JP3574860B2 - Tetraphenylbenzidine compound - Google Patents

Tetraphenylbenzidine compound Download PDF

Info

Publication number
JP3574860B2
JP3574860B2 JP29380093A JP29380093A JP3574860B2 JP 3574860 B2 JP3574860 B2 JP 3574860B2 JP 29380093 A JP29380093 A JP 29380093A JP 29380093 A JP29380093 A JP 29380093A JP 3574860 B2 JP3574860 B2 JP 3574860B2
Authority
JP
Japan
Prior art keywords
mol
tertiary butyl
hydrogen atom
butyl group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29380093A
Other languages
Japanese (ja)
Other versions
JPH07126225A (en
Inventor
富山裕光
押野雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP29380093A priority Critical patent/JP3574860B2/en
Priority to EP19940117206 priority patent/EP0650955B1/en
Priority to DE69412567T priority patent/DE69412567T2/en
Priority to US08/332,726 priority patent/US5639914A/en
Publication of JPH07126225A publication Critical patent/JPH07126225A/en
Priority to US08/738,326 priority patent/US5707747A/en
Application granted granted Critical
Publication of JP3574860B2 publication Critical patent/JP3574860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、有機電界発光素子などに用いられる電荷輸送材料として有用な新規テトラフェニルベンジジン化合物に関する。
【0002】
【従来の技術】
有機化合物を構成要素とする電界発光素子は、従来より検討されていたが、充分な発光特性が得られていなかった。しかし、近年数種の有機材料を積層した構造とすることにより、その特性が著しく向上し、以来、有機物を用いた電界発光素子に関する検討が活発に行われている。この積層構造とした電界発光素子はコダック社のC.W.Tangらにより最初に報告されたが〔Appl.Phys.Lett.51(1987)913〕、この中では10V以下の電圧で1000cd/m以上の発光が得られており、従来より実用化されている無機電界発光素子が200V以上の高電圧を必要とするのに比べ、格段に高い特性を有することが示された。
【0003】
これら積層構造の電界発光素子は、有機蛍光体と電荷輸送性の有機物(電荷輸送材)及び電極を積層した構造となっており、それぞれの電極より注入された電荷(正孔及び電子)が電荷輸送材中を移動して、それらが再結合することによって発光する。有機蛍光体としては、8−キノリノールアルミニウム錯体やクマリリンなど蛍光を発する有機色素などが用いられている。また、電荷輸送材としては電子写真感光体用有機材料として良く知られた種々の化合物を用いて検討されており、例えばN,N′−ジ(m−トリル)−N,N′−ジフェニルベンジジンや1,1−ビス[N,N−ジ(p−トリル)アミノフェニル]シクロヘキサンといったジアミン化合物や4−(N,N−ジフェニルアミノ)ベンズアルデヒド−N,N−ジフェニルヒドラゾンなどのヒドラゾン化合物が挙げられる。更に、銅フタロシアニンのようなポルフィリン化合物も用いられている。
【0004】
ところで、有機電界発光素子は、高い発光特性を有しているが、発光時の安定性や保存安定性の点で充分ではなく、実用化には至っていない。素子の発光時の安定性、保存安定性における問題点の一つとして、電荷輸送材の安定性が指摘されている。電界発光素子の有機物で形成されている層は百〜数百ナノメーターと非常に薄く、単位厚さあたりに加えられる電圧は非常に高い。また、発光や通電による発熱もあり、従って電荷輸送材には電気的、熱的あるいは化学的な安定性が要求される。更に、一般的に素子中の電荷輸送層は、非晶質の状態にあるが、発光または保存による経時により、結晶化を起こし、これによって発光が阻害されたり、素子破壊を起こすといった現象が見られている。この点、電荷輸送材には非晶質すなわちガラス状態を容易に形成し、かつ安定に保持する性能が要求される。
【0005】
このような電荷輸送材に起因する発光素子の安定性に関し、例えば、ジアミン化合物やポルフィリン化合物においては、電気的、熱的に安定なものが多く、高い発光特性が得られているが、結晶化による素子の劣化は解決されていない。また、ヒドラゾン化合物は、電気的、熱的安定性において充分ではないため、好ましい材料ではない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、発光特性のみならず、発光時の安定性、保存安定性に優れた有機電界発光素子を実現し得る電荷輸送材として有用で、かつ新規なテトラフェニルベンジジン化合物を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、下記一般式(1)で表されるターシャリーブチル基を有するテトラフェニルベンジジン化合物である。また、本発明は一般式(1)で表されるターシャリーブチル基を有するテトラフェニルベンジジン化合物を電荷輸送材に使用したことを特徴とする、熱安定性有機電界発光素子である。
【0008】
【化2】

Figure 0003574860
(式中R、Rは同一でも異なっていても良く、水素原子、低級アルキル基、または低級アルコキシ基を表し、かつ、RまたはRの少なくとも一方は、ターシャリーブチル基を表す。また、Rは水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表す。)
【0009】
本発明の一般式(1)で表されるテトラフェニルベンジジン化合物は新規化合物であり、これらは相当する4,4′−ジハロゲン化ビフェニルと相当するジフェニルアミン化合物との縮合反応、または、相当するベンジジン化合物と相当するハロゲン化アリールとの縮合反応により合成することができ、これら縮合反応はウルマン反応として知られる方法である。
【0010】
例えば、下記式
【化3】
Figure 0003574860
(式中、Rは上で定義した通りである。)
で表されるアニリン化合物をN−アセチル化してアニリド化合物とし、これに下記式
【0011】
【化4】
Figure 0003574860
(式中、Rは上で定義した通りであり、Xは塩素原子、臭素原子または沃素原子を表す。)
で表されるハロゲン化アリールを作用させて縮合反応を行い、生成物を加水分解して下記式
【0012】
【化5】
Figure 0003574860
(式中R、Rは上で定義した通りである。)
で表されるジフェニルアミン化合物が得られる。このジフェニルアミン化合物は、更に下記式
【0013】
【化6】
Figure 0003574860
(式中、RとXとは上に定義した通りである。但し、RとXは同時に塩素原子ではない。)
で表される4,4′−ジハロゲン化ビフェニルと縮合反応することにより、本発明のテトラフェニルベンジジン化合物が得られる。
【0014】
また、下記式
【化7】
Figure 0003574860
(式中、Rは上に定義した通りである。)
で表されるベンジジン化合物を原料とした場合は、このベンジジン化合物をアセチル化してN,N′−ジアセチル体としたものに、下記式
【0015】
【化8】
Figure 0003574860
(式中、RとXとは上に定義した通りである。)
で表されるハロゲン化アリールを作用させて縮合し、生成物を加水分解後、更に下記式
【0016】
【化9】
Figure 0003574860
(式中、RとXとは上に定義した通りである。)
で表されるハロゲン化アリールを作用させて縮合し、本発明のテトラフェニルベンジジン化合物が得られる。
【0017】
前述の、ハロゲン化アリールとN−アセチルアニリンまたはN,N′−ジフェニルベンジジン化合物との縮合反応、及びジフェニルアミン化合物と4,4′−ジハロゲン化ビフェニルとの縮合反応は、無溶媒下または溶媒の存在下で行うが、溶媒としてはニトロベンゼンやジクロロベンゼンなどが用いられる。脱酸剤としての塩基性化合物には炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウムなどが用いられる。また、通常、銅粉やハロゲン化銅などの触媒を用いて反応させる。反応温度は通常160〜230℃である。
【0018】
このようにして得られた、本発明の具体的な化合物例を以下に示す。
【0019】
【化10】
Figure 0003574860
【0020】
【化11】
Figure 0003574860
【0021】
【化12】
Figure 0003574860
【0022】
【化13】
Figure 0003574860
【0023】
【化14】
Figure 0003574860
【0024】
【化15】
Figure 0003574860
【0025】
【化16】
Figure 0003574860
【0026】
【化17】
Figure 0003574860
【0027】
【化18】
Figure 0003574860
【0028】
【化19】
Figure 0003574860
【0029】
【化20】
Figure 0003574860
【0030】
【化21】
Figure 0003574860
【0031】
【化22】
Figure 0003574860
【0032】
【化23】
Figure 0003574860
【0033】
【化24】
Figure 0003574860
【0034】
【化25】
Figure 0003574860
【0035】
【化26】
Figure 0003574860
【0036】
【化27】
Figure 0003574860
【0037】
【化28】
Figure 0003574860
【0038】
【化29】
Figure 0003574860
【0039】
【化30】
Figure 0003574860
【0040】
本発明により得られた新規なテトラフェニルベンジジン化合物は、容易にガラス状態を形成しかつ安定に保持すると共に、熱的、化学的にも安定であり、有機電界発光素子における電荷輸送材料として極めて有用である。また、基本的に高い電荷輸送能を有しており、電子写真感光体をはじめとする電荷輸送性を利用する素子、システムに有効な材料であることはいうまでもない。
【0041】
以下、本発明を実施例により詳細に説明する。
【0042】
実施例1
p−ノルマルブチルアニリン95.0g(0.64モル)を氷酢酸170mlに溶解して、30℃で無水酢酸81.3g(0.80モル)を滴下し、滴下終了後40℃で1時間反応させた。反応液を水600ml中へ注加し、析出した結晶をろ過、水洗、乾燥した。この結晶をトルエン120mlとn−ヘキサン1000mlの混合溶液で再結晶し、p−ノルマルブチルアセトアニリド117.5g(収率96.4%)を得た。融点は105.5〜106.0℃であった。
上記得られた、p−ノルマルブチルアセトアニリド20.1g(0.11モル)とブロムベンゼン24.8g(0.16モル)、無水炭酸カリウム19.4g(0.14モル)、銅粉0.96g(0.015モル)を混合し、160〜220℃で10時間反応させた。反応生成物はトルエン100mlで抽出し、不溶分をろ別除去後、濃縮乾固した。これをイソアミルアルコール30mlで溶解し、水3.8g、85%水酸化カリウム13.2g(0.2モル)を加え、131℃で加水分解した。水蒸気蒸留でイソアミルアルコール、過剰のブロムベンゼンを留去後、トルエン140mlで抽出し、水洗、乾燥して濃縮した。濃縮物は乾燥し、N−フェニル−p−ノルマルブチルアニリン21.1g(収率89.4%)を得た。
【0043】
更に、N−フェニル−p−ノルマルブチルアニリン21.1g(0.094モル)、4,4′−ジヨードビフェニル15.4g(0.038モル)、無水炭酸カリウム15.7g(0.11モル)及び銅粉1.1g(0.017モル)を混合し、170〜220℃で27時間反応させた。反応生成物をトルエン140mlで抽出し、不溶分をろ別除去後、濃縮してオイル状物とした。得られた粗製物は、カラムクロマトにより精製して(担体;シリカゲル、溶離液;トルエン/n−ヘキサン=1/5)、N,N′−ビス(p−ノルマルブチルフェニル)−N,N′−ジフェニルベンジジン13.4g(収率58.6%)を得た。融点は、135.0〜135.5℃であった。IRスペクトルを図1に示す。
【0044】
実施例2
p−イソブチルアニリン70.0g(0.47モル)を氷酢酸126mlに溶解して、30℃で無水酢酸59.9g(0.58モル)を滴下し、滴下終了後40℃で1時間反応させた。反応液を水500ml中へ注加し、析出した結晶をろ過、水洗、乾燥した。この結晶をトルエン140mlとn−ヘキサン700mlの混合溶液で再結晶し、p−イソブチルアセトアニリド60.4g(収率67.3%)を得た。融点は124.5〜125.0℃であった。
上記得られた、p−イソブチルアセトアニリド17.9g(0.094モル)とブロムベンゼン22.1g(0.14モル)、無水炭酸カリウム16.9g(0.12モル)、銅粉0.89g(0.014モル)を混合し、168〜217℃で14時間反応させた。反応生成物はトルエン100mlで抽出し、不溶分をろ別除去後、濃縮乾固した。これをイソアミルアルコール30mlで溶解し、水3.4g、85%水酸化カリウム11.8g(0.18モル)を加え、131℃で加水分解した。水蒸気蒸留でイソアミルアルコール、過剰のブロムベンゼンを留去後、トルエン120mlで抽出し、水洗、乾燥して濃縮した。濃縮物は乾燥し、N−フェニル−p−イソブチルアニリン17.6g(収率86.8%)を得た。
【0045】
更に、N−フェニル−p−イソブチルアニリン17.6g(0.078モル)、4,4′−ジヨードビフェニル12.6g(0.031モル)、無水炭酸カリウム12.9g(0.093モル)及び銅粉0.89g(0.014モル)を混合し、190〜220℃で12時間反応させた。反応生成物をトルエン70mlで抽出し、不溶分をろ別除去後、濃縮してオイル状物とした。得られた粗製物は、カラムクロマトにより精製して(担体;シリカゲル、溶離液;トルエン/n−ヘキサン=1/6)、N,N′−ビス(p−イソブチルフェニル)−N,N′−ジフェニルベンジジン8.5g(収率45.7%)を得た。融点は、133.8〜135.3℃であった。IRスペクトルを図2に示す。
【0046】
実施例3
アセトアニリド8.2g(0.061モル)とp−ターシャリブチルブロムベンゼン19.2g(0.090モル)、無水炭酸カリウム9.95g(0.072モル)、銅粉0.50g(0.008モル)を混合し、190〜203℃で23時間反応させた。反応生成物はトルエン75mlで抽出し、不溶分をろ別除去後、濃縮乾固した。これをイソアミルアルコール30mlで溶解し、水1.1g、85%水酸化カリウム7.9g(0.12モル)を加え、125℃で加水分解した。水蒸気蒸留でイソアミルアルコール、過剰のp−ターシャリブチルブロムベンゼンを留去後、トルエン80mlで抽出し、水洗、乾燥して濃縮した。濃縮物はn−ヘキサン100mlで再結晶し、N−フェニル−p−ターシャリブチルアニリン8.1g(収率58.9%)を得た。
【0047】
更に、N−フェニル−p−ターシャリブチルアニリン8.1g(0.036モル)、4,4′−ジヨードビフェニル7.3g(0.018モル)、無水炭酸カリウム7.5g(0.054モル)及び銅粉0.53g(0.008モル)を混合し、210〜225℃で12時間反応させた。反応生成物をトルエン70mlで抽出し、不溶分をろ別除去後、濃縮してオイル状物とした。得られた粗製物は、カラムクロマトにより精製して(担体;シリカゲル、溶離液;トルエン/n−ヘキサン=1/4)、N,N′−ビス(p−ターシャリブチルフェニル)−N,N′−ジフェニルベンジジン4.5g(収率41.7%)を得た。融点は、232.2〜232.6℃であった。IRスペクトルを図3に示す。
【0048】
実施例4
p−ターシャリブチルアニリン10.6g(0.071モル)を氷酢酸19mlに溶解して、30℃で無水酢酸8.0g(0.078モル)を滴下し、滴下終了後40℃で3時間反応させた。反応液を水200ml中に注加し、析出した結晶をろ過、水洗、乾燥し、p−ターシャリブチルアセトアニリド13.5g(収率99.9%)を得た。融点は172.5〜173.5℃であった。
上記得られた、p−ターシャリブチルアセトアニリド13.5g(0.071モル)とp−ターシャリブチルブロムベンゼン19.6g(0.092モル)、無水炭酸カリウム11.8g(0.085モル)、銅粉0.58g(0.009モル)を混合し、215〜225℃で19時間反応させた。反応生成物はトルエン200mlで抽出し、不溶分をろ別除去後、濃縮し、n−ヘキサン60mlを加えて結晶を得た。これをイソアミルアルコール50mlで溶解し、水1.9g、93%水酸化ナトリウム6.2g(0.15モル)を加え、131℃で加水分解した。水蒸気蒸留でイソアミルアルコール、過剰のp−ターシャリブチルブロムベンゼンを留去後、トルエン120mlで抽出し、水洗、乾燥して濃縮した。濃縮物は乾燥し、4,4′−ジターシャリブチル−N,N−ジフェニルアミン15.1g(収率99.4%)を得た。
【0049】
更に、4,4′−ジターシャリブチル−N,N−ジフェニルアミン13.4g(0.048モル)、4,4′−ジヨードビフェニル7.7g(0.019モル)、無水炭酸カリウム7.7g(0.056モル)及び銅粉0.53g(0.008モル)、ニトロベンゼン5mlを混合し、200〜215℃で4時間反応させた。反応生成物をTHF100mlで抽出し、不溶分をろ別除去後、濃縮して結晶を得た。得られた粗結晶は、カラムクロマトにより精製して(担体;シリカゲル、溶離液;トルエン/n−ヘキサン=1/2)、N,N,N′,N′−テトラキス(p−ターシャリブチルフェニル)ベンジジン4.3g(収率31.7%)を得た。融点は、402.0〜403.0℃であった。実施例1から4で得られた化合物の元素分析値を表1に、またIRスペクトルを図4に示す。
【0050】
【表1】
Figure 0003574860
【0051】
さらに、本発明により見いだされた化合物が有用であることを、具体的な応用例によって説明する。
【0052】
応用例1
十分に洗浄したITO電極に、前記実施例3で得られた化合物(一般式(1);R=t−Bu、R=H、R=H)を電荷輸送材として、0.1nm/秒の速度で真空蒸着により50nmの厚さまで蒸着した。蒸着した膜の上に、発光材として、精製したトリス8−キノリノールアルミニウム錯体を真空蒸着により、同じく0.1nm/秒の速度で、50nmの厚さまで蒸着した。更に、この膜の上に、真空蒸着によりMg/Ag電極を100nmの厚さで形成して、EL素子を作製した。これらの蒸着は、途中で真空を破らずに連続して行った。また、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引続き特性の測定を行った。素子の発光特性は100mA/cmの電流を印加した場合の発光輝度で定義し、発光の寿命は200cd/mの発光が得られる電流を連続で印加し、輝度が100cd/cmになるまでの時間とした。また、保存安定性は室温、乾燥空気中に一定時間放置後、20mA/cmの電流を印加し、輝度が初期発光特性の半分になるまでの時間で定義した。
測定の結果、発光特性は2800cd/m、発光の寿命は670時間、保存安定性は1600時間であった。
比較のために、電荷輸送材として、N,N′−ジ(m−トリル)−N,N′−ジフェニルベンジジンを用い、同様の条件でEL素子を作製しその特性を調べた。発光特性、発光の寿命、保存安定性はそれぞれ、2200cd/m、220時間、460時間であった。
【0053】
【発明の効果】
本発明により見出された新規ターシャリーブチル基を有するテトラフェニルベンジジン化合物は、電荷輸送性材料として有効に機能し、また、容易にガラス状態を形成しかつ安定にガラス状態を保持し、熱的、化学的にも安定なため、特に有機電界発光素子における電荷輸送材として有用な物質である。したがって、本発明のターシャリーブチル基を有するテトラフェニルベンジジン化合物を電荷輸送材に使用することにより、熱安定性有機電界発光素子を得ることができる。
【図面の簡単な説明】
【図1】実施例1により得られた化合物のIRスペクトルである。
【図2】実施例2により得られた化合物のIRスペクトルである。
【図3】実施例3により得られた化合物のIRスペクトルである。
【図4】実施例4により得られた化合物のIRスペクトルである。[0001]
[Industrial applications]
The present invention relates to a novel tetraphenylbenzidine compound useful as a charge transporting material used for an organic electroluminescent device and the like.
[0002]
[Prior art]
Electroluminescent devices comprising an organic compound as a component have been conventionally studied, but have not been able to obtain sufficient luminescent characteristics. However, in recent years, by adopting a structure in which several types of organic materials are laminated, the characteristics thereof have been remarkably improved. Since then, studies on electroluminescent elements using organic substances have been actively conducted. The electroluminescent device having the laminated structure is manufactured by Kodak Corporation. W. First reported by Tang et al. [Appl. Phys. Lett. 51 (1987) 913], in which light emission of 1000 cd / m 2 or more is obtained at a voltage of 10 V or less, and the inorganic electroluminescent element conventionally used in practice requires a high voltage of 200 V or more. It was shown to have much higher characteristics than that of.
[0003]
These stacked electroluminescent devices have a structure in which an organic phosphor, a charge transporting organic substance (charge transporting material), and electrodes are laminated, and charges (holes and electrons) injected from each electrode are charged. Light is emitted as they move through the transport material and recombine. Organic dyes that emit fluorescence, such as 8-quinolinol aluminum complex and coumarin, are used as the organic phosphor. Further, as a charge transporting material, various compounds well known as an organic material for an electrophotographic photoreceptor have been studied, for example, N, N'-di (m-tolyl) -N, N'-diphenylbenzidine. And 1,1-bis [N, N-di (p-tolyl) aminophenyl] cyclohexane and hydrazone compounds such as 4- (N, N-diphenylamino) benzaldehyde-N, N-diphenylhydrazone. . Further, porphyrin compounds such as copper phthalocyanine have been used.
[0004]
By the way, the organic electroluminescent device has high light-emitting characteristics, but is not sufficient in terms of stability during light emission and storage stability, and has not been put to practical use. It has been pointed out that the stability of the charge transporting material is one of the problems in the light emission stability and storage stability of the device. A layer formed of an organic material of an electroluminescent device is very thin, one hundred to several hundred nanometers, and a voltage applied per unit thickness is very high. In addition, heat is generated by light emission and energization. Therefore, the charge transporting material is required to have electrical, thermal, or chemical stability. Further, the charge transport layer in the device is generally in an amorphous state. However, with the lapse of time due to light emission or storage, crystallization occurs, thereby observing a phenomenon such that light emission is inhibited or the device is destroyed. Have been. In this regard, the charge transporting material is required to easily form an amorphous state, that is, a glassy state, and to have a performance of stably maintaining the state.
[0005]
Regarding the stability of the light-emitting element due to such a charge transport material, for example, many diamine compounds and porphyrin compounds are electrically and thermally stable, and high light-emitting characteristics are obtained. However, the deterioration of the element due to the above has not been solved. In addition, hydrazone compounds are not preferable materials because of insufficient electrical and thermal stability.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel tetraphenylbenzidine compound which is useful as a charge transporting material capable of realizing an organic electroluminescent device having excellent light emission characteristics, stability during light emission, and excellent storage stability. It is in.
[0007]
[Means for Solving the Problems]
The present invention is a tetraphenylbenzidine compound having a tertiary butyl group represented by the following general formula (1) . Further, the present invention is a thermostable organic electroluminescent device, wherein a tetraphenylbenzidine compound having a tertiary butyl group represented by the general formula (1) is used as a charge transporting material.
[0008]
Embedded image
Figure 0003574860
(In the formula, R 1 and R 2 may be the same or different and each represent a hydrogen atom, a lower alkyl group, or a lower alkoxy group, and at least one of R 1 and R 2 represents a tertiary butyl group . R 3 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a chlorine atom.)
[0009]
The tetraphenylbenzidine compound represented by the general formula (1) of the present invention is a novel compound, which is a condensation reaction of a corresponding 4,4'-dihalogenated biphenyl with a corresponding diphenylamine compound, or a corresponding benzidine compound. Can be synthesized by a condensation reaction with a corresponding aryl halide. These condensation reactions are methods known as the Ullmann reaction.
[0010]
For example, the following formula:
Figure 0003574860
Wherein R 1 is as defined above.
The aniline compound represented by the formula is N-acetylated to give an anilide compound, which has the following formula:
Embedded image
Figure 0003574860
(Wherein, R 2 is as defined above, and X represents a chlorine atom, a bromine atom or an iodine atom.)
A condensation reaction is carried out by reacting an aryl halide represented by the formula: and the product is hydrolyzed to give the following formula:
Embedded image
Figure 0003574860
(Wherein R 1 and R 2 are as defined above)
The diphenylamine compound represented by is obtained. This diphenylamine compound further has the following formula:
Embedded image
Figure 0003574860
(Wherein R 3 and X are as defined above, provided that R 3 and X are not chlorine atoms at the same time.)
The tetraphenylbenzidine compound of the present invention can be obtained by a condensation reaction with a 4,4'-dihalogenated biphenyl represented by the following formula:
[0014]
Also, the following formula:
Figure 0003574860
Wherein R 3 is as defined above.
When a benzidine compound represented by the following formula is used as a raw material, the benzidine compound is acetylated to give an N, N'-diacetyl form, and the following formula:
Embedded image
Figure 0003574860
(Wherein R 1 and X are as defined above)
After condensation by reacting an aryl halide represented by the following formula, and hydrolyzing the product, the product is further subjected to the following formula:
Embedded image
Figure 0003574860
(Wherein R 2 and X are as defined above)
Is reacted and condensed to give the tetraphenylbenzidine compound of the present invention.
[0017]
The condensation reaction between the aryl halide and the N-acetylaniline or N, N'-diphenylbenzidine compound and the condensation reaction between the diphenylamine compound and the 4,4'-dihalogenated biphenyl are carried out without solvent or in the presence of a solvent. The reaction is performed under the following conditions, and nitrobenzene, dichlorobenzene, or the like is used as the solvent. As the basic compound as a deoxidizing agent, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide and the like are used. The reaction is usually performed using a catalyst such as copper powder or copper halide. The reaction temperature is usually from 160 to 230 ° C.
[0018]
Specific examples of the compound of the present invention thus obtained are shown below.
[0019]
Embedded image
Figure 0003574860
[0020]
Embedded image
Figure 0003574860
[0021]
Embedded image
Figure 0003574860
[0022]
Embedded image
Figure 0003574860
[0023]
Embedded image
Figure 0003574860
[0024]
Embedded image
Figure 0003574860
[0025]
Embedded image
Figure 0003574860
[0026]
Embedded image
Figure 0003574860
[0027]
Embedded image
Figure 0003574860
[0028]
Embedded image
Figure 0003574860
[0029]
Embedded image
Figure 0003574860
[0030]
Embedded image
Figure 0003574860
[0031]
Embedded image
Figure 0003574860
[0032]
Embedded image
Figure 0003574860
[0033]
Embedded image
Figure 0003574860
[0034]
Embedded image
Figure 0003574860
[0035]
Embedded image
Figure 0003574860
[0036]
Embedded image
Figure 0003574860
[0037]
Embedded image
Figure 0003574860
[0038]
Embedded image
Figure 0003574860
[0039]
Embedded image
Figure 0003574860
[0040]
INDUSTRIAL APPLICABILITY The novel tetraphenylbenzidine compound obtained by the present invention easily forms a glassy state, stably maintains the glassy state, is thermally and chemically stable, and is extremely useful as a charge transport material in an organic electroluminescent device. It is. Further, it is needless to say that the material basically has a high charge transporting ability and is an effective material for devices and systems utilizing charge transporting properties such as electrophotographic photosensitive members.
[0041]
Hereinafter, the present invention will be described in detail with reference to examples.
[0042]
Example 1
95.0 g (0.64 mol) of p-n-butylbutylaniline was dissolved in 170 ml of glacial acetic acid, and 81.3 g (0.80 mol) of acetic anhydride was added dropwise at 30 ° C. I let it. The reaction solution was poured into 600 ml of water, and the precipitated crystals were filtered, washed with water, and dried. The crystals were recrystallized with a mixed solution of 120 ml of toluene and 1000 ml of n-hexane to obtain 117.5 g (96.4% yield) of p-n-butylacetanilide. The melting point was 105.5-106.0 ° C.
20.1 g (0.11 mol) of p-normal butylacetanilide obtained above, 24.8 g (0.16 mol) of bromobenzene, 19.4 g (0.14 mol) of anhydrous potassium carbonate, 0.96 g of copper powder (0.015 mol), and reacted at 160 to 220 ° C. for 10 hours. The reaction product was extracted with 100 ml of toluene, insoluble matter was removed by filtration, and then concentrated to dryness. This was dissolved in 30 ml of isoamyl alcohol, 3.8 g of water and 13.2 g (0.2 mol) of 85% potassium hydroxide were added, and the mixture was hydrolyzed at 131 ° C. After isoamyl alcohol and excess bromobenzene were distilled off by steam distillation, the mixture was extracted with 140 ml of toluene, washed with water, dried and concentrated. The concentrate was dried to obtain 21.1 g (yield: 89.4%) of N-phenyl-p-normalbutylaniline.
[0043]
Further, 21.1 g (0.094 mol) of N-phenyl-p-normalbutylaniline, 15.4 g (0.038 mol) of 4,4'-diiodobiphenyl, and 15.7 g (0.11 mol) of anhydrous potassium carbonate ) And 1.1 g (0.017 mol) of copper powder were mixed and reacted at 170 to 220 ° C. for 27 hours. The reaction product was extracted with 140 ml of toluene, the insoluble matter was removed by filtration, and the mixture was concentrated to an oil. The obtained crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/5) to give N, N'-bis (p-n-butylphenyl) -N, N '. 13.4 g of diphenylbenzidine (58.6% yield) was obtained. The melting point was 135.0-135.5 ° C. FIG. 1 shows the IR spectrum.
[0044]
Example 2
70.0 g (0.47 mol) of p-isobutylaniline was dissolved in 126 ml of glacial acetic acid, and 59.9 g (0.58 mol) of acetic anhydride was added dropwise at 30 ° C. Was. The reaction solution was poured into 500 ml of water, and the precipitated crystals were filtered, washed with water, and dried. The crystals were recrystallized from a mixed solution of 140 ml of toluene and 700 ml of n-hexane to obtain 60.4 g (yield: 67.3%) of p-isobutylacetanilide. The melting point was 124.5-125.0 ° C.
17.9 g (0.094 mol) of p-isobutylacetanilide obtained above, 22.1 g (0.14 mol) of bromobenzene, 16.9 g (0.12 mol) of anhydrous potassium carbonate, 0.89 g of copper powder ( 0.014 mol) and reacted at 168-217 ° C for 14 hours. The reaction product was extracted with 100 ml of toluene, insoluble matter was removed by filtration, and then concentrated to dryness. This was dissolved in 30 ml of isoamyl alcohol, 3.4 g of water and 11.8 g (0.18 mol) of 85% potassium hydroxide were added, and the mixture was hydrolyzed at 131 ° C. After isoamyl alcohol and excess bromobenzene were distilled off by steam distillation, the mixture was extracted with 120 ml of toluene, washed with water, dried and concentrated. The concentrate was dried to obtain 17.6 g (86.8% yield) of N-phenyl-p-isobutylaniline.
[0045]
Further, 17.6 g (0.078 mol) of N-phenyl-p-isobutylaniline, 12.6 g (0.031 mol) of 4,4'-diiodobiphenyl, and 12.9 g (0.093 mol) of anhydrous potassium carbonate And 0.89 g (0.014 mol) of copper powder were mixed and reacted at 190 to 220 ° C. for 12 hours. The reaction product was extracted with 70 ml of toluene, the insolubles were removed by filtration, and the mixture was concentrated to an oil. The obtained crude product was purified by column chromatography (carrier: silica gel, eluent: toluene / n-hexane = 1/6) to give N, N′-bis (p-isobutylphenyl) -N, N′-. 8.5 g (yield 45.7%) of diphenylbenzidine was obtained. Melting point was 133.8-135.3 ° C. FIG. 2 shows the IR spectrum.
[0046]
Example 3
8.2 g (0.061 mol) of acetanilide, 19.2 g (0.090 mol) of p-tert-butyl bromobenzene, 9.95 g (0.072 mol) of anhydrous potassium carbonate, and 0.50 g (0.008 mol) of copper powder Mol) were reacted at 190-203 ° C for 23 hours. The reaction product was extracted with 75 ml of toluene, insoluble matter was removed by filtration, and then concentrated to dryness. This was dissolved in 30 ml of isoamyl alcohol, 1.1 g of water and 7.9 g (0.12 mol) of 85% potassium hydroxide were added, and the mixture was hydrolyzed at 125 ° C. After isoamyl alcohol and excess p-tert-butyl bromobenzene were distilled off by steam distillation, the mixture was extracted with 80 ml of toluene, washed with water, dried and concentrated. The concentrate was recrystallized from 100 ml of n-hexane to obtain 8.1 g of N-phenyl-p-tert-butylaniline (yield: 58.9%).
[0047]
Further, 8.1 g (0.036 mol) of N-phenyl-p-tert-butylaniline, 7.3 g (0.018 mol) of 4,4'-diiodobiphenyl, and 7.5 g (0.054 mol) of anhydrous potassium carbonate were used. Mol) and 0.53 g (0.008 mol) of copper powder, and reacted at 210 to 225 ° C for 12 hours. The reaction product was extracted with 70 ml of toluene, the insolubles were removed by filtration, and the mixture was concentrated to an oil. The obtained crude product was purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 1/4) to give N, N'-bis (p-tert-butylphenyl) -N, N 4.5 g of '-diphenylbenzidine (41.7% yield) was obtained. The melting point was 232.2-232.6 ° C. FIG. 3 shows the IR spectrum.
[0048]
Example 4
10.6 g (0.071 mol) of p-tert-butylaniline was dissolved in 19 ml of glacial acetic acid, and 8.0 g (0.078 mol) of acetic anhydride was added dropwise at 30 ° C. Reacted. The reaction solution was poured into 200 ml of water, and the precipitated crystals were filtered, washed with water, and dried to obtain 13.5 g (yield 99.9%) of p-tert-butylacetanilide. The melting point was 172.5-173.5 ° C.
13.5 g (0.071 mol) of p-tert-butylacetanilide obtained above, 19.6 g (0.092 mol) of p-tert-butylbromobenzene, and 11.8 g (0.085 mol) of anhydrous potassium carbonate were obtained. And 0.58 g (0.009 mol) of copper powder were mixed and reacted at 215 to 225 ° C. for 19 hours. The reaction product was extracted with 200 ml of toluene, and after insoluble matter was removed by filtration, concentrated, and 60 ml of n-hexane was added to obtain crystals. This was dissolved in 50 ml of isoamyl alcohol, 1.9 g of water and 6.2 g (0.15 mol) of 93% sodium hydroxide were added, and the mixture was hydrolyzed at 131 ° C. After isoamyl alcohol and excess p-tert-butyl bromobenzene were distilled off by steam distillation, the mixture was extracted with 120 ml of toluene, washed with water, dried and concentrated. The concentrate was dried to obtain 15.1 g (yield 99.4%) of 4,4'-di-tert-butyl-N, N-diphenylamine.
[0049]
Further, 13.4 g (0.048 mol) of 4,4'-ditert-butyl-N, N-diphenylamine, 7.7 g (0.019 mol) of 4,4'-diiodobiphenyl, and 7.7 g of anhydrous potassium carbonate (0.056 mol), 0.53 g (0.008 mol) of copper powder, and 5 ml of nitrobenzene were mixed and reacted at 200 to 215 ° C for 4 hours. The reaction product was extracted with 100 ml of THF, the insolubles were removed by filtration, and the mixture was concentrated to obtain crystals. The obtained crude crystals were purified by column chromatography (carrier; silica gel, eluent; toluene / n-hexane = 1/2) to give N, N, N ', N'-tetrakis (p-tert-butylphenyl). ) 4.3 g (31.7% yield) of benzidine. Melting point was 402.0-403.0 ° C. Table 1 shows the elemental analysis values of the compounds obtained in Examples 1 to 4, and FIG. 4 shows the IR spectrum.
[0050]
[Table 1]
Figure 0003574860
[0051]
Further, the usefulness of the compounds found according to the present invention will be explained by specific application examples.
[0052]
Application example 1
The compound (general formula (1); R 1 = t-Bu, R 2 = H, R 3 = H) obtained in the above Example 3 was used as a charge transport material on a well-washed ITO electrode at 0.1 nm. Vapor deposition was performed to a thickness of 50 nm by vacuum deposition at a rate of / sec. On the deposited film, a purified tris 8-quinolinol aluminum complex as a luminescent material was deposited by vacuum deposition at a rate of 0.1 nm / sec to a thickness of 50 nm. Further, an Mg / Ag electrode was formed with a thickness of 100 nm on this film by vacuum evaporation to produce an EL element. These depositions were performed continuously without breaking the vacuum on the way. The film thickness was monitored with a quartz oscillator. Immediately after the production of the device, the electrode was taken out in dry nitrogen, and the characteristics were subsequently measured. The light emission characteristics of the device are defined by the light emission luminance when a current of 100 mA / cm 2 is applied, and the light emission life is 100 cd / cm 2 with the light emission life of 200 cd / m 2 being applied continuously. Until the time. The storage stability was defined as the time until a luminance of half of the initial light emission characteristic was obtained by applying a current of 20 mA / cm 2 after leaving the substrate in a dry air at room temperature for a certain period of time.
As a result of the measurement, the light emission characteristics were 2800 cd / m 2 , the light emission life was 670 hours, and the storage stability was 1600 hours.
For comparison, N, N'-di (m-tolyl) -N, N'-diphenylbenzidine was used as a charge transporting material, and an EL device was manufactured under the same conditions and its characteristics were examined. The light emission characteristics, light emission lifetime, and storage stability were 2200 cd / m 2 , 220 hours, and 460 hours, respectively.
[0053]
【The invention's effect】
The novel tertiary butyl group-containing tetraphenylbenzidine compound discovered by the present invention functions effectively as a charge transporting material, easily forms a glass state and stably maintains the glass state, Since it is chemically stable, it is particularly useful as a charge transport material in an organic electroluminescent device. Therefore, by using the tetraphenylbenzidine compound having a tertiary butyl group of the present invention as a charge transporting material, a thermostable organic electroluminescent device can be obtained.
[Brief description of the drawings]
FIG. 1 is an IR spectrum of the compound obtained in Example 1.
FIG. 2 is an IR spectrum of the compound obtained in Example 2.
FIG. 3 is an IR spectrum of the compound obtained in Example 3.
FIG. 4 is an IR spectrum of the compound obtained in Example 4.

Claims (6)

下記一般式(1)で表されるターシャリーブチル基を有するテトラフェニルベンジジン化合物
Figure 0003574860
(式中R、Rは同一でも異なっていても良く、水素原子、低級アルキル基、または低級アルコキシ基を表し、かつ、RまたはRの少なくとも一方は、ターシャリーブチル基を表す。また、Rは水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表す。)
Tetraphenylbenzidine compound having a tertiary butyl group represented by the following general formula (1)
Figure 0003574860
(In the formula, R 1 and R 2 may be the same or different and each represent a hydrogen atom, a lower alkyl group, or a lower alkoxy group, and at least one of R 1 and R 2 represents a tertiary butyl group . R 3 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a chlorine atom.)
一般式で表されるテトラフェニルベンジジン化合物の式中、RIn the formula of the tetraphenylbenzidine compound represented by the general formula, R 1 がターシャリーブチル基であり、RIs a tertiary butyl group; 2 が水素原子であり、RIs a hydrogen atom, and R 3 が水素原子である、請求項1記載のターシャリーブチル基を有するテトラフェニルベンジジン化合物。The tertiary butyl group-containing tetraphenylbenzidine compound according to claim 1, wherein is a hydrogen atom. 一般式で表されるテトラフェニルベンジジン化合物の式中、RIn the formula of the tetraphenylbenzidine compound represented by the general formula, R 1 およびRAnd R 2 がターシャリーブチル基であり、RIs a tertiary butyl group; 3 が水素原子である、請求項1記載のターシャリーブチル基を有するテトラフェニルベンジジン化合物。The tertiary butyl group-containing tetraphenylbenzidine compound according to claim 1, wherein is a hydrogen atom. 一般式(1)で表されるターシャリーブチル基を有するテトラフェニルベンジジン化合物Tetraphenylbenzidine compound having a tertiary butyl group represented by the general formula (1)
(式中R(Where R 1 、R, R 2 は同一でも異なっていても良く、水素原子、低級アルキル基、または低級アルコキシ基を表し、かつ、RMay be the same or different and represent a hydrogen atom, a lower alkyl group, or a lower alkoxy group; 1 またはROr R 2 の少なくとも一方は、ターシャリーブチル基を表す。また、RAt least one represents a tertiary butyl group. Also, R 3 は水素原子、低級アルキル基、低級アルコキシ基、または塩素原子を表す。)を電荷輸送材料に使用したことを特徴とすRepresents a hydrogen atom, a lower alkyl group, a lower alkoxy group, or a chlorine atom. ) Is used as the charge transport material. る、熱安定性有機電界発光素子。Thermostable organic electroluminescent device.
一般式で表されるテトラフェニルベンジジン化合物の式中、RIn the formula of the tetraphenylbenzidine compound represented by the general formula, R 1 がターシャリーブチル基であり、RIs a tertiary butyl group; 2 が水素原子であり、RIs a hydrogen atom, and R 3 が水素原子である、請求項4記載の熱安定性有機電界発光素子。The thermostable organic electroluminescent device according to claim 4, wherein is a hydrogen atom. 一般式で表されるテトラフェニルベンジジン化合物の式中、RIn the formula of the tetraphenylbenzidine compound represented by the general formula, R 1 およびRAnd R 2 がターシャリーブチル基であり、RIs a tertiary butyl group; 3 が水素原子である、請求項4記載の熱安定性有機電界発光素子。The thermostable organic electroluminescent device according to claim 4, wherein is a hydrogen atom.
JP29380093A 1993-11-01 1993-11-01 Tetraphenylbenzidine compound Expired - Fee Related JP3574860B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29380093A JP3574860B2 (en) 1993-11-01 1993-11-01 Tetraphenylbenzidine compound
EP19940117206 EP0650955B1 (en) 1993-11-01 1994-10-31 Amine compound and electro-luminescence device comprising same
DE69412567T DE69412567T2 (en) 1993-11-01 1994-10-31 Amine compound and electroluminescent device containing it
US08/332,726 US5639914A (en) 1993-11-01 1994-11-01 Tetraaryl benzidines
US08/738,326 US5707747A (en) 1993-11-01 1996-10-25 Amine compound and electro-luminescence device comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29380093A JP3574860B2 (en) 1993-11-01 1993-11-01 Tetraphenylbenzidine compound

Publications (2)

Publication Number Publication Date
JPH07126225A JPH07126225A (en) 1995-05-16
JP3574860B2 true JP3574860B2 (en) 2004-10-06

Family

ID=17799321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29380093A Expired - Fee Related JP3574860B2 (en) 1993-11-01 1993-11-01 Tetraphenylbenzidine compound

Country Status (1)

Country Link
JP (1) JP3574860B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0666298A3 (en) * 1994-02-08 1995-11-15 Tdk Corp Organic EL element and compound used therein.
US6459199B1 (en) 1996-05-15 2002-10-01 Chemipro Kasei Kaisha, Limited Multicolor organic EL element having plurality of organic dyes, method of manufacturing the same, and display using the same
JPH10270171A (en) * 1997-01-27 1998-10-09 Junji Kido Organic electroluminescent element
JP4514841B2 (en) 1998-02-17 2010-07-28 淳二 城戸 Organic electroluminescent device
JPH11251067A (en) 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
JP4505067B2 (en) 1998-12-16 2010-07-14 淳二 城戸 Organic electroluminescent device
US6656608B1 (en) 1998-12-25 2003-12-02 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
TW474114B (en) 1999-09-29 2002-01-21 Junji Kido Organic electroluminescent device, organic electroluminescent device assembly and method of controlling the emission spectrum in the device
JP2001316336A (en) * 2000-02-25 2001-11-13 Hodogaya Chem Co Ltd Method for producing electronic product material
JP4302901B2 (en) 2001-02-27 2009-07-29 三星モバイルディスプレイ株式會社 Luminescent body and light emitting system
TW581751B (en) 2001-04-19 2004-04-01 Tdk Corp Compound for organic EL (electroluminescent) device and organic EL device using it
JP2002343578A (en) 2001-05-10 2002-11-29 Nec Corp Light-emitting body, light-emitting element and light- emitting display device
JP5010076B2 (en) * 2001-08-01 2012-08-29 三井化学株式会社 Organic electroluminescence device
JP4683829B2 (en) 2003-10-17 2011-05-18 淳二 城戸 Organic electroluminescent device and manufacturing method thereof
JP4476594B2 (en) 2003-10-17 2010-06-09 淳二 城戸 Organic electroluminescent device
WO2005063684A1 (en) * 2003-12-26 2005-07-14 Hodogaya Chemical Co., Ltd. Tetramine compound and organic el device
JP4175273B2 (en) 2004-03-03 2008-11-05 セイコーエプソン株式会社 Method for manufacturing stacked organic electroluminescence element and display device
JP2006111790A (en) * 2004-10-18 2006-04-27 Seiko Epson Corp Conductive adhesive
JP5028265B2 (en) 2005-09-08 2012-09-19 保土谷化学工業株式会社 Electrophotographic photoreceptor
US8088540B2 (en) 2006-01-23 2012-01-03 Hodogaya Chemical Co., Ltd. Photoreceptor for electrophotography
CN101589344B (en) 2007-01-25 2012-07-25 保土谷化学工业株式会社 Photoreceptor for electrophotography
JP4939284B2 (en) 2007-04-05 2012-05-23 財団法人山形県産業技術振興機構 Organic electroluminescent device
JP5335103B2 (en) * 2010-01-26 2013-11-06 保土谷化学工業株式会社 Compound having triphenylamine structure and organic electroluminescence device
KR101400093B1 (en) * 2012-01-02 2014-05-30 (주)아이티켐 Method for preparing n,n,n',n'-tetraphenylbenzidine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113467A (en) * 1986-10-30 1988-05-18 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPS63223651A (en) * 1987-03-12 1988-09-19 Konica Corp Electrophotographic sensitive body
JPH01257951A (en) * 1988-04-08 1989-10-16 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH01257950A (en) * 1988-04-08 1989-10-16 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH04329548A (en) * 1991-05-01 1992-11-18 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH07126225A (en) 1995-05-16

Similar Documents

Publication Publication Date Title
JP3574860B2 (en) Tetraphenylbenzidine compound
JP3220950B2 (en) Benzidine compound
EP2011790B1 (en) Aromatic amine derivative, and organic electroluminescence element using the same
US6489046B1 (en) Organic electroluminescence device
US7122256B2 (en) Styryl compound and organic electroluminescence device
US20080193799A1 (en) Organic electroluminescence device
EP1873138A1 (en) Aromatic triamine compound and organic electroluminescent device using same
JP3594642B2 (en) Diaminodiphenyl compound and organic electroluminescent device using the compound
US7976957B2 (en) Aromatic amine derivative and organic electroluminescent element employing the same
WO2007105783A1 (en) Novel 1,3,5-tris(diarylamino)benzenes and use thereof
JPH08100172A (en) Electroluminescent element
EP0827367A2 (en) Electroluminescent devices
JP3892951B2 (en) Electroluminescent device
US6337167B1 (en) Bis(aminostyryl)benzene compounds and synthetic intermediates thereof, and process for preparing the compounds and intermediates
US20070243416A1 (en) Amine Compound and Organic Electroluminescent Element Employing the Same
JPH083122A (en) Hexaamine compound
JPH08176148A (en) Hetero ring-containing oxadiazole derivative
JP3714980B2 (en) Amine compounds
JP3726316B2 (en) Electroluminescent device
JP3567323B2 (en) Method for producing benzidine compound
JP3787945B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JPH09316038A (en) Diamine compound and organic electroluminescent element containing the compound
JP2008166538A (en) Organic electroluminescent element
JP4154930B2 (en) Organic conductive compound and organic electroluminescent device
JP4256102B2 (en) Amine compounds

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees