JP4607268B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP4607268B2
JP4607268B2 JP21824899A JP21824899A JP4607268B2 JP 4607268 B2 JP4607268 B2 JP 4607268B2 JP 21824899 A JP21824899 A JP 21824899A JP 21824899 A JP21824899 A JP 21824899A JP 4607268 B2 JP4607268 B2 JP 4607268B2
Authority
JP
Japan
Prior art keywords
electron transport
transport layer
emitting layer
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21824899A
Other languages
Japanese (ja)
Other versions
JP2001043976A (en
Inventor
睦美 鈴木
正雄 福山
義和 堀
祐治 工藤
俊秀 木村
鉄蔵 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Hodogaya Chemical Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP21824899A priority Critical patent/JP4607268B2/en
Publication of JP2001043976A publication Critical patent/JP2001043976A/en
Application granted granted Critical
Publication of JP4607268B2 publication Critical patent/JP4607268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【発明の属する技術分野】
【0001】
本発明は、各種の表示装置として広範囲に利用される発光素子であって、高効率かつ安定性に優れた有機電界発光素子に関するものである。
【0002】
【従来の技術】
電界発光素子は、自己発光のために液晶素子にくらべて明るく、鮮明な表示が可能であるため、古くから多くの研究者によって研究されてきた。現在実用レベルに達した電界発光素子としては、無機材料のZnSを用いた素子がある。しかし、この様な無機の電界発光素子は、発光のための駆動電圧として200V以上が必要であるため、広く使用されるには至っていない。
【0003】
これに対して有機材料を用いた電界発光素子である有機電界発光素子は、従来実用的なレベルからはほど遠いものであったが、1987年にイーストマン・コダック社のC.W.Tangらによって開発された積層構造素子によりその特性が飛躍的に進歩した。彼らは蒸着膜の構造が安定で電子を輸送することのできる蛍光体からなる層(電子輸送性発光層)と、正孔を輸送することのできる有機物からなる層(正孔輸送層)とを積層し、両方のキャリヤーを蛍光体中に注入して発光させることに成功した。これによって有機電界発光素子の発光効率が向上し、10V以下の電圧で1000cd/m2 以上の発光が得られる様になった。その後多くの研究者によってその特性向上のための研究が行われ、現在では10000cd/m2 以上の発光特性が得られている。
【0004】
この様な有機電界発光素子においては、素子を構成する有機材料・電極材料によって特性が大きく変化する。特に有機材料は、電荷の輸送・再結合・発光といった重要な機能を果たしており、特性の優れた素子を実現するには、それぞれの機能に適した材料を選択することが重要である。有機電界発光素子は電荷注入型のデバイスであるため、電荷輸送材料の選択がとりわけ重要となる。
【0005】
電荷輸送材料は、正孔輸送材料と電子輸送材料に大別される。正孔輸送材料としてはトリフェニルアミン誘導体が一般的に用いられている。一方、電子輸送材料としては、オキサジアゾール誘導体やトリアゾール誘導体の使用が検討されている。しかし、これらの材料を用いた膜は凝集を起こしやすく、素子に用いた場合耐久性が著しく悪くなるといった問題点がある。
【0006】
これらの誘導体以外に電子輸送材料としての検討が行われている材料にキノリノール系金属錯体があげられる。これまでに検討されている代表的な材料としては、化3に示すトリス(8−ヒドロキシキノリン)アルミニウム(Alq)がある。
【化3】

Figure 0004607268
【0007】
また、特開平9−272865では、2位に置換基を有する8−ヒドロキシキノリノールを配位子とした金属錯体が電子輸送材料として優れた特性を示すとされている。
【0008】
しかし、いずれの場合も発光効率・駆動耐久性ともに、実用化するためには不十分な特性しか得られていない。
【0009】
【発明が解決しようとする課題】
本発明の目的は、有機電界発光素子に用いる有機材料およびその使用法を改良することによって、発光効率が高く駆動耐久性に優れた有機電界発光素子を実現することにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するため、有機電界発光素子を、一対の電極とその間に挟まれた少なくとも一層以上の有機層を有し、有機層の一つが電子輸送層であるか、または発光層であるように構成し、その構成材料に4価の中心金属を有する金属錯体を用いたことを要旨とする。このことにより、素子内での電荷、特に電子の輸送がスムーズになり分子の電子輸送能が向上し、或いは素子の発光効率が向上し、かつ安定性に優れ、駆動耐久性が向上するという作用を有する。
【0011】
かかる本発明の一構成態様として、本発明は、一対の電極とその間に挟まれた少なくとも二層以上の有機層を有し、有機層が、少なくとも発光層及び電子輸送層であり、電子輸送層の構成材料が下記の化4で表される化合物からなることを特徴とする有機電界発光素子である。
【化4】
Figure 0004607268
【0015】
本発明は、前記化合物において、Mで表される金属原子がジルコニウムであることを特徴とする、有機電界発光素子である。かかる構成の有機電界発光素子において、中心金属をジルコニウムにすることにより、より一層電子輸送能が向上し、優れた特性の有機電界発光素子を実現することができた。
【0016】
【発明の実施の形態】
以下に、本発明の実施の形態について、図面を用いて具体的に説明する。図1は本発明による有機電界発光素子の一実施の形態の概略構成を示す断面図である。この有機電界発光素子は、ガラス基板1上に陽極2を形成し、その上に正孔輸送層3、発光層4、電子輸送層5、陰極6をガラス基板1側から順に積層させて形成したものである。
【0017】
このような構成において、陽極2としては有機層に正孔を注入できる材料が用いられる。具体的にはインジウム錫酸化物(ITO)や金、導電性の高分子材料などがあげられる。
【0018】
正孔輸送層3を形成する材料としては、正孔の移動度が大きいこと、ピンホールのない薄膜が形成できること、および発光層4の蛍光に対して透明であることが必要とされる。これらの要件を満たす代表的な材料としてはテトラフェニルベンジジン誘導体等があげられるが、これに限定されるものではない。また、正孔輸送層3は、通常、抵抗加熱による蒸着法で作製するが、ポリカーボネート等のポリマー中に前記の材料を分散したものをスピンコート法やキャスト法で製膜しても良いし、ポリビニルカルバゾールやポリパラフェニレンビニレンのように、正孔輸送能を有するポリマーの場合には、単独でスピンコート法等により製膜して用いても良い。
【0019】
発光層4としては、蛍光を有していること、電子と正孔の再結合により励起子を生成することができることが求められる。通常、抵抗加熱による蒸着法で作製するが、ポリカーボネート等のポリマー中に前記の材料を分散したものをスピンコート法やキャスト法で製膜して用いても良い。
【0020】
また、製膜性に優れた材料の中に蛍光性の色素を少量分散させた膜を発光層4として用いてもよい。この手法は、単独では結晶化しやすい、あるいは濃度消光を起こしやすい蛍光色素に対して非常に有効である。
【0021】
電子輸送層5としては、電子の移動度が大きいことおよびピンホールのない薄膜が形成できることが求められる。電子輸送層5は、抵抗加熱による蒸着法で作製するが、ポリカーボネート等のポリマー中に前記の材料を分散したものをスピンコート法やキャスト法で製膜してもよく、ポリマー自身が電子輸送能を有する場合には、単独でスピンコート法等により製膜しても良い。また、2種類以上の材料を積層して電子輸送層5として用いてもよい。
【0023】
陰極6としては、有機層に電子が注入できること、かつ対環境安定性に優れていることが必要である。これらの要件を満たす金属としては、アルミニウム、マグネシウム、あるいはアルミニウムとリチウムの合金、マグネシウムと銀の合金、銀とリチウムの合金などがあげられる。また、フッ化リチウムや金属酸化物の薄膜(5nm以下)と金属(アルミニウムなど)を積層したものでも同様な効果が得られる。
【0024】
陰極6は、抵抗加熱法で製膜した。合金を用いる場合は、2種類の金属をそれぞれ独立な蒸着源から抵抗加熱法で同時に飛ばして製膜する共蒸着法によって形成する。合金の成分比は、それぞれの蒸着速度を調整することによって決定する。
【0025】
また、陰極6は、あらかじめ所定の成分比で作製した合金を用いてもよい。抵抗加熱法以外に、電子ビーム蒸着法やスパッタリング法でも作製することができる。
【0026】
以下、より詳細な本発明の実施の形態について代表的に説明する。これらによって本発明は限定されないことは言うまでもない。
【0027】
(実施例1)
基材としてはガラス基板1上に透明な陽極2としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた。この基材を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10-4Paまで排気した。その後、正孔輸送層3としてN,N'-ビス[4'-(N,N-ジフェニルアミノ)-4-ビフェニリル]-N,N'-ジフェニルベンジジン(TPT)を50nm製膜した。その後、発光層4としてAlqを25nm製膜した。さらに、電子輸送層5として化6に示すキノリノール金属錯体(1)を25nm製膜した。
【化6】
Figure 0004607268
【0028】
その後、陰極6としてAlLi合金を150nmの厚さで製膜し、素子を作製した。これらの製膜は一度も真空を破ることなく、連続して行った。なお、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引き続き特性測定を行った。得られた素子に電圧を印加したところ、520nmにピークを有する、均一な黄緑色の発光が得られた。100mA/cm2 の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.5V、発光輝度は3200cd/m2 であった。この素子を乾燥窒素中において、初期輝度1000cd/m2 で連続駆動(定電流)したところ、輝度が初期の半分である500cd/m2 になるのに要する時間(輝度半減期)は1000hであった。また、500h駆動後の電圧上昇分は0.4Vであった。
【0029】
(実施例2)
実施例1と同様に、ガラス基板1上に透明な陽極2としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた基材を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10-4Paまで排気した。その後、正孔輸送層3としてTPTを50nm製膜し、続けて発光層4として、Alqと3−(2‘−ベンゾチアゾリル)−7−ジエチルアミノクマリン(クマリン6)を同時に蒸着し、混合膜を25nm製膜した。Alqに対するクマリン6の割合を1mol%とした。次に電子輸送層5としてキノリノール金属錯体(1)を25nm製膜した。その後、陰極6としてAlLi合金を150nmの厚さで製膜し、素子を作製した。
【0030】
得られた素子に電圧を印加したところ、522nmにピークを有する、均一な黄緑色の発光が得られた。100mA/cm2 の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.3V、発光輝度は7910cd/m2 であった。この素子を乾燥窒素中において、初期輝度1000cd/m2 で連続駆動(定電流)したところ、輝度半減期は1500hであった。また、500h駆動後の電圧上昇分は0.3Vであった。
【0031】
(実施例3)
この実施例では、発光層4に用いる蛍光材料と、電子輸送層5に用いる材料を変えたこと以外は実施例1と同様にして有機電界発光素子を作製した。発光層4としては、下記の化7に示すジスチリルアリーレン誘導体(DPVBi)を用いた。
【化7】
Figure 0004607268
また、電子輸送層5としては、下記の化8に示すキノリノール金属錯体(2)を用いた。
【化8】
Figure 0004607268
【0032】
(実施例4)
この実施例においても、発光層4に用いる蛍光材料と、電子輸送層5に用いる材料を変えたこと以外は実施例1と同様にして有機電界発光素子を作製した。発光層4としては、下記の化9に示すビス(8−ヒドロキシキノリン)亜鉛(Znq)を用いた。
【化9】
Figure 0004607268
また、電子輸送層5としては、下記の化10に示すキノリノール金属錯体(3)を用いた。
【化10】
Figure 0004607268
【0033】
(実施例5)
この実施例においても、発光層4に用いる蛍光材料と、電子輸送層5に用いる材料を変えたこと以外は実施例1と同様にして有機電界発光素子を作製した。発光層4としては、上記実施例3の場合と同様に、化7に示すジスチリルアリーレン誘導体(DPVBi)、およびキノリノール金属錯体(1)である化合物を用いた。また、電子輸送層5としては、下記の化11に示すキノリノール金属錯体(4)を用いた。
【化11】
Figure 0004607268
【0034】
(実施例6)
この実施例においても、発光層4に用いる蛍光材料と、電子輸送層5に用いる材料を変えたこと以外は実施例1と同様にして有機電界発光素子を作製した。発光層4としては、キノリノール金属錯体(1)を用いた。また、電子輸送層5としては、下記の化12に示すキノリノール金属錯体(5)を用いた。
【化12】
Figure 0004607268
【0035】
これらの実施例3〜6で作製した素子に用いた発光層4および電子輸送層5の材料と、100mA/cm2 印加時の駆動電圧と発光輝度、初期輝度1000cd/m2 で連続駆動(定電流)したときの輝度半減期および500h駆動後の電圧上昇分を、実施例1、2の結果とあわせて表1に示す。
【表1】
Figure 0004607268
【0036】
(実施例7)
実施例1と同様に、ガラス基板1上に透明な陽極2としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた基材を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10-4Paまで排気した。その後、正孔輸送層3としてTPTを50nm製膜した。その後、発光層4としてキノリノール金属錯体(1)を50nm製膜した。陰極6としてAlLi合金を150nmの厚さで製膜し、素子を作製した。
【0037】
このようにして得られた素子に電圧を印加したところ、533nmにピークを有する、均一な黄緑色の発光が得られた。100mA/cm2 の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.5V、発光輝度は2710cd/m2 であった。この素子を乾燥窒素中において、初期輝度1000cd/m2 で連続駆動(定電流)したところ、輝度半減期は520hであった。また、500h駆動後の電圧上昇分は0.6Vであった
【0038】
(実施例8〜11)
発光層4に用いるキノリノール金属錯体の種類を変えたこと以外は実施例7と同様にして有機電界発光素子を作製した。これらの実施例において、発光層4に使用したキノリノール金属錯体の種類と作製した有機電界発光素子の100mA/cm2 印加時の駆動電圧と発光輝度、初期輝度1000cd/m2 で連続駆動(定電流)したときの輝度半減期および500h駆動後の電圧上昇分を実施例7の結果と合わせて表2に示す。
【表2】
Figure 0004607268
【0039】
(実施例12)
実施例1と同様に、ガラス基板1上に透明な陽極2としてインジウム錫酸化膜(ITO)をあらかじめ形成し、電極の形にパターニングしたもの用いた基材を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10-4Paまで排気した。その後、正孔輸送層3としてTPTを50nm製膜した。その後、発光層4としてキノリノール金属錯体(1)を25nm製膜した。さらに、電子輸送層5としてAlqを25nm製膜した後、陰極6としてAlLi合金を150nmの厚さで製膜し、素子を作製した。
【0040】
このようにして得られた素子に電圧を印加したところ、532nmにピークを有する、均一な黄緑色の発光が得られた。100mA/cm2 の電流を印加した場合の駆動電圧ならびに発光輝度を測定したところ、駆動電圧5.6V、発光輝度は2740cd/m2 であった。この素子を乾燥窒素中において、初期輝度1000cd/m2 で連続駆動(定電流)したところ、輝度半減期は560hであった。500h駆動後の電圧上昇分は0.4Vであった。
【0041】
(実施例13〜16)
発光層4に用いるキノリノール金属錯体と電子輸送層5に用いる材料を変えたこと以外は実施例1と同様にして有機電界発光素子を作製した。発光層4には上記化5、化6、化8、化10に示した物質を用いた。また、電子輸送材料にはAlqのほかに、下記の化13に示すtBu−PBD、および下記の化14に示すトリアゾール化合物(TAZ)を使用した。
【化13】
Figure 0004607268
【化14】
Figure 0004607268
【0042】
このようにして作製した素子に用いた発光層4および電子輸送層5の材料と、100mA/cm2 印加時の駆動電圧と発光輝度、初期輝度1000cd/m2 で連続駆動(定電流)したときの輝度半減期および500h駆動後の電圧上昇分を実施例12の結果と合わせて表3に示す。
【表3】
Figure 0004607268
【0043】
(比較例1〜6)
比較例1として、電子輸送層5に下記の化15に示すキノリノール金属錯体(6)を用いたこと以外はそれぞれ実施例1と同様に素子を作製した。
【化15】
Figure 0004607268
【0044】
また、比較例2・3として、発光層4にZnq、DPVBiを、電子輸送層5にAlqを用いたこと以外は、実施例1と同様に素子を作製した。さらに、比較例4として、電子輸送層5にAlqを用いたこと以外は実施例2と同様に作製した。また、比較例5・6として、発光層にAlq、Znqを用いたこと以外は実施例7と同様に素子を作製した。これらの素子の、100mA/cm2 印加時の駆動電圧と発光輝度、初期輝度1000cd/m2 で連続駆動(定電流)したときの輝度半減期および500h駆動後の電圧上昇分を表4に示す。
【表4】
Figure 0004607268
【0045】
表1から表4に示した結果より、本実施例で得られた素子は比較例で得られた素子よりも発光効率や駆動耐久性に優れていることが明らかになった。
【0046】
【発明の効果】
以上のように本発明によれば、発光効率が高く、駆動耐久性に優れた有機電界発光素子が得られるという有利な効果が得られる。
【図面の簡単な説明】
【図1】本発明における電界発光素子の構成を示す模式断面図
【符号の説明】
1 ガラス基板
2 陽極
3 正孔輸送層
4 発光層
5 電子輸送層
6 陰極BACKGROUND OF THE INVENTION
[0001]
The present invention relates to an organic electroluminescent element that is widely used as various display devices and has high efficiency and excellent stability.
[0002]
[Prior art]
Electroluminescent devices have been studied by many researchers for a long time because they are brighter and clearer than liquid crystal devices because of self-luminescence. As an electroluminescent element which has reached a practical level at present, there is an element using an inorganic material ZnS. However, such an inorganic electroluminescent element has not been widely used because it requires a driving voltage for light emission of 200 V or more.
[0003]
On the other hand, an organic electroluminescent element which is an electroluminescent element using an organic material has been far from a practical level. W. The characteristics of the multilayer structure element developed by Tang et al. They have a layer made of a phosphor (electron transporting light-emitting layer) that has a stable deposited film structure and can transport electrons, and a layer made of an organic substance that can transport holes (hole transporting layer). It was successfully laminated and both carriers were injected into the phosphor to emit light. As a result, the luminous efficiency of the organic electroluminescent device was improved, and light emission of 1000 cd / m @ 2 or more was obtained at a voltage of 10 V or less. Since then, many researchers have conducted research for improving the characteristics, and currently, emission characteristics of 10,000 cd / m @ 2 or more have been obtained.
[0004]
In such an organic electroluminescent element, the characteristics vary greatly depending on the organic material / electrode material constituting the element. In particular, organic materials perform important functions such as charge transport, recombination, and light emission, and it is important to select a material suitable for each function in order to realize an element with excellent characteristics. Since the organic electroluminescent element is a charge injection type device, the selection of the charge transport material is particularly important.
[0005]
Charge transport materials are roughly classified into hole transport materials and electron transport materials. As the hole transport material, a triphenylamine derivative is generally used. On the other hand, use of an oxadiazole derivative or a triazole derivative has been studied as an electron transport material. However, films using these materials are prone to agglomeration, and there is a problem that durability is remarkably deteriorated when used in an element.
[0006]
In addition to these derivatives, quinolinol-based metal complexes are examples of materials that have been studied as electron transport materials. A typical material studied so far is tris (8-hydroxyquinoline) aluminum (Alq) shown in Chemical formula 3.
[Chemical 3]
Figure 0004607268
[0007]
In Japanese Patent Laid-Open No. 9-272865, it is said that a metal complex having 8-hydroxyquinolinol having a substituent at the 2-position as a ligand exhibits excellent characteristics as an electron transporting material.
[0008]
However, in both cases, only characteristics that are insufficient for practical use are obtained in both luminous efficiency and driving durability.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to realize an organic electroluminescent element having high luminous efficiency and excellent driving durability by improving an organic material used in the organic electroluminescent element and a method for using the organic material.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has an organic electroluminescent device having a pair of electrodes and at least one organic layer sandwiched between them, and one of the organic layers is an electron transport layer, or a light emitting device. The gist is that a metal complex having a tetravalent central metal is used as a constituent material. This facilitates the transport of electric charges, particularly electrons, in the device and improves the electron transport ability of the molecule, or improves the light emission efficiency of the device, has excellent stability, and improves driving durability. Have
[0011]
As one configuration aspect of the present invention, the present invention includes a pair of electrodes and at least two or more organic layers sandwiched therebetween, and the organic layer is at least a light emitting layer and an electron transport layer, and an electron transport layer The organic electroluminescent element is characterized in that the constituent material is composed of a compound represented by the following chemical formula 4.
[Formula 4]
Figure 0004607268
[0015]
This onset Ming, in said compound, wherein the metal atom represented by M is zirconium, a chromatic electromechanical field light-emitting element. In the organic electroluminescent device having such a configuration, when the central metal is zirconium, the electron transport ability is further improved, and an organic electroluminescent device having excellent characteristics can be realized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of one embodiment of an organic electroluminescent device according to the present invention. This organic electroluminescent element was formed by forming an anode 2 on a glass substrate 1, and laminating a hole transport layer 3, a light emitting layer 4, an electron transport layer 5, and a cathode 6 in that order from the glass substrate 1 side. Is.
[0017]
In such a configuration, the anode 2 is made of a material that can inject holes into the organic layer. Specific examples include indium tin oxide (ITO), gold, and a conductive polymer material.
[0018]
As a material for forming the hole transport layer 3, it is necessary that the hole mobility is high, a thin film without a pinhole can be formed, and the light emitting layer 4 is transparent to the fluorescence. A typical material satisfying these requirements includes, but is not limited to, a tetraphenylbenzidine derivative. In addition, the hole transport layer 3 is usually produced by a vapor deposition method by resistance heating, and a film obtained by dispersing the above material in a polymer such as polycarbonate may be formed by a spin coat method or a cast method. In the case of a polymer having a hole transporting ability such as polyvinyl carbazole or polyparaphenylene vinylene, the film may be formed by spin coating or the like alone.
[0019]
The light emitting layer 4 is required to have fluorescence and generate excitons by recombination of electrons and holes. Usually, it is produced by a vapor deposition method by resistance heating. However, a material such as polycarbonate in which the above material is dispersed may be formed by spin coating or casting.
[0020]
Further, a film in which a small amount of a fluorescent pigment is dispersed in a material excellent in film forming property may be used as the light emitting layer 4. This technique is very effective for fluorescent dyes that are easily crystallized or easily cause concentration quenching.
[0021]
The electron transport layer 5 is required to have a high electron mobility and to be able to form a thin film without pinholes. The electron transport layer 5 is produced by a vapor deposition method by resistance heating. However, a film obtained by dispersing the above material in a polymer such as polycarbonate may be formed by a spin coat method or a cast method, and the polymer itself has an electron transport ability. May be formed by spin coating or the like alone. Two or more kinds of materials may be laminated and used as the electron transport layer 5.
[0023]
The cathode 6 must be capable of injecting electrons into the organic layer and excellent in environmental stability. Examples of the metal that satisfies these requirements include aluminum, magnesium, an alloy of aluminum and lithium, an alloy of magnesium and silver, and an alloy of silver and lithium. The same effect can be obtained by laminating a thin film (5 nm or less) of lithium fluoride or metal oxide and a metal (such as aluminum).
[0024]
The cathode 6 was formed by a resistance heating method. In the case of using an alloy, it is formed by a co-evaporation method in which two kinds of metals are simultaneously blown from independent vapor deposition sources by a resistance heating method. The component ratio of the alloy is determined by adjusting the respective deposition rates.
[0025]
The cathode 6 may be an alloy prepared in advance with a predetermined component ratio. In addition to the resistance heating method, it can also be produced by an electron beam evaporation method or a sputtering method.
[0026]
Hereinafter, more detailed embodiments of the present invention will be representatively described. Needless to say, the present invention is not limited by these.
[0027]
Example 1
As the substrate, an indium tin oxide film (ITO) was previously formed on the glass substrate 1 as a transparent anode 2 and patterned into an electrode shape. After thoroughly cleaning this substrate, it was set in a vacuum apparatus together with the material to be deposited and evacuated to 10 −4 Pa. Thereafter, N, N′-bis [4 ′-(N, N-diphenylamino) -4-biphenylyl] -N, N′-diphenylbenzidine (TPT) was formed into a 50 nm film as the hole transport layer 3. Thereafter, Alq was deposited to a thickness of 25 nm as the light emitting layer 4. Furthermore, the quinolinol metal complex (1) shown in Chemical formula 6 was formed into a 25 nm film as the electron transport layer 5.
[Chemical 6]
Figure 0004607268
[0028]
Thereafter, an AlLi alloy film was formed as a cathode 6 with a thickness of 150 nm to produce a device. These films were formed continuously without breaking the vacuum. The film thickness was monitored with a crystal resonator. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen, and then the characteristics were measured. When voltage was applied to the resulting device, uniform yellow-green light emission having a peak at 520 nm was obtained. When the drive voltage and the light emission luminance when a current of 100 mA / cm 2 was applied were measured, the drive voltage was 5.5 V and the light emission luminance was 3200 cd / m 2 . When this element was continuously driven (constant current) at an initial luminance of 1000 cd / m 2 in dry nitrogen, the time required for the luminance to reach 500 cd / m 2 , which is half the initial luminance (luminance half-life), was 1000 h. It was. The voltage increase after driving for 500 hours was 0.4V.
[0029]
(Example 2)
In the same manner as in Example 1, an indium tin oxide film (ITO) is previously formed on a glass substrate 1 as a transparent anode 2 and patterned into an electrode shape. And set in a vacuum apparatus and exhausted to 10 −4 Pa. Thereafter, TPT is formed into a film having a thickness of 50 nm as the hole transport layer 3, and subsequently, Alq and 3- (2′-benzothiazolyl) -7-diethylaminocoumarin (coumarin 6) are vapor-deposited simultaneously as the light emitting layer 4. A film was formed. The ratio of coumarin 6 to Alq was 1 mol%. Next, 25 nm of quinolinol metal complex (1) was formed into an electron transport layer 5. Thereafter, an AlLi alloy film was formed as a cathode 6 with a thickness of 150 nm to produce a device.
[0030]
When voltage was applied to the resulting device, uniform yellow-green light emission having a peak at 522 nm was obtained. When the drive voltage and the light emission luminance when a current of 100 mA / cm 2 was applied were measured, the drive voltage was 5.3 V and the light emission luminance was 7910 cd / m 2 . When this device was continuously driven (constant current) at an initial luminance of 1000 cd / m 2 in dry nitrogen, the luminance half-life was 1500 h. The voltage increase after driving for 500 hours was 0.3V.
[0031]
(Example 3)
In this example, an organic electroluminescent element was produced in the same manner as in Example 1 except that the fluorescent material used for the light emitting layer 4 and the material used for the electron transport layer 5 were changed. As the light-emitting layer 4, a distyrylarylene derivative (DPVBi) represented by the following chemical formula 7 was used.
[Chemical 7]
Figure 0004607268
Further, as the electron transport layer 5, a quinolinol metal complex (2) represented by the following chemical formula 8 was used.
[Chemical 8]
Figure 0004607268
[0032]
Example 4
Also in this example, an organic electroluminescent element was produced in the same manner as in Example 1 except that the fluorescent material used for the light emitting layer 4 and the material used for the electron transport layer 5 were changed. As the light emitting layer 4, bis (8-hydroxyquinoline) zinc (Znq) represented by the following chemical formula 9 was used.
[Chemical 9]
Figure 0004607268
Further, as the electron transport layer 5, a quinolinol metal complex (3) represented by the following chemical formula 10 was used.
Embedded image
Figure 0004607268
[0033]
(Example 5)
Also in this example, an organic electroluminescent element was produced in the same manner as in Example 1 except that the fluorescent material used for the light emitting layer 4 and the material used for the electron transport layer 5 were changed. As the light-emitting layer 4, a compound that is a distyrylarylene derivative (DPVBi) represented by Chemical Formula 7 and a quinolinol metal complex (1) was used in the same manner as in Example 3 above. Further, as the electron transport layer 5, a quinolinol metal complex (4) represented by the following chemical formula 11 was used.
Embedded image
Figure 0004607268
[0034]
(Example 6)
Also in this example, an organic electroluminescent element was produced in the same manner as in Example 1 except that the fluorescent material used for the light emitting layer 4 and the material used for the electron transport layer 5 were changed. As the light emitting layer 4, quinolinol metal complex (1) was used. As the electron transport layer 5, a quinolinol metal complex (5) represented by the following chemical formula 12 was used.
Embedded image
Figure 0004607268
[0035]
The materials of the light-emitting layer 4 and the electron transport layer 5 used in the devices prepared in Examples 3 to 6, the driving voltage and the light emission luminance when 100 mA / cm 2 was applied, and the initial luminance of 1000 cd / m 2 were continuously driven (constant Table 1 shows the luminance half-life and the voltage increase after driving for 500 h together with the results of Examples 1 and 2.
[Table 1]
Figure 0004607268
[0036]
(Example 7)
In the same manner as in Example 1, an indium tin oxide film (ITO) is previously formed on a glass substrate 1 as a transparent anode 2 and patterned into an electrode shape. And set in a vacuum apparatus and exhausted to 10 −4 Pa. Thereafter, a TPT film having a thickness of 50 nm was formed as the hole transport layer 3. Then, 50 nm of quinolinol metal complex (1) was formed as the light emitting layer 4. An AlLi alloy film was formed to a thickness of 150 nm as the cathode 6 to produce a device.
[0037]
When voltage was applied to the device thus obtained, uniform yellow-green light emission having a peak at 533 nm was obtained. When the drive voltage and the light emission luminance when a current of 100 mA / cm 2 was applied were measured, the drive voltage was 5.5 V and the light emission luminance was 2710 cd / m 2 . When this device was continuously driven (constant current) in dry nitrogen at an initial luminance of 1000 cd / m 2 , the luminance half-life was 520 h. The voltage increase after driving for 500 hours was 0.6V.
(Examples 8 to 11)
An organic electroluminescent element was produced in the same manner as in Example 7 except that the kind of the quinolinol metal complex used for the light emitting layer 4 was changed. In these embodiments, the driving voltage and luminous brightness in 100 mA / cm 2 application of the organic electroluminescent elements produced the type of quinolinol metal complexes used in the light-emitting layer 4, continuous driving at an initial luminance 1000 cd / m 2 (constant current ) And the voltage increase after driving for 500 hours are shown in Table 2 together with the results of Example 7.
[Table 2]
Figure 0004607268
[0039]
(Example 12)
In the same manner as in Example 1, an indium tin oxide film (ITO) is previously formed on a glass substrate 1 as a transparent anode 2 and patterned into an electrode shape. And set in a vacuum apparatus and exhausted to 10 −4 Pa. Thereafter, a TPT film having a thickness of 50 nm was formed as the hole transport layer 3. Thereafter, a 25 nm thick quinolinol metal complex (1) was formed as the light emitting layer 4. Furthermore, after depositing Alq to a thickness of 25 nm as the electron transport layer 5, an AlLi alloy was deposited to a thickness of 150 nm as the cathode 6 to produce an element.
[0040]
When voltage was applied to the device thus obtained, uniform yellow-green light emission having a peak at 532 nm was obtained. When the drive voltage and the light emission luminance when a current of 100 mA / cm 2 was applied were measured, the drive voltage was 5.6 V and the light emission luminance was 2740 cd / m 2 . When this device was continuously driven (constant current) in dry nitrogen at an initial luminance of 1000 cd / m 2 , the luminance half-life was 560 h. The voltage increase after driving for 500 hours was 0.4V.
[0041]
(Examples 13 to 16)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the quinolinol metal complex used for the light emitting layer 4 and the material used for the electron transport layer 5 were changed. For the light-emitting layer 4, the substances shown in Chemical Formula 5, Chemical Formula 6, Chemical Formula 8, and Chemical Formula 10 were used. In addition to Alq, tBu-PBD shown in the following chemical formula 13 and triazole compound (TAZ) shown in the chemical formula 14 below were used as the electron transport material.
Embedded image
Figure 0004607268
Embedded image
Figure 0004607268
[0042]
When the material of the light emitting layer 4 and the electron transport layer 5 used in the device thus fabricated is continuously driven (constant current) at a drive voltage and light emission luminance of 100 cd / m 2 when applied with 100 mA / cm 2. Table 3 shows the luminance half-life and the voltage increase after driving for 500 hours together with the results of Example 12.
[Table 3]
Figure 0004607268
[0043]
(Comparative Examples 1-6)
As Comparative Example 1, a device was prepared in the same manner as in Example 1 except that the quinolinol metal complex (6) shown in Chemical Formula 15 below was used for the electron transport layer 5.
Embedded image
Figure 0004607268
[0044]
Further, as Comparative Examples 2 and 3, a device was fabricated in the same manner as in Example 1 except that Znq and DPVBi were used for the light emitting layer 4 and Alq was used for the electron transport layer 5. Further, as Comparative Example 4, it was produced in the same manner as in Example 2 except that Alq was used for the electron transport layer 5. Further, as Comparative Examples 5 and 6, an element was fabricated in the same manner as in Example 7 except that Alq and Znq were used for the light emitting layer. Table 4 shows the drive voltage and light emission luminance when these devices were applied at 100 mA / cm 2 , the luminance half-life when continuously driven (constant current) at an initial luminance of 1000 cd / m 2 , and the voltage increase after driving for 500 hours. .
[Table 4]
Figure 0004607268
[0045]
From the results shown in Tables 1 to 4, it was found that the device obtained in this example was superior in luminous efficiency and driving durability than the device obtained in the comparative example.
[0046]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an advantageous effect that an organic electroluminescence device having high luminous efficiency and excellent driving durability can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a configuration of an electroluminescent element according to the present invention.
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Anode 3 Hole transport layer 4 Light emitting layer 5 Electron transport layer 6 Cathode

Claims (1)

一対の電極とその間に挟まれた少なくとも二層以上の有機層を有し、有機層が、少なくとも発光層及び電子輸送層であり、電子輸送層の構成材料が下記化1で表される化合物からなることを特徴とする有機電界発光素子。
Figure 0004607268
From a compound having a pair of electrodes and at least two or more organic layers sandwiched therebetween , the organic layer being at least a light emitting layer and an electron transporting layer, and the constituent material of the electron transporting layer being represented by the following chemical formula 1 An organic electroluminescent element characterized by comprising:
Figure 0004607268
JP21824899A 1999-08-02 1999-08-02 Organic electroluminescence device Expired - Fee Related JP4607268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21824899A JP4607268B2 (en) 1999-08-02 1999-08-02 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21824899A JP4607268B2 (en) 1999-08-02 1999-08-02 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2001043976A JP2001043976A (en) 2001-02-16
JP4607268B2 true JP4607268B2 (en) 2011-01-05

Family

ID=16716923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21824899A Expired - Fee Related JP4607268B2 (en) 1999-08-02 1999-08-02 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4607268B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004046275A1 (en) * 2002-11-21 2004-06-03 Semiconductor Energy Laboratory Co., Ltd Electroluminescent device and light-emitting device
GB0230072D0 (en) * 2002-12-24 2003-01-29 Elam T Ltd Electroluminescent materials and devices
US6902833B2 (en) 2003-04-01 2005-06-07 University Of Southern California Materials and structures for enhancing the performance or organic light emitting devices
KR101234227B1 (en) * 2006-01-27 2013-02-18 삼성디스플레이 주식회사 An organic electroluminescent device
GB2440367A (en) * 2006-07-26 2008-01-30 Oled T Ltd Electroluminescent device

Also Published As

Publication number Publication date
JP2001043976A (en) 2001-02-16

Similar Documents

Publication Publication Date Title
TWI389594B (en) Stacked organic electroluminescent devices
JP3942017B2 (en) Light emitting element
US6831406B1 (en) Electroluminescent device having a very thin emission layer
JPH1131590A (en) Organic el element
JPH0963771A (en) Organic thin film luminescent element
JPH08102360A (en) Orfanic/inorganic complex thin-film electroluminescent element
JPH06283271A (en) Organic electroluminescent element
WO2006121105A1 (en) Organic electroluminescent element
JPH04212284A (en) Organic membranous electro-luminescence(el) element
JPH04212287A (en) Organic membranous electro-luminescence(el) element
JPH04137485A (en) Electroluminesence element
JP2797905B2 (en) Organic thin film EL device
US20040219389A1 (en) Organic electroluminescence device
JPH11329732A (en) Organic thin film el element
JP2881212B2 (en) EL device
JP3651347B2 (en) Organic electroluminescence device
JP4607268B2 (en) Organic electroluminescence device
JP2004031214A (en) Organic electroluminescent element
JP2004200031A (en) Organic el element and its manufacturing method
JP3482446B2 (en) EL device
JP2001076879A (en) Organic electroluminescent element
JP4394639B2 (en) Laminate of semiconductor thin film and method for producing laminate
JP3690286B2 (en) Organic electroluminescence device
JPH1095971A (en) Organic electroluminescent element
JP2003229279A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees