JP4120059B2 - Novel benzimidazole compounds, their production and use - Google Patents

Novel benzimidazole compounds, their production and use Download PDF

Info

Publication number
JP4120059B2
JP4120059B2 JP26959598A JP26959598A JP4120059B2 JP 4120059 B2 JP4120059 B2 JP 4120059B2 JP 26959598 A JP26959598 A JP 26959598A JP 26959598 A JP26959598 A JP 26959598A JP 4120059 B2 JP4120059 B2 JP 4120059B2
Authority
JP
Japan
Prior art keywords
layer
organic
group
compounds
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26959598A
Other languages
Japanese (ja)
Other versions
JP2000095766A (en
Inventor
秀昭 植田
泰光 藤野
慶一 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP26959598A priority Critical patent/JP4120059B2/en
Publication of JP2000095766A publication Critical patent/JP2000095766A/en
Application granted granted Critical
Publication of JP4120059B2 publication Critical patent/JP4120059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規なベンゾイミダゾール化合物、その製造方法およびその用途に関する。本発明のベンゾイミダゾール化合物は感光材料、有機光導電材料等に使用できる。より具体的には、本発明のベンゾイミダゾール化合物は、面光源や表示に使用される有機エレクトロルミネセンス素子や電子写真感光体に有用である。
【0002】
【従来の技術】
感光体や電荷輸送材料として開発されている有機光導電性材料は、低コスト、加工性が多様であり、無公害性などの多くの利点があり、多くの化合物が提案されている。
【0003】
例えば、オキサジアゾール化合物、ヒドラゾン化合物、ピラゾリン化合物、オキサゾール化合物、アリールアミン化合物、ベンジジン化合物、スチルベン化合物、ブタジエン化合物などの有機光導電性材料が提案されている。
【0004】
電荷輸送材料を利用した技術の一つとしては電子写真感光体が挙げられる。電子写真方式はカールソンにより発明された画像形成法の一つである。
この方式は、コロナ放電により感光体を帯電した後、像露光して感光体上に静電潜像を形成させ、該静電潜像上にトナーを付着させて現像し、得られたトナー像を紙に転写することからなる。
【0005】
このような電子写真方式における感光体に要求される基本的な特性としては、暗所において適当な電位が保持されること、暗所における電荷の散逸が少ないこと、光照射により速やかに電荷を散逸することなどが挙げられる。
【0006】
従来までの電子写真感光体は、セレン、セレン合金、酸化亜鉛、硫化カドミウムなどの無機光導電体が使用されてきた。これらの無機光導電体は、耐久性が高く、耐刷枚数が多いなどの利点を有しているが、製造コストが高い、加工性が劣る、毒性を有するなどの問題点が指摘されている。
【0007】
これらの欠点を克服するために有機光導電体の開発が行われているが、従来までの有機光導電体を電荷輸送材料に用いた電子写真感光体は、帯電性、感度および残留電位などの電子写真特性が、必ずしも満足されているものとは言えないのが現状であり、優れた電荷輸送能力を有し、耐久性のある電荷輸送材料の開発が望まれていた。
【0008】
電荷輸送材料を利用した他の技術として、有機エレクトロルミネセンス素子が挙げられる。有機化合物を使用したエレクトロルミネセンス素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの研究が行われている。
【0009】
一般に有機エレクトロルミネセンス素子は発光層および該発光層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入される。さらに、この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出する現象である。
【0010】
従来の有機エレクトロルミネセンス素子は、無機エレクトロルミネセンス素子に比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至らなかった。
【0011】
近年、10V以下の低電圧で発光する高い蛍光量子効率を持った有機化合物を含有した薄膜を積層した有機エレクトロルミネセンス素子が報告され、関心を集めている(アプライド・フィジックス・レターズ、51巻、913頁、1987年参照)。
この方法は、金属キレート錯体を蛍光体層、アミン系化合物を正孔注入層に使用して、高輝度の緑色発光を得ており、6〜7Vの直流電圧で輝度は数100cd/m2、最大発光効率は1.5lm/Wを達成して、実用領域に近い性能を持っている。
【0012】
しかしながら、現在までの有機エレクトロルミネセンス素子は、構成の改善により発光強度は改良されてはきているが、未だ充分な発光輝度は有していない。また、繰り返し使用時の安定性に劣るという大きな問題点を持っている。
従って、より大きな発光輝度を持ち、繰り返し使用時での安定性に優れた有機エレクトロルミネセンス素子の開発のために、優れた電荷輸送能を有し、耐久性のある電荷輸送材料の開発が望まれている。
【0013】
【発明が解決しようとする課題】
本発明は以上のような事情に鑑みてなされたもので、その目的とするところは、耐久性のある電荷輸送材料として有用な、新規ベンゾイミダゾール化合物、その製造方法およびその用途を提供することにある。
【0014】
【課題を解決するための手段】
すなわち、本発明は下記一般式(I)で表される新規なベンゾイミダゾール化合物を提供するものである;
【化4】

Figure 0004120059
(式中、Aは連結基で結合してもよいアリーレン基または複素環基を表す;
Ar1およびAr2はそれぞれ置換基を有してもよいアリール基または複素環基を表す;R1およびR2はそれぞれ独立して、水素原子、アルキル基、アルコキシ基またはハロゲン原子を表す)。
【0015】
一般式(I)中、Aはフェニレン基、ビフェニレン基、ナフチレン基などのアリーレン基とすることができ、好ましくはフェニレン基またはビフェニレン基である。アリーレン基はアルキル基等の置換基を有していてもよい。また、Aは連結基で結合しているアリーレン基であってもよい。連結基は−O−、−S−、−R−(Rはアルキル基あるいはアリーレン基等の置換基を有していてもよいアルキレン基を表す)とすることができる。また、Aはチオフェン、ピロール等の複素環の2価の基であってもよい。好ましくはチオフェン環の2価の基である。
【0016】
Ar1およびAr2はそれぞれ独立してフェニル基、ジフェニル基あるいはナフチル基等のアリール基、好ましくはフェニル基あるいはジフェニル基、またはチエニル基、フリル基あるいはピロリル基等の複素環基、好ましくはチエニル基とすることができる。それらのアリール基または複素環基は、C1〜C5のアルキル基、あるいはジアリールアミノ基等の置換基を有していてもよい。該アリール基はアルキル基、メトキシ基等の置換基を有していもよい。
【0017】
1およびR2はそれぞれ独立して、水素原子、アルキル基、アルコキシ基またはハロゲン原子を表す。好ましくは水素原子、あるいは低級アルキル基である。
【0018】
一般式(I)で表されるベンゾイミダゾール化合物は、公知の反応を利用して製造することが可能で、例えば、下記一般式(II)で表されるベンゾイミダゾール化合物;
【化5】
Figure 0004120059
(式中、A、R1、R2は一般式(I)と同意義を表す)と下記一般式(III)で表されるハロゲン化合物;
【化6】
Figure 0004120059
(式中、Ar1、Ar2は一般式(I)と同意義;Xはハロゲン原子を表す)を反応させることによって製造することができる。
【0019】
上記反応は、脱ハロゲン化水素剤等の触媒、溶媒の存在下、縮合反応により行うことができる。
【0020】
合成で用いられる触媒としては、アルカリ金属の水酸化物、炭酸塩、炭酸水素塩、アルコラートなどが一般的に用いられるが、第四級アンモニウム化合物や脂肪族アミンや芳香族アミンのような有機塩基を用いることも可能である。このなかでアルカリ金属や第四級アンモニウムの炭酸塩や炭酸水素塩が好ましいものとして用いられる。さらに、反応速度および熱安定性という観点からアルカリ金属の炭酸塩や炭酸水素塩が最も好ましい。
【0021】
遷移金属または遷移金属化合物を触媒として用いてもよい。遷移金属または遷移金属化合物としては、例えばCu、Fe、Co、Ni、Cr、V、Pd、Pt、Ag等の金属およびそれらの化合物が用いられるが、収率の点から銅およびパラジウムとそれらの化合物が好ましい。銅化合物としては特に限定はなく、ほとんどの銅化合物が用いられるが、ヨウ化第一銅、塩化第一銅、酸化第一銅、臭化第一銅、シアン化第一銅、硫酸第一銅、硫酸第二銅、塩化第二銅、水酸化第二銅、酸化第二銅、臭化第二銅、リン酸第二銅、硝酸第一銅、硝酸第二銅、炭酸銅、酢酸第一銅、酢酸第二銅などが好ましい。その中でも特にCuCl、CuCl、CuBr、CuBr2、CuI、CuO、Cu2O、CuSO、Cu(OCOCH3)2は容易に入手可能である点で好適である。パラジウム化合物としても、ハロゲン化物、硫酸塩、硝酸塩、有機酸塩などを用いることができる。遷移金属およびその化合物の使用量は、反応させるハロゲン化合物の0.5〜500モル%である。
【0022】
合成で用いられる溶媒は、一般的に用いられる溶媒であればよいが、ベンゼン、トルエン、クロルベンゼン、キシレン等の芳香族溶媒が好ましく用いられる。
合成反応は、一般的に常圧下50〜200℃での温度で行われるが、加圧下に行ってももちろん構わない。反応終了後、反応液中に析出した固形物を除去した後、溶媒を除去し生成物を得ることができる。
【0023】
本発明のベンゾイミダゾール化合物としては、具体的に以下のものが挙げられる。なお、これらの例示は本発明のベンゾイミダゾール化合物を制限的に提示しているものでも、またこれらに限定する意図で開示しているものではない。
【0024】
【化7】
Figure 0004120059
【0025】
【化8】
Figure 0004120059
【0026】
【化9】
Figure 0004120059
【0027】
【化10】
Figure 0004120059
【0028】
【化11】
Figure 0004120059
【0029】
【化12】
Figure 0004120059
【0030】
【化13】
Figure 0004120059
【0031】
【化14】
Figure 0004120059
【0032】
【化15】
Figure 0004120059
【0033】
【化16】
Figure 0004120059
【0034】
【化17】
Figure 0004120059
【0035】
【化18】
Figure 0004120059
【0036】
【化19】
Figure 0004120059
【0037】
【化20】
Figure 0004120059
【0038】
【化21】
Figure 0004120059
【0039】
【化22】
Figure 0004120059
【0040】
本発明の一般式(I)で表されるベンゾイミダゾール化合物は電荷輸送機能、特に正孔輸送機能に優れており、かつ耐久性、耐熱性に優れている。そのため本発明の一般式(I)で表されるベンゾイミダゾール化合物は電荷輸送材料としての使用に優れており、そのような機能を利用して種々の応用が考えられ、例えば感光体または有機エレクトロルミネセンス素子の電荷輸送材料として好適に使用することができる。
【0041】
まず本発明の一般式(I)で表されるベンゾイミダゾール化合物を電子写真感光体に使用する場合について説明する。
【0042】
本発明の一般式(I)で示されるベンゾイミダゾール化合物は、電子写真感光体のいずれの層においても使用できるが、高い電荷輸送特性を有することから電荷輸送材料として使用することが望ましい。
本発明の化合物は電荷輸送物質として作用し、光吸収により発生したもしくは電極より注入した電荷を極めて効率よく輸送できるので、感度、高速応答性に優れた感光体を得ることが可能である。また、該化合物は、耐オゾン性、光安定性に優れているので、耐久性に優れた感光体を得ることができる。
【0043】
電子写真感光体としては、例えば、支持体上に電荷発生材料と電荷輸送材料とを樹脂溶液に分散してなる感光層を形成してなる感光体、支持体上に感光層として電荷発生層と電荷輸送層とを積層してなる感光体、支持体上に下引層や導電層と下引層とを形成し、その上に感光層を形成してなる感光体、あるいは支持体上に下引層、感光層および表面保護層を順次積層してなる感光体が挙げられる。
【0044】
支持体としては、銅、アルミニウム、鉄、ニッケル、ステンレス等の箔あるいは板やドラム形状のにしたものが使用される。また、これらの金属を紙やプラスチックドラム等に真空蒸着、無電解メッキしたもの、あるいは導電性ポリマー、酸化インジウム、酸化スズ等の導電性化合物の層を紙あるいはプラスチックドラム上に塗布もしくは蒸着によって設けたものも使用可能である。一般的にはアルミニウムが使用され、例えば、押出し加工後、引き抜き加工を施したアルミニウムパイプを切断し、その外表面をダイヤモンドバイト等の切削工具を用いて約0.2〜0.3mmに切削し、仕上げたもの(切削管)や、アルミニウム円板を深絞り加工してカップ状とした後、外表面をしごき加工によって仕上げたもの(DI管)、アルミニウム円板をインパクト加工してカップ状とした後、外表面をしごき加工によって仕上げたもの(EI管)、押出し加工後、冷間引抜き加工したもの(ED管)等が挙げられる。また、これらの表面をさらに切削したものを使用してもよい。
【0045】
支持体上に下引層を形成する場合、支持体表面を陽極酸化させて得られる酸化皮膜を下引層として用いることがよく行われる。支持体がアルミ合金の場合、アルマイト層を下引層として用いることが効果的である。また、適当な樹脂を溶解させた溶液やその中に低抵抗化合物を分散させ、この溶液や分散液を上記導電性支持体上に塗布し、乾燥させることによっても形成される。この場合、下引層に用いられる材料としては、ポリイミド、ポリアミド、ニトロセルロース、ポリビニルブチラール、ポリビニルアルコール等が適当で、これらの樹脂に低抵抗化合物を分散させてもよい。低抵抗化合物としては、酸化錫、酸化チタン、酸化亜鉛、酸化ジルコニウム、フッ化マグネシウム等の金属化合物や有機顔料、電子吸引性有機化合物、有機金属錯体等の有機化合物が好適に用いられる。下引層の膜厚は0.1〜5μm、好ましくは0.2〜3μmが望ましい。
【0046】
上記支持体または下引層上に感光層が形成されるが、以下、感光層として電荷発生層と電荷輸送層とを積層する場合について説明する。
【0047】
導電性基体上に電荷発生層を形成するにあたっては、電荷発生材料を真空蒸着するか、あるいは適当な溶媒に溶解せしめて塗布するか、顔料を適当な溶剤もしくは必要があれば結着樹脂を溶解させた溶液中に分散させて作製した塗布液を塗布乾燥して形成する。接着性の点からみて、樹脂中に分散させたものが良好である。電荷発生層の膜厚は0.01〜2μm、好ましくは0.05〜1μmが望ましい。
【0048】
電荷発生層に用いる電荷発生材料としては、例えば、アゾ系顔料(ビスアゾ系顔料、トリスアゾ系顔料を含む)、トリアリールメタン系染料、チアジン系染料、オキサジン系染料、キサンテン系染料、シアニン系染料、スチリル系色素、ピリリウム系染料、アゾ系顔料、キナクリドン系顔料、インジゴ系顔料、ペリレン系顔料、多環キノン系顔料、ビスベンズイミダゾール系顔料、インダスロン系顔料、スクアリリウム系顔料、フタロシアニン系顔料等の有機系顔料および染料等が挙げられる。これ以外でも、光を吸収し極めて高い確率で電荷担体を発生する材料であれば、いずれの材料であっても使用することができるが、特にアゾ系(ビス系、トリス系)顔料やフタロシアニン系顔料が好ましい。
【0049】
また、この電荷発生材料と共に使用する樹脂としては、例えば、飽和ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、エチレン−酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)、スチレン−ブタジエンブロック共重合体、ポリアリレート、ポリカーボネート、塩化ビニル−酢酸ビニル共重合体、セルロースエステル、ポリイミド、スチロール樹脂、ポリアセタール樹脂、フェノキシ樹脂等の熱可塑性結着剤、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、キシレン樹脂、アルキッド樹脂、熱硬化性アクリル樹脂等の熱硬化結着剤、光硬化性樹脂、ポリ−N−ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン等の光導電性樹脂を使用することができる。
【0050】
上記の電荷発生材料をこれらの樹脂と共に、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル等のエーテル類、酢酸メチル、酢酸エチル等のエステル類、クロロホルム、塩化メチレン、ジクロルエタン、四塩化炭素、トリクロルエチレン等の脂肪族ハロゲン化炭化水素類あるいはベンゼン、トルエン、キシレン、リグロイン、モノクロルベンゼン、ジクロルベンゼン等の芳香族類等の有機溶剤に分散あるいは溶解させて調製した感光塗液を、上記の導電性支持体上に塗布し、乾燥させて電荷発生層を設けるようにする。
【0051】
上記のようにして形成された電荷発生層の上に電荷輸送材料とバインダー樹脂を含有する電荷輸送層を設けることにより本発明の感光体が得られる。
【0052】
バインダー樹脂としては、例えば、ポリカーボネート、ポリアリレート、飽和ポリエステル樹脂、ポリアミド樹脂、アクリル樹脂、エチレン−酢酸ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)、スチレン−ブタジエンブロック共重合体、塩化ビニル−酢酸ビニル共重合体、セルロースエステル、ポリイミド、スチロール樹脂、ポリアセタール樹脂、フェノキシ樹脂等の熱可塑性結着剤、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、キシレン樹脂、アルキッド樹脂、熱硬化性アクリル樹脂等の熱硬化結着剤、光硬化性樹脂、ポリ−N−ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン等の光導電性樹脂を使用することができる。
【0053】
本発明の感光体の電荷輸送層を形成するにあたっては、電荷輸送材料とバインダー樹脂とを適当な溶剤に溶解させて得られる塗布溶液を、上記の電荷発生層の上に塗布し、乾燥させる。電荷輸送層の膜厚は5〜60μm、好ましくは10〜50μm程度が望ましい。また、電荷輸送層中の電荷輸送材料の含有量は、その種類により一概には規定できないが、バインダー樹脂1重量部に対して概ね0.02〜2重量部、好ましくは0.5〜1.2重量部添加することが望ましい。
【0054】
本感光体に使用される電荷輸送材料は、一般式(I)で表されるベンゾイミダゾール化合物を2種類以上使用してもよいし、他の電荷輸送材料と組み合わせて使用することもできる。
使用される他の電荷輸送材料としては、ヒドラゾン化合物、ピラゾリン化合物、スチリル化合物、トリフェニルメタン化合物、オキサジアゾール化合物、カルバゾール化合物、スチルベン化合物、エナミン化合物、オキサゾール化合物、トリフェニルアミン化合物、テトラフェニルベンジジン化合物、アジン化合物等の正孔輸送材料やフルオレノン化合物、アントラキノジメタン化合物、ジフェノキノン化合物、スチルベンキノン化合物、チオピランジオキシド化合物、オキサジアゾール化合物、ペリレンテトラカルボン酸化合物、フルオレニリデンメタン化合物、アントラキノン化合物、アントロン化合物、シアノビニル化合物等の電子輸送材料等様々なものを使用することができる。
【0055】
電荷輸送層の形成の際に使用する前記溶媒としては、例えば、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン、メタノール、エタノール、イソプロパノール等のアルコール、酢酸エチル、エチルセロソルブ等のエステル、四塩化炭素、四臭化炭素、クロロホルム、ジクロロメタン、テトラクロロエタン等のハロゲン化炭化水素、テトラヒドロフラン、ジオキサン等のエーテル、ジメチルホルムアミド、ジメチルスルホキシド、ジエチルホルムアミド等を挙げることができる。これらの、溶媒は、1種単独で使用してもよく、あるいは、2種以上を混合溶媒として併用してもよい。
【0056】
感光層が積層型の場合には電荷輸送層および電荷発生層の塗布は公知のものなど各種の塗布装置を用いて行うことができる。具体的には、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ブレードコーティング法、ローラーコーティング法、ワイヤーバーコーティング法等の色々なコーティング法を用いることができる。
【0057】
本発明の感光層中、積層の場合には特に電荷輸送層中に、成膜性あるいは可撓性を向上させるための添加剤、残留電位の蓄積を抑制するための添加剤等、周知の添加剤を含有させてもよい。
【0058】
これらの具体的な化合物としては、ハロゲン化パラフィン、ポリ塩化ビフェニル、ジメチルナフタレン、o−タ−フェニル、m−タ−フェニル、p−タ−フェニル、ジエチルビフェニル、水素化タ−フェニル、ジイソプロピルビフェニル、ベンジルビフェニル、ジイソプロピルナフタレン、ジベンゾフラン、9,10−ジヒドロキシフェナントレン等の可塑剤やクロラニル、テトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン、ジシアノベンゾキノン、テトラクロロ無水フタル酸、3,5−ジニトロ安息香酸、シアノビニル化合物等の電子吸引性増感剤、メチルバイオレット、ローダミンB、シアニン染料、ピリリウム塩、チアピリリウム塩等の増感剤が使用可能である。
【0059】
可塑剤の添加量が多いほどその層の内部応力が低減されるため、感光層が電荷輸送層と電荷発生層との積層により構成される場合には、電荷輸送層と電荷発生層との間の接着性が、また単層型の場合には感光層と支持体間の接着性が改善される。しかし、多すぎると機械的強度の低下や感度の低下等の問題が発生するため、電荷輸送材料100重量部に対して1〜100重量部、好ましくは5〜80重量部、より好ましくは10〜50重量部程度とすることが望ましい。増感剤の添加量は電荷輸送材料100重量部に対して0.01〜20重量部、好ましくは0.1〜10重量部、より好ましくは0.5〜8重量部程度とすることが望ましい。
【0060】
さらに、本発明の感光体における感光層、特に電荷輸送層には、オゾン劣化防止の目的で酸化防止剤を添加してもよい。酸化防止剤としては、ヒンダードフェノール、ヒンダードアミン、パラフェニレンジアミン、ハイドロキノン、スピロクロマン、スピロインダノン、ヒドロキノリンおよびこれらの誘導体、有機燐化合物、有機硫黄化合物等が挙げられる。
【0061】
酸化防止剤の添加量は、多いほど接着性は向上するものの、多すぎると機械的強度の低下や感度の低下等の問題が発生し、少なすぎると酸化防止の充分な効果が得られない。
したがって、電荷輸送材料100重量部に対して0.1〜50重量部、好ましくは1〜30重量部、より好ましくは3〜20重量部程度とすることが望ましい。酸化防止剤と前記可塑剤とを併用する場合は、添加量の総量が1〜120重量部、好ましくは5〜100重量部、より好ましくは10〜80重量部程度とする。可塑剤や酸化防止剤の溶解度が低い場合や融点が高い場合は、結晶析出を招いたりそれほど接着性が向上しなかったりするため、可塑剤や酸化防止剤の融点が100℃以下の化合物を用いることが好ましい。
【0062】
本発明の感光体は、支持体と下引層の間に導電層を設けたものであってもよい。導電層としては、アルミニウム、鉄、ニッケル等の金属物を樹脂中に分散させたものや、導電性の酸化スズ、酸化チタン、酸化アンチモン、酸化ジルコニウム、ITO(インジウム、スズ酸化物固溶体)等の金属酸化物を樹脂中に分散させたものが好適に用いられる。
【0063】
さらに、本発明の感光体は、感光層上に表面保護層を設けたものであってもよい。表面保護層の膜厚は5μm以下が望ましい。表面保護層に用いられる材料としては、アクリル樹脂、ポリアリール樹脂、ポリカーボネート樹脂、ウレタン樹脂、熱硬化性樹脂、光硬化性樹脂などのポリマーをそのまま、または酸化スズ、酸化インジウムなどの低抵抗物質を分散させたものなどが使用可能である。また、表面保護層として有機プラズマ重合膜を使用してもよい。有機プラズマ重合膜は必要に応じて適宜酸素、窒素、ハロゲン、周期律表の第3族、第5族原子を含んでもよい。
【0064】
次に、一般式(I)で示されるベンゾイミダゾール化合物を有機エレクトロルミネセンス素子の材料として用いた場合について説明する。
【0065】
図1〜図4に本発明による有機エレクトロルミネセンス素子を模式的に示した。図中、(1)は陽極であり、その上に、有機正孔注入輸送層(2)と有機発光層(3)および陰極(4)が順次積層された構成をとっており、該有機正孔注入輸送層に上記一般式(I)で表されるベンゾイミダゾール化合物を含有する。
【0066】
図2において、(1)は陽極であり、その上に、有機正孔注入輸送層(2)と有機発光層(3)、有機電子注入輸送層(5)および陰極(4)が順次積層された構成をとっており、該有機正孔注入輸送層または有機発光層に上記一般式(I)で表されるベンゾイミダゾール化合物を含有する。
【0067】
図3において、(1)は陽極であり、その上に、有機発光層(3)と有機電子注入輸送層(5)および陰極(4)が順次積層された構成をとっており、該有機発光層に上記一般式(I)で表されるベンゾイミダゾール化合物を含有する。
【0068】
図4において、(1)は陽極であり、その上に、有機発光層(3)および陰極(4)が順次積層された構成をとっており、該有機発光層に有機発光材料(6)と電荷輸送材料(7)が含まれており、該電荷輸送材料に上記一般式(I)で表されるベンゾイミダゾール化合物を使用する。
【0069】
上記構成の有機エレクトロルミネセンス素子は陽極(1)と陰極(4)がリード線(8)により接続され、陽極(1)と陰極(4)に電圧を印加することにより有機発光層(3)が発光する。
【0070】
有機発光層、有機正孔注入輸送層、有機電子注入輸送層には、必要があれば公知な光物質、発光補助材料、キャリア輸送を行う電荷輸送材料を使用することもできる。
【0071】
一般式(I)で表される特定のベンゾイミダゾール化合物はイオン化ポテンシャルが小さく、正孔輸送能が大きいため、本発明の有機エレクトロルミネセンス素子を発光させるために必要な発光開始電圧は低くてよく、そのために安定して長時間の発光を可能ならしめていると考えられる。またベンゾイミダゾール化合物を有機発光体として用いた場合にはベンゾイミダゾール化合物自体の発光体としての機能と熱的安定性が寄与しているものと考えられる。
【0072】
有機エレクトロルミネセンス素子の陽極(1)として使用される導電性物質としては4eVよりも大きい仕事関数をもつものがよく、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、銅、亜鉛、タングステン、銀、金、白金などおよびそれらの合金、酸化錫、酸化インジウム、酸化アンチモン、酸化亜鉛、酸化ジルコニウムなどの導電性金属化合物、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。
【0073】
陰極(4)を形成する金属としては4eVよりも小さい仕事関数を持つものがよく、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ガドリニウム、イッテルビウム、ルテニウム、マンガンおよびそれらの合金が用いられる。
【0074】
陽極および陰極は、必要があれば二層以上の層構成により形成されていてもよい。
【0075】
有機エレクトロルミネセンス素子においては、発光が見られるように、少なくとも陽極(1)あるいは陰極(4)は透明電極にする必要がある。この際、陰極に透明電極を使用すると、透明性が損なわれやすいので、陽極を透明電極にすることが好ましい。
【0076】
透明電極を形成する場合、透明基板上に、上記したような導電性物質を用い、蒸着、スパッタリング等の手段やゾルゲル法あるいは樹脂等に分散させて塗布する等の手段を用いて所望の透光性と導電性が確保されるように形成すればよい。
【0077】
透明基板としては、適度の強度を有し、有機エレクトロルミネセンス素子作製時、蒸着等による熱に悪影響を受けず、透明なものであれば特に限定されないが、係るものを例示すると、ガラス基板、透明な樹脂、例えばポリエチレン、ポリプロピレン、ポリエーテルサルホン、ポリエーテルエーテルケトン等を使用することも可能である。ガラス基板上に透明電極が形成されたものとしてはITO、NESA等の市販品が知られているがこれらを使用してもよい。
【0078】
本発明の有機エレクトロルミネセンス素子の一例としてベンゾイミダゾール化合物を有機正孔注入輸送層に用いた場合の構成(図1)を用いて説明する。
【0079】
まず、上記した陽極(1)上に有機正孔注入輸送層(2)を形成する。有機正孔注入輸送層(2)は、前記した一般式(I)で表されるベンゾイミダゾール化合物を蒸着して形成してもよいし、該ベンゾイミダゾール化合物を溶解した溶液や適当な樹脂とともに溶解した液をディップコートやスピンコートして形成してもよい。
蒸着法で形成する場合、その厚さは、通常1〜500nmであり、塗布法で形成する場合は、5〜1000nm程度に形成すればよい。
形成する膜厚が厚いほど発光させるための印加電圧を高くする必要があり、発光効率が悪く有機エレクトロルミネセンス素子の劣化を招きやすい。また、膜厚が薄くなると発光効率はよくなるが、ブレイクダウンしやすくなり有機エレクトロルミネセンス素子の寿命が短くなる。
【0080】
一般式(I)の化合物は他の電荷輸送材料と併せて使用することができる。例えば、フタロシアニン化合物、ナフタロシアニン化合物、ポリフィリン化合物、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、オキサゾール、オキサジアゾール、ヒドラゾン、アシルヒドラゾン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリアリールアミン、ジアミン型トリアリールアミン等と、それらの誘導体、およびポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料等が挙げられるが、その他にも感光層または発光物質に対して優れた正孔注入効果を有し、発光層で生成した励起子の電子注入層または電子輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物であれば使用できる。
【0081】
上記有機正孔注入輸送層(2)上には、有機発光層を形成する。有機発光層に用いられる有機発光体、発光補助材料としては、公知のものを使用可能で、例えばエピドリジン、2,5−ビス(5,7−ジ−t−ペンチル−2−ベンゾオキサゾリル)チオフェン、2,2’−(1,4−フェニレンジビニレン)ビスベンゾチアゾール、2,2’−(4,4’−ビフェニレン)ビスベンゾチアゾール、5−メチル−2−{2−(4−(5−メチル−2−ベンゾオキサゾリル)フェニル)ビニル}ベンゾオキサゾール、2,5−ビス(5−メチル−2−ベンゾオキサゾリル)チオフェン、アントラセン、ナフタレン、フェナントレン、ピレン、クリセン、ペリレン、ペリノン、1,4−ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、アクリジン、スチルベン、2−(4−ビフェニル)−6−フェニルベンゾオキサゾール、アルミニウムトリスオキシン、マグネシウムビスオキシン、ビス(ベンゾ−8−キノリノール)亜鉛、ビス(2−メチル−8−キノリノラート)アルミニウムオキサイド、インジウムトリスオキシン、アルミニウムトリス(5−メチルオキシン)、リチウムオキシン、ガリウムトリスオキシン、カルシウムビス(5−クロロオキシン)、ポリ亜鉛−ビス(8−ヒドロキシ−5−キノリノリル)メタン、ジリチウムエピンドリジオン、亜鉛ビスオキシン、1,2−フタロペリノン、1,2−ナフタロペリノン、トリス(8−ヒドロキシキノリン)アルミニウム錯体などを挙げることができる。
【0082】
また、一般的な蛍光染料、例えば蛍光クマリン染料、蛍光ペリレン染料、蛍光ピラン染料、蛍光チオピラン染料、蛍光ポリメチン染料、蛍光メシアニン染料、蛍光イミダゾール染料等も、使用できる。このうち、特に、好ましいものとしては、キレート化オキシノイド化合物が挙げられる。
【0083】
有機発光層は上記した発光物質の単層構成でもよいし、発光の色、発光の強度等の特性を調整するために、多層構成としてもよい。また、2種以上の発光物質を混合したり発光層にドープしてもよい。
【0084】
有機発光層(3)は、上記のような発光物質を蒸着して形成してもよいし、該発光物質を溶解した溶液や適当な樹脂とともに溶解した液をディップコートやスピンコートして形成してもよい。また、一般式(I)で表されるベンゾイミダゾール化合物を発光物質として用いてもよい。
【0085】
蒸着法で形成する場合、その厚さは、通常1〜500nmであり、塗布法で形成する場合は、5〜1000nm程度に形成すればよい。
形成する膜厚が厚いほど発光させるための印加電圧を高くする必要があり、発光効率が悪く有機エレクトロルミネセンス素子の劣化を招きやすい。また、膜厚が薄くなると発光効率はよくなるが、ブレイクダウンしやすくなり有機エレクトロルミネセンス素子の寿命が短くなる。
【0086】
次に、有機発光層の上に、前記した陰極を形成する。
【0087】
以上、陽極(1)上に有機正孔注入輸送層(2)、有機発光層(3)および陰極(4)を順次積層して有機ルミネセンス装置を形成する場合について説明したが、陰極(4)上に有機発光層(3)、有機正孔注入輸送層(2)および陽極(1)を順次積層したり、陽極(1)上に、有機発光層(3)、有機電子注入輸送層(5)および、陰極(4)を順次積層したり(図3)、陽極(1)上に有機正孔注入輸送層(2)、有機発光層(3)、有機電子注入輸送層(5)および、陰極(4)を順次積層したり(図2)、陰極(4)上に有機電子注入輸送層(5)、有機発光層(3)および、陽極(4)を順次積層したりしてももちろん構わない。
【0088】
図2に示したように発光層(3)の上に電子注入輸送層を形成する場合、電子輸送材料としては、例えば、フルオレノン、アントラキノジメタン、ジフェノキノン、スチルベンキノン、チオピランジオキシド、オキサジアゾール、ペリレンテトラカルボン酸、フルオレニリデンメタン、アントラキノン、アントロン等とそれらの誘導体があるが、電子を輸送する能力を持ち、発光層または発光物質に対して優れた電子注入効果を有し、発光層で生成した励起子の正孔注入層または正孔輸送材料への移動を防止し、かつ薄膜形成能の優れた化合物であれば、それらに限定されるものではない。
また、電荷輸送材料に電子受容物質や電子供与性物質を添加することにより増感させることもできる。
【0089】
さらに、正孔注入輸送層は、正孔注入機能と正孔輸送機能を分離して、正孔注入層と正孔輸送層の2層構成としても良い。この場合、正孔注入層に一般式(I)で表される本発明のベンゾイミダゾール化合物を使用することが好ましい。電子注入輸送層も、電子注入機能と電子輸送機能を分離して、電子注入層と電子輸送層の2層構成としても良い。
【0090】
陰極と陽極の1組の透明電極は、各電極にニクロム線、金線、銅線、白金線等の適当なリード線(8)を接続し、有機ルミネセンス装置は両電極に適当な電圧(Vs)を印加することにより発光する。
【0091】
本発明の有機エレクトロミネセンス素子は、各種の表示装置、あるいはディスプレイ装置等に適用可能である。
【0092】
以下に実施例を記載した本発明を説明する。実施例中、「部」とあるのは、特に断らない限り、「重量部」を表す。
【0093】
合成例1(化合物(25)の合成)
水冷冷却管を設けた50mlの三つ口フラスコに、下記化学式で表される化合物(A);
【化23】
Figure 0004120059
1.55g(0.005モル)、下記化学式で表される化合物(B);
【化24】
Figure 0004120059
4.0g(0.01モル)、無水炭酸カリウム4.2g、銅粉0.85g、18−クラウン−6 0.17g、o−ジクロロベンゼン10mlを混合し、還流温度下で24時間反応させた。反応生成物をジクロルメタン200mlで抽出し、不溶分を濾別除去後、濃縮乾固した。これをカラムクロマトによって精製(担体;シリカゲル、溶離液:トルエン/n−ヘキサン=1/2で展開)して、目的の化合物(25)1.45gを得た(収率35.0%)。融点は185〜186℃であった。また、CHN分析装置を用いて分子式の分析を行ったところ以下の結果を得た。
分子式: C58486
計算値(%) C:84.05%, H:5.80%, N:10.14%
分析値(%) C:84.12%, H:5.76%, N:10.12%
【0094】
電子写真感光体の電荷輸送材料への応用
参考例
下記一般式(C)で表されるトリスアゾ化合物;
【化25】
Figure 0004120059
0.45部、ポリエステル樹脂(バイロン200; 東洋紡績社製)0.45部をシクロヘキサノン50部とともにサンドミルにより分散させた。得られたトリスアゾ化合物の分散物を80φのアルミドラム上に浸漬塗布方法を用いて、乾燥膜厚が0.3g/mとなるように塗布した後、乾燥させた。
【0095】
このようにして得られた電荷発生層の上にベンゾイミダゾール化合物(9)50部およびポリカーボネート樹脂(パンライトK−1300; 帝人化成社製)50部を1,4−ジオキサン400部に溶解した溶液を乾燥膜厚が20μmになるように塗布し、乾燥させて電荷輸送層を形成した。
このようにして、2層からなる感光層を有する電子写真感光体が得られた。
【0096】
こうして得られた感光体を市販の電子写真複写機(EP−5400;ミノルタカメラ社製)を用い、−6Kvでコロナ帯電させ、初期表面電位Vo(V)、初期電位を1/2にするために要した露光量E1/2(lux・sec)、1秒間暗中に放置したときの初期電位の減衰率DDR1(%)を測定した。
【0097】
参考例2〜4
参考例1と同様の方法で同一の構成のもの、ただし参考例1で用いたベンゾイミダゾール化合物(9)の代わりにベンゾイミダゾール化合物(10)、(11)、(12)を各々用いる感光体を作製した。
こうして得られた感光体について、参考例1と同様の方法でVo、E1/2、DDR1を測定した。
【0098】
参考例
下記一般式(D)で表されるビスアゾ化合物
【化26】
Figure 0004120059
0.45部、ポリスチレン樹脂(分子量40000)0.45部をシクロヘキサン50部とともにサンドミルにより分散させた。
【0099】
得られたビスアゾ化合物の分散物を、80φのアルミドラム上に、乾燥膜厚が0.3g/mとなるように塗布した後乾燥させた。
【0100】
このようにして得られた電荷発生層の上にベンゾイミダゾール化合物(14)50部およびポリアリレート樹脂(U−100; ユニチカ社製)50部を1,4−ジオキサン400部に溶解した溶液を乾燥膜厚が25μmになるように塗布し、乾燥させて電荷輸送層を形成した。
このようにして、2層からなる感光層を有する電子写真感光体を作製した。
【0101】
参考例6〜8
参考例5と同様の方法で同一の構成のもの、ただし参考例5で用いたベンゾイミダゾール化合物(14)の代わりにベンゾイミダゾール化合物(25)、(27)、(30)を各々用いる感光体を作製した。
こうして得られた感光体について、参考例1と同様の方法でVo、E1/2、DDR1を測定した。
【0102】
参考例
下記一般式(E)で表される多環キノン系顔料;
【化27】
Figure 0004120059
0.45部、ポリカーボネート樹脂(パンライトK−13000:帝人化成社製)0.45部をジクロルエタン50部とともにサンドミルにより分散させた。
得られた多環キノン系顔料の分散物を80φのアルミドラム上に、乾燥膜厚が0.4g/mとなるように塗布した後乾燥させた。
このようにして得られた電荷発生層の上にベンゾイミダゾール化合物(31)60部およびポリアリレート樹脂(U−100;ユニチカ社製)50部を1,4−ジオキサン400部に溶解した溶液を乾燥膜厚が18μmになるように塗布し、乾燥させて電荷輸送層を形成した。
このようにして、2層からなる感光層を有する電子写真感光体を作製した。
【0103】
参考例10〜11
参考例10と同様の方法で同一の構成のもの、ただし参考例10で用いたベンゾイミダゾール化合物(31)の代わりにベンゾイミダゾール化合物(44)、(49)を各々用いる感光体を作製した。
こうして得られた感光体について、参考例1と同様の方法でVo、E1/2、DDR1を測定した。
【0104】
参考例12
チタニルフタロシアニン0.45部、ブチラール樹脂(BX−1; 積水化学工業社製)0.45部をジクロルエタン50部とともにサンドミルにより分散させた。
得られたフタロシアニン顔料の分散物を80φのアルマイトドラム上に、浸漬塗布方法を用いて、乾燥膜厚が0.3μmとなるように塗布した後、乾燥させた。このようにして得られた電荷発生層の上にベンゾイミダゾール化合物(59)50部およびポリカーボネート樹脂(PC−Z:三菱ガス化学社製)50部を1,4−ジオキサン400部に溶解した溶液を乾燥膜厚が18μmになるように塗布し、電荷輸送層を形成した。
このようにして、2層からなる感光層を有する電子写真感光体を作製した。
こうして得られた感光体について、参考例1と同様の方法でVo、E1/2、DDR1を測定した。
【0105】
参考例13
銅フタロシアニン50部とテトラニトロ銅フタロシアニン0.2部を98%濃硫酸500部に十分撹拌しながら溶解させ、これを水5000部にあけ、銅フタロシアニンとテトラニトロ銅フタロシアニンの光導電性材料組成物を析出させた。析出物を、濾過、水洗し、減圧下120℃で乾燥した。
【0106】
こうして得られた光導電性組成物10部を熱硬化性アクリル樹脂(アクリディクA405;大日本インク社製)22.5部、メラミン樹脂(スーパーベッカミンJ820;大日本インク社製)7.5部、ベンゾイミダゾール化合物(63)15部を、メチルエチルケトンとキシレンを同量に混合した混合溶剤100部とともにボールミルポットに入れて48時間分散して感光性塗液を調製し、この塗液を80φのアルマイトドラム上に、スプレー塗布し、乾燥して厚さ約15μmの感光層を形成させた。
このようにして、単層型感光体を作製した。
こうして得られた感光体について、参考例1と同様の方法、ただしコロナ帯電を+6Kvで行い、Vo、E1/2、DDR1を測定した。
【0107】
参考例14
参考例13と同様の方法で同一の構成のもの、ただし参考例13で用いたベンゾイミダゾール化合物(63)の代わりにベンゾイミダゾール化合物(67)、(70)を各々用いる感光体を作製した。
こうして得られた感光体について、参考例13と同様の方法でVo、E1/2、DDR1を測定した。
【0108】
参考例1〜15で得られた感光体のVo、E1/2、DDR1の測定結果を表1にまとめて示す。
【0109】
【表1】
Figure 0004120059
【0110】
表1からわかるように、本参考例の感光体は積層型でも単層型でも電荷保持能が十分あり、暗減衰率も感光体としては十分使用可能な程度に小さく、また、感度においても優れている。
【0111】
さらに、市販の電子写真複写機(EP−350Z;ミノルタ社製)による正帯電時の繰り返し実写テストを参考例13の感光体において行ったが、1000枚のコピーを行っても、初期、最終画像において階調性が優れ、感度変化が無く、鮮明な画像が得られた。本参考例の感光体は繰り返し特性も安定していることがわかる。
【0112】
有機エレクトロルミネセンス素子への応用
実施例
インジウムスズ酸化物被覆ガラスの基板上に有機正孔注入輸送層としてベンゾイミダゾール化合物(9)を蒸着により厚さ50nmの薄膜を形成した。
次に、有機発光層としてアルミニウムトリスオキシンを蒸着により50nmの厚さになるように薄膜を形成した。
次に、陰極としてマグネシウムを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0113】
実施例2〜4
実施例において、ベンゾイミダゾール化合物(9)を使用する代わりに、ベンゾイミダゾール化合物(11)、(12)、(15)に代えること以外は実施例と全く同様にして有機エレクトロルミネセンス素子を作製した。
【0114】
実施例
インジウムスズ酸化物被覆ガラスの基板上に有機正孔注入輸送層としてベンゾイミダゾール化合物(24)を蒸着により厚さ70nmの薄膜を形成した。
次に、有機発光層としてアルミニウムトリスオキシンを蒸着により100nmの厚さになるように薄膜を形成した。
次に、有機電子注入輸送層として下記のオキサジアゾール化合物(F);
【化28】
Figure 0004120059
を蒸着により50nmの厚さになるように薄膜を形成した。
次に、陰極としてマグネシウムを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0115】
実施例6〜8
実施例において、化合物(24)を使用する代わりに、ベンゾイミダゾール化合物(28)、(32)、(34)に代えること以外は実施例と全く同様にして有機エレクトロルミネセンス素子を作製した。
【0116】
参考例16
インジウムスズ酸化物被覆ガラスの基板上に有機発光層としてベンゾイミダゾール化合物(37)を蒸着により厚さ50nmの薄膜を形成した。
次に、有機電子注入輸送層としてオキサジアゾール化合物(F)を蒸着により20nmの厚さになるように薄膜を形成した。
次に、陰極として10:1の原子比のMgおよびAgを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0117】
実施例
インジウムスズ酸化物被覆ガラスの基板上にベンゾイミダゾール化合物(48)を真空蒸着して、膜厚20nmの正孔注入層を得た。さらに、N,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミンを真空蒸着して、膜厚40nmの正孔輸送層を得た。次に、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着により50nmの厚さになるように薄膜を形成した。
次に、陰極として10:1の原子比のMgおよびAgを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0118】
実施例10
インジウムスズ酸化物被覆ガラスの基板上に、N,N’−ジフェニル−N,N’−(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミンを真空蒸着して、膜厚60nmの正孔輸送層を得た。次に、トリス(8−ヒドロキシキノリン)アルミニウム錯体とベンゾイミダゾール化合物(3)を3:1の割合で真空蒸着により60nmの厚さになるように発光層を形成した。
次に、陰極として10:1の原子比のMgおよびAgを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0119】
実施例11
インジウムスズ酸化物被覆ガラスの基板上にベンゾイミダゾール化合物(57)をジクロルメタンに溶解させ、スピンコーティングにより膜厚50nmの正孔注入層を得た。さらに、トリス(8−ヒドロキシキノリン)アルミニウム錯体を蒸着により20nmの厚さになるように発光層を形成した。さらに真空蒸着法によりオキサジアゾール化合物(F)の膜厚20nmの電子注入層を得た。
次に、陰極として10:1の原子比のMgおよびAgを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0120】
実施例12〜13
実施例11において、ベンゾイミダゾール化合物(57)を使用する代わりに、ベンゾイミダゾール化合物(59)、(61)に代えること以外は実施例11と全く同様にして有機エレクトロルミネセンス素子を作製した。
【0121】
参考例17
インジウムスズ酸化物被覆ガラスの基板上にベンゾイミダゾール化合物(70)、トリス(8−ヒドロキシキノリン)アルミニウム錯体、ポリメチルメタクリレートを3:2:5の比率でテトラヒドロフランに溶解させ、スピンコーティング法により膜厚100nmの発光層を得た。
次に、陰極として10:1の原子比のMgおよびAgを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス(エレクトロルミネセンス)素子を作製した。
【0122】
比較例1
インジウムスズ酸化物被覆ガラスの基板上に有機正孔注入輸送層としてベンゾイミダゾール化合物(G);
【化29】
Figure 0004120059
を蒸着により厚さ50nmの薄膜を形成した。
次に、有機発光層としてアルミニウムトリスオキシンを蒸着により50nmの厚さになるように薄膜を形成した。
次に、陰極としてマグネシウムを蒸着により200nmの厚さになるように薄膜を形成した。
このようにして、有機エレクトロルミネセンス素子を作製した。
【0123】
評価
実施例1〜13、参考例16〜17および比較例1で得られた有機エレクトロルミネセンス素子を、そのガラス電極を陽極として、直流電圧をかけた時の発光開始電圧および最高発光輝度とその時の発光電圧を測定した。
測定結果を表2にまとめて示す。
【0124】
【表2】
Figure 0004120059
【0125】
表2からわかるように、本実施例の有機エレクトロルミネセンス素子は低電位でも良好な発光輝度を示した。また、本発明の実施例10の有機エレクトロルミネセンス素子について、電流密度1mA/cm2で連続発光させたところ、200時間以上安定な発光を観測することができた。
【0126】
本発明の有機エレクトロルミネセンス素子は発光効率、発光輝度の向上と長寿命化を達成するものであり、併せて使用される発光物質、発光補助材料、電荷輸送材料、増感剤、樹脂、電極材料等および素子作製方法に限定されるものではない。
【0127】
【発明の効果】
本発明により、優れた電荷輸送能力を有する新規なベンゾイミダゾール化合物を提供した。該ベンゾイミダゾール化合物を使用することにより感度、電荷輸送特性、初期表面電位、暗減衰率等の初期電子写真特性に優れ、繰り返し使用に対する疲労も少ない電子写真感光体および発光強度が大きく発光開始電圧が低い耐久性に優れた有機エレクトロルミネセンス素子を得ることができた。
【図面の簡単な説明】
【図1】 本発明の有機エレクトロルミネセンス素子の一構成例の概略断面図。
【図2】 本発明の有機エレクトロルミネセンス素子の一構成例の概略断面図。
【図3】 本発明の有機エレクトロルミネセンス素子の一構成例の概略断面図。
【図4】 本発明の有機エレクトロルミネセンス素子の一構成例の概略断面図。
【符号の説明】
1:陽極、2:正孔注入輸送層、3:有機発光層、4:陰極、5:電子注入輸送層、6:有機発光材料、7:電荷輸送材料、8:リード線[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a novel benzimidazole compound, a method for producing the same, and a use thereof. The benzimidazole compound of the present invention can be used for photosensitive materials, organic photoconductive materials and the like. More specifically, the benzimidazole compound of the present invention is useful for an organic electroluminescent device or an electrophotographic photosensitive member used for a surface light source or a display.
[0002]
[Prior art]
  Organic photoconductive materials that have been developed as photoconductors and charge transport materials have various advantages such as low cost, various processability, and non-polluting properties, and many compounds have been proposed.
[0003]
  For example, organic photoconductive materials such as oxadiazole compounds, hydrazone compounds, pyrazoline compounds, oxazole compounds, arylamine compounds, benzidine compounds, stilbene compounds, and butadiene compounds have been proposed.
[0004]
  One technique using a charge transport material is an electrophotographic photoreceptor. The electrophotographic system is one of image forming methods invented by Carlson.
  In this method, after charging the photoconductor by corona discharge, image exposure is performed to form an electrostatic latent image on the photoconductor, and toner is attached to the electrostatic latent image and developed, and the resulting toner image is obtained. Is transferred to paper.
[0005]
  The basic characteristics required of a photoconductor in such an electrophotographic system are that an appropriate potential is maintained in a dark place, there is little charge dissipation in the dark place, and charge is quickly dissipated by light irradiation. To do.
[0006]
  In the conventional electrophotographic photoreceptors, inorganic photoconductors such as selenium, selenium alloys, zinc oxide, cadmium sulfide have been used. These inorganic photoconductors have advantages such as high durability and a large number of printed sheets, but problems such as high production costs, poor processability, and toxicity are pointed out. .
[0007]
  In order to overcome these drawbacks, organic photoconductors have been developed. However, electrophotographic photoreceptors using conventional organic photoconductors as charge transporting materials have characteristics such as chargeability, sensitivity, and residual potential. At present, it cannot be said that the electrophotographic characteristics are always satisfied, and it has been desired to develop a charge transport material having excellent charge transport capability and durability.
[0008]
  Another technique using a charge transport material is an organic electroluminescence element. Electroluminescent devices using organic compounds are promising for use as solid light-emitting, inexpensive, large-area full-color display devices, and many studies have been conducted.
[0009]
  In general, an organic electroluminescence element is composed of a light emitting layer and a pair of counter electrodes sandwiching the light emitting layer. In light emission, when an electric field is applied between both electrodes, electrons are injected from the cathode and holes are injected from the anode. Furthermore, this electron and hole are recombined in the light emitting layer, and energy is emitted as light when the energy level returns from the conduction band to the valence band.
[0010]
  Conventional organic electroluminescent elements have a higher driving voltage and lower luminance and luminous efficiency than inorganic electroluminescent elements. In addition, the characteristic deterioration was remarkably not put into practical use.
[0011]
  In recent years, an organic electroluminescence device in which a thin film containing an organic compound having a high fluorescence quantum efficiency that emits light at a low voltage of 10 V or less has been reported and attracted attention (Applied Physics Letters, Vol. 51, 913, 1987).
  This method uses a metal chelate complex as a phosphor layer and an amine compound as a hole injection layer to obtain high-luminance green light emission. The luminance is several hundred cd / m at a DC voltage of 6 to 7V.2The maximum luminous efficiency is 1.5 lm / W, and the performance is close to the practical range.
[0012]
  However, the organic electroluminescence elements up to now have been improved in light emission intensity by improving the structure, but still do not have sufficient light emission luminance. Moreover, it has a big problem that it is inferior in stability during repeated use.
  Therefore, in order to develop an organic electroluminescent device having higher emission luminance and excellent stability during repeated use, it is hoped to develop a charge transport material having excellent charge transport ability and durability. It is rare.
[0013]
[Problems to be solved by the invention]
  The present invention has been made in view of the circumstances as described above, and its object is to provide a novel benzimidazole compound useful as a durable charge transport material, a production method thereof, and an application thereof. is there.
[0014]
[Means for Solving the Problems]
  That is, the present invention provides a novel benzimidazole compound represented by the following general formula (I);
[Formula 4]
Figure 0004120059
  (In the formula, A represents an arylene group or a heterocyclic group which may be bonded by a linking group;
Ar1And Ar2Each represents an optionally substituted aryl or heterocyclic group; R1And R2Each independently represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom).
[0015]
  In general formula (I), A can be an arylene group such as a phenylene group, a biphenylene group, or a naphthylene group, and is preferably a phenylene group or a biphenylene group. The arylene group may have a substituent such as an alkyl group. A may be an arylene group bonded by a linking group. The linking group can be -O-, -S-, -R- (R represents an alkylene group which may have a substituent such as an alkyl group or an arylene group). A may be a heterocyclic divalent group such as thiophene or pyrrole. A divalent group of a thiophene ring is preferable.
[0016]
  Ar1And Ar2Each independently can be an aryl group such as a phenyl group, a diphenyl group or a naphthyl group, preferably a phenyl group or a diphenyl group, or a heterocyclic group such as a thienyl group, a furyl group or a pyrrolyl group, preferably a thienyl group. . Those aryl groups or heterocyclic groups may have a substituent such as a C1-C5 alkyl group or a diarylamino group. The aryl group may have a substituent such as an alkyl group or a methoxy group.
[0017]
  R1And R2Each independently represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom. A hydrogen atom or a lower alkyl group is preferred.
[0018]
  The benzimidazole compound represented by the general formula (I) can be produced using a known reaction. For example, the benzimidazole compound represented by the following general formula (II);
[Chemical formula 5]
Figure 0004120059
(Where A, R1, R2Represents the same meaning as in the general formula (I)) and a halogen compound represented by the following general formula (III);
[Chemical 6]
Figure 0004120059
(In the formula, Ar1, Ar2Can be produced by reacting with the same meaning as in formula (I); X represents a halogen atom.
[0019]
  The above reaction can be carried out by a condensation reaction in the presence of a catalyst such as a dehydrohalogenating agent and a solvent.
[0020]
  As catalysts used in the synthesis, alkali metal hydroxides, carbonates, hydrogen carbonates, alcoholates and the like are generally used, but organic bases such as quaternary ammonium compounds, aliphatic amines and aromatic amines. It is also possible to use. Of these, carbonates and hydrogen carbonates of alkali metals and quaternary ammonium are preferably used. Further, alkali metal carbonates and hydrogen carbonates are most preferable from the viewpoints of reaction rate and thermal stability.
[0021]
  Transition metals or transition metal compounds may be used as catalysts. As the transition metal or transition metal compound, for example, metals such as Cu, Fe, Co, Ni, Cr, V, Pd, Pt, and Ag and their compounds are used. From the viewpoint of yield, copper and palladium and their compounds are used. Compounds are preferred. The copper compound is not particularly limited, and most copper compounds are used, but cuprous iodide, cuprous chloride, cuprous oxide, cuprous bromide, cuprous cyanide, cuprous sulfate , Cupric sulfate, cupric chloride, cupric hydroxide, cupric oxide, cupric bromide, cupric phosphate, cuprous nitrate, cupric nitrate, copper carbonate, first acetic acid Copper, cupric acetate and the like are preferable. Especially, CuCl, CuCl, CuBr, CuBr2, CuI, CuO, Cu2O, CuSO4, Cu (OCOCHThree)2Is preferable in that it is easily available. As the palladium compound, halides, sulfates, nitrates, organic acid salts and the like can be used. The amount of the transition metal and its compound used is 0.5 to 500 mol% of the halogen compound to be reacted.
[0022]
  The solvent used in the synthesis may be any commonly used solvent, but aromatic solvents such as benzene, toluene, chlorobenzene, and xylene are preferably used.
  The synthesis reaction is generally performed at a temperature of 50 to 200 ° C. under normal pressure, but may be performed under pressure. After completion of the reaction, the solid matter precipitated in the reaction solution is removed, and then the solvent is removed to obtain the product.
[0023]
  Specific examples of the benzimidazole compound of the present invention include the following. In addition, these exemplifications show the benzimidazole compound of the present invention in a restrictive manner, and are not disclosed with the intention of limiting them.
[0024]
[Chemical 7]
Figure 0004120059
[0025]
[Chemical 8]
Figure 0004120059
[0026]
[Chemical 9]
Figure 0004120059
[0027]
[Chemical Formula 10]
Figure 0004120059
[0028]
Embedded image
Figure 0004120059
[0029]
Embedded image
Figure 0004120059
[0030]
Embedded image
Figure 0004120059
[0031]
Embedded image
Figure 0004120059
[0032]
Embedded image
Figure 0004120059
[0033]
Embedded image
Figure 0004120059
[0034]
Embedded image
Figure 0004120059
[0035]
Embedded image
Figure 0004120059
[0036]
Embedded image
Figure 0004120059
[0037]
Embedded image
Figure 0004120059
[0038]
Embedded image
Figure 0004120059
[0039]
Embedded image
Figure 0004120059
[0040]
  The benzimidazole compound represented by the general formula (I) of the present invention has an excellent charge transport function, particularly a hole transport function, and is excellent in durability and heat resistance. Therefore, the benzimidazole compound represented by the general formula (I) of the present invention is excellent in use as a charge transport material, and various applications are conceivable using such a function, for example, a photoreceptor or an organic electroluminescence. It can be suitably used as a charge transport material for a sense element.
[0041]
  First, the case where the benzimidazole compound represented by the general formula (I) of the present invention is used for an electrophotographic photoreceptor will be described.
[0042]
  The benzimidazole compound represented by the general formula (I) of the present invention can be used in any layer of the electrophotographic photosensitive member, but it is desirable to use it as a charge transport material since it has high charge transport properties.
  Since the compound of the present invention acts as a charge transport material and can transport charges generated by light absorption or injected from the electrode very efficiently, it is possible to obtain a photoconductor excellent in sensitivity and high-speed response. In addition, since the compound is excellent in ozone resistance and light stability, a photoreceptor having excellent durability can be obtained.
[0043]
  Examples of the electrophotographic photosensitive member include a photosensitive member formed by forming a photosensitive layer in which a charge generating material and a charge transporting material are dispersed in a resin solution on a support, and a charge generating layer as a photosensitive layer on the support. A photoconductor formed by laminating a charge transport layer, an undercoat layer, a conductive layer and an undercoat layer are formed on a support, and a photoconductor formed on the photoconductor, or a support on the support. Examples include a photoreceptor in which a drawing layer, a photosensitive layer, and a surface protective layer are sequentially laminated.
[0044]
  As the support, a foil, plate, or drum shape made of copper, aluminum, iron, nickel, stainless steel or the like is used. In addition, these metals are vacuum-deposited or electroless-plated on paper or plastic drums, etc., or conductive compound layers such as conductive polymers, indium oxide, tin oxide, etc. are applied or deposited on paper or plastic drums. Can also be used. Generally, aluminum is used. For example, after extrusion, a drawn aluminum pipe is cut, and the outer surface is cut to about 0.2 to 0.3 mm using a cutting tool such as a diamond bite. Finished (cut tube), deep-drawn aluminum disc into cup shape, and finished outer surface by ironing (DI tube), impacted aluminum disc to cup shape After finishing, the outer surface is finished by ironing (EI pipe), and after extrusion, it is cold drawn (ED pipe). Moreover, you may use what cut | disconnected these surfaces further.
[0045]
  When forming an undercoat layer on a support, an oxide film obtained by anodizing the surface of the support is often used as the undercoat layer. When the support is an aluminum alloy, it is effective to use an alumite layer as the undercoat layer. Further, it is also formed by dispersing a solution in which an appropriate resin is dissolved or a low resistance compound in the solution, applying the solution or dispersion on the conductive support, and drying the solution. In this case, as a material used for the undercoat layer, polyimide, polyamide, nitrocellulose, polyvinyl butyral, polyvinyl alcohol, and the like are suitable, and a low resistance compound may be dispersed in these resins. As the low resistance compound, metal compounds such as tin oxide, titanium oxide, zinc oxide, zirconium oxide, and magnesium fluoride, and organic compounds such as organic pigments, electron-withdrawing organic compounds, and organometallic complexes are preferably used. The thickness of the undercoat layer is 0.1 to 5 μm, preferably 0.2 to 3 μm.
[0046]
  A photosensitive layer is formed on the support or the undercoat layer. Hereinafter, a case where a charge generation layer and a charge transport layer are laminated as the photosensitive layer will be described.
[0047]
  In forming the charge generation layer on the conductive substrate, the charge generation material is vacuum-deposited or applied by dissolving in an appropriate solvent, or the pigment is dissolved in an appropriate solvent or, if necessary, the binder resin. A coating solution prepared by dispersing in the solution is applied and dried. From the viewpoint of adhesiveness, those dispersed in the resin are good. The film thickness of the charge generation layer is 0.01 to 2 μm, preferably 0.05 to 1 μm.
[0048]
  Examples of the charge generation material used for the charge generation layer include azo pigments (including bisazo pigments and trisazo pigments), triarylmethane dyes, thiazine dyes, oxazine dyes, xanthene dyes, cyanine dyes, Styryl dyes, pyrylium dyes, azo pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, bisbenzimidazole pigments, indanthrone pigments, squarylium pigments, phthalocyanine pigments, etc. Examples thereof include organic pigments and dyes. Other than this, any material can be used as long as it absorbs light and generates a charge carrier with a very high probability. In particular, azo (bis-based, tris-based) pigments and phthalocyanine-based materials can be used. Pigments are preferred.
[0049]
  Examples of the resin used together with the charge generating material include saturated polyester resin, polyamide resin, acrylic resin, ethylene-vinyl acetate copolymer, ion-crosslinked olefin copolymer (ionomer), and styrene-butadiene block copolymer. , Polyarylate, polycarbonate, vinyl chloride-vinyl acetate copolymer, cellulose ester, polyimide, styrene resin, polyacetal resin, phenoxy resin, and other thermoplastic binders, epoxy resin, urethane resin, silicone resin, phenol resin, melamine resin , Xylene resins, alkyd resins, thermosetting binders such as thermosetting acrylic resins, photocurable resins, photoconductive resins such as poly-N-vinylcarbazole, polyvinylpyrene, and polyvinylanthracene can be used.
[0050]
  Together with these resins, the above charge generating materials are alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, dimethyl Sulfoxides such as sulfoxide, ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, aliphatic halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethane, carbon tetrachloride and trichloroethylene Or a photosensitive coating solution prepared by dispersing or dissolving it in an organic solvent such as benzene, toluene, xylene, ligroin, monochlorobenzene, dichlorobenzene or other aromatics. Is applied to, so that forming the charge generation layer and dried.
[0051]
  The photoreceptor of the present invention can be obtained by providing a charge transport layer containing a charge transport material and a binder resin on the charge generation layer formed as described above.
[0052]
  Examples of the binder resin include polycarbonate, polyarylate, saturated polyester resin, polyamide resin, acrylic resin, ethylene-vinyl acetate copolymer, ion-crosslinked olefin copolymer (ionomer), styrene-butadiene block copolymer, vinyl chloride. -Thermoplastic binders such as vinyl acetate copolymer, cellulose ester, polyimide, styrene resin, polyacetal resin, phenoxy resin, epoxy resin, urethane resin, silicone resin, phenol resin, melamine resin, xylene resin, alkyd resin, heat A thermosetting binder such as a curable acrylic resin, a photocurable resin, a photoconductive resin such as poly-N-vinylcarbazole, polyvinylpyrene, or polyvinylanthracene can be used.
[0053]
  In forming the charge transport layer of the photoreceptor of the present invention, a coating solution obtained by dissolving a charge transport material and a binder resin in a suitable solvent is coated on the charge generation layer and dried. The thickness of the charge transport layer is 5 to 60 μm, preferably about 10 to 50 μm. Further, the content of the charge transport material in the charge transport layer cannot be defined unconditionally depending on the type, but is generally 0.02 to 2 parts by weight, preferably 0.5 to 1 part by weight based on 1 part by weight of the binder resin. It is desirable to add 2 parts by weight.
[0054]
  Two or more kinds of benzimidazole compounds represented by the general formula (I) may be used as the charge transport material used in the present photoreceptor, or they may be used in combination with other charge transport materials.
  Other charge transport materials used include hydrazone compounds, pyrazoline compounds, styryl compounds, triphenylmethane compounds, oxadiazole compounds, carbazole compounds, stilbene compounds, enamine compounds, oxazole compounds, triphenylamine compounds, tetraphenylbenzidine Compounds, hole transport materials such as azine compounds, fluorenone compounds, anthraquinodimethane compounds, diphenoquinone compounds, stilbenequinone compounds, thiopyran dioxide compounds, oxadiazole compounds, perylenetetracarboxylic acid compounds, fluorenylidenemethane compounds, Various materials such as an electron transport material such as an anthraquinone compound, anthrone compound, and cyanovinyl compound can be used.
[0055]
  Examples of the solvent used for forming the charge transport layer include aromatic solvents such as benzene, toluene, xylene, and chlorobenzene, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, alcohols such as methanol, ethanol, and isopropanol, and acetic acid. Examples include esters such as ethyl and ethyl cellosolve, halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide, chloroform, dichloromethane, and tetrachloroethane, ethers such as tetrahydrofuran and dioxane, dimethylformamide, dimethylsulfoxide, and diethylformamide. it can. These solvents may be used alone or in combination of two or more.
[0056]
  When the photosensitive layer is a laminated type, the charge transport layer and the charge generation layer can be applied using various coating apparatuses such as known ones. Specifically, various coating methods such as a dip coating method, a spray coating method, a spinner coating method, a blade coating method, a roller coating method, and a wire bar coating method can be used.
[0057]
  In the photosensitive layer of the present invention, especially in the case of lamination, a well-known additive such as an additive for improving film formability or flexibility, an additive for suppressing residual potential accumulation, etc. in the charge transport layer An agent may be included.
[0058]
  Specific examples of these compounds include halogenated paraffin, polychlorinated biphenyl, dimethylnaphthalene, o-terphenyl, m-terphenyl, p-terphenyl, diethylbiphenyl, hydrogenated terphenyl, diisopropylbiphenyl, Plasticizers such as benzylbiphenyl, diisopropylnaphthalene, dibenzofuran, 9,10-dihydroxyphenanthrene, chloranil, tetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, dicyanobenzoquinone, tetrachlorophthalic anhydride, 3,5-dinitrobenzoic acid Electron attractive sensitizers such as acids and cyanovinyl compounds, and sensitizers such as methyl violet, rhodamine B, cyanine dyes, pyrylium salts and thiapyrylium salts can be used.
[0059]
  The greater the amount of plasticizer added, the lower the internal stress of the layer. Therefore, when the photosensitive layer is composed of a charge transport layer and a charge generation layer, the layer between the charge transport layer and the charge generation layer is used. In the case of a single layer type, the adhesion between the photosensitive layer and the support is improved. However, if the amount is too large, problems such as a decrease in mechanical strength and a decrease in sensitivity occur. Therefore, 1 to 100 parts by weight, preferably 5 to 80 parts by weight, more preferably 10 to 10 parts by weight with respect to 100 parts by weight of the charge transport material. It is desirable to be about 50 parts by weight. The addition amount of the sensitizer is desirably 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably about 0.5 to 8 parts by weight with respect to 100 parts by weight of the charge transport material. .
[0060]
  Furthermore, an antioxidant may be added to the photosensitive layer, particularly the charge transport layer in the photoreceptor of the present invention for the purpose of preventing ozone degradation. Examples of the antioxidant include hindered phenols, hindered amines, paraphenylenediamine, hydroquinone, spirochroman, spiroidanone, hydroquinoline and derivatives thereof, organic phosphorus compounds, and organic sulfur compounds.
[0061]
  As the amount of the antioxidant added increases, the adhesion improves. However, when the amount is too large, problems such as a decrease in mechanical strength and a decrease in sensitivity occur, and when the amount is too small, a sufficient effect for preventing the oxidation cannot be obtained.
  Therefore, it is desirable that the amount be 0.1 to 50 parts by weight, preferably 1 to 30 parts by weight, and more preferably about 3 to 20 parts by weight with respect to 100 parts by weight of the charge transport material. When the antioxidant and the plasticizer are used in combination, the total amount of addition is 1 to 120 parts by weight, preferably 5 to 100 parts by weight, more preferably about 10 to 80 parts by weight. When the solubility of the plasticizer or antioxidant is low or the melting point is high, crystal precipitation may occur or the adhesiveness will not improve so much. Therefore, a compound having a melting point of the plasticizer or antioxidant of 100 ° C. or lower is used. It is preferable.
[0062]
  The photoreceptor of the present invention may be one in which a conductive layer is provided between the support and the undercoat layer. As the conductive layer, a material in which a metal such as aluminum, iron or nickel is dispersed in a resin, conductive tin oxide, titanium oxide, antimony oxide, zirconium oxide, ITO (indium, tin oxide solid solution), etc. What disperse | distributed the metal oxide in resin is used suitably.
[0063]
  Furthermore, the photoreceptor of the present invention may be one in which a surface protective layer is provided on the photosensitive layer. The thickness of the surface protective layer is desirably 5 μm or less. As materials used for the surface protective layer, polymers such as acrylic resin, polyaryl resin, polycarbonate resin, urethane resin, thermosetting resin, and photocurable resin are used as they are, or low resistance substances such as tin oxide and indium oxide are dispersed. Can be used. An organic plasma polymerization film may be used as the surface protective layer. The organic plasma polymerized film may appropriately contain oxygen, nitrogen, halogen, and Group 3 and Group 5 atoms of the periodic table as necessary.
[0064]
  Next, the case where the benzimidazole compound shown by general formula (I) is used as a material of an organic electroluminescent element is demonstrated.
[0065]
  1 to 4 schematically show an organic electroluminescent device according to the present invention. In the figure, (1) is an anode, on which an organic hole injecting and transporting layer (2), an organic light emitting layer (3) and a cathode (4) are sequentially laminated. The hole injecting and transporting layer contains a benzimidazole compound represented by the above general formula (I).
[0066]
  In FIG. 2, (1) is an anode, on which an organic hole injecting and transporting layer (2), an organic light emitting layer (3), an organic electron injecting and transporting layer (5), and a cathode (4) are sequentially laminated. The organic hole injecting and transporting layer or the organic light emitting layer contains a benzimidazole compound represented by the above general formula (I).
[0067]
  In FIG. 3, (1) is an anode, on which an organic light emitting layer (3), an organic electron injecting and transporting layer (5) and a cathode (4) are sequentially laminated. The layer contains a benzimidazole compound represented by the above general formula (I).
[0068]
  In FIG. 4, (1) is an anode, and an organic light emitting layer (3) and a cathode (4) are sequentially laminated thereon, and the organic light emitting material (6) is placed on the organic light emitting layer. The charge transport material (7) is contained, and the benzimidazole compound represented by the above general formula (I) is used as the charge transport material.
[0069]
  In the organic electroluminescence device having the above structure, the anode (1) and the cathode (4) are connected by the lead wire (8), and the organic light emitting layer (3) is applied by applying a voltage to the anode (1) and the cathode (4). Emits light.
[0070]
  For the organic light emitting layer, the organic hole injecting and transporting layer, and the organic electron injecting and transporting layer, a known light substance, a light emitting auxiliary material, and a charge transporting material that performs carrier transport can be used if necessary.
[0071]
  Since the specific benzimidazole compound represented by the general formula (I) has a low ionization potential and a large hole transporting capability, the light emission starting voltage necessary for causing the organic electroluminescence device of the present invention to emit light may be low. Therefore, it is considered that stable light emission is possible for a long time. When a benzimidazole compound is used as an organic light emitter, it is considered that the function and thermal stability of the benzimidazole compound itself as a light emitter contribute.
[0072]
  As the conductive material used as the anode (1) of the organic electroluminescence element, those having a work function larger than 4 eV are preferable, and carbon, aluminum, vanadium, iron, cobalt, nickel, copper, zinc, tungsten, silver Gold, platinum, etc. and their alloys, conductive metal compounds such as tin oxide, indium oxide, antimony oxide, zinc oxide, zirconium oxide, and organic conductive resins such as polythiophene and polypyrrole are used.
[0073]
  The metal forming the cathode (4) is preferably one having a work function smaller than 4 eV, and magnesium, calcium, tin, lead, titanium, yttrium, lithium, gadolinium, ytterbium, ruthenium, manganese and alloys thereof are used. .
[0074]
  If necessary, the anode and the cathode may be formed of two or more layers.
[0075]
  In the organic electroluminescence element, at least the anode (1) or the cathode (4) needs to be a transparent electrode so that light emission can be seen. At this time, if a transparent electrode is used for the cathode, the transparency is likely to be impaired. Therefore, the anode is preferably a transparent electrode.
[0076]
  When forming a transparent electrode, the above-described conductive material is used on the transparent substrate, and the desired light transmission is achieved by means such as vapor deposition, sputtering, or the like, or by dispersing and applying in a sol-gel method or resin. It may be formed so as to ensure properties and conductivity.
[0077]
  The transparent substrate has an appropriate strength, and is not particularly limited as long as it is transparent as long as it is transparent without being adversely affected by heat due to vapor deposition or the like during the production of an organic electroluminescent element. Transparent resins such as polyethylene, polypropylene, polyethersulfone, polyetheretherketone and the like can also be used. Commercial products such as ITO and NESA are known as transparent electrodes formed on a glass substrate, but these may be used.
[0078]
  As an example of the organic electroluminescence device of the present invention, a configuration (FIG. 1) in the case where a benzimidazole compound is used for an organic hole injecting and transporting layer will be described.
[0079]
  First, an organic hole injecting and transporting layer (2) is formed on the anode (1). The organic hole injecting and transporting layer (2) may be formed by vapor-depositing the benzimidazole compound represented by the general formula (I), or may be dissolved together with a solution in which the benzimidazole compound is dissolved or an appropriate resin. The resulting liquid may be formed by dip coating or spin coating.
  When forming by a vapor deposition method, the thickness is 1-500 nm normally, and when forming by the apply | coating method, what is necessary is just to form to about 5-1000 nm.
  The thicker the film is formed, the higher the applied voltage for causing light emission, and the lower the light emission efficiency, the more likely the deterioration of the organic electroluminescent element. Further, when the film thickness is reduced, the light emission efficiency is improved, but breakdown is easily caused and the life of the organic electroluminescence element is shortened.
[0080]
  The compound of general formula (I) can be used in combination with other charge transport materials. For example, phthalocyanine compound, naphthalocyanine compound, porphyrin compound, oxadiazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acyl hydrazone, polyarylalkane, stilbene, butadiene Benzidine type triarylamine, diamine type triarylamine and the like, derivatives thereof, and polymer materials such as polyvinyl carbazole, polysilane, and conductive polymer. Any compound can be used as long as it has an excellent hole-injecting effect, prevents excitons generated in the light-emitting layer from moving to the electron-injecting layer or the electron-transporting material, and has an excellent thin-film forming ability.
[0081]
  An organic light emitting layer is formed on the organic hole injecting and transporting layer (2). As an organic light emitting material and a light emitting auxiliary material used for the organic light emitting layer, known materials can be used, for example, epidolidine, 2,5-bis (5,7-di-t-pentyl-2-benzoxazolyl). Thiophene, 2,2 ′-(1,4-phenylenedivinylene) bisbenzothiazole, 2,2 ′-(4,4′-biphenylene) bisbenzothiazole, 5-methyl-2- {2- (4- ( 5-methyl-2-benzoxazolyl) phenyl) vinyl} benzoxazole, 2,5-bis (5-methyl-2-benzoxazolyl) thiophene, anthracene, naphthalene, phenanthrene, pyrene, chrysene, perylene, perinone 1,4-diphenylbutadiene, tetraphenylbutadiene, coumarin, acridine, stilbene, 2- (4-biphenyl) -6-phenylbenzoxazole, al Nitrosoxine, Magnesium bisoxin, Bis (benzo-8-quinolinol) zinc, Bis (2-methyl-8-quinolinolato) aluminum oxide, Indium trisoxin, Aluminum tris (5-methyloxin), Lithium oxine, Gallium trisoxin , Calcium bis (5-chlorooxin), polyzinc-bis (8-hydroxy-5-quinolinolyl) methane, dilithium epindridione, zinc bisoxin, 1,2-phthaloperinone, 1,2-naphthaloperinone, tris (8 -Hydroxyquinoline) aluminum complex and the like.
[0082]
  Also, general fluorescent dyes such as fluorescent coumarin dyes, fluorescent perylene dyes, fluorescent pyran dyes, fluorescent thiopyran dyes, fluorescent polymethine dyes, fluorescent mesocyanine dyes, fluorescent imidazole dyes and the like can be used. Of these, particularly preferred are chelated oxinoid compounds.
[0083]
  The organic light emitting layer may have a single layer structure of the light emitting material described above, or may have a multilayer structure in order to adjust characteristics such as light emission color and light emission intensity. Two or more kinds of luminescent materials may be mixed or doped in the luminescent layer.
[0084]
  The organic light emitting layer (3) may be formed by vapor-depositing the light emitting material as described above, or formed by dip coating or spin coating a solution in which the light emitting material is dissolved or a solution dissolved with an appropriate resin. May be. Moreover, you may use the benzimidazole compound represented by general formula (I) as a luminescent substance.
[0085]
  When forming by a vapor deposition method, the thickness is 1-500 nm normally, and when forming by the apply | coating method, what is necessary is just to form to about 5-1000 nm.
  The thicker the film is formed, the higher the applied voltage for causing light emission, and the lower the light emission efficiency, the more likely the deterioration of the organic electroluminescent element. Further, when the film thickness is reduced, the light emission efficiency is improved, but breakdown is easily caused and the life of the organic electroluminescence element is shortened.
[0086]
  Next, the above-described cathode is formed on the organic light emitting layer.
[0087]
  The case where the organic luminescence device is formed by sequentially laminating the organic hole injecting and transporting layer (2), the organic light emitting layer (3) and the cathode (4) on the anode (1) has been described. ), An organic light emitting layer (3), an organic hole injecting and transporting layer (2) and an anode (1) are sequentially laminated. On the anode (1), an organic light emitting layer (3) and an organic electron injecting and transporting layer ( 5) and the cathode (4) are sequentially laminated (FIG. 3), the organic hole injecting and transporting layer (2), the organic light emitting layer (3), the organic electron injecting and transporting layer (5) and the anode (1) The cathode (4) may be laminated sequentially (FIG. 2), or the organic electron injection / transport layer (5), the organic light emitting layer (3), and the anode (4) may be laminated on the cathode (4) in sequence. Of course.
[0088]
  As shown in FIG. 2, when an electron injecting and transporting layer is formed on the light emitting layer (3), examples of the electron transporting material include fluorenone, anthraquinodimethane, diphenoquinone, stilbenequinone, thiopyran dioxide, oxaxene. There are diazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinone, anthrone and their derivatives, but they have the ability to transport electrons and have an excellent electron injection effect on the light-emitting layer or material, The compound is not limited to these compounds as long as it prevents the excitons generated in the light emitting layer from moving to the hole injection layer or the hole transport material and has an excellent thin film forming ability.
  Further, it can be sensitized by adding an electron accepting substance or an electron donating substance to the charge transporting material.
[0089]
  Furthermore, the hole injection / transport layer may have a two-layer structure of a hole injection layer and a hole transport layer by separating the hole injection function and the hole transport function. In this case, it is preferable to use the benzimidazole compound of the present invention represented by the general formula (I) for the hole injection layer. The electron injection / transport layer may have a two-layer structure of an electron injection layer and an electron transport layer by separating the electron injection function and the electron transport function.
[0090]
  A pair of transparent electrodes of a cathode and an anode is connected to each electrode by an appropriate lead wire (8) such as a nichrome wire, a gold wire, a copper wire, a platinum wire, and the organic luminescence device has an appropriate voltage ( Light is emitted by applying Vs).
[0091]
  The organic electroluminescence element of the present invention can be applied to various display devices or display devices.
[0092]
  The present invention will now be described with reference to examples. In the examples, “parts” means “parts by weight” unless otherwise specified.
[0093]
  Synthesis Example 1 (Synthesis of Compound (25))
  Compound (A) represented by the following chemical formula in a 50 ml three-necked flask equipped with a water-cooled condenser;
Embedded image
Figure 0004120059
1.55 g (0.005 mol), a compound (B) represented by the following chemical formula;
Embedded image
Figure 0004120059
4.0 g (0.01 mol), anhydrous potassium carbonate 4.2 g, copper powder 0.85 g, 18-crown-6 0.17 g and o-dichlorobenzene 10 ml were mixed and reacted at reflux temperature for 24 hours. . The reaction product was extracted with 200 ml of dichloromethane, and the insoluble matter was removed by filtration, followed by concentration to dryness. This was purified by column chromatography (carrier: silica gel, eluent: developed with toluene / n-hexane = 1/2) to obtain 1.45 g of the desired compound (25) (yield 35.0%). The melting point was 185-186 ° C. Moreover, when the molecular formula was analyzed using a CHN analyzer, the following results were obtained.
  Molecular formula: C58H48N6
  Calculated (%) C: 84.05%, H: 5.80%, N: 10.14%
  Analytical value (%) C: 84.12%, H: 5.76%, N: 10.12%
[0094]
  Application of electrophotographic photoreceptors to charge transport materials
  Reference example1
  A trisazo compound represented by the following general formula (C);
Embedded image
Figure 0004120059
0.45 part and 0.45 part of a polyester resin (Byron 200; manufactured by Toyobo Co., Ltd.) were dispersed together with 50 parts of cyclohexanone by a sand mill. The obtained trisazo compound dispersion was applied on an 80φ aluminum drum using a dip coating method so that the dry film thickness was 0.3 g / m, and then dried.
[0095]
  A solution in which 50 parts of the benzimidazole compound (9) and 50 parts of a polycarbonate resin (Panlite K-1300; manufactured by Teijin Chemicals Ltd.) are dissolved in 400 parts of 1,4-dioxane on the charge generation layer thus obtained. Was applied to a dry film thickness of 20 μm and dried to form a charge transport layer.
  Thus, an electrophotographic photosensitive member having a photosensitive layer composed of two layers was obtained.
[0096]
  In order to halve the initial surface potential Vo (V) and the initial potential by using a commercially available electrophotographic copying machine (EP-5400; manufactured by Minolta Camera Co., Ltd.) to corona charge the photoreceptor thus obtained. The amount of exposure E1 / 2 (lux.sec) required for the initial potential was measured by the decay rate DDR1 (%) of the initial potential when left in the dark for 1 second.
[0097]
  Reference example2-4
  Reference example1 with the same configuration in the same way as 1,Reference examplePhotoconductors using benzimidazole compounds (10), (11), and (12) instead of the benzimidazole compound (9) used in 1 were prepared.
  About the photoreceptor thus obtained,Reference exampleVo, E1 / 2 and DDR1 were measured in the same manner as in Example 1.
[0098]
  Reference example5
  Bisazo compound represented by the following general formula (D)
Embedded image
Figure 0004120059
0.45 part and 0.45 part of polystyrene resin (molecular weight 40000) were dispersed together with 50 parts of cyclohexane by a sand mill.
[0099]
  The obtained dispersion of the bisazo compound was applied on an 80φ aluminum drum so that the dry film thickness was 0.3 g / m and then dried.
[0100]
  A solution obtained by dissolving 50 parts of the benzimidazole compound (14) and 50 parts of a polyarylate resin (U-100; manufactured by Unitika) in 400 parts of 1,4-dioxane was dried on the charge generation layer thus obtained. The charge transport layer was formed by coating the film so that the film thickness was 25 μm and drying.
  Thus, an electrophotographic photosensitive member having a photosensitive layer composed of two layers was produced.
[0101]
  Reference example6-8
  Reference exampleWith the same configuration in the same way as 5,Reference examplePhotoconductors using benzimidazole compounds (25), (27), and (30) instead of the benzimidazole compound (14) used in 5 were prepared.
  About the photoreceptor thus obtained,Reference exampleVo, E1 / 2 and DDR1 were measured in the same manner as in Example 1.
[0102]
  Reference example9
  A polycyclic quinone pigment represented by the following general formula (E);
Embedded image
Figure 0004120059
0.45 part and 0.45 part of polycarbonate resin (Panlite K-13000: manufactured by Teijin Chemicals Ltd.) were dispersed together with 50 parts of dichloroethane by a sand mill.
  The obtained polycyclic quinone pigment dispersion was coated on an 80φ aluminum drum so that the dry film thickness was 0.4 g / m and then dried.
  A solution obtained by dissolving 60 parts of a benzimidazole compound (31) and 50 parts of a polyarylate resin (U-100; manufactured by Unitika) in 400 parts of 1,4-dioxane was dried on the charge generation layer thus obtained. The film was applied so as to have a film thickness of 18 μm and dried to form a charge transport layer.
  Thus, an electrophotographic photosensitive member having a photosensitive layer composed of two layers was produced.
[0103]
  Reference example10-11
  Reference exampleWith the same configuration in the same way as 10Reference exampleA photoconductor using benzimidazole compounds (44) and (49) instead of the benzimidazole compound (31) used in No. 10 was prepared.
  About the photoreceptor thus obtained,Reference exampleVo, E1 / 2 and DDR1 were measured in the same manner as in Example 1.
[0104]
  Reference example12
  0.45 part of titanyl phthalocyanine and 0.45 part of butyral resin (BX-1; manufactured by Sekisui Chemical Co., Ltd.) were dispersed together with 50 parts of dichloroethane by a sand mill.
  The obtained dispersion of phthalocyanine pigment was applied on an 80 mm alumite drum using a dip coating method so that the dry film thickness was 0.3 μm and then dried. A solution obtained by dissolving 50 parts of a benzimidazole compound (59) and 50 parts of a polycarbonate resin (PC-Z: manufactured by Mitsubishi Gas Chemical Company) in 400 parts of 1,4-dioxane on the charge generation layer thus obtained. The charge transport layer was formed by coating so that the dry film thickness was 18 μm.
  Thus, an electrophotographic photosensitive member having a photosensitive layer composed of two layers was produced.
  About the photoreceptor thus obtained,Reference exampleVo, E1 / 2 and DDR1 were measured in the same manner as in Example 1.
[0105]
  Reference example13
  50 parts of copper phthalocyanine and 0.2 part of tetranitro copper phthalocyanine are dissolved in 500 parts of 98% concentrated sulfuric acid with sufficient stirring, and this is poured into 5000 parts of water to deposit a photoconductive material composition of copper phthalocyanine and tetranitro copper phthalocyanine. I let you. The precipitate was filtered, washed with water, and dried at 120 ° C. under reduced pressure.
[0106]
  10 parts of the photoconductive composition thus obtained was 22.5 parts of a thermosetting acrylic resin (Acrydic A405; manufactured by Dainippon Ink and Co., Ltd.), 7.5 parts of melamine resin (Super Becamine J820; manufactured by Dainippon Ink, Inc.). Then, 15 parts of a benzimidazole compound (63) is placed in a ball mill pot together with 100 parts of a mixed solvent in which methyl ethyl ketone and xylene are mixed in the same amount, and dispersed for 48 hours to prepare a photosensitive coating liquid. A photosensitive layer having a thickness of about 15 μm was formed on the drum by spray coating and drying.
  In this way, a single layer type photoreceptor was produced.
  About the photoreceptor thus obtained,Reference exampleThe same method as in Example 1, except that corona charging was performed at +6 Kv, and Vo, E1 / 2, and DDR1 were measured.
[0107]
  Reference example14
  Reference example13 with the same configuration in the same way as 13,Reference examplePhotoconductors using benzimidazole compounds (67) and (70) instead of the benzimidazole compound (63) used in 13 were prepared.
  About the photoreceptor thus obtained,Reference exampleVo, E1 / 2 and DDR1 were measured by the same method as in No.13.
[0108]
  Reference exampleTable 1 summarizes the measurement results of Vo, E1 / 2, and DDR1 of the photoreceptors obtained in 1-15.
[0109]
[Table 1]
Figure 0004120059
[0110]
  As you can see from Table 1, the bookReference exampleThese photoreceptors have sufficient charge retention capability, whether they are laminated or single-layered, have a dark decay rate that is small enough to be used as a photoreceptor, and are excellent in sensitivity.
[0111]
  Furthermore, repeated live-action tests during positive charging using a commercially available electrophotographic copying machine (EP-350Z; manufactured by Minolta)Reference exampleAlthough the test was carried out on 13 photoconductors, even when 1000 copies were made, the initial and final images had excellent gradation and no change in sensitivity, and a clear image was obtained. BookReference exampleIt can be seen that the photoconductors have stable repeatability.
[0112]
  Application to organic electroluminescence devices
  Example1
  A benzimidazole compound (9) was deposited as an organic hole injecting and transporting layer on an indium tin oxide-coated glass substrate to form a thin film having a thickness of 50 nm.
  Next, a thin film was formed as an organic light emitting layer by vapor deposition of aluminum trisoxine to a thickness of 50 nm.
  Next, a thin film was formed to a thickness of 200 nm by vapor deposition of magnesium as a cathode.
  In this way, an organic electroluminescence element was produced.
[0113]
  Example2-4
  Example1In Example 1, except that the benzimidazole compound (11), (12), (15) is used instead of the benzimidazole compound (9).1An organic electroluminescence element was produced in exactly the same manner as described above.
[0114]
  Example5
  A thin film having a thickness of 70 nm was formed by vapor deposition of a benzimidazole compound (24) as an organic hole injecting and transporting layer on an indium tin oxide-coated glass substrate.
  Next, a thin film was formed by vapor deposition of aluminum trisoxine as an organic light emitting layer to a thickness of 100 nm.
  Next, the following oxadiazole compound (F) as an organic electron injecting and transporting layer;
Embedded image
Figure 0004120059
A thin film was formed by vapor deposition to a thickness of 50 nm.
  Next, a thin film was formed to a thickness of 200 nm by vapor deposition of magnesium as a cathode.
  In this way, an organic electroluminescence element was produced.
[0115]
  Example6-8
  Example5In Example 1, except that the benzimidazole compounds (28), (32) and (34) are used instead of the compound (24).5An organic electroluminescence element was produced in exactly the same manner as described above.
[0116]
  Reference Example 16
  A thin film having a thickness of 50 nm was formed on the indium tin oxide-coated glass substrate by vapor deposition of a benzimidazole compound (37) as an organic light emitting layer.
  Next, an oxadiazole compound (F) was formed as an organic electron injecting and transporting layer by vapor deposition so as to have a thickness of 20 nm.
  Next, a thin film having a thickness of 200 nm was formed by vapor deposition of Mg and Ag with an atomic ratio of 10: 1 as a cathode.
  In this way, an organic electroluminescence element was produced.
[0117]
  Example9
  A benzimidazole compound (48) was vacuum-deposited on an indium tin oxide-coated glass substrate to obtain a 20 nm-thick hole injection layer. Further, N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4′-diamine is vacuum-deposited to obtain a 40 nm-thick hole transport layer. It was. Next, a thin film was formed by vapor deposition of a tris (8-hydroxyquinoline) aluminum complex to a thickness of 50 nm.
  Next, a thin film having a thickness of 200 nm was formed by vapor deposition of Mg and Ag with an atomic ratio of 10: 1 as a cathode.
  In this way, an organic electroluminescence element was produced.
[0118]
  Example10
  N, N′-diphenyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4′-diamine is vacuum deposited on a substrate of indium tin oxide-coated glass to form a film. A 60 nm thick hole transport layer was obtained. Next, a light emitting layer was formed by vacuum deposition of tris (8-hydroxyquinoline) aluminum complex and benzimidazole compound (3) at a ratio of 3: 1 to a thickness of 60 nm.
  Next, a thin film having a thickness of 200 nm was formed by vapor deposition of Mg and Ag with an atomic ratio of 10: 1 as a cathode.
  In this way, an organic electroluminescence element was produced.
[0119]
  Example11
  A benzimidazole compound (57) was dissolved in dichloromethane on an indium tin oxide-coated glass substrate, and a hole injection layer having a thickness of 50 nm was obtained by spin coating. Further, a light emitting layer was formed by vapor deposition of a tris (8-hydroxyquinoline) aluminum complex to a thickness of 20 nm. Further, an electron injection layer of oxadiazole compound (F) having a film thickness of 20 nm was obtained by vacuum deposition.
  Next, a thin film having a thickness of 200 nm was formed by vapor deposition of Mg and Ag with an atomic ratio of 10: 1 as a cathode.
  In this way, an organic electroluminescence element was produced.
[0120]
  Example12-13
  Example11In the present invention, instead of using the benzimidazole compound (57), the benzimidazole compound (59), (61)Examples other than replacing11An organic electroluminescence element was produced in exactly the same manner as described above.
[0121]
  Reference Example 17
  A benzimidazole compound (70), tris (8-hydroxyquinoline) aluminum complex, and polymethyl methacrylate are dissolved in tetrahydrofuran at a ratio of 3: 2: 5 on an indium tin oxide-coated glass substrate, and the film thickness is obtained by spin coating. A 100 nm light emitting layer was obtained.
  Next, a thin film having a thickness of 200 nm was formed by vapor deposition of Mg and Ag with an atomic ratio of 10: 1 as a cathode.
  In this way, an organic electroluminescence (electroluminescence) element was produced.
[0122]
  Comparative Example 1
  A benzimidazole compound (G) as an organic hole injection transport layer on a substrate of indium tin oxide-coated glass;
Embedded image
Figure 0004120059
A thin film having a thickness of 50 nm was formed by vapor deposition.
  Next, a thin film was formed as an organic light emitting layer by vapor deposition of aluminum trisoxine to a thickness of 50 nm.
  Next, a thin film was formed to a thickness of 200 nm by vapor deposition of magnesium as a cathode.
  In this way, an organic electroluminescence element was produced.
[0123]
  Evaluation
  Example1-13, Reference Examples 16-17The organic electroluminescence device obtained in Comparative Example 1 was measured for the light emission starting voltage and the maximum light emission luminance and the light emission voltage when a DC voltage was applied, using the glass electrode as an anode.
  The measurement results are summarized in Table 2.
[0124]
[Table 2]
Figure 0004120059
[0125]
  As can be seen from Table 2, the organic electroluminescent device of this example showed good emission luminance even at a low potential. Examples of the present invention10Current density of 1 mA / cm for organic electroluminescent devices2When light was emitted continuously with, stable light emission could be observed for 200 hours or more.
[0126]
  The organic electroluminescent device of the present invention achieves improvement in light emission efficiency, light emission luminance, and long life, and is used together with a light emitting substance, a light emission auxiliary material, a charge transport material, a sensitizer, a resin, and an electrode. It is not limited to the material and the element manufacturing method.
[0127]
【The invention's effect】
  According to the present invention, a novel benzimidazole compound having an excellent charge transport ability is provided. By using the benzimidazole compound, an electrophotographic photosensitive member having excellent initial electrophotographic characteristics such as sensitivity, charge transport characteristics, initial surface potential, dark decay rate, and less fatigue due to repeated use, and a large emission intensity and a light emission starting voltage. An organic electroluminescence device having low durability and excellent durability could be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a configuration example of an organic electroluminescence element of the present invention.
FIG. 2 is a schematic cross-sectional view of a configuration example of the organic electroluminescence element of the present invention.
FIG. 3 is a schematic cross-sectional view of a configuration example of the organic electroluminescence element of the present invention.
FIG. 4 is a schematic cross-sectional view of one configuration example of the organic electroluminescence element of the present invention.
[Explanation of symbols]
1: anode, 2: hole injection transport layer, 3: organic light emitting layer, 4: cathode, 5: electron injection transport layer, 6: organic light emitting material, 7: charge transport material, 8: lead wire

Claims (1)

一対の電極間に発光層または発光層を含む複数層の有機化合物薄層を備えた有機エレクトロルミネセンス素子において少なくとも一層が下記一般式(I)で表されるベンゾイミダゾール化合物を含有することを特徴とする有機エレクトロルミネセンス素子。
Figure 0004120059
(式中、Aは連結基で結合してもよいアリーレン基または複素環基を表す;
Ar1およびAr2はそれぞれ 〜C のアルキル基あるいはジアリールアミノ基の置換基を有してもよいジフェニル基、またはジアリールアミノ基が置換したフェニル基を表す;R1およびR2はそれぞれ独立して、水素原子、アルキル基、アルコキシ基またはハロゲン原子を表す)。
In an organic electroluminescent device comprising a light emitting layer or a plurality of organic compound thin layers including a light emitting layer between a pair of electrodes, at least one layer contains a benzimidazole compound represented by the following general formula (I) An organic electroluminescence element.
Figure 0004120059
(In the formula, A represents an arylene group or a heterocyclic group which may be bonded by a linking group;
Ar 1 and Ar 2 each represents a C 1 -C 5 alkyl group or a diphenyl group optionally having a substituent of a diarylamino group, or a phenyl group substituted with a diarylamino group ; R 1 and R 2 are each Independently represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom).
JP26959598A 1998-09-24 1998-09-24 Novel benzimidazole compounds, their production and use Expired - Lifetime JP4120059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26959598A JP4120059B2 (en) 1998-09-24 1998-09-24 Novel benzimidazole compounds, their production and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26959598A JP4120059B2 (en) 1998-09-24 1998-09-24 Novel benzimidazole compounds, their production and use

Publications (2)

Publication Number Publication Date
JP2000095766A JP2000095766A (en) 2000-04-04
JP4120059B2 true JP4120059B2 (en) 2008-07-16

Family

ID=17474561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26959598A Expired - Lifetime JP4120059B2 (en) 1998-09-24 1998-09-24 Novel benzimidazole compounds, their production and use

Country Status (1)

Country Link
JP (1) JP4120059B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656608B1 (en) * 1998-12-25 2003-12-02 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
JP4590072B2 (en) * 2000-08-02 2010-12-01 パナソニック株式会社 Benzimidazole derivatives
JP4718025B2 (en) * 2001-03-16 2011-07-06 保土谷化学工業株式会社 Benzimidazole derivatives and organic electroluminescent devices
EP2174932B1 (en) * 2003-03-13 2019-07-03 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
WO2005062046A1 (en) * 2003-12-24 2005-07-07 Shinichiro Isobe Method for detecting biomolecule, labeling dye used therefor, and labeling kit
JP4938116B2 (en) * 2010-08-04 2012-05-23 パナソニック株式会社 Organic electroluminescence device
US8426040B2 (en) 2010-12-22 2013-04-23 Nitto Denko Corporation Compounds for use in light-emitting devices
US8933243B2 (en) 2011-06-22 2015-01-13 Nitto Denko Corporation Polyphenylene host compounds
KR101474797B1 (en) 2011-08-08 2014-12-19 제일모직 주식회사 Compound for organic optoelectronic device and organic light emitting diode including the same
JP5790404B2 (en) * 2011-10-25 2015-10-07 コニカミノルタ株式会社 Conjugated polymer compound and organic photoelectric conversion device using the same
TWI504592B (en) * 2012-04-13 2015-10-21 Lg Chemical Ltd New nitrogen-containing heterocyclic compounds and organic electronic device using the same
KR102253439B1 (en) * 2013-07-30 2021-05-20 삼성디스플레이 주식회사 Heterocyclic compound and organic light emitting device comprising same
WO2016091887A2 (en) * 2014-12-09 2016-06-16 Cynora Gmbh Ambipolar host materials and use thereof
CN110818696A (en) * 2018-08-09 2020-02-21 昱镭光电科技股份有限公司 Benzimidazole compound and organic electronic device thereof
CN110878054A (en) * 2018-09-06 2020-03-13 北京鼎材科技有限公司 Imidazole compound and application thereof

Also Published As

Publication number Publication date
JP2000095766A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4006862B2 (en) Novel amino compound, its production method and use
JP4088985B2 (en) Organic electroluminescence device using new amino compound
JP4081869B2 (en) Organic electroluminescence devices using new amino compounds
JP3780619B2 (en) Novel styryl polymer compound, production method and use thereof
JP4232259B2 (en) Novel amino compound, its production method and use
JP4320811B2 (en) Organic electroluminescence device
JP3593719B2 (en) Novel triphenylamine derivative, its production method and use
JP3593717B2 (en) Novel triphenylamine derivative, its production method and use
JP4120059B2 (en) Novel benzimidazole compounds, their production and use
JP3640090B2 (en) Hole transport material and use thereof
US6066712A (en) Styryl polymer, production method and use thereof
JP3185258B2 (en) Novel diamino compound and photoreceptor using the same
JP2953126B2 (en) Novel phenylenediamine compound and photoreceptor using the same
JP2927017B2 (en) New styryl compound, photoreceptor and electroluminescent device using the styryl compound
JPH08100038A (en) Triphenylamine polymer, its production, and use thereof
JP3593718B2 (en) Novel triphenylamine derivative, its production method and use
JP3185280B2 (en) Novel benzyldiphenyl compound, photoreceptor and electroluminescent device using the benzyldiphenyl compound
JP3800720B2 (en) Novel styryl polymer compound, production method and use thereof
JP3147535B2 (en) Photoreceptor and electroluminescent device using distyryl compound
JP4535107B2 (en) Organic electroluminescence device using new amino compound
US5512400A (en) Hydrazone compound and electrophotographic photoreceptor and organic electroluminescent element both containing the same
JP3079665B2 (en) Novel diamino compound, photoreceptor and electroluminescent device using the diamino compound
JP3206042B2 (en) Charge transport material using novel triamino compound, photoreceptor containing this triamino compound, and electroluminescent device
JPH09202762A (en) Hydrazone compound and electrophotographic photoreceptor and organic electroluminescent element using the compound
JP3185279B2 (en) Novel diamino compound, photoreceptor and electroluminescent device using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term