JP4590072B2 - Benzimidazole derivatives - Google Patents

Benzimidazole derivatives Download PDF

Info

Publication number
JP4590072B2
JP4590072B2 JP2000235027A JP2000235027A JP4590072B2 JP 4590072 B2 JP4590072 B2 JP 4590072B2 JP 2000235027 A JP2000235027 A JP 2000235027A JP 2000235027 A JP2000235027 A JP 2000235027A JP 4590072 B2 JP4590072 B2 JP 4590072B2
Authority
JP
Japan
Prior art keywords
layer
transport layer
light emission
light emitting
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000235027A
Other languages
Japanese (ja)
Other versions
JP2002047274A (en
Inventor
睦美 鈴木
正雄 福山
義和 堀
俊秀 木村
鉄蔵 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Hodogaya Chemical Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2000235027A priority Critical patent/JP4590072B2/en
Publication of JP2002047274A publication Critical patent/JP2002047274A/en
Application granted granted Critical
Publication of JP4590072B2 publication Critical patent/JP4590072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【0001】
本発明は、各種の表示装置として広範囲に利用される、安定性に優れかつ高効率な有機電界発光素子に利用可能なベンゾイミダゾール誘導体に関するものである。
【0002】
【従来の技術】
電界発光素子は、自己発光のために液晶素子にくらべて明るく、鮮明な表示が可能であるため、古くから多くの研究者によって研究されてきた。現在実用レベルに達した電界発光素子としては、無機材料のZnSを用いた素子がある。しかし、このような無機の電界発光素子は、発光のための駆動電圧として200V以上が必要であるため、広く使用されるには至っていない。
【0003】
これに対して、有機材料を用いた電界発光素子である有機電界発光素子は、従来、実用的なレベルからはほど遠いものであったが、1987年にイーストマン・コダック社のC.W.Tangらによって開発された積層構造素子によりその特性が飛躍的に進歩した。彼らは蒸着膜の構造が安定で電子を輸送することのできる蛍光体からなる層(電子輸送性発光層)と、正孔を輸送することのできる有機物からなる層(正孔輸送層)とを積層し、両方のキャリヤーを蛍光体中に注入して発光させることに成功した。これによって有機電界発光素子の発光効率が向上し、10V以下の電圧で1000cd/m2 以上の発光が得られるようになった。その後、多くの研究者によってその特性向上のための研究が行われ、現在では10000cd/m2 以上の発光特性が得られている。
【0004】
このような有機電界発光素子においては、素子の有機層・電極を構成する有機材料・金属材料によって特性が大きく変化する。特に有機層は、電荷の輸送・再結合・発光といった重要な機能を果たしており、特性の優れた素子を実現するには、それぞれの層の機能に適した材料を選択することが重要である。また、使用する材料の特性に応じた素子構成を用いることは特性の優れた素子を得るために重要である。
【0005】
発光層用の材料としては数多くの化合物群が検討されている。また、製膜性に優れた材料の中に蛍光性の色素を少量分散させた膜を発光層として用いることにより、素子の高効率化、長寿命化および発光色の調整をすることも検討されている。この手法は、単独では結晶化しやすい、あるいは濃度消光を起こしやすい蛍光色素に対して非常に有効である。
【0006】
電荷輸送層は、正孔輸送層と電子輸送層に大別される。それぞれ、電極からの電荷の注入を容易にし、注入された電荷を発光領域まで輸送するという働きをする。正孔輸送層のための材料としては、陽極からの正孔の注入を容易にするため、HOMOレベルの小さく、かつ正孔輸送性の強い材料が使用される。具体的には、トリフェニルアミン誘導体が一般的に用いられている。一方、電子輸送層としては、正孔輸送性に比べて電子輸送性の強い材料が使用される。具体的には、オキサジアゾール誘導体やトリス(8−ヒドロキシキノリラト)アルミニウム(Alq3)などに代表されるキノリノール金属錯体などが検討されている。しかし、これらの材料は結晶性が高かったり、可視光の領域に吸収を有しているなど、電子輸送層の材料として充分な特性が得られていなかった。
【0007】
また、電荷輸送層と発光層に用いる材料の組み合わせによっては、電圧印加時に発光層からの発光と同時に、電荷輸送層からの発光が観測される場合がある。このような現象は初期特性の低下や連続駆動時の発光色変化を引き起こす原因となりうる。電荷輸送層からの発光を抑制するために、発光層と電荷輸送層の間に正孔阻止層あるいは電子阻止層の挿入することが検討されている。正孔阻止層は、正孔が発光層から電子輸送層に注入されることを、電子阻止層は、電子が発光層から正孔輸送層に注入されることをそれぞれ抑制している。このような働きをする層が挿入されることにより、電荷輸送層での電荷の再結合が起こらなくなり、電荷輸送層からの発光が抑制される。また、このような機能を果たす層を構成する材料として、これまでにもいくつか検討されている。特に正孔阻止層に関しては、トリアゾール誘導体(特開平7−41759)、アルミニウム混合配位子錯体、アルミニウム二核錯体(特開平11−40367)などが検討されている。しかし、いずれの材料も膜の安定性に欠けるために素子の安定性を大きく損なったり、正孔を阻止する機能が不十分であるなど、満足な特性が得られていなかった。
【0008】
【発明が解決しようとする課題】
本発明の目的は、駆動耐久性に優れかつ高効率な有機電界発光素子を実現するベンゾイミダゾール誘導体にある。
【0009】
【課題を解決するための手段】
本発明は、式(2)で表されるベンゾイミダゾール誘導体であり、これを有機電界発光素子の有機層の構成材料として用いることにより、駆動耐久性に優れかつ高効率な有機電界発光素子を実現できるという作用を有する。
【化1】

Figure 0004590072
【0016】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて具体的に説明する。
(実施の形態1)
図1は本発明による有機電界発光素子の一形態を示す断面図である。基板1上に陽極2を形成し、その上に正孔輸送層3、発光層4、正孔阻止層5、電子輸送層6、陰極7を形成したものである。
【0017】
基板1の材質としては、ガラスが一般的であるが、PETなどのプラスティックフィルムを用いることも可能である。 陽極2は、正孔注入電極として作用するため、インジウム錫酸化物(ITO)、金など仕事関数の大きい材料を用いるのが望ましい。正孔輸送層3には、前述の通り、トリフェニルアミン誘導体などのHOMOレベルが小さい正孔輸送性の強い材料が使用される。発光層4には、各種の蛍光材料が用いられている。また2種類以上の蛍光材料を混合して発光層4として用いることもできる。正孔阻止層5としては、正孔輸送性の低い材料を用いるのが望ましく、膜厚は1nm以上あればよい。この層に本発明のベンゾイミダゾール誘導体を用いることにより、より特性の優れた有機電界発光素子を得ることができる。電子輸送層6には、前述の通り、電子輸送性の強い材料を使用する。陰極7には、電子の注入を容易にするため、仕事関数の小さい金属を使用するが、安定性を増すために2種類以上の金属を合金化して用いてもよい。
【0018】
(実施の形態2)
図2は本発明による有機電界発光素子の別の一形態を示す断面図である。基板11上に陽極12を形成し、その上に正孔輸送層13、発光層14、電子輸送層16、陰極17を形成したものである。
【0019】
基板11、陽極12、正孔輸送層13、発光層14、陰極17には、実施の形態1で説明した基板1、陽極2、正孔輸送層3、発光層4、陰極7と同様な材料を用いることができる。電子輸送層16としては、本発明によるベンゾイミダゾール誘導体を用いることにより、より特性の優れた有機電界発光素子を得ることができる。
【0020】
なお、以上の説明では正孔輸送層、発光層、電子輸送層がそれぞれ一層から構成される例で説明したが、2つの層の有する機能を1つの層で兼ねる場合や、各層が複数の材料から構成される場合も同様に実施可能である。また、新たな機能を有する層を挿入することも可能である。
【0021】
【実施例】
以下、より具体的な本発明の実施例について代表的に説明する。これらによって本発明は限定されないことは言うまでもない。
【0022】
(実施例1) 1,1’−(4,4’−ビフェニレン)−ビス(2-フェニルベンゾイミダゾール)の合成
50mlフラスコに2−フェニルベンゾイミダゾール2.5g、ジヨードビフェニル2.4g、炭酸カリウム0.9g、銅粉0.2g、n−ヘプタデカン20mlを入れ、窒素雰囲気下に40時間加熱還流攪拌した。熱ろ過を行った後、路駅を蒸留してn−ヘプタデカンを回収した。残さをシリカゲルカラムで精製して、(化9)に示す化合物(2)である1,1’−(4,4’−ビフェニレン)−ビス(2−フェニルベンゾイミダゾール)0.3gを得た。融点は275〜297℃であった。
【化9】
Figure 0004590072
得られた白色粉体をエレクトロン励起マススペクトルで分析したところ、化合物(2)に相当する分子量538の親ピークが検出された。さらに13C−NMRで化学構造を分析した。測定結果は図3の通りであった。13C−NMRにより15個の芳香族炭素を検出した(110.30,119.92,123.07,123.40,127.76,128.28,128.32,129.40,129.43,129.76,136.55,136.93,139.65,142.90,152.20ppm)。以上のマススペクトルおよび13C−NMRの結果を総合して、白色粉体の構造が化合物(2)の通りであると同定した。
【0023】
(実施例2)
基板1にはガラス上に透明な陽極2としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた。この基板を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10-4 Paまで排気した。その後、正孔輸送層3を兼ねる発光層4としてN,N'-ビス[4'-(N,N-ジフェニルアミノ)-4-ビフェニリル]-N,N'-ジフェニルベンジジン(TPT)を50nm製膜した。その後、正孔阻止層5として上記化合物(2)を25nm製膜した。さらに、電子輸送層6としてAlq3を25nm製膜した後、陰極7としてAlLi合金を150nmの厚さで製膜し、素子を作成した。これらの製膜は一度も真空を破ることなく、連続して行った。なお、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引き続き特性測定を行った。得られた素子に電圧を印加したところ、均一な青色の発光が得られた。10mA/cm2の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧8.7V、発光輝度は31cd/m2であった。この素子を乾燥窒素中において、初期輝度30cd/m2で連続駆動(定電流)したところ、一時間以上発光が持続した。
【0024】
(実施例3)
基板1にはガラス上に透明な陽極2としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた。この基板を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10-4 Paまで排気した。その後、正孔輸送層3としてTPTを50nm、発光層4として(化10)に示す化合物(3)を25nm製膜した。
【化10】
Figure 0004590072
その後、正孔阻止層5として(化9)に示す化合物(2)を5nm製膜した。さらに、電子輸送層6としてAlq3を25nm製膜した後、陰極7としてAlLi合金を150nmの厚さで製膜し、素子を作成した。これらの製膜は一度も真空を破ることなく、連続して行った。なお、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引き続き特性測定を行った。得られた素子に電圧を印加したところ、均一な緑青色の発光が得られた。10mA/cm2の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧4.6V、発光輝度は87cd/m2であった。この素子を乾燥窒素中において、初期輝度30cd/m2で連続駆動(定電流)したところ、一時間以上発光が持続した。
【0025】
(比較例1)
正孔阻止層5に(化11)に示すトリアゾール誘導体(4)を用いたこと以外は実施例2と同様に素子を作成した。
【化11】
Figure 0004590072
得られた素子に電圧を印加したところ、均一な青色の発光が得られた。10mA/cm2の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧10.1V、発光輝度は28cd/m2であった。この素子を乾燥窒素中において、初期輝度30cd/m2で連続駆動(定電流)したところ、駆動開始後45分で電極間が短絡し発光しなくなった。
【0026】
実施例2と実施例3および比較例1の結果より、実施例2および実施例3の電界発光素子は、比較例1の電界発光素子に比べて駆動耐久性に優れ、高効率であり、かつ所望の有機層を発光させる利点を有することが明らかになった。
【0027】
(実施例4)
基板11にはガラス上に透明な陽極12としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた。この基板を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10-4 Paまで排気した。正孔輸送層13を兼ねる発光層14としてTPTを50nm製膜した。その後、電子輸送層16として上記化合物(2)を50nm製膜した後、陰極17としてAlLi合金を150nmの厚さで製膜し、素子を作成した。これらの製膜は一度も真空を破ることなく、連続して行った。なお、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引き続き特性測定を行った。得られた素子に電圧を印加したところ、均一な青色の発光が得られた。10mA/cm2の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧13V、発光輝度は10cd/m2であった。
【0028】
(比較例2)
電子輸送層16として(化12)に示すオキサジアゾール誘導体(5)を用いたこと以外は実施例3と同様に素子を作成した。
【化12】
Figure 0004590072
得られた素子に電圧を印加したところ、均一な水色の発光が得られた。ELスペクトルを測定したところ、正孔輸送層13を兼ねる発光層14であるTPTではなく、電子輸送層16のオキサジアゾール誘導体(5)が発光していることが分かった。
【0029】
実施例4および比較例2の結果より、実施例4の電界発光素子は比較例2の電界発光素子に比べて高効率であり、かつ所望の有機層を発光させることができるという利点が明らかになった。
【0030】
【発明の効果】
本発明は、上記式(2)のベンゾイミダゾール誘導体を有機電界発光素子の有機層の構成材料として用いることにより、駆動耐久性に優れ、高効率で、かつ所望の有機層を発光させることが可能な有機電界発光素子を実現できるという有利な効果を有する。
【図面の簡単な説明】
【図1】本発明における有機電界発光素子の一実施の形態を示す模式断面図
【図2】本発明における有機電界発光素子の別の実施の形態を示す模式断面図
【図3】本発明の化合物(2)を測定した13C−NMRスペクトル図
【符号の説明】
1、11 基板
2、12 陽極
3、13 正孔輸送層
4、14 発光層
5 正孔阻止層
6、16 電子輸送層
7、17 陰極[0001]
The present invention, Ru is widely used as various display devices, it relates to good and benzimidazole derivatives available to highly efficient organic electroluminescent device stability.
[0002]
[Prior art]
Electroluminescent devices have been studied by many researchers for a long time because they are brighter and clearer than liquid crystal devices because of self-luminescence. As an electroluminescent element which has reached a practical level at present, there is an element using an inorganic material ZnS. However, such an inorganic electroluminescent element has not been widely used since a driving voltage for light emission of 200 V or more is necessary.
[0003]
On the other hand, an organic electroluminescent element, which is an electroluminescent element using an organic material, has been far from a practical level, but in 1987, Eastman Kodak's C.I. W. The characteristics of the multilayer structure element developed by Tang et al. They have a layer made of a phosphor (electron transporting light-emitting layer) that has a stable deposited film structure and can transport electrons, and a layer made of an organic substance that can transport holes (hole transporting layer). It was successfully laminated and both carriers were injected into the phosphor to emit light. As a result, the light emission efficiency of the organic electroluminescence device was improved, and light emission of 1000 cd / m 2 or more was obtained at a voltage of 10 V or less. Since then, many researchers have conducted research for improving the characteristics, and currently, emission characteristics of 10,000 cd / m 2 or more have been obtained.
[0004]
In such an organic electroluminescent element, the characteristics vary greatly depending on the organic material / metal material constituting the organic layer / electrode of the element. In particular, the organic layer performs important functions such as charge transport, recombination, and light emission. In order to realize a device having excellent characteristics, it is important to select a material suitable for the function of each layer. In addition, it is important to use an element structure corresponding to the characteristics of the material to be used in order to obtain an element having excellent characteristics.
[0005]
Numerous compound groups have been studied as materials for the light emitting layer. In addition, by using a film in which a small amount of a fluorescent dye is dispersed in a material excellent in film-forming properties as a light-emitting layer, it is also considered to improve the efficiency of the device, extend the life, and adjust the light emission color. ing. This technique is very effective for fluorescent dyes that are easily crystallized or cause concentration quenching.
[0006]
The charge transport layer is roughly classified into a hole transport layer and an electron transport layer. Each serves to facilitate injection of charges from the electrodes and to transport the injected charges to the light emitting region. As a material for the hole transport layer, a material having a small HOMO level and a strong hole transport property is used in order to facilitate injection of holes from the anode. Specifically, triphenylamine derivatives are generally used. On the other hand, as the electron transport layer, a material having a stronger electron transport property than the hole transport property is used. Specifically, quinolinol metal complexes represented by oxadiazole derivatives and tris (8-hydroxyquinolinato) aluminum (Alq 3 ) are being studied. However, these materials have high crystallinity and have absorption in the visible light region, so that sufficient characteristics as an electron transport layer material have not been obtained.
[0007]
Further, depending on the combination of materials used for the charge transport layer and the light emitting layer, light emission from the charge transport layer may be observed simultaneously with light emission from the light emitting layer when a voltage is applied. Such a phenomenon can cause a decrease in initial characteristics and a change in emission color during continuous driving. In order to suppress light emission from the charge transport layer, it has been studied to insert a hole blocking layer or an electron blocking layer between the light emitting layer and the charge transport layer. The hole blocking layer suppresses injection of holes from the light emitting layer into the electron transport layer, and the electron blocking layer suppresses injection of electrons from the light emitting layer into the hole transport layer. By inserting the layer having such a function, charge recombination does not occur in the charge transport layer, and light emission from the charge transport layer is suppressed. Further, several materials have been studied as materials for forming a layer that performs such a function. In particular, for the hole blocking layer, triazole derivatives (Japanese Patent Laid-Open No. 7-41759), aluminum mixed ligand complexes, aluminum binuclear complexes (Japanese Patent Laid-Open No. 11-40367) and the like have been studied. However, none of the materials has satisfactory characteristics such as a lack of stability of the film, greatly impairing the stability of the device, and insufficient function of blocking holes.
[0008]
[Problems to be solved by the invention]
An object of the present invention is benzimidazole derivatives for superior and highly efficient organic electroluminescent device to drive the dynamic durability.
[0009]
[Means for Solving the Problems]
The present invention, Ri benzimidazole derivatives der of the formula (2), by using it as the material of the organic layer of the organic electroluminescent device, an excellent and highly efficient organic electroluminescent device driving durability It has the effect that it can be realized.
[Chemical 1]
Figure 0004590072
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a cross-sectional view showing an embodiment of an organic electroluminescent device according to the present invention. An anode 2 is formed on a substrate 1, and a hole transport layer 3, a light emitting layer 4, a hole blocking layer 5, an electron transport layer 6 and a cathode 7 are formed thereon.
[0017]
The material of the substrate 1 is generally glass, but it is also possible to use a plastic film such as PET. Since the anode 2 functions as a hole injection electrode, it is desirable to use a material having a high work function such as indium tin oxide (ITO) or gold. As described above, the hole transport layer 3 is made of a material having a low hole transportability such as a triphenylamine derivative and having a small HOMO level. Various fluorescent materials are used for the light emitting layer 4. Further, two or more kinds of fluorescent materials can be mixed and used as the light emitting layer 4. As the hole blocking layer 5, it is desirable to use a material having a low hole transporting property, and the film thickness may be 1 nm or more. By using the benzimidazole derivative of the present invention for this layer, an organic electroluminescent device having more excellent characteristics can be obtained. As described above, the electron transport layer 6 is made of a material having a strong electron transport property. In order to facilitate the injection of electrons, a metal having a small work function is used for the cathode 7, but two or more kinds of metals may be alloyed to increase the stability.
[0018]
(Embodiment 2)
FIG. 2 is a cross-sectional view showing another embodiment of the organic electroluminescent device according to the present invention. An anode 12 is formed on a substrate 11, and a hole transport layer 13, a light emitting layer 14, an electron transport layer 16 and a cathode 17 are formed thereon.
[0019]
For the substrate 11, the anode 12, the hole transport layer 13, the light emitting layer 14, and the cathode 17, the same materials as those of the substrate 1, the anode 2, the hole transport layer 3, the light emitting layer 4, and the cathode 7 described in Embodiment 1. Can be used. By using the benzimidazole derivative according to the present invention as the electron transport layer 16, an organic electroluminescent device having more excellent characteristics can be obtained.
[0020]
In the above description, the hole transporting layer, the light emitting layer, and the electron transporting layer are described as being composed of one layer. However, when the functions of the two layers are combined in one layer, each layer has a plurality of materials. It can be similarly implemented also in the case of comprising. It is also possible to insert a layer having a new function.
[0021]
【Example】
Hereinafter, more specific examples of the present invention will be described representatively. Needless to say, the present invention is not limited by these.
[0022]
Example 1 Synthesis of 1,1 ′-(4,4′-biphenylene) -bis (2-phenylbenzimidazole) In a 50 ml flask, 2.5 g of 2-phenylbenzimidazole, 2.4 g of diiodobiphenyl, potassium carbonate 0.9 g, 0.2 g of copper powder, and 20 ml of n-heptadecane were added, and the mixture was heated to reflux with stirring under a nitrogen atmosphere for 40 hours. After performing hot filtration, the road station was distilled to recover n-heptadecane. The residue was purified by a silica gel column to obtain 0.3 g of 1,1 ′-(4,4′-biphenylene) -bis (2-phenylbenzimidazole) which is the compound (2) shown in (Chemical Formula 9). The melting point was 275-297 ° C.
[Chemical 9]
Figure 0004590072
When the obtained white powder was analyzed by an electron excitation mass spectrum, a parent peak having a molecular weight of 538 corresponding to the compound (2) was detected. Further, the chemical structure was analyzed by 13C-NMR. The measurement results were as shown in FIG. 15 aromatic carbons were detected by 13C-NMR (110.30, 119.92, 123.07, 123.40, 127.76, 128.28, 128.32, 129.40, 129.43, 129.76, 136.55, 136.93, 139.65, 142.90, 152.20 ppm). By combining the above mass spectrum and 13C-NMR results, it was identified that the structure of the white powder was as in Compound (2).
[0023]
(Example 2)
As the substrate 1, an indium tin oxide film (ITO) was previously formed on a glass as a transparent anode 2 and patterned into an electrode shape. The substrate was thoroughly cleaned, set in a vacuum apparatus together with the material to be deposited, and evacuated to 10 −4 Pa. Thereafter, N, N′-bis [4 ′-(N, N-diphenylamino) -4-biphenylyl] -N, N′-diphenylbenzidine (TPT) made of 50 nm is used as the light-emitting layer 4 that also serves as the hole transport layer 3. Filmed. Thereafter, the compound (2) was formed to a thickness of 25 nm as the hole blocking layer 5. Further, Alq 3 was deposited to a thickness of 25 nm as the electron transport layer 6, and then an AlLi alloy was deposited to a thickness of 150 nm as the cathode 7 to prepare an element. These films were formed continuously without breaking the vacuum. The film thickness was monitored with a crystal resonator. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen, and then the characteristics were measured. When voltage was applied to the resulting device, uniform blue light emission was obtained. When the drive voltage and the light emission luminance when a current of 10 mA / cm 2 was applied were measured, the drive voltage was 8.7 V and the light emission luminance was 31 cd / m 2 . When this element was continuously driven (constant current) at an initial luminance of 30 cd / m 2 in dry nitrogen, light emission was sustained for one hour or longer.
[0024]
(Example 3)
As the substrate 1, an indium tin oxide film (ITO) was previously formed on a glass as a transparent anode 2 and patterned into an electrode shape. The substrate was thoroughly cleaned, set in a vacuum apparatus together with the material to be deposited, and evacuated to 10 −4 Pa. Thereafter, TPT was formed to 50 nm as the hole transport layer 3, and the compound (3) represented by (Chemical Formula 10) was formed to 25 nm as the light emitting layer 4.
[Chemical Formula 10]
Figure 0004590072
Thereafter, a compound (2) represented by (Chemical Formula 9) was formed into a 5 nm film as the hole blocking layer 5. Further, Alq 3 was deposited to a thickness of 25 nm as the electron transport layer 6, and then an AlLi alloy was deposited to a thickness of 150 nm as the cathode 7 to prepare an element. These films were formed continuously without breaking the vacuum. The film thickness was monitored with a crystal resonator. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen, and then the characteristics were measured. When voltage was applied to the resulting device, uniform green-blue light emission was obtained. When the drive voltage and the light emission luminance when a current of 10 mA / cm 2 was applied were measured, the drive voltage was 4.6 V and the light emission luminance was 87 cd / m 2 . When this element was continuously driven (constant current) at an initial luminance of 30 cd / m 2 in dry nitrogen, light emission was sustained for one hour or longer.
[0025]
(Comparative Example 1)
A device was prepared in the same manner as in Example 2 except that the triazole derivative (4) shown in (Chemical Formula 11) was used for the hole blocking layer 5.
Embedded image
Figure 0004590072
When voltage was applied to the resulting device, uniform blue light emission was obtained. When the drive voltage and the light emission luminance when a current of 10 mA / cm 2 was applied were measured, the drive voltage was 10.1 V and the light emission luminance was 28 cd / m 2 . When this element was continuously driven (constant current) in dry nitrogen at an initial luminance of 30 cd / m 2 , the electrodes were short-circuited 45 minutes after the start of driving and no light was emitted.
[0026]
From the results of Example 2, Example 3, and Comparative Example 1, the electroluminescent elements of Examples 2 and 3 are superior in driving durability and high efficiency as compared to the electroluminescent element of Comparative Example 1, and It has been found that it has the advantage of emitting the desired organic layer.
[0027]
Example 4
As the substrate 11, an indium tin oxide film (ITO) was previously formed as a transparent anode 12 on glass and patterned into an electrode shape. The substrate was thoroughly cleaned, set in a vacuum apparatus together with the material to be deposited, and evacuated to 10 −4 Pa. As the light emitting layer 14 that also serves as the hole transport layer 13, a TPT film was formed to a thickness of 50 nm. Thereafter, the compound (2) was deposited to a thickness of 50 nm as the electron transport layer 16, and then an AlLi alloy was deposited to a thickness of 150 nm as the cathode 17 to prepare an element. These films were formed continuously without breaking the vacuum. The film thickness was monitored with a crystal resonator. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen, and then the characteristics were measured. When voltage was applied to the resulting device, uniform blue light emission was obtained. When the drive voltage and the light emission luminance when a current of 10 mA / cm 2 was applied were measured, the drive voltage was 13 V and the light emission luminance was 10 cd / m 2 .
[0028]
(Comparative Example 2)
A device was prepared in the same manner as in Example 3 except that the oxadiazole derivative (5) shown in (Chemical Formula 12) was used as the electron transport layer 16.
Embedded image
Figure 0004590072
When voltage was applied to the resulting device, uniform light-blue light emission was obtained. When the EL spectrum was measured, it was found that the oxadiazole derivative (5) in the electron transport layer 16 was emitting light, not the TPT that was the light emitting layer 14 that also served as the hole transport layer 13.
[0029]
From the results of Example 4 and Comparative Example 2, it is clear that the electroluminescent device of Example 4 is more efficient than the electroluminescent device of Comparative Example 2 and that the desired organic layer can emit light. became.
[0030]
【The invention's effect】
In the present invention, by using the benzimidazole derivative of the above formula (2) as a constituent material of the organic layer of the organic electroluminescence device, it is excellent in driving durability, can efficiently emit a desired organic layer. Advantageous organic electroluminescence device can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of an organic electroluminescent element in the present invention. FIG. 2 is a schematic cross-sectional view showing another embodiment of the organic electroluminescent element in the present invention. 13C-NMR spectrum of compound (2) measured
1, 11 Substrate 2, 12 Anode 3, 13 Hole transport layer 4, 14 Light-emitting layer 5, Hole blocking layer 6, 16 Electron transport layer 7, 17 Cathode

Claims (1)

式(2)で表されるベンゾイミダゾール誘導体。
Figure 0004590072
A benzimidazole derivative represented by the formula (2) .
Figure 0004590072
JP2000235027A 2000-08-02 2000-08-02 Benzimidazole derivatives Expired - Fee Related JP4590072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235027A JP4590072B2 (en) 2000-08-02 2000-08-02 Benzimidazole derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235027A JP4590072B2 (en) 2000-08-02 2000-08-02 Benzimidazole derivatives

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010175348A Division JP4938116B2 (en) 2010-08-04 2010-08-04 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2002047274A JP2002047274A (en) 2002-02-12
JP4590072B2 true JP4590072B2 (en) 2010-12-01

Family

ID=18727305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235027A Expired - Fee Related JP4590072B2 (en) 2000-08-02 2000-08-02 Benzimidazole derivatives

Country Status (1)

Country Link
JP (1) JP4590072B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004080975A1 (en) 2003-03-13 2004-09-23 Idemitsu Kosan Co., Ltd. Nitrogen-containing heterocycle derivative and organic electroluminescent element using the same
WO2005097756A1 (en) * 2004-04-07 2005-10-20 Idemitsu Kosan Co., Ltd. Nitrogenous heterocycle derivative and organic electroluminescent element employing the same
KR101192512B1 (en) 2004-04-07 2012-10-17 이데미쓰 고산 가부시키가이샤 Nitrogenous heterocycle derivative and organic electroluminescent element employing the same
KR101384046B1 (en) * 2006-05-11 2014-04-09 이데미쓰 고산 가부시키가이샤 Organic electroluminescent device
KR101474797B1 (en) * 2011-08-08 2014-12-19 제일모직 주식회사 Compound for organic optoelectronic device and organic light emitting diode including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410012A (en) * 1993-03-05 1995-04-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Poly(N-arylenebenzimidazoles) via aromatic nucleophilic displacement

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140058A (en) * 1997-11-04 1999-05-25 Honshu Chem Ind Co Ltd Heterocyle-containing bipheyldiol compound
JP4120059B2 (en) * 1998-09-24 2008-07-16 コニカミノルタホールディングス株式会社 Novel benzimidazole compounds, their production and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410012A (en) * 1993-03-05 1995-04-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Poly(N-arylenebenzimidazoles) via aromatic nucleophilic displacement

Also Published As

Publication number Publication date
JP2002047274A (en) 2002-02-12

Similar Documents

Publication Publication Date Title
US7977862B2 (en) Organic light emitting devices
JP4325197B2 (en) Organic electroluminescence device
JPH11162643A (en) Organic electroluminescent element
JPH0896959A (en) Organic electroluminescent element
JPH1088122A (en) Organic electroluminescent element
JP3227784B2 (en) Organic electroluminescent device
JP2001313177A (en) Organic electroluminescent element
JPH0665569A (en) Electroluminescent element
JP2000133458A (en) Organic electroluminescent element
JPH10233288A (en) Organic el element
JP4590072B2 (en) Benzimidazole derivatives
JPH10284252A (en) Organic el element
JP2006024898A (en) Hole-blocking material and organic electroluminescence element
JP2004026732A (en) Asymmetric 1,4-phenylenediamine derivative, and organic electroluminescent device using the same
JP2940514B2 (en) Organic electroluminescent device
JP2004359671A (en) Aluminum-mixed ligand complex compound, charge transport material, material for organic electroluminescent element, and organic electroluminescent element
JP3664069B2 (en) Organic electroluminescence device
JP3910010B2 (en) Organic electroluminescence device
JP2005101017A (en) Organic electroluminescent element
JP2000106277A (en) Organic electroluminescence element
JP4607268B2 (en) Organic electroluminescence device
JP2002110365A (en) Transparent electrode substrate for organic electroluminescent display element and organic electroluminescent display element
JP3555271B2 (en) Blue light emitting element
JP4938116B2 (en) Organic electroluminescence device
JP3736881B2 (en) Organic thin film EL device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees