyl group or a sulfonic acid group are also preferably used as the electron injection material. An inorganic semiconductor such as n-Si and n-SiC may also be used as the electron injection material.
- The electron injection layer can be formed by making the electron injection material to a thin layer by a known method such as a vacuum evaporation method, a spin coat method a casting method and a LB method. The thickness of the positive hole injection layer is preferably approximately from 5 nm to 5 μm even though there is no specific limitation thereon.
- The electron injection layer may have a single layer structure containing one or more kinds of the electron injection material or a multi-layered structure composed of plural layers having the same or different composition.
- Next, the inorganic fluorescent substance and the rare-metal complex fluorescent substance relating to the invention are described below.
- In the invention, a substance capable of absorbing light emitted from the electroluminescent material and emitting light different from the light emitted from the electroluminescent material in the maximum emission wavelength thereof may be used as the inorganic fluorescent substance and the rare-metal complex fluorescent substance.
- In the above-mentioned, the difference between the maximum emission wavelength of the light emitted from the fluorescent substance and that of the light emitted from the electroluminescent material is 10 nm or more.
- The inorganic fluorescent substance or the rare-earth metal fluorescent substance to be contained in the electroluminescent element according to the invention is preferably one emitting fluorescent light having the maximum emission wavelength within the range of from 400 nm to 700 nm.
- It is preferable that the inorganic fluorescent substance or the rare-earth metal fluorescent substance to be contained in the electroluminescent element according to the invention preferably contains at least one capable of emitting light having the maximum emission wavelength larger by 180 nm or more than the maximum emission wavelength of light emitted from the electroluminescent material.
- It is preferable for full color displaying that the electroluminescent element of the invention has a color conversion layer containing at least one kind of the inorganic fluorescent substance or the rare-earth metal fluorescent substance emitting light having the maximum emission wavelength of from 400 nm to 500 nm, at least one kind of those emitting light having the maximum emission wavelength of from 501 nm to 600 nm and at least one kind of those emitting light having the maximum emission wavelength of from 601 nm to 700 nm when absorbs the light emitted from the electroluminescent material.
- The color conversion layer may be take various forms according to the use.
- For example, when a flat white light emission display is prepared, a mixture of a blue light emission fluorescent substance and a yellow light emission fluorescent substance or a mixture of a blue, green and red light emission fluorescent substances. In such the case, the fluorescent substances may be uniformly coated without any pattern.
- When a multi-color conversion filter such as a color filter for a liquid display is required, a fluorescent substance emitting light having required color is patterned in a form of stripe, dot or mosaic. The patterning can be carried out by the method usually applied for producing usual color filter of liquid display. In concrete, the method such as a pigment dispersion method, printing method and an ink-jet method may be applied.
- Although there is no limitation on the inorganic fluorescent substance or the rare-earth metal fluorescent substance to be used in the invention, ones comprised of a combination of metal oxide such as YO2S, Zn2SiO4 and Ca5(PO4)3Cl, or a sulfide such as ZnS, SrS and CaS as the mother crystal and an ion of rare-earth metal such as Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm and Yb or an ion of metal such as Ag, Al, Mn and Sb as an activator or a coactivator is preferred.
- The metal oxide is preferable as the mother crystal, for example, aluminum oxide, silicon oxide, phosphate and halophosphate each substituted with an alkali-earth metal such as (X)3Al16O27, (X)4Al14O25, (X)3Al2Si2,O, (X)4Si2O3, (X) Si2O4, (X)2P2O3, (X)2P2O5, (X)5(PO4)Cl and (X)2Si3O8-2(X)Cl2 are cited as the typical mother crystal, wherein X is an alkali-earth metal and the alkali-earth metal may be single metal composition or a mixture of 2 or more kinds of the metal.
- Preferable mother crystal other than those includes an oxide or sulfide of zinc, an oxide of a rare-earth metal such as yttrium, gadolinium and lanthanum, or one in which a part of the oxide atoms is replaced by a sulfur atom, a sulfide of rare-earth metal and the oxide or the sulfide of such the rare-earth metal in which an optional metal element is combined.
- Preferable examples of the mother crystal are shown below; ZnS, Y2O2S, Y3A;5O12, Y3SiO3, Zn2SiO4, Y2O3, BaMgAl10O17, BaAl12O19, (Ba,Sr,Mg)O.aAl2O3, (Y,Gd)BO3, YO3, (Zn, Cd) S, SrGa2S4, SrS, GaS, SnO2. Ca10 (PO4)6 (F, Cl)2, (Ba, Sr) (Mg, Mn) Al11I17, (Sr,Ca,Ba,Mg)10(PO4)Cl2, (La,Ce)PO4, CeMgAl11O19, GdMgB5O10, Sr2P2O, Sr4Al14O25, Y2SO4, Gd2O2S, Gd2O3, YVO4 and Y(P,V)O4.
- A part of the element of the above-listed mother crystal, the activator and the coactivator each may be replaced by an element of the same tribe in the periodic table, and there is no limitation on the element composition thereof as long as one capable of emitting visible light by absorbing ultraviolet or violet region of light.
- In the invention, an ion of lanthanoid element such as La, Eu, Tb, Ce, Yb and Pr, and an ion of metal such as Ag, Mn, Cu, In and Al is preferred as the activator or coactivator of the inorganic fluorescent substance. The doping amount of the activator or the coactivator is preferably from 0.001 to 100 mole-%, more preferably 0.01 to 50 mole-% of the mother crystal.
- The activator and the coactivator are doped in the crystal by replacing a part of the ion constituting the mother crystal by the ion such as the lanthanoid ion. The exact composition of the crystal of the fluorescent substance can be described as follows. However, the value of x and y in the following formulas are not described except in the case a specific note is attached since the amount of the activator tends to no influence on the fluorescent property of the substance. For example, Sr4-xAl14O25:Eu2+ x is described in Sr4Al 14O25:Eu2−.
- Although examples of typical inorganic fluorescent substance composed of the mother crystal and the activator are described below, the fluorescent substance usable in the invention is not limited to them: (BaxMg1-x)3-x-zAl16O27:EU2+ x, Mn2+ y, Sr4-xAl14O25:EU2+ x, (Sr1-xBax)1-xAl2Si2O8:Eu2+ x, Ba2-xSiO4:Eu2+ x, Sr2-x-ySiO4EU2+ x, Mg2−SO4:EU2+ x, (BaSr)xSiO4:Eu2+ x, Y2-x-ySiO5: Ce3+ x, Tb3+ y, Sr2-xP2O:Eu2+, Sr2-xP2O:Eu2+ x, (BayCa2Mg1-y-z)5-x(PO4)3ClEu2+ x and Sr2-xSi3O8.2Srl2:EU 2+ x, in which x, y and z are each an optional number.
- Inorganic fluorescent substances preferably usable in the invention are shown below. However, the inorganic fluorescent substance usable in the invention is not limited to these compound.
Blue light-emissive inorganic fluorescent compound (BL-1) Sr2P2O7:Sn4+ (BL-2) Sr4Al14O25:Eu2+ (BL-3) BaMgAl10O17:Eu2+ (BL-4) SrGa2S4:Ce3+ (BL-5) CaGa2S4:Ce3+ (BL-6) (Ba, Sr)(Mg, Mn)Al10O17:Eu2+ (BL-7) (Sr, Ca, Ba, Mg)10(PO4)6Cl2:Eu2+ (BL-8) BaAl2SiO8:Eu2+ [Green light-emissive inorganic fluorescent compound] (GL-1) (BaMg)Al16O27:Eu2+, Mn2+ (GL-2) Sr4Al14O25:Eu2+ (GL-3) (SrBa)Al2Si2O8:Eu2+ (GL-4) (BaMg)2SiO4:Eu2+ (GL-5) Y2SiO5:Ce3+, Tb3+ (GL-6) Sr2P2O7−Sr2B2O5:Eu2+ (GL-7) (BaCaMg)5(PO4)3Cl:Eu2+ (GL-8) Sr2Si3O8−2SrCl2:Eu2+ (GL-9) Zr2SiO4, MgAl11O19: Ce3+, Tb3+ (GL-10) Ba2SiO4:Eu2+ (GL-11) Sr2SiO4:Eu2+ (GL-12) (BaSR)SiO4:Eu2+ [Red light-emissive inoroganic fluorescent compound] (RL-1) Y2O2S:Eu3+ (RL-2) YAlO3:Eu3+ (RL-3) Ca2Y2(SiO4)6:Eu3+ (RL-4) LiY9(SiO4)6O2:Eu3+ (RL-5) YVO4:Eu3+ (RL-6) CaS:Eu3+ - In the invention, an inorganic fluorescent substance prepared by a buildup method without mechanical crushing process in the production course is preferably used for emitting high luminance light. Ones produced by a liquid phase methods such as a Sol-Gel method are particularly preferred. As to the composition thereof, ones having an inorganic oxide as the mother crystal are preferred.
- The Sol-Gel synthesis method is a method in which the synthesis basically started from a solution and the material is synthesized at a temperature lower than the melting point thereof through a sol and gel states as described in detail—in Sumio Sakka “Application of Sol-Gel Method” 1997, Agnes Shofuusha. The Sol-Gel method in the invention is a method in which a reaction in a liquid phase is carried out in at least one step thereof. Such the method can be established from the method carried out by a reaction in a molten state applied for producing an usual inorganic fluorescent substance. The production procedure by Sol-Gel method is a method in which necessary amounts of elements to be used as the mother crystal, activator or coactivator in a form of metal alkoxide such as tetramethoxysilane Si(OCH3)4 and europium-2,4-pentanedionate Eu3+(CH3COCH═C(OCH3)3, metal complex, double alkoxide prepared by addition of an elemental metal to an organic solvent solution of the above metal alkoxide or metal complex such as Mg[Al(OBu)3]2 which is prepared by addition of metallic magnesium to a 2-butanol solution of Al(OBu)3, metal halide, organic acid salt of metal or elemental metal are mixed and thermally or chemically polymerized or condensed. The product may be subjected to a baking or reducing treatment according to necessity.
- The Metal in the metal alkoxide, metal halide, metal salt and metal to be used in the invention includes “metals” defined in the Periodical Table, all element of “transition metals”, all elements of actinoid and boron, carbon and silicon which are usually defined as “non metals”.
- The inorganic fluorescent substance may be subjected to a surface property improving treatment. The method for such the treatment includes a chemical treatment by silane coupling agent, a physical treatment by an addition of fine particle having a size of submicron, and a combination thereof.
- All compounds described in “Catalogue of NUC silicone silane coupling agent”, August 2nd 1997, published by Nihon Unicar Co., Ltd., are usable as the silane coupling agent in the invention. Concrete examples of such the compound include β-(3,4-epoxycyclohexyl)ethyltrialkoxysilane, glycidyloxyethyltriethoxysilane, γ-acryloyloxy-n-propyl-tri-n-propyloxysilane, γ-methacryloyloxy-n-propyl-n-porpyloxysilane, di-(γ-acryloyloxy-n-propyl)-di-n-propyloxysilane, acryloyloxydimethoxyethylsilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane and γ-mercaptopropyltrimethoxysilane.
- The fine particle usable in the invention is preferably an inorganic fine particle such as silica, titania, zirconia and zinc oxide.
- When the fluorescent substance is produced by the Sol-Gel method, a procedure may be applied in which a precursory solution of the fluorescent substance or a solution containing a primary particle of the fluorescent substance is patterned on a transparent substrate by a printing method or an ink-jet method and then the pattern is subjected to a crystallizing treatment such as a baking or reduction treatment or a treatment for making a high luminance emission ability.
- The rare-earth metal complex fluorescent substance usable in the invention includes ones containing Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm or Yb. The organic ligand composing the complex may be either an aromatic one or non aromatic one, and an aromatic organic ligand having a absorption in the region of not less than 250 nm is preferred. Compounds represented by the following Formula 1 or Formula R2 is more preferable.
- Formula 1
- Xa-(La)-(Lb)n-(Lc)-Ya
- In the above formula, La, Lb and Lc are each independently an atom having 2 or more bonds, n is 0 or 1, Xa is a substituent having an atom capable of coordinating at a position adjacent to La, and Ya is a substituent having an atom capable of coordinating at a position adjacent to Lc. An optional portion of Xa and La, or an optional portion of Ya and Lc, each may be bonded with together to form a ring. Moreover, at least one of an aromatic carbon hydride ring and an aromatic heterocyclic ring exists in the complex molecule, provided that the aromatic carbon hydride ring and the aromatic heterocyclic ring may be absent when Xa-(La)-(Lb)n-(Lc)-Ya represents β-diketone derivatives, β-ketoester derivatives, β-ketoamide deriavatives, crown ether in which an oxygen atom of the above-described ketone is replaced by an optional number of sulfur atoms or —N(R1)— groups, an aza-crown ether, a thia-crown ether or a crown ether in which an oxygen atom is replaced by an optional number of sulfur atoms or —N(R1)— groups.
- In Formula 1, the atom capable of coordinating represented by Xa or Ya is preferably an oxygen atom, a nitrogen atom, a sulfur atom, a selenium atom or a tellurium atom, and an oxygen atom, a nitrogen atom and a sulfur atom are particularly preferred.
- The atom having two or more bonding hand represented by La, Lb or Lc in Formula 1 are preferably a carbon atom, an oxygen atom, a nitrogen atom, a silicon atom and a titanium atom, although there is no limitation on such the atom. The carbon atom is preferred among them.
-
- Among the group represented by R101 in Formula R2, an alkyl group, a cycloalkyl group, an aryl group and a heterocyclic group are preferred, and an alkyl group substituted with a fluorine atom, a cycloalkyl group substituted with a fluorine atom, an aryl group and an aromatic heterocyclic group are particularly preferred.
- Among the substituent represented by Y101 in Formula R2, an oxygen atom is preferable.
- In Formula R2, a benzene ring, a pyridine ring a thiophene ring and furan ring are preferable among the 4- to 8-member rings formed by Z101 and the double bonded carbon atoms.
- Although concrete examples of rare-earth metal complex fluorescent substance having an anion ligand are shown below, the invention is not limited thereto.
- In the invention, the color conversion filter is a wavelength conversion element for changing the color of light emitted from a light source to a required color, which is basically a wavelength conversion element capable of converting the wavelength of the light from the light source to a wavelength longer 10 nm or more than that of the light of the light source. Such the color filter is practically used, for example, as a filter for color display (a color conversion filter capable of emitting blue, green and red light which is composed of strips of elements each converting blue light from the light source to green or red light) described in JP O.P.I. Nos. 3-152897, 9-245511 and 11-297477, a white light emission filter (a color conversion filter for emitting wide range visible light from 400 nm to 700 nm) for lighting or a back light of liquid crystal display, a filter for partially lighting of a neon sign or a meter of a car (a color conversion filter for displaying required color at a required portion).
- The invention is described in detail below according to examples. However, the embodiment of the invention is not limited to the examples.
- Preparation Electroluminescent Element UV-1
- A pattern was formed on a substrate composed of a glass plate on which a layer of 150 nm of ITO was formed (NA-45 manufactured by NH Technoglass Co. Ltd.) to prepare an anode. Thus prepared transparent substrate carrying the transparent ITO electrode was subjected to ultrasonic washing by isopropyl alcohol, and dried by dried nitrogen gas. Then the substrate was cleaned for 5 minutes by UV and ozone. Thus obtained transparent substrate was fixed on a substrate holder of an usual vacuum evaporation apparatus available on the market. Besides, 200 mg of N,N′-diphenyl-N,N′-bis[3-methylphenyl)(1,1′-biphenyl]-4,4′-diamine (TPD), 200 mg of p-quaterphenyl (PQP), and 200 mg of tris(8-hydroxyquinolinate)- aluminum (Alq3) were each respectively put in different molybdenum resistive heating boats, and the boats were installed in the vacuum evaporation apparatus. Then the pressured in the vacuum tank was reduced by 4×10−4 Pa. The heating boat carrying TPD was heated by 220° C. by applying an electric current to evaporate TDP on the transparent substrate with a evaporation rate of from 0.1 to 0.3 nm/sec. Thus a positive hole injection layer having a thickness of 60 nm was provided. Then, the heating boat carrying PQP was heated by 220° C. by applying an electric current to evaporate PQP on the positive hole injection layer with a evaporation rate of from 0.1 to 0.3 nm/sec. Thus a light emission layer having a thickness of 40 nm was prepared. Moreover, the heating boat carrying Alq3 was heated by 250° C. by applying an electric current to evaporate Alq3 on the light emission layer with a evaporation rate of 0.1 nm/sec. Thus an electron injection layer having a thickness of 20 nm was prepared. The temperature of the substrate at the evaporation was a room temperature. Then the vacuum tank was opened, a stainless steel mask having a rectangular hole was attached on the electron injection layer. On the other hand, 3 g of magnesium was put in a molybdenum heating boat and 0.5 g of silver was put in an evaporation basket made by tungsten, and they were installed in the evaporation apparatus. The pressure in the vacuum tank was reduced by 2×10−4 Pa, and magnesium was evaporated in a rate of from 1.5 to 2.0 nm/sec by applying an electric current to the boat carrying magnesium. At the same time the basket carrying silver was heated so that the silver was evaporated in a rate of 0.1 nm/sec. Thus electroluminescent element UV-1 was prepared having a facing electrode composed of a mixture of magnesium and silver.
- The element was set so that the ITO electrode was made as anode and the facing electrode was set as cathode, and applied a direct current of 10 V. Light having the maximum emission at a wavelength of 380 nm was emitted.
- Preparation of Comparative Electroluminescent Element B-1
- Comparative electroluminescent element B-1 was prepared in the same manner as in electroluminescent element 1-1 except that the light emission compound p-quaterphenyl (PQP) was replaced by 4,4′-bis (2,2′-diphenylvinyl)biphenyl (DPVBi) The element was set so that the ITO electrode was made as anode and the facing electrode was set as cathode, and applied a direct current of 10 V. Blue light having the maximum emission at a wavelength of 475 nm was emitted.
- Synthesis of Exemplified Compound GL-10, Ba2SiO4:Eu2+
- An alkaline solution was prepared by adding 150 ml of ethanol and 150 ml of water to an ammonia water containing 0.016 moles of ammonia. Then a solution composed of 150 ml of ethanol and, dissolver therein, 8.33 g of tetraethoxysilane (0.04 moles) and 0.079 g (0.2 mmoles) of europium (III) acetylacetonate complex dihydrate was dropped into the alkaline solution in a rate of 1 ml/min while stirring at a room temperature so as to form a sol liquid. Thus obtained sol liquid was concentrated about 15 times (about 30 ml) in an evaporator, and 295 ml of 0.3 moles/l barium nitrate aqueous solution was added for gelling the sol liquid.
- Thus obtained swelled gel was ripened for one knight at 60° C. in a closed vessel. Then the gel was dispersed in about 300 ml of ethanol by stirring and separated by a vacuum filtration using a filter paper Advantec 5A. The separated matter was dried at a room temperature. The dried gel was subjected to a heating treatment for 2 hours at 1000° C. in an atmosphere of 5% H2—N2. Thus 2.7 g of inorganic fluorescent substance GL-10 (Ba2SiO4:Eu2+ 0005) was obtained which emits pale green light under sun light.
- The composition of GL-10 was analyzed by XRD spectrum. It was found that the main composition was Ba2SiO4, and the slightly contained sub-composition was BaSiO4 and Ba3SiO5.
- It was found that GL-10 was a green light emitting fluorescent substance having an average diameter of 10.5 μm and the maximum emission wavelength thereof was 500 nm when excited by light of 405 nm.
- Red light emission fine particle inorganic fluorescent substance RL-5 (average diameter: approximately 0.85 μm) emitting light having the maximum emission at 610 nm (exciting light: 375 nm), and Blue light emission fine particle inorganic fluorescent substance BL-3 (average diameter: approximately 0.90 μm) emitting light having the maximum emission at 432 nm (exciting light: 375 nm) were prepared in a manner similar to that in GL-10.
- Improve of the Surface Property of the Fine Particle Inorganic Fluorescent Substance
- To 0.16 g of aerogel having an average diameter of 5 nm, 15 g of ethanol and 0.22 g of γ-glycidoxypropyltriethoxy-silane and the mixture was stirred for 1 hour in an open vessel at a room temperature. The mixture and 20 g of inorganic fluorescent substance BL-10 were put into a mortar and was sufficiently ground. The ground mixture was heated for 2 hours at 70° C. in an oven, and further heated at 120° C for 2 hours in an oven. Thus GL-10 improved in the surface property.
- The surface property of RL-5 and that of BL-3 were also improved in the similar manner.
- Improvement of the Surface Property of the Comparative Inorganic Fluorescent Substance
- The surface property of Comparative fluorescent substance KX-605 (Zn2SiO4:Mn2+, manufactured by Kasei-Optonics Co., Ltd.) was improved in the same manner described in Example 2-2 except that inorganic fluorescent substance RL-5 was replace by KX-605. KX-605 was a fluorescent substance having an average particle size of 7 μm and emitting light having the maximum emission wavelength of 570 nm when excited by light of 343 nm.
- Preparation of Color Conversion Filter Using the Inorganic Fluorescent Substance.
- To 10 g of the above-obtained red light emission inorganic fluorescent substance RL-5 improved in the surface property thereof, 30 g of a butyral resin BX-1 dissolved in 300 g of a mixture of toluene/methanol in a ratio of 1/1 was added and stirred, and the mixture was coated on a glass plate so as to form a layer having a wet thickness of 200 μm. The coated glass plate was heated for 4 hours at 100° C. in an oven for drying. Thus color conversion filter F-1 according to the invention was prepared.
- Color Conversion Filters F-2 and F-3 each coated with green light emission inorganic fluorescent substance GL-10 and blue light emission inorganic substance BL-3, respectively, in a manner similar to that in color conversion filter F-1 were prepared.
- Moreover, comparative color conversion filter F-4 coated with comparative inorganic fluorescent substance KX-605 was prepared in the same manner.
- Color conversion filters F-1, F-2 and F-3 according to the invention were almost colorless and transparent. In contrast, comparative color conversion filter F-4 was whitely turbid and had almost no light transparency.
- The visible light transparency of F-1, F-2, F-3 and F-4 were each 54%, 57%, 57% and 4%, respectively.
- In 30 g of butyral resin BX-1 dissolved in 300 g of a mixture of toluene/ethanol in a ratio of 1/1, 3 g of rare-earth metal complex fluorescent substance RE-17 according to the invention was dissolved. The solution was coated on a 80 μm polyethersulfon (PES) film in a wet thickness of 150 μm and dried to prepare red light emission color conversion filter F-5 according to the invention.
- On the other hand, green light emission color conversion filter F-6 according to the invention was prepared in the same manner as in F-5 except that RE-23 was used in place of RE-17.
- Furthermore, green light emission color conversion filter F-7 according to the invention was prepared in the same manner as in F-5 except that RE-1 was used in place of RE-17.
- Preparation of Color Conversion Filter Using a Fluorescent Dye
- Comparative color conversion filter F-8 which emits green light when excited by blue light was prepared in the same manner as in Example 3-2 except that RE-17 was replaced by 2.0 g of Coumalin 6 and 0.5 g of fluorescent pigment Solvent Yellow 116.
- Comparative color conversion filter F-9 which emits red light when excited by blue light was prepared in the same manner as in Example 3-2 except that RE-17 was replaced by 1.0 g of fluorescent pigment Solvent Yellow 116 and 0.5 g of Basic Violet 110 and 0.5 g of Rhodamine 6G.
- Color conversion filter F-1 prepared in Example 3-3 was put on electroluminescent element UV-1 prepared in Example 1-1, and a direct current of 12 V was applied to the electroluminescent element in a atmosphere of dried nitrogen gas. Red light was emitted from the color conversion filter. The luminance of the light emitted from the color conversion filter was 26 cd/m2 and the coordinate point in the CIE color coordinates of the light was x=0.64 and y=0.29.
- Evaluation of Light Emission Efficiency and Life Time of the Electroluminescent Element
- The above-mentioned color conversion filters of the invention and the comparative color conversion filter were each placed on electroluminescent element UV-1 or comparative electroluminescent element B-1 so that the surface of the fluorescent layer of the color conversion filter was faced to the light emission face of the electroluminescent element, and a direct current of 12 V was continuously applied to the element to continuously emit light in a dried nitrogen gas at 23° C. The light emission efficiency (1 m/W) at the start of the continuous emission and the time for 50% reduction of the luminance (i.e., half-life time thereof)were measured. The light emission efficiency was described in a relative value based on the efficiency of Sample No. 7 being 100, and the half-life time of luminance was described by a relative value, based on the half-life of Sample No. 7 being 100. Results of the experiments are shown in Table 1.
TABLE 1 Organic Light Half-life electro- emission Color Time of Sam- lumines- Color efficiency of luminance ple cent conversion (relative emitted (relative No. element filter value) light value) Note 1 UV-1 F-1 71 Red 169 Inv. 2 UV-1 F-5 68 Red 156 Inv. 3 B-1 F-9 25 Red 103 Comp. 4 UV-1 F-2 168 Green 186 Inv. 5 UV-1 F-4 15 Green 161 Comp. 6 UV-1 F-6 155 Green 162 Inv. 7 B-1 F-8 100 Green 100 Comp. 8 UV-1 F-3 111 Blue 186 Inv. 9 UV-1 F-7 108 Blue 169 Inv. - It is found from the results in Table 1 that the electroluminescent elements having the color conversion filter of the invention, Samples No. 1 and No. 2, are higher in the light emission efficiency and longer in the life time compared with Comparative sample No. 3. The tone of light emitted from each of the samples according to the invention was better than that of light emitted from the comparative sample.
- It is found that the electroluminescent elements having the color conversion filter of the invention emitting green light, Samples No. 4 and No. 6, are considerably higher in the light emission efficiency compared with comparative sample No. 5. Furthermore, it was found that the samples according to the invention were higher in the light emission efficiency and longer in the life time compared with comparative sample No. 7 composed of the blue light emitting electroluminescent element and the color conversion filter. The tone of light emitted from the samples according to the invention was better than that of light emitted from the comparative sample Moreover, it was confirmed that samples No. 8 and No. 9 according to the invention have the highest light emission efficiency and working stability.
- Evaluation of LED Element
- Color conversion filter F-1 or F-5 according to the invention were each placed on an ultraviolet emission LED element (UV LED Lamp manufactured by Nichia Kagaku Co., Ltd.) so that the fluorescent substance layer was placed near the LED element, and an electric voltage was applied to emit light. Red light having a high luminance and good tone was emitted. Similarly, color conversion filter F-2 and F-6 according to the invention were each placed on the LED element and an electric voltage was applied. Green light having a high luminance and good tone was emitted. Color conversion filter F-3 and F-7 according to the invention were each placed on the LED element and an electric voltage was applied. Blue light having a high luminance and good tone was emitted.
- Preparation of Electroluminescent Element S-N7 Using Compound N-7 According to the Invention
- An electroluminescent element S-N7 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quarterphenyl (PQP) was replaced by compound N-7 according to the invention.
- The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted.
- Preparation of Electroluminescent Element S-A3 Using Compound A-3 According to the Invention
- An electroluminescent element S-A3 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound A-3 according to the invention. The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Pale violet light was emitted.
- Preparation of Electroluminescent Element S-B1 Using Compound B-1 According to the Invention
- A electroluminescent element S-B1 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound B-1 according to the invention.
- The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted
- Preparation of Electroluminescent Element S-D5 Using Compound D-3 According to the Invention
- An electroluminescent element S-D5 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound D-5 according to the invention.
- The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted.
- Preparation of Electroluminescent Element S-F1 Using Compound F-1 According to the Invention
- An electroluminescent element S-Fl was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound F-1 according to the invention.
- The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Violet light was emitted.
- Evaluation of the Near Ultraviolet or Violet Light Emission Compound
- Color conversion filter F-2 according to the invention was placed on each of the near ultraviolet or violet light emission electroluminescent elements 6-1 to 6-5 and electroluminescent element UV-1 so as to face the fluorescent substance layer of the color conversion filter to the light emission surface of the electroluminescent element. The elements were each continuously lighted by applying a direct current of 15V at 23° C. in a dried nitrogen gas atmosphere.
- The limunance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of light was described in a relative value when that of Sample 701 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 701 was set at 100. Results of the experiments are shown in Table 2.
TABLE 2 Luminance Organic of Half-life electro- emitted Color time of Sam- lumines- Color light of luminance ple cent conversion (relative emitted (relative No. element filter value) light value) Note 701 UV-1 F-2 100 Green 169 Inv. 702 S-N7 F-2 178 Green 156 Inv. 703 S-A3 F-2 456 Green 103 Inv. 704 S-B1 F-2 320 Green 186 Inv. 705 S-D5 F-2 540 Green 161 Inv. 706 S-F1 F-2 312 Green 169 Inv. - As is shown in Table 2, electroluminescent elements S-N7, A3, S-B1, S-D5 and S-Fl each using the compounds N-7, A-3, B-1, D-5 and F-1 according to the invention, respectively, each emit considerably higher luminance and have a improved life time compared with electroluminescent element using the usual light emission material UV-1 when the same color conversion filter is applied.
- Preparation of electroluminescent element using the compound according to the invention emitting light within the visual region.
- Preparation of Electroluminescent Element S-C8 Using Compound C-8 According to the Invention
- An electroluminescent element S-A3 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound C-8 according to the invention.
- The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10-V was applied through the electrodes. Blue-green light was emitted.
- Preparation of Electroluminescent Element S-E1 Using Compound E-1 According to the Invention
- An electroluminescent element S-El was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound E-1 according to the invention.
- The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Green light was emitted.
- Preparation of Electroluminescent Element S-F7 Using Compound F-7 According to the Invention
- An electroluminescent element S—F7 was prepared in the same manner as in Example 1-1 except that the light emission substance p-quaterphenyl (PQP) was replaced by compound F-7 according to the invention.
- The element was set so that the ITO electrode was an anode and the facing electrode composed of silver and magnesium was a cathode, and a direct current of 10 V was applied through the electrodes. Blue light was emitted.
- (Comparison of characteristics of the compound according to the invention with that of a known compound similar thereto)
- Preparation of Comparative Electroluminescent Element CF-1
- An electroluminescent element having the structure shown in FIG. 101 was prepared in the same manner as in Example 1-1.
- Comparative electroluminescent element CF-1 was prepared in the same manner as in electroluminescent element UV-1 except that a layer of NPB having a thickness of 70 nm was laminated at the first layer or a positive hole transport layer, a layer of Zn(BOX) having a thickness of 50 nm was laminated at the second layer or light emission layer and a layer of OXD-7 having a thickness of 30 nm was laminated at the third layer or electron transport layer.
-
- Comparison of Characteristics of Triarylamine Type Compounds as the Positive Hole Transporting Material
- Electroluminescent elements 9201 to 9214 were prepared in the same manner as in elecroluminescent element CF-1 prepared in Example 9-1 except that the positive hole transporting material in the first layer NPB was replaced by each of the compounds shown in Table 3.
- The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the luminance of light were measured. The luminance of light was described in a relative value when that of Sample 9201 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9201 was set at 100. Results of the experiments are shown in Table 3.
TABLE 3 Positive Luminance Half-life hole of emitted Color time of transportmaterial light of luminance Sample of (relative emitted (relative No. 1st layer value) light value) Note 9200 NPB 124 Blue 77 Comp. 9201 QA-1 100 Blue 100 Comp. 9202 QA-2 103 Blue 112 Comp. 9203 QA-3 97 Blue 87 Comp. 9204 QA-4 95 Blue 110 Comp. 9205 QA-5 90 Blue 103 Comp. 9206 QA-6 87 Blue 108 Comp. 9207 A-3 185 Blue 217 Inv. 9208 A-5 181 Blue 256 Inv. 9209 A-13 216 Blue 188 Inv. 9210 A-6 190 Blue 201 Inv. 9211 A-18 211 Blue 175 Inv. 9212 A-19 237 Blue 211 Inv. 9213 F-1 222 Blue 215 Inv. 9214 F-12 210 Blue 201 Inv. - As shown in Table 3, Samples Nos. 9207 to 9214 in each of which the triarylamine compounds according to the invention were used as the positive hole transport material are all have a high luminescent luminance and a long life time.
- For example, it is found that the sample using compound A-3 according to the invention having three bonding axes shows two times higher in the luminance and two or more times longer in the life time compared with Sample No. 9201 using N,N,N-tri-p-terphenylamine.
- Moreover, it is found that Sample No. 9209 using compound A-13 according to the invention which has three triamine moieties and three C2 symmetry axes in the molecule thereof has a higher luminance and a longer life time compared with Samples Nos. 9202 and 9203 in which compounds QA-2 and QA-3 are used, respectively.
- Similarly, the electroluminescent elements using compounds A-6, A-18, A-19 and F-1 according to the invention in the positive hole transport layer are each have both of a higher luminance and a longer light emission life time compared with comparative compounds QA-1 and QA-6 which are benzidine (naphthidine) derivative.
- In another word, it is found that the electroluminescent elements in which the triarylamine compound of the invention having biaryl group containing two or more atrop bonding axes are used as the positive hole transport material, generally show a higher positive hole transport ability and a longer life time compared with the compound having no or only one biaryl group containing the atrop bonding axis.
- Comparison of Characteristics of Triarylamine Compounds as the Positive Hole Transport-Light Emission Material
- Organic EL Nos. 9300 to 9312 having the first layer (positive hole transportation-light emisulsion layer) and the third layer (electron transportation layer), as shown below were prepared in the same manner as in the electroluminescent elements in Examples 9-1 and 9-2 except that the second layer was omitted. The cross section thereof is as follows.
Cathode (Ag/Mg) 3rd layer Electron transport layer 2nd layer Positive hole transport/light emission layer 1st layer Anode (ITO) Glass substrate - The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of emitted light was described in a relative value when that of Sample 9301 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9301 was set at 100. Results of the evaluation are shown in Table 4.
TABLE 4 Positive hole Luminance Half-life transport/ of emitted Color time of light emission light of luminance Sample material in 1st (relative emitted (relative No. layer value) light value) Note 9300 NPB 63 Blue 82 Comp. 9301 QA-1 100 Blue 100 Comp. 9302 QA-2 15 Blue 95 Comp. 9303 QA-3 56 Blue 82 Comp. 9304 QA-4 89 Blue 108 Comp. 9305 QA-5 72 Blue 93 Comp. 9306 QA-6 211 Blue 90 Comp. 9307 A-3 312 Blue 191 Inv. 9308 A-5 256 Blue 209 Inv. 9309 A-13 271 Blue 181 Inv. 9310 A-6 288 Blue 200 Inv. 9311 A-18 270 Blue 182 Inv. 9312 A-19 279 Blue 218 Inv. 9313 F-1 277 Blue 210 Inv. 9314 F-12 245 Blue 232 Inv. - As is shown in Table 4, it is understood that the comparative triarylamine compounds, NPB and QA-1 to QA-7, are all usable as the positive hole transport material and light emission material. However, all the elements using them have a low luminance and a short life time.
-
- Comparison of Characteristics of 5-Member Heterocyclic Compound as the Electron Transportation Material
- Electroluminescent elements Nos. 9401 to 9411 were prepared in the same manner as in electroluminescent element CF-1 except that the electron transportation material in the third layer OXD-7 was only replaced by the compounds shown in Table 5.
- The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of light was described in a relative value when that of Sample 9401 was set at 100, and the time for 50%-reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9401 was set at 100. Results of the experiments are shown in Table 5.
TABLE 5 Electron Luminance Half-life Transport of emitted Color time of material light of luminance Sample of 3rd (relative emitted (relative No. layer value) light value) Note 9200 OXD-7 121 Blue 128 Comp. (CF-1) 9401 QB-1 100 Blue 100 Comp. 9402 QB-2 103 Blue 131 Comp. 9403 B-3 144 Blue 417 Inv. 9404 B-1 133 Blue 325 Inv. 9405 B-7 149 Blue 401 Inv. 9406 B-9 153 Blue 377 Inv. 9407 B-2 134 Blue 445 Inv. 9408 B-8 149 Blue 468 Inv. 9409 B-6 138 Blue 481 Inv. 9410 B-10 144 Blue 381 Inv. 9411 F-3 133 Blue 447 Inv. - As shown in Table 5, it is found that the luminance is raised in Sample Nos. 9403 to 9411 in each of which the 5-member heterocyclic compounds were used as the electors transportation material of the electroluminescent element compared with Sample Nos. 9200, 9401 and 9402 in which the usual electron transportation material. Moreover, the life time of the elements is considerably improved. Such the effects are sufficiently realized by the 5-member heterocyclic compounds B-1, B-3, B-7, B-9 and B-10 according to the invention each having one biaryl group containing an atrop bonding axis. However, it is observed that such the effects are further enhanced when the 5-member heterocyclic compounds B-2, B-8, B-6 and F-3 according to the invention, which have a biaryl group containing two atrop bonding axes.
- Comparison of Characteristics of 5-Member Heterocyclic Compound as the Electron Transportation-Light Emission Material
- Organic EL Nos. 9500 to 9511 having the first layer (positive hole transportation layer) and the third layer (electron transportation-light emission layer),as shown below were prepared in the same manner as in the electroluminescent elements in Example 9-4 except that the second layer was omitted.
Cathode (Ag/Mg) 3rd layer Electron transportation-light emission layer 2nd layer Positive hole transportation layer 1st layer Anode (ITO) Glass substrate - The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of light was described in a relative value when that of Sample 9501 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9501 was set at 100. Results of the experiments are shown in Table 6.
TABLE 6 Electron Transport/ Luminance Half-life light of emitted Color time of emission light of luminance Sample material of (relative emitted (relative No. 3rd layer value) light value) Note 9500 OXD-7 135 Blue 122 Comp. 9501 QB-1 100 Blue 100 Comp. 9502 QB-2 142 Blue 128 Comp. 9503 B-3 312 Blue 388 Inv. 9504 B-1 252 Blue 376 Inv. 9505 B-7 388 Blue 321 Inv. 9506 B-9 400 Blue 381 Inv. 9507 B-2 501 Blue 401 Inv. 9508 B-8 522 Blue 443 Inv. 9509 B-6 477 Blue 450 Inv. 9510 B-10 344 Blue 312 Inv. 9511 F-3 479 Blue 405 Inv. - As is shown in Table 6, it is found that the luminance is considerably raised Sample Nos. 9503 to 9511 in each of which the 5-member heterocyclic compounds according to the invention are used as the electron transportation-light emission material of the electroluminescent elements compared with Sample Nos. 9500, 9501 and 9502 in which the usual electron transportation material. Moreover, the life time of the elements is considerably improved. Such the effects, particularly on the life time of the element are sufficiently realized by the 5-member heterocyclic compounds B-1, B-3, B-7, B-9 and B-10 according to the invention each having one biaryl group containing an atrop bonding axis. However, it is observed that such the effects are further enhanced when the 5-member heterocyclic compounds B-2, B-8, B-6 and F-3 according to the invention, which have a biaryl group containing two atrop bonding axes.
- Evaluation of the Characteristics of 6-Member Heterocyclic Compound as the Electron Transportation Material
- Electroluminescent elements Nos. 9601 to 9605 were prepared in the same manner as in electroluminescent element CF-1 prepared in Example 9-1 except that the electron transportation material OXD contained in the third layer was only replaced by the compounds shown in Table 7.
- The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of light was described in a relative value when that of Sample 9601 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9601 was set at 100. Results of the experiments are shown in Table 7.
TABLE 7 Luminance Half-life Electron of emitted Color time of transport light of luminance Sample material in (relative emitted (relative No. 3rd layer value) light value) Note 9601 QC-1 100 Blue 100 Comp. 9602 C-1 131 Blue 312 Inv. 9603 C-2 185 Blue 283 Inv. 9604 C-3 133 Blue 340 Inv. 9605 C-8 167 Blue 401 Inv. - As shown in Table 7, it is observed that the luminance is considerably raised in Sample Nos. 9602 to 9605 in each of which the 6-member heterocyclic compound according to the invention is used as the electron transportation material of the electroluminescent element compared with Sample 9601 using the usual electron transportation material. Moreover, it is understood that the emission life time of the element of the invention is considerably improved.
- Evaluation of the Characteristics of 6-Member Heterocyclic Compound as the Electron Transportation-Light Emission Material
- Organic EL sample Nos. 9701 to 9705 were prepared by removing the second layer (light emission layer) electroluminescent elements Nos. 9601 to 9605 prepared in Example 9-6.
- The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of light was described in a relative value when that of Sample 9701 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9701 was set at 100. Results of the experiments are shown in Table 8.
TABLE 8 Electron Transport/ Luminance Half-life light of emitted Color time of emission light of luminance Sample material in (relative emitted (relative No. 3rd layer value) light value) Note 9701 QC-1 100 Blue 100 Comp. 9702 C-1 140 Blue 280 Inv. 9703 C-2 209 Blue 221 Inv. 9704 C-3 139 Blue 321 Inv. 9705 C-8 205 Blue 310 Inv. - As is shown in Table 8, it is observed that the luminance is considerably raised in Sample Nos. 9702 to 9705 in each of which the 6-member heterocyclic compound according to the invention is used as the electron transportation-light emission material of the electroluminescent element compared with Sample 9701 using the usual electron transportation material. Moreover, it is found that the emission life time of the element of the invention is considerably improved.
- Example of Another Use of 6-Member Heterocyclic Compounds
- It was found that a high luminance and a long life time can be attained when compound C-9 according to the invention was used as a fluorescent dopant together with a light emission substance such as Alq3 compared with usually used quinacridone or N,N′-dimethylquinacridone.
- It was found that compound C-6 according to the invention was usable as a yellow green light emission substance.
- Comparison of Characteristics of Stilbene Compounds as the Light Emission Substance
- Electroluminescent elements Nos. 9901 to 9908 were prepared in the same manner as in electroluminescent element CF-1 prepared in Example 9-1 except that the light emission substance Zn(BOX) in the second layer was only replaced by the compounds shown in Table 9.
- The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of light was described in a relative value when that of Sample 9901 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 9901 was set at 100. Results of the experiments are shown in Table 9.
TABLE 9 Light Luminance Half-life emission of emitted Color time of material light of luminance Sample in 2nd (relative emitted (relative No. layer value) light value) Note 9901 QD-1 100 Blue 100 Comp. 9902 D-1 122 Blue 140 Inv. 9903 D-5 125 Blue 134 Inv. 9904 D-8 131 Blue 142 Inv. 9905 D-12 140 Blue 125 Inv. 9906 D-11 158 Blue 155 Inv. 9907 D-2 205 Blue 212 Inv. 9908 D-4 212 Blue 209 Inv. - As shown in Table 9, it is observed that the luminance is considerably raised in each of Sample Nos. 9902 to 9908 in each of which the 5-member stilbene compound according to the invention is used as the electron transportation and light emission material of the electroluminescent element compared with Sample 9701 using the usual electron transportation material. Moreover is understood that the emission life time of the element of the invention is considerably improved. Such the effects are sufficiently realized by the stilbene compounds D-1, D-5, D-8, D-11 and D-12 according to the invention each having one biaryl group containing an atrop bonding axis. However, it is observed that such the effects are further enhanced when the stilbene compounds D-2 and D-4 according to the invention, which have a biaryl group containing two atrop bonding axes.
- Comparison of Characteristics of Metal Complex Compounds as the Electron Transportation-Light Emission Material
- Electroluminescent elements Nos. 91001 to 91008 having the positive hole transportation layer or the first layer and the electron transport-light emission layer or the second layer were prepared in the same manner as in electroluminescent element CF-1 except that the light emission substance Zn(BOX)2 was replaced by the compound shown in Table 10 and the electron transportation layer or the third layer was removed.
- The elements were each continuously lighted by applying a direct current of 15 V through the ITO electrode as the anode and the facing electrode composed of silver and magnesium as the cathode at 23° C. in a dried nitrogen gas atmosphere. The luminance (cd/m2) at the start of light emission and the time for 50% reduction of the light were measured. The luminance of light was described in a relative value when that of Sample 91001 was set at 100, and the time for 50% reduction of luminance was described by a relative value when the 50% reduction time of Sample No. 91001 was set at 100. Results of the experiments are shown in Table 10.
TABLE 10 Electron transport/ Half-life light Luminescent Color time of emission effici-ency of luminance Sample material in (relative emitted (relative No. 2nd layer value) light value) Note 91001 QE-1 100 Orange 100 Comp. 91002 QE-2 140 Yellow 140 Comp. 91003 E-1 312 Yellow- 134 Inv. green 91004 E-6 421 Yellow- 142 Inv. green 91005 E-7 235 yellow 125 Inv. 91006 E-10 329 Yellow- 155 Inv. green 91007 E-11 544 Green 212 Inv. 91008 F-5 551 Yellow- 209 Inv. green - As is shown in Table 10, it is observed that the luminescent efficiency is considerably raised in each of Sample Nos. 91003 to 91007 in each of which the metal complex compound according to the invention is used as the electron transportation-light emission material of the electroluminescent element compared with Samples 91001 and 91002 each using the usual material. Moreover is understood that the emission life time of the element of the invention is considerably improved. Such the effects are sufficiently realized by the stilbene compounds D-1, D-5, D-8, D-11 and D-12 according to the invention each having one biaryl group containing an atrop bonding axis. However, it is observed that such the effects are further enhanced when the stilbene compounds D-2 and D-4 according to the invention, which have a biaryl group containing two atrop bonding axes. The comparison is carried out on the light emission efficiency, evaluation based on the luminance is difficult since the wavelength of the light emitted from each of the elements are considerably different. The life time of the element is considerably improved.
- Exemplary Synthesis Method of the Compound According to the Invention
- 2-arylphenylpridine derivative represented by Formula N1 can be synthesized by the method described in Shuichi Oi, Susumu Fukita and Yoshio Inoue, Chem. Comumn., 1998., 1439-2440.
- Various compounds each having a binaphthyl group according to the invention can be typically synthesized by the course shown in Scheme 2 to Scheme 5.
-
- Synthesis of 4-bromo-1,1′-binaphthyl (compound XX)
- In a 2000 ml flask having four mouths, 50 g (197 mmoles) was dissolved in 600 ml of methylene chloride. In an ice bath, a solution of 3.4 ml of bromine (65.6 moles, 1/3 equivalents) 10 diluted 10 times with methylene chloride was dropped to the solution. After addition of the bromine solution, ⅓ equivalents of bromine solution was respectively further added in two times while sampling the solution to confirm the reaction rate by a high speed liquid chromatography. The solution was stirred for a whole day and night and then the solvent was removed by distillation under a reduced pressure. The raw product thus obtained was recrystallized using acetonitrile and subjected to 2 times of suspension washing. Thus 43.9 g (67.0%) of 4-bromo-1,1′-binaphthyl was obtained.
- In a 500 ml flask having three mouths, 10 g (30.0 mmole) of 4-bromo-1,1′-binaphthyl, 5.05 g (15.0 mmoles) of N,N′-diphenylbenzene, 0.48 g (7.50 mmoles) of copper powder, 4.73 g (34.2 mmoles) of potassium carbonate and 25 ml of nitrobenzene were put and stirred at 200° C. for 30 hours. After the reaction, the solution was filtered to remove inorganic substances. The filterate was washed by water and dried by magnesium sulfate. The solvent was removed by distillation from the dried solution. Then the product was purified and separated by a silica gel chromatography using a toluene-hexane mixture solvent. Thus 5.40 g (65.0 mmoles, 43%) was obtained.
- The first effect of the invention is to obtain a color conversion filter using a fine particle of inorganic fluorescent substance or a rare-earth metal complex coordinated with an organic ligand according to the invention. The second effect of the invention is to confirm that the wavelength of light can be converted into visible wavelength by the use of a combination of a color conversion filter according to the invention and a known near-ultraviolet light emission organic electro-luminescent element. The third effect of the invention is to confirm that suitable light is emitted by a combination of a color conversion filter of the invention and an organic electroluminescent element using a compound of the invention and that the light emission from such the combination has a long life time. The fourth effect of the invention is to confirm that both of a high luminance and a long life time by the organic electroluminescent element using a compound of the invention having a biaryl group in which a bonding axis capable of giving an internal rotation isomerism.
Claims (13)
1. An electroluminescent material represented by the following Formula D1:
wherein Ar61 and Ar62 are each an aryl group or an aromatic heterocyclic group; R61 and R62 are each a hydrogen atom or a substituent, provided that at least one of Ar61, Ar62, R61 and R62 is a biaryl group having a bond capable of giving an internal rotational isomerism or a group making the biaryl group, provided that adjacent substituent groups existing in the molecule represented by formula D1 may be condensed with each other to form a ring.
2. An electroluminescence element comprising an electroluminescent material and an inorganic fluorescent substance capable of emitting light having a wavelength of a maximum emission different from that of light emitted from the electroluminescent material upon absorption of the light emitted from the electroluminescent material, and the electroluminescent material is a compound represented by the following Formula D1:
Formula D1
wherein Ar61 and Ar62 are each an aryl group or an aromatic heterocyclic group; R61 and R62 are each a hydrogen atom or a substituent, provided that at least one of Ar61, Ar62, R61 and R62 is a biaryl group having a bond capable of giving an internal rotational isomerism or a group making the biaryl group, provided that adjacent substituent groups existing in the molecule represented by formula D1 may be condensed with each other to form a ring.
3. The electroluminescent element of claim 2 , wherein said inorganic fluorescent substance is an inorganic fluorescent substance prepared by a Sol-Gel method.
4. The electroluminescent element of claim 2 , wherein the wavelength of a maximum emission of the light emitted from said inorganic fluorescent substance is within a range of from 400 nm to 700 nm.
5. The electroluminescent element of claim 2 , wherein the wavelength of a maximum emission of the light emitted from said inorganic fluorescent substance is within a range of from 600 nm to 700 nm.
6. The electroluminescent element of claim 2 , wherein the wavelength of a maximum emission of the light emitted from the electroluminescent material is not more than 430 nm.
7. The electroluminescent element of claim 2 , wherein the wavelength of a maximum emission of light emitted from the electroluminescent material is within a range of from 400 to 430 nm.
8. An electroluminescent element which comprises an electroluminescent material and a rare earth metal complex capable of emitting light having a wavelength of maximum emission different from that of light emitted from the electroluminescent material upon absorption of the light emitted from the electroluminescent material and the electroluminescent material is a compound represented by the following Formula D1:
wherein Ar61 and Ar62 are each an aryl group or an aromatic heterocyclic group; R61 and R62 are each a hydrogen atom or a substituent, provided that at least one of Ar61, Ar62, R61 and R62 is a biaryl group having a bond capable of giving an internal rotational isomerism or a group making the biaryl group, provided that adjacent substituent groups existing in the molecule represented by formula D1 may be condensed with each other to form a ring.
9. The electroluminescent element of claim 8 , wherein the wavelength of a maximum emission of the light emitted from the rare earth metal complex is within a range of from 400 nm to 700 nm.
10. The electroluminescent element of claim 8 , wherein the wavelength of a maximum emission of the light emitted from the rare earth metal complex is within a range of from 600 nm to 700 nm.
11. The electroluminescent element of claim 8 , wherein the wavelength of a maximum emission of the light emitted from the electroluminescent material is not more than 430 nm.
12. The electroluminescent element of claim 8 , wherein the wavelength of a maximum emission of light emitted from the electroluminescent material is within a range of from 400 nm to 430 nm.
13. An electroluminescent element comprising an anode and a cathode and a compound represented by the following Formula D1:
wherein Ar61 and Ar62 are each an aryl group or an aromatic heterocyclic group; R61 and R62 are each a hydrogen atom or a substituent, provided that at least one of Ar61, Ar62, R61 and R62 is a biaryl group having a bond capable of giving an internal rotational isomerism or a group making the biaryl group, provided that adjacent substituent groups existing in the molecule represented by formula D1 may be condensed with each other to form a ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/661,857 US20040062951A1 (en) | 1998-12-25 | 2003-09-11 | Electroluminescent material, electroluminescent element and color conversion filter |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP370452/1998 | 1998-12-25 | ||
JP37045298 | 1998-12-25 | ||
JP246404/1999 | 1999-08-31 | ||
JP24640499 | 1999-08-31 | ||
US09/466,949 US6656608B1 (en) | 1998-12-25 | 1999-12-20 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/661,857 US20040062951A1 (en) | 1998-12-25 | 2003-09-11 | Electroluminescent material, electroluminescent element and color conversion filter |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/466,949 Division US6656608B1 (en) | 1998-12-25 | 1999-12-20 | Electroluminescent material, electroluminescent element and color conversion filter |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040062951A1 true US20040062951A1 (en) | 2004-04-01 |
Family
ID=26537700
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/466,949 Expired - Lifetime US6656608B1 (en) | 1998-12-25 | 1999-12-20 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/652,949 Expired - Lifetime US7264890B2 (en) | 1998-12-25 | 2003-08-28 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/653,842 Abandoned US20040072019A1 (en) | 1998-12-25 | 2003-09-02 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/656,098 Expired - Lifetime US7316851B2 (en) | 1998-12-25 | 2003-09-04 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/661,857 Abandoned US20040062951A1 (en) | 1998-12-25 | 2003-09-11 | Electroluminescent material, electroluminescent element and color conversion filter |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/466,949 Expired - Lifetime US6656608B1 (en) | 1998-12-25 | 1999-12-20 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/652,949 Expired - Lifetime US7264890B2 (en) | 1998-12-25 | 2003-08-28 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/653,842 Abandoned US20040072019A1 (en) | 1998-12-25 | 2003-09-02 | Electroluminescent material, electroluminescent element and color conversion filter |
US10/656,098 Expired - Lifetime US7316851B2 (en) | 1998-12-25 | 2003-09-04 | Electroluminescent material, electroluminescent element and color conversion filter |
Country Status (5)
Country | Link |
---|---|
US (5) | US6656608B1 (en) |
EP (4) | EP1731586A3 (en) |
JP (4) | JP5545226B2 (en) |
KR (1) | KR100687666B1 (en) |
DE (1) | DE69933529T3 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040096696A1 (en) * | 1998-12-25 | 2004-05-20 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US20060091778A1 (en) * | 2004-11-02 | 2006-05-04 | Gelcore, Llc | Phosphor blends for green traffic signals |
US20070020485A1 (en) * | 1998-12-25 | 2007-01-25 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US20110057148A1 (en) * | 2009-09-04 | 2011-03-10 | Lee Young-Hun | Green phosphor and plasma display panel including the same |
US8779455B2 (en) | 2011-06-02 | 2014-07-15 | Mitsubishi Chemical Corporation | Semiconductor light-emitting device, semiconductor light-emitting system and illumination fixture |
US9056883B2 (en) | 2010-04-06 | 2015-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device |
US9120773B2 (en) | 2009-08-21 | 2015-09-01 | Tosoh Corporation | Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component |
US9252368B2 (en) | 2011-11-11 | 2016-02-02 | Tosoh Corporation | Cyclic azine compound having nitrogen-containing condensed aromatic group, method for producing same, and organic electroluminescent device comprising same as constituent component |
CN110959202A (en) * | 2017-07-21 | 2020-04-03 | 三星Sdi株式会社 | Composition for encapsulating organic light emitting diode element and organic light emitting diode display prepared using the same |
US10804471B2 (en) | 2008-05-16 | 2020-10-13 | Semiconductor Energy Laboratory Co., Ltd. | Triarylamine derivative, light-emitting substance, light-emitting element, light-emitting device, and electronic device |
US20220158108A1 (en) * | 2019-02-27 | 2022-05-19 | Sharp Kabushiki Kaisha | Light-emitting element and display device using light-emitting element |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6830828B2 (en) * | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
GB9903251D0 (en) * | 1999-02-12 | 1999-04-07 | Cambridge Display Tech Ltd | Opto-electric devices |
US7001536B2 (en) | 1999-03-23 | 2006-02-21 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
DE60031729T2 (en) * | 1999-05-13 | 2007-09-06 | The Trustees Of Princeton University | LIGHT-EMITTING, ORGANIC, ELECTROPHOSPHORESCENCE-BASED ARRANGEMENT WITH VERY HIGH QUANTITY LOSSES |
JP3949363B2 (en) * | 1999-10-26 | 2007-07-25 | 富士フイルム株式会社 | Aromatic fused ring compound, light emitting device material, and light emitting device using the same |
US6821645B2 (en) * | 1999-12-27 | 2004-11-23 | Fuji Photo Film Co., Ltd. | Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex |
US7560175B2 (en) * | 1999-12-31 | 2009-07-14 | Lg Chem, Ltd. | Electroluminescent devices with low work function anode |
KR100377321B1 (en) * | 1999-12-31 | 2003-03-26 | 주식회사 엘지화학 | Electronic device comprising organic compound having p-type semiconducting characteristics |
KR100721656B1 (en) | 2005-11-01 | 2007-05-23 | 주식회사 엘지화학 | Organic electronic devices |
JP4067259B2 (en) * | 2000-01-12 | 2008-03-26 | 富士フイルム株式会社 | Fused ring polycyclic hydrocarbon compound, light emitting device material, and light emitting device using the same |
JP4434411B2 (en) * | 2000-02-16 | 2010-03-17 | 出光興産株式会社 | Active drive type organic EL light emitting device and manufacturing method thereof |
JP2002190622A (en) | 2000-12-22 | 2002-07-05 | Sanken Electric Co Ltd | Transmissive fluorescent cover for light emitting diode |
US6911271B1 (en) | 2000-08-11 | 2005-06-28 | The University Of Southern California | Organometallic platinum complexes for phosphorescence based organic light emitting devices |
US6939624B2 (en) * | 2000-08-11 | 2005-09-06 | Universal Display Corporation | Organometallic compounds and emission-shifting organic electrophosphorescence |
US7153592B2 (en) * | 2000-08-31 | 2006-12-26 | Fujitsu Limited | Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material |
GB0022081D0 (en) * | 2000-09-08 | 2000-10-25 | Isis Innovation | Pyrazolone lanthanide complexes |
DE60138790D1 (en) * | 2000-09-25 | 2009-07-09 | Konica Corp | Organic electroluminescent element and organic electroluminescent material used therefor |
JP4951829B2 (en) * | 2000-09-25 | 2012-06-13 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element and display device |
EP1349435B8 (en) * | 2000-11-30 | 2018-09-19 | Canon Kabushiki Kaisha | Luminescent element and display |
KR100825182B1 (en) | 2000-11-30 | 2008-04-24 | 캐논 가부시끼가이샤 | Luminescent Element and Display |
AT410266B (en) * | 2000-12-28 | 2003-03-25 | Tridonic Optoelectronics Gmbh | LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT |
WO2002071023A1 (en) * | 2001-03-06 | 2002-09-12 | Toray Industries, Inc. | Inspection method, inspection device, and manufacturing method for display panel |
JP4438042B2 (en) * | 2001-03-08 | 2010-03-24 | キヤノン株式会社 | Metal coordination compound, electroluminescent element and display device |
JP4686895B2 (en) * | 2001-04-27 | 2011-05-25 | コニカミノルタホールディングス株式会社 | Organic electroluminescence element and display device |
US6855438B2 (en) | 2001-06-15 | 2005-02-15 | Konica Corporation | Organic electroluminescent element and full color display |
KR100902524B1 (en) | 2001-07-11 | 2009-06-15 | 후지필름 가부시키가이샤 | Light-emitting device and aromatic compound |
JP4003824B2 (en) * | 2001-07-11 | 2007-11-07 | 富士フイルム株式会社 | Light emitting element |
WO2003032407A1 (en) * | 2001-10-01 | 2003-04-17 | Matsushita Electric Industrial Co.,Ltd. | Semiconductor light emitting element and light emitting device using this |
JP3757272B2 (en) * | 2002-02-13 | 2006-03-22 | 国立大学法人富山大学 | Organic electroluminescence device |
GB0210203D0 (en) * | 2002-05-03 | 2002-06-12 | Elam T Ltd | Electroluminescent devices |
US20040097725A1 (en) | 2002-07-10 | 2004-05-20 | Norman Herron | Charge transport compositions and electronic devices made with such compositions |
GB0219253D0 (en) * | 2002-08-19 | 2002-09-25 | Elam T Ltd | Electroluminescent materials and device |
US20040191567A1 (en) * | 2002-09-03 | 2004-09-30 | Caballero Gabriel Joseph | Light emitting molecules and organic light emitting devices including light emitting molecules |
WO2004034015A2 (en) * | 2002-09-03 | 2004-04-22 | Coled Technologies, Inc. | Light emitting molecules and organic light emitting devices including light emitting molecules |
US9923148B2 (en) | 2002-10-30 | 2018-03-20 | Udc Ireland Limited | Electroluminescent device |
US6872475B2 (en) | 2002-12-03 | 2005-03-29 | Canon Kabushiki Kaisha | Binaphthalene derivatives for organic electro-luminescent devices |
US20040142206A1 (en) * | 2003-01-17 | 2004-07-22 | Bazan Guillermo C. | Binaphthol based chromophores for the fabrication of blue organic light emitting diodes |
JP4531342B2 (en) * | 2003-03-17 | 2010-08-25 | 株式会社半導体エネルギー研究所 | White organic light emitting device and light emitting device |
EP1606270B1 (en) * | 2003-03-24 | 2013-08-14 | Basf Se | Symmetrical triazine derivatives |
TWI363573B (en) * | 2003-04-07 | 2012-05-01 | Semiconductor Energy Lab | Electronic apparatus |
US7862906B2 (en) | 2003-04-09 | 2011-01-04 | Semiconductor Energy Laboratory Co., Ltd. | Electroluminescent element and light-emitting device |
US7271406B2 (en) * | 2003-04-15 | 2007-09-18 | 3M Innovative Properties Company | Electron transport agents for organic electronic devices |
US6982045B2 (en) * | 2003-05-17 | 2006-01-03 | Phosphortech Corporation | Light emitting device having silicate fluorescent phosphor |
TWI390006B (en) * | 2003-08-07 | 2013-03-21 | Nippon Steel Chemical Co | Organic EL materials with aluminum clamps |
US9085729B2 (en) * | 2004-02-09 | 2015-07-21 | Lg Display Co., Ltd. | Blue emitters for use in organic electroluminescence devices |
JP5167571B2 (en) * | 2004-02-18 | 2013-03-21 | ソニー株式会社 | Display element |
US7393598B2 (en) * | 2004-03-10 | 2008-07-01 | Hcf Partners, L.P. | Light emitting molecules and organic light emitting devices including light emitting molecules |
US7550915B2 (en) * | 2004-05-11 | 2009-06-23 | Osram Opto Semiconductors Gmbh | Organic electronic device with hole injection |
US7625501B2 (en) | 2004-05-18 | 2009-12-01 | Ifire Ip Corporation | Color-converting photoluminescent film |
US7695641B2 (en) | 2004-07-05 | 2010-04-13 | Kri, Inc. | Organic/inorganic composite |
EP1768467A4 (en) * | 2004-07-15 | 2009-01-21 | Idemitsu Kosan Co | Organic el display |
TWI382079B (en) * | 2004-07-30 | 2013-01-11 | Sanyo Electric Co | Organic electric field light-emitting element and organic electric field light-emitting display device |
WO2006019270A1 (en) * | 2004-08-19 | 2006-02-23 | Lg Chem. Ltd. | Organic light-emitting device comprising buffer layer and method for fabricating the same |
JP4797361B2 (en) * | 2004-11-05 | 2011-10-19 | 富士電機株式会社 | Organic EL device |
EP1655359A1 (en) * | 2004-11-06 | 2006-05-10 | Covion Organic Semiconductors GmbH | Organic electroluminescent device |
JP2006156035A (en) * | 2004-11-26 | 2006-06-15 | Toshiba Matsushita Display Technology Co Ltd | Display device |
US20090072717A1 (en) * | 2005-04-21 | 2009-03-19 | The Regents Of The University Of California | Highly efficient polymer light-emitting diodes |
JP5261887B2 (en) * | 2005-05-17 | 2013-08-14 | 三菱化学株式会社 | Monoamine compound, charge transport material, and organic electroluminescence device |
JP4559922B2 (en) * | 2005-06-21 | 2010-10-13 | 株式会社東芝 | Fluorescent complex and lighting device using the same |
US7733017B2 (en) * | 2005-07-08 | 2010-06-08 | Peysakh Shapiro | Display apparatus with replaceable electroluminescent element |
GB0518512D0 (en) * | 2005-09-10 | 2005-10-19 | Eastman Kodak Co | A display element |
KR100890862B1 (en) * | 2005-11-07 | 2009-03-27 | 주식회사 엘지화학 | Organic electroluminescent device and method for preparing the same |
EP1793264A1 (en) * | 2005-12-05 | 2007-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device |
KR100759562B1 (en) * | 2005-12-22 | 2007-09-18 | 삼성에스디아이 주식회사 | Chassis assembly for display apparatus and display apparatus comprising the same |
WO2007072766A1 (en) * | 2005-12-22 | 2007-06-28 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
JP4777772B2 (en) | 2005-12-28 | 2011-09-21 | 富士通セミコンダクター株式会社 | Semiconductor imaging device |
EP1804114B1 (en) * | 2005-12-28 | 2014-03-05 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
CN100361980C (en) * | 2005-12-29 | 2008-01-16 | 中国科学院上海有机化学研究所 | Novel blue light material-thiotrzinone-containing anthracene derivatives |
CN101371619B (en) | 2006-01-18 | 2013-11-13 | Lg化学株式会社 | OLED having stacked organic light-emitting units |
US8470208B2 (en) | 2006-01-24 | 2013-06-25 | E I Du Pont De Nemours And Company | Organometallic complexes |
EP1832915B1 (en) * | 2006-01-31 | 2012-04-18 | Semiconductor Energy Laboratory Co., Ltd. | Display device with improved contrast |
US20070176539A1 (en) * | 2006-02-01 | 2007-08-02 | Osram Opto Semiconductors Gmbh | OLED with area defined multicolor emission within a single lighting element |
EP1816508A1 (en) | 2006-02-02 | 2007-08-08 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
EP1826606B1 (en) | 2006-02-24 | 2012-12-26 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
EP1826605A1 (en) | 2006-02-24 | 2007-08-29 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
JP2007254737A (en) * | 2006-03-07 | 2007-10-04 | Sfc Co Ltd | Organometallic complex for organic light-emitting layer and organic light-emitting diode |
US8524381B2 (en) * | 2006-03-07 | 2013-09-03 | Sfc Co., Ltd. | Organometallic complex for organic light-emitting layer and organic light-emitting diode using the same |
JP2008108439A (en) * | 2006-10-23 | 2008-05-08 | Nec Lighting Ltd | Electroluminescent element and electroluminescent panel |
KR20080069765A (en) * | 2007-01-24 | 2008-07-29 | 엘지이노텍 주식회사 | Manufacturing method for fluorescent material and light emitting diode using thereof |
KR100900620B1 (en) * | 2007-02-20 | 2009-06-02 | 삼성전기주식회사 | White Light Emitting Device |
JP2009087781A (en) * | 2007-09-28 | 2009-04-23 | Dainippon Printing Co Ltd | Electroluminescent element and its manufacturing method |
JP5183142B2 (en) | 2007-10-03 | 2013-04-17 | キヤノン株式会社 | Binaphthyl compound and organic light-emitting device using the same |
KR20110008206A (en) | 2008-04-03 | 2011-01-26 | 큐디 비젼, 인크. | Light-emitting device including quantum dots |
US9525148B2 (en) | 2008-04-03 | 2016-12-20 | Qd Vision, Inc. | Device including quantum dots |
KR100901888B1 (en) * | 2008-11-13 | 2009-06-09 | (주)그라쎌 | Novel organometalic compounds for electroluminescence and organic electroluminescent device using the same |
TWI475011B (en) | 2008-12-01 | 2015-03-01 | Tosoh Corp | 1,3,5-triazine derivatives and method for producing thereof, and organic electroluminescent elements using them as components |
US8278651B2 (en) | 2008-12-22 | 2012-10-02 | E I Du Pont De Nemours And Company | Electronic device including 1,7-phenanthroline derivative |
JP5628830B2 (en) | 2008-12-22 | 2014-11-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Electronic devices containing phenanthroline derivatives |
DE102008064200A1 (en) | 2008-12-22 | 2010-07-01 | Merck Patent Gmbh | Organic electroluminescent device |
WO2011014039A1 (en) * | 2009-07-31 | 2011-02-03 | Rohm And Haas Electronic Materials Korea Ltd. | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
KR20110013220A (en) * | 2009-07-31 | 2011-02-09 | 다우어드밴스드디스플레이머티리얼 유한회사 | Novel organic electroluminescent compounds and organic electroluminescent device using the same |
TWI426629B (en) | 2009-10-05 | 2014-02-11 | Everlight Electronics Co Ltd | White-light emitting device and preparation method and application of the same |
JP5624518B2 (en) * | 2011-06-16 | 2014-11-12 | ユー・ディー・シー アイルランド リミテッド | ORGANIC ELECTROLUMINESCENT ELEMENT, ELEMENT MATERIAL, AND LIGHT EMITTING DEVICE, DISPLAY DEVICE AND LIGHTING DEVICE USING THE ELEMENT |
US9023420B2 (en) * | 2011-07-14 | 2015-05-05 | Universal Display Corporation | Composite organic/inorganic layer for organic light-emitting devices |
KR101427241B1 (en) * | 2011-11-10 | 2014-08-18 | 주식회사 삼양사 | 1,1'-binaphthyl-4,4'-diamine derivatives for luminescence of organic electroluminescent device and organic electroluminescent device using them |
CN102559175B (en) * | 2011-12-29 | 2014-04-16 | 湘能华磊光电股份有限公司 | Sr2SiO4:XEu<2+> fluorescent powder and preparation method thereof |
KR102022524B1 (en) * | 2012-11-22 | 2019-09-18 | 엘지디스플레이 주식회사 | Blue phophorescene compounds and organic light emitting diode devices using the same |
CN103242298B (en) | 2013-05-15 | 2016-03-23 | 京东方科技集团股份有限公司 | 1,2,4-triazole class derivative and its preparation method and application and organic electroluminescence device |
CN103346229B (en) * | 2013-06-18 | 2016-05-18 | 天津理工大学 | A kind of based on Cu2O/TiO2The luminescent device of the brilliant film of core-shell nano |
CN103554051B (en) * | 2013-09-23 | 2015-12-23 | 西安近代化学研究所 | A kind of electron transport material and synthetic method thereof |
EP3070146B1 (en) * | 2013-11-13 | 2018-02-14 | LG Innotek Co., Ltd. | Blue-green phosphor, and light-emitting device package and lighting apparatus comprising same |
KR101829745B1 (en) | 2014-01-24 | 2018-02-19 | 삼성에스디아이 주식회사 | Organic compound and composition and organic optoelectric device and display device |
CN107592860B (en) | 2015-04-24 | 2020-11-03 | 三星Sdi株式会社 | Organic compound, composition and organic photodiode |
JP6836908B2 (en) | 2017-01-10 | 2021-03-03 | 住友化学株式会社 | Manufacturing method of organic device |
CN107384377A (en) * | 2017-08-11 | 2017-11-24 | 烟台显华化工科技有限公司 | Red iridium phosphor material, its preparation method and the application of a kind of Nitrogen-Containing Heterocyclic Ligand |
CN108383531B (en) * | 2018-05-15 | 2021-02-19 | 西北工业大学 | MgB doped with topological luminophores in heterogeneous phase2Base superconductor and method for producing same |
KR20190140233A (en) | 2018-06-11 | 2019-12-19 | 엘지디스플레이 주식회사 | An electroluminescent compound and an electroluminescent device comprising the same |
WO2022177359A1 (en) * | 2021-02-19 | 2022-08-25 | 주식회사 엘지화학 | Compound and organic light-emitting device comprising same |
CN114276367B (en) * | 2021-12-30 | 2023-02-24 | 郑州大学 | Bispyrazine macrocyclic compound, preparation method and application thereof in construction of fluorescent powder |
CN118712282A (en) * | 2024-08-28 | 2024-09-27 | 宜宾英发德耀科技有限公司 | Method for improving graphite boat seal suitable for N-type battery |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128587A (en) * | 1989-12-26 | 1992-07-07 | Moltech Corporation | Electroluminescent device based on organometallic membrane |
US5366811A (en) * | 1990-09-20 | 1994-11-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US5597925A (en) * | 1992-04-14 | 1997-01-28 | Ricoh Company, Ltd. | Method of producing oxadiazole compounds |
US5635308A (en) * | 1994-04-26 | 1997-06-03 | Tdk Corporation | Phenylanthracene derivative and organic EL element |
US5645948A (en) * | 1996-08-20 | 1997-07-08 | Eastman Kodak Company | Blue organic electroluminescent devices |
US5717289A (en) * | 1996-01-30 | 1998-02-10 | Nec Corporation | Thin film electroluminescent element easily regulating emitted light to white |
US6048631A (en) * | 1996-07-12 | 2000-04-11 | Futaba Denshi Kogyo K.K. | Organic electroluminescence device and organic electroluminescence device material |
US6132641A (en) * | 1995-12-01 | 2000-10-17 | Vantico, Inc. | Composition and support material comprising poly(9,9'-spiro-bisfluorenes) |
US6165631A (en) * | 1997-03-04 | 2000-12-26 | U.S. Philips Corporation | Diode-addressed color display with lanthanoid phosphors |
US6214481B1 (en) * | 1996-10-08 | 2001-04-10 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
Family Cites Families (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3530325A (en) | 1967-08-21 | 1970-09-22 | American Cyanamid Co | Conversion of electrical energy into light |
US4356429A (en) | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
US4720432A (en) | 1987-02-11 | 1988-01-19 | Eastman Kodak Company | Electroluminescent device with organic luminescent medium |
JP2651233B2 (en) | 1989-01-20 | 1997-09-10 | 出光興産株式会社 | Thin-film organic EL device |
JPH03792A (en) | 1989-02-17 | 1991-01-07 | Pioneer Electron Corp | Electroluminescent element |
JP2795932B2 (en) | 1989-11-09 | 1998-09-10 | 出光興産株式会社 | Electroluminescence element |
JPH0468076A (en) † | 1990-07-10 | 1992-03-03 | Ricoh Co Ltd | Electroluminescent element |
US5061569A (en) | 1990-07-26 | 1991-10-29 | Eastman Kodak Company | Electroluminescent device with organic electroluminescent medium |
JP2721442B2 (en) * | 1991-02-27 | 1998-03-04 | 株式会社リコー | EL device |
JP3016896B2 (en) | 1991-04-08 | 2000-03-06 | パイオニア株式会社 | Organic electroluminescence device |
US5294870A (en) | 1991-12-30 | 1994-03-15 | Eastman Kodak Company | Organic electroluminescent multicolor image display device |
JP3565870B2 (en) | 1992-02-25 | 2004-09-15 | 株式会社リコー | Electroluminescent device |
JPH05299174A (en) | 1992-04-20 | 1993-11-12 | Ricoh Co Ltd | Organic thin film type el element |
JPH0652989A (en) * | 1992-07-30 | 1994-02-25 | Ricoh Co Ltd | Organic thin film type electroluminescence element |
JPH06207169A (en) * | 1992-11-17 | 1994-07-26 | Idemitsu Kosan Co Ltd | Organic electroluminescence element |
US5537925A (en) * | 1993-09-03 | 1996-07-23 | Howard W. DeMoore | Infra-red forced air dryer and extractor |
JP3273389B2 (en) * | 1993-10-13 | 2002-04-08 | 株式会社リコー | EL device |
EP1095931B1 (en) * | 1993-10-13 | 2003-02-05 | Kyocera Mita Corporation | Benzidine derivatives and electrophotosensitive material using the same |
JP3574860B2 (en) | 1993-11-01 | 2004-10-06 | 保土谷化学工業株式会社 | Tetraphenylbenzidine compound |
JP3220950B2 (en) | 1993-11-01 | 2001-10-22 | 保土谷化学工業株式会社 | Benzidine compound |
DE69412567T2 (en) | 1993-11-01 | 1999-02-04 | Hodogaya Chemical Co., Ltd., Tokio/Tokyo | Amine compound and electroluminescent device containing it |
JP3274939B2 (en) | 1994-09-30 | 2002-04-15 | 松下電器産業株式会社 | EL device |
EP0666298A3 (en) * | 1994-02-08 | 1995-11-15 | Tdk Corp | Organic EL element and compound used therein. |
JP3816969B2 (en) * | 1994-04-26 | 2006-08-30 | Tdk株式会社 | Organic EL device |
JPH0850364A (en) * | 1994-05-31 | 1996-02-20 | Mita Ind Co Ltd | Electrophotographic photoreceptor |
US5629117A (en) * | 1994-10-21 | 1997-05-13 | Mita Industrial Co., Ltd. | Electrophotosensitive material |
JP3486994B2 (en) * | 1994-12-27 | 2004-01-13 | チッソ株式会社 | Organic electroluminescent device using oxadiazole derivative |
JP3412076B2 (en) * | 1995-03-08 | 2003-06-03 | 株式会社リコー | Organic EL device |
JPH08286401A (en) * | 1995-04-17 | 1996-11-01 | Mita Ind Co Ltd | Electrophotographic photoreceptor |
JP3555253B2 (en) * | 1995-07-07 | 2004-08-18 | 東洋インキ製造株式会社 | Organic electroluminescent device material and organic electroluminescent device using the same |
DE69625018T2 (en) * | 1995-09-25 | 2003-04-10 | Toyo Ink Mfg Co | Light-emitting substance for organic electroluminescent device, and organic electroluminescent device with this light-emitting substance suitable therefor |
JPH09104679A (en) * | 1995-10-09 | 1997-04-22 | Ricoh Co Ltd | Oxadiazole derivative and its production |
JP3650200B2 (en) * | 1995-12-29 | 2005-05-18 | Tdk株式会社 | Organic EL devices using quinoxaline compounds |
JPH09245511A (en) | 1996-03-12 | 1997-09-19 | Idemitsu Kosan Co Ltd | Fluorescent conversion filter and manufacture thereof |
TW365104B (en) * | 1996-03-19 | 1999-07-21 | Motorola Inc | Organic electroluminescent device with new hole transporting material |
US5933841A (en) * | 1996-05-17 | 1999-08-03 | Ameritech Corporation | Structured document browser |
DE19628719B4 (en) * | 1996-07-17 | 2006-10-05 | Hans-Werner Prof. Dr. Schmidt | Electron-conducting layer in organic, electroluminescent arrangements |
DE19644930A1 (en) * | 1996-09-16 | 1998-03-19 | Bayer Ag | Triazine polymers and their use in electroluminescent devices |
ATE210163T1 (en) * | 1996-09-16 | 2001-12-15 | Bayer Ag | TRIAZINE POLYMERS AND THEIR USE IN ELECTROLUMINESCENT ARRANGEMENTS |
JP3777682B2 (en) * | 1996-11-25 | 2006-05-24 | 東洋インキ製造株式会社 | Organic electroluminescence device material and organic electroluminescence device using the same |
JP3767049B2 (en) * | 1996-11-25 | 2006-04-19 | 東洋インキ製造株式会社 | Organic electroluminescence device material and organic electroluminescence device using the same |
US6144974A (en) * | 1996-12-13 | 2000-11-07 | Adobe Systems Incorporated | Automated layout of content in a page framework |
JPH10233284A (en) * | 1997-02-19 | 1998-09-02 | Oki Electric Ind Co Ltd | Organic el element |
EP0896739A1 (en) * | 1997-03-04 | 1999-02-17 | Koninklijke Philips Electronics N.V. | Diode-addressed colour display with lanthanoid phosphors |
JP3503403B2 (en) * | 1997-03-17 | 2004-03-08 | 東洋インキ製造株式会社 | Light emitting material for organic electroluminescent device and organic electroluminescent device using the same |
DE19711568A1 (en) * | 1997-03-20 | 1998-10-01 | Hoechst Ag | Spiro compounds and their use |
JP3868061B2 (en) | 1997-06-18 | 2007-01-17 | 清蔵 宮田 | Organic electroluminescence device |
DE19726472A1 (en) | 1997-06-21 | 1998-12-24 | Philips Patentverwaltung | Organic electroluminescent device for e.g. solid state image enhancers |
US6582837B1 (en) * | 1997-07-14 | 2003-06-24 | Nec Corporation | Organic electroluminescence device |
JPH11111458A (en) * | 1997-09-29 | 1999-04-23 | Toyo Ink Mfg Co Ltd | Organic electroluminescent element material and organic electroluminescent element using the same |
JP4545243B2 (en) * | 1997-12-16 | 2010-09-15 | チッソ株式会社 | Diaminonaphthalene derivative and organic electroluminescence device using the same |
JPH11224783A (en) | 1998-02-04 | 1999-08-17 | Toyota Central Res & Dev Lab Inc | Organic electroluminescence element |
JP4514841B2 (en) | 1998-02-17 | 2010-07-28 | 淳二 城戸 | Organic electroluminescent device |
US5972247A (en) * | 1998-03-20 | 1999-10-26 | Eastman Kodak Company | Organic electroluminescent elements for stable blue electroluminescent devices |
JPH11297477A (en) | 1998-04-08 | 1999-10-29 | Tdk Corp | Organic el color display |
CN100358970C (en) * | 1998-04-09 | 2008-01-02 | 出光兴产株式会社 | Organic electroluminescent device |
DE69942051D1 (en) * | 1998-05-01 | 2010-04-08 | Tdk Corp | COMPOUNDS FOR AN ORGANIC ELECTROLUMINESCENT ITEM AND ORGANIC ELECTROLUMINESCENT ITEM |
JP3769933B2 (en) * | 1998-05-20 | 2006-04-26 | 凸版印刷株式会社 | Luminescent material and organic thin film EL device |
JP2956691B1 (en) * | 1998-05-22 | 1999-10-04 | 日本電気株式会社 | Organic electroluminescence device |
US6182096B1 (en) * | 1998-06-30 | 2001-01-30 | International Business Machines Corporation | Method and apparatus of creating highly portable output files by combining pages from multiple input files |
JP3924943B2 (en) * | 1998-08-24 | 2007-06-06 | 東洋インキ製造株式会社 | Organic electroluminescent device material and organic electroluminescent device using the same |
DE19840195C1 (en) | 1998-09-03 | 2000-06-15 | Fraunhofer Ges Forschung | Aromatic poly (1,3,4-heterodiazoles), process for their preparation and their use in optical devices, in particular electroluminescent components |
JP4120059B2 (en) * | 1998-09-24 | 2008-07-16 | コニカミノルタホールディングス株式会社 | Novel benzimidazole compounds, their production and use |
US6057048A (en) * | 1998-10-01 | 2000-05-02 | Xerox Corporation | Electroluminescent (EL) devices |
US7871713B2 (en) | 1998-12-25 | 2011-01-18 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US6656608B1 (en) | 1998-12-25 | 2003-12-02 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US6681223B1 (en) * | 2000-07-27 | 2004-01-20 | International Business Machines Corporation | System and method of performing profile matching with a structured document |
US7120868B2 (en) * | 2002-05-30 | 2006-10-10 | Microsoft Corp. | System and method for adaptive document layout via manifold content |
US6855438B2 (en) * | 2001-06-15 | 2005-02-15 | Konica Corporation | Organic electroluminescent element and full color display |
US6910843B2 (en) * | 2001-11-26 | 2005-06-28 | Hewlett-Packard Development Company, L.P. | Cover authoring systems and methods and bookbinding systems incorporating the same |
US20060155529A1 (en) * | 2002-08-16 | 2006-07-13 | Teamware Group Oy | System and method for a context-independent framework for management and execution of xml processing tasks |
EP1403778A1 (en) * | 2002-09-27 | 2004-03-31 | Sony International (Europe) GmbH | Adaptive multimedia integration language (AMIL) for adaptive multimedia applications and presentations |
-
1999
- 1999-12-20 US US09/466,949 patent/US6656608B1/en not_active Expired - Lifetime
- 1999-12-23 DE DE69933529T patent/DE69933529T3/en not_active Expired - Lifetime
- 1999-12-23 EP EP06119382A patent/EP1731586A3/en not_active Withdrawn
- 1999-12-23 EP EP99125813A patent/EP1013740B2/en not_active Expired - Lifetime
- 1999-12-23 EP EP06119379A patent/EP1731585A3/en not_active Withdrawn
- 1999-12-23 EP EP06119376A patent/EP1764401A1/en not_active Withdrawn
- 1999-12-24 KR KR1019990061534A patent/KR100687666B1/en active IP Right Grant
-
2003
- 2003-08-28 US US10/652,949 patent/US7264890B2/en not_active Expired - Lifetime
- 2003-09-02 US US10/653,842 patent/US20040072019A1/en not_active Abandoned
- 2003-09-04 US US10/656,098 patent/US7316851B2/en not_active Expired - Lifetime
- 2003-09-11 US US10/661,857 patent/US20040062951A1/en not_active Abandoned
-
2011
- 2011-01-08 JP JP2011002575A patent/JP5545226B2/en not_active Expired - Lifetime
- 2011-01-08 JP JP2011002574A patent/JP5545225B2/en not_active Expired - Lifetime
-
2013
- 2013-07-26 JP JP2013155225A patent/JP5601408B2/en not_active Expired - Lifetime
- 2013-07-26 JP JP2013155227A patent/JP5601409B2/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128587A (en) * | 1989-12-26 | 1992-07-07 | Moltech Corporation | Electroluminescent device based on organometallic membrane |
US5366811A (en) * | 1990-09-20 | 1994-11-22 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US5597925A (en) * | 1992-04-14 | 1997-01-28 | Ricoh Company, Ltd. | Method of producing oxadiazole compounds |
US5656401A (en) * | 1992-04-14 | 1997-08-12 | Ricoh Company, Ltd. | Electroluminescent device comprising oxadiazole compounds luminescent material, oxadiazole compounds for the device, and method of producing oxadiazole compounds |
US5635308A (en) * | 1994-04-26 | 1997-06-03 | Tdk Corporation | Phenylanthracene derivative and organic EL element |
US6132641A (en) * | 1995-12-01 | 2000-10-17 | Vantico, Inc. | Composition and support material comprising poly(9,9'-spiro-bisfluorenes) |
US5717289A (en) * | 1996-01-30 | 1998-02-10 | Nec Corporation | Thin film electroluminescent element easily regulating emitted light to white |
US6048631A (en) * | 1996-07-12 | 2000-04-11 | Futaba Denshi Kogyo K.K. | Organic electroluminescence device and organic electroluminescence device material |
US5645948A (en) * | 1996-08-20 | 1997-07-08 | Eastman Kodak Company | Blue organic electroluminescent devices |
US6214481B1 (en) * | 1996-10-08 | 2001-04-10 | Idemitsu Kosan Co., Ltd. | Organic electroluminescent device |
US6165631A (en) * | 1997-03-04 | 2000-12-26 | U.S. Philips Corporation | Diode-addressed color display with lanthanoid phosphors |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070020485A1 (en) * | 1998-12-25 | 2007-01-25 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US7264890B2 (en) | 1998-12-25 | 2007-09-04 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US7316851B2 (en) | 1998-12-25 | 2008-01-08 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US7871713B2 (en) | 1998-12-25 | 2011-01-18 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US20040096696A1 (en) * | 1998-12-25 | 2004-05-20 | Konica Corporation | Electroluminescent material, electroluminescent element and color conversion filter |
US20060091778A1 (en) * | 2004-11-02 | 2006-05-04 | Gelcore, Llc | Phosphor blends for green traffic signals |
US7321191B2 (en) * | 2004-11-02 | 2008-01-22 | Lumination Llc | Phosphor blends for green traffic signals |
US11980087B2 (en) | 2008-05-16 | 2024-05-07 | Semiconductor Energy Laboratory Co., Ltd. | Triarylamine derivative, light-emitting substance, light-emitting element, light-emitting device, and electronic device |
US11678568B2 (en) | 2008-05-16 | 2023-06-13 | Semiconductor Energy Laboratory Co., Ltd. | Triarylamine derivative, light-emitting substance, light-emitting element, light-emitting device, and electronic device |
US10804471B2 (en) | 2008-05-16 | 2020-10-13 | Semiconductor Energy Laboratory Co., Ltd. | Triarylamine derivative, light-emitting substance, light-emitting element, light-emitting device, and electronic device |
US9624193B2 (en) | 2009-08-21 | 2017-04-18 | Tosoh Corporation | Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component |
US9120773B2 (en) | 2009-08-21 | 2015-09-01 | Tosoh Corporation | Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component |
US8017038B2 (en) * | 2009-09-04 | 2011-09-13 | Samsung Sdi Co., Ltd. | Green phosphor and plasma display panel including the same |
US20110057148A1 (en) * | 2009-09-04 | 2011-03-10 | Lee Young-Hun | Green phosphor and plasma display panel including the same |
US9056883B2 (en) | 2010-04-06 | 2015-06-16 | Semiconductor Energy Laboratory Co., Ltd. | Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device |
US8779455B2 (en) | 2011-06-02 | 2014-07-15 | Mitsubishi Chemical Corporation | Semiconductor light-emitting device, semiconductor light-emitting system and illumination fixture |
US9252368B2 (en) | 2011-11-11 | 2016-02-02 | Tosoh Corporation | Cyclic azine compound having nitrogen-containing condensed aromatic group, method for producing same, and organic electroluminescent device comprising same as constituent component |
CN110959202A (en) * | 2017-07-21 | 2020-04-03 | 三星Sdi株式会社 | Composition for encapsulating organic light emitting diode element and organic light emitting diode display prepared using the same |
US20220158108A1 (en) * | 2019-02-27 | 2022-05-19 | Sharp Kabushiki Kaisha | Light-emitting element and display device using light-emitting element |
Also Published As
Publication number | Publication date |
---|---|
DE69933529T2 (en) | 2007-06-21 |
JP5601409B2 (en) | 2014-10-08 |
JP5545225B2 (en) | 2014-07-09 |
JP2013251564A (en) | 2013-12-12 |
EP1013740A3 (en) | 2002-01-30 |
US20040096696A1 (en) | 2004-05-20 |
EP1013740B2 (en) | 2011-01-19 |
EP1013740A2 (en) | 2000-06-28 |
EP1731585A3 (en) | 2007-03-14 |
EP1764401A1 (en) | 2007-03-21 |
EP1731585A2 (en) | 2006-12-13 |
JP5601408B2 (en) | 2014-10-08 |
EP1013740B1 (en) | 2006-10-11 |
JP5545226B2 (en) | 2014-07-09 |
US20040072019A1 (en) | 2004-04-15 |
US7316851B2 (en) | 2008-01-08 |
US20040058195A1 (en) | 2004-03-25 |
JP2011122161A (en) | 2011-06-23 |
US6656608B1 (en) | 2003-12-02 |
DE69933529T3 (en) | 2011-08-18 |
KR20000052560A (en) | 2000-08-25 |
EP1731586A2 (en) | 2006-12-13 |
EP1731586A3 (en) | 2007-03-21 |
JP2013258416A (en) | 2013-12-26 |
JP2011127125A (en) | 2011-06-30 |
KR100687666B1 (en) | 2007-02-28 |
DE69933529D1 (en) | 2006-11-23 |
US7264890B2 (en) | 2007-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6656608B1 (en) | Electroluminescent material, electroluminescent element and color conversion filter | |
US7871713B2 (en) | Electroluminescent material, electroluminescent element and color conversion filter | |
JP3968933B2 (en) | Electroluminescence element | |
US6723455B2 (en) | Organic electro-luminescent element and material of organic electro-luminescent element | |
JP3873720B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND DISPLAY DEVICE USING THE SAME | |
JP4798011B2 (en) | Electroluminescent material | |
JP4951829B2 (en) | Organic electroluminescence element and display device | |
USH2084H1 (en) | Pentacene derivatives as red emitters in organic light emitting devices | |
JP2003031368A (en) | Organic electroluminescent element and display device | |
JP4940504B2 (en) | Organic electroluminescence device | |
JP4962577B2 (en) | Organic electroluminescence device | |
JP2004231563A (en) | Bianthryl derivative, luminescent coating film forming material containing the same, and organic electroluminescent element | |
KR20040080437A (en) | Coumarin compound | |
JP4556335B2 (en) | Organic electroluminescence device | |
JP2003040844A (en) | Organic electroluminescence element, organic electroluminescence element material and compound used for the same | |
JP2003157978A (en) | Organic electroluminescence device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |