USH2084H1 - Pentacene derivatives as red emitters in organic light emitting devices - Google Patents

Pentacene derivatives as red emitters in organic light emitting devices Download PDF

Info

Publication number
USH2084H1
USH2084H1 US09/464,090 US46409099A USH2084H US H2084 H1 USH2084 H1 US H2084H1 US 46409099 A US46409099 A US 46409099A US H2084 H USH2084 H US H2084H
Authority
US
United States
Prior art keywords
substituted
red
pat
pentacene
pentacene derivatives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/464,090
Inventor
Lisa Crisafulli Picciolo
Hideyuki Murata
Zakya H. Kafafi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Priority to US09/464,090 priority Critical patent/USH2084H1/en
Priority to AU19502/01A priority patent/AU1950201A/en
Priority to PCT/US2000/033087 priority patent/WO2001045469A1/en
Assigned to SECRETARY OF THE NAVY, UNITED STATES OF AMERICA, AS REPRESENTED BY THE reassignment SECRETARY OF THE NAVY, UNITED STATES OF AMERICA, AS REPRESENTED BY THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MURATA, HIDEYUKI, PICCIOLO, LISA A. CRISAFULLI, KAFAFI, ZAKYA
Application granted granted Critical
Publication of USH2084H1 publication Critical patent/USH2084H1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/56Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic condensed
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/54Ortho- or ortho- and peri-condensed systems containing more than five condensed rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3

Definitions

  • the present invention relates to red-emitting organic electroluminescent materials and devices in general and in particular to compositions and devices comprising host materials doped with pentacene derivatives.
  • Organic electroluminescent devices have been the subject of considerable research because of their potential applications in a wide variety of flat panel displays, especially ultra thin flat panel displays.
  • Organic electroluminescent devices are very competitive with liquid crystal displays because of their very bright self-emission, low power consumption, low cost of organic materials, ease of color tunability and processability.
  • the present technology will be competing with liquid crystal displays, which are replacing cathode ray tubes as a means of displaying visual information.
  • pentacene derivatives exhibit very narrow emission spectra and produce a very pure red color in a region of the spectrum that is useful for display applications.
  • pentacene derivatives When pentacene derivatives are doped into the active emissive layer of organic light-emitting devices, efficient energy transfer from the host material to the pentacene derivatives and/or carrier recombination on the pentacene derivatives takes place, resulting in red electroluminescence predominantly from the pentacene derivatives.
  • the present invention is directed to an electroluninescent composition
  • an electroluninescent composition comprising a host material and a red dopant, wherein the red dopant is a pentacene derivative substituted with two or more aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups.
  • the present invention is directed to a heterostructured organic light emitting device for producing electroluminescence, the heterostructure having an emissive layer comprised of a host material and a red dopant, wherein the red dopant is a pentacene derivative substituted with two or more aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups.
  • the pentacene derivatives of the present invention have the advantages that they are relatively easy to synthesize and that the synthesis process does not produce a by-product that quenches fluorescence (which is a recurring problem in some fluorescent red dyes such as DCM/DCJ compounds). Moreover, the pentacene derivatives have narrow emission spectra in the red visible spectral region appropriate for display applications.
  • FIG. 1 is a cross-sectional representation of a first embodiment of an organic light emitting device of the present invention.
  • FIG. 2 is a cross-sectional representation of a second embodiment of an organic light emitting device of the present invention.
  • the materials of the present invention are red-emitting electroluminescent composites comprising host materials and red dopants, the red dopants being pentacene derivatives as described below.
  • the host material may be any compound or mixture of compounds typically used or capable of being used in the active emitting layer and/or carrier transporter of an electroluminescent device.
  • the host material is a material that has good electron transport and/or hole transport properties, has good morphological properties so that it forms thin amorphous films by vacuum evaporation and has good electrochemical stability.
  • the photoluminescence spectra of the host material should overlap with the absorption spectra of the guest material so that efficient Mariester/Dexter energy transfer takes place.
  • the host material should not quench the emission from the guest material, should have a bandgap greater than the guest material so that carrier trapping can occur, should have a larger ionization potential than that of the guest material so that hole trapping can occur and should have a smaller electron affinity than that of the guest material so that electron trapping can occur.
  • Typical host materials include hole transport materials such as N,N′-diphenyl-N,N′-bis(3-methylphenyl)1,1′-biphenyl-4,4′diamine (TPD), N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB), N,N,N,N ′-tetrakis(4-methylphenyl)(1,1′-biphenyl)-4,4′diamine (TTB) and starburst compounds such as 4,4′,4′-tris(1-naphthylphenylamino)triphenylamine(1-TNATA).
  • TPD N,N′-diphenyl-N,N′-bis(3-methylphenyl)1,1′-biphenyl-4,4′diamine
  • NPB N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine
  • TTB N
  • Typical host materials also include electron transport materials such as metal chelate compounds such as tris(8-hydroxyquinolinato)aluminum (ALQ 3 ), tris(8-hydroxyquinolinato) gallium III (Gaq 3 ), tris-(4-methyl-8-hydroxyquinolinato) aluminum (III) (Almq 3 ), bis(10-hydroxybenzo[h]quinolinato) beryllium (BeBq 2 ), tris(4-phenanthridinolato) aluminum III (Alph 3 ), and bis(2-styryl-8-quinolinato) zinc II (Znsq 2 ).
  • metal chelate compounds such as tris(8-hydroxyquinolinato)aluminum (ALQ 3 ), tris(8-hydroxyquinolinato) gallium III (Gaq 3 ), tris-(4-methyl-8-hydroxyquinolinato) aluminum (III) (Almq 3 ), bis(10-hydroxybenzo[h]quinolinato) beryllium (BeBq 2
  • typical electron transport materials include 1,3,4-oxadiazole derivatives such as 1,3,[5-(4-tert-butylphenyl)-1,3,4-oxadiazole-2-yl] benzene (OXD7), 2-(4-biphenylyl)-5-(4-tert-butylphenyl-oxadiazole (butyl-PBD), 1,2,4-triazoles (TAZs) and 5,5′-bis(dimesitylboryl)-2,2′-bithiophene (BMB-2T).
  • 1,3,4-oxadiazole derivatives such as 1,3,[5-(4-tert-butylphenyl)-1,3,4-oxadiazole-2-yl] benzene (OXD7), 2-(4-biphenylyl)-5-(4-tert-butylphenyl-oxadiazole (butyl-PBD), 1,2,4-triazoles (TAZs)
  • the pentacene derivatives of the present invention are compounds comprising a pentacene backbone substituted in two or more positions with aromatic groups, substituted aromatic groups, heteroaromatic groups and substituted heteroaromatic groups.
  • bulky or hindered substituents such as aromatic groups, substituted aromatic groups, heteroaromatic groups and substituted heteroaromatic groups on a pentacene derivative contribute to more efficient electroluminescence due to increase of photoluminescence by the reduction of the aggregation of individual molecules of the pentacene derivative.
  • heteroaromatic substituents or substituents that have longer conjugation may cause a red-shift of the spectra.
  • Suitable heteroaromatic substituents include furyl, thienyl, pyridyl, oxazoly, isoxazoly, thiazoly, isothiazoly, pyridyl, pyridazyl, pyrimidyl and pyrazyl groups.
  • Suitable groups with longer conjugation include styryl groups and styryl groups substituted with alkyl, phenyl, naphthyl, anthracenyl and biphenyl.
  • aromatic and heteroaromatic substituents attached to polycyclic aromatic hydrocarbons such as tetracene reduce intersystem crossing between singlet(S 1 ) to triplet (T n ) states, resulting in higher photoluminescent efficiency.
  • polycyclic aromatic hydrocarbons such as tetracene reduce intersystem crossing between singlet(S 1 ) to triplet (T n ) states, resulting in higher photoluminescent efficiency.
  • Pentacene derivatives of the present invention include, for example, compounds of the formula:
  • R 1 , R 2 , R 3 , and R 4 are independently aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups.
  • R 1 , R 2 , R 3 and R 4 are unsubstituted, alkyl-substituted or aryl-substituted phenyl, naphthyl, anthracenyl, biphenyl, furyl, thienyl, pyridyl, oxazoly, isoxazoly, thiazoly, isothiazoly, pyridyl, pyridazyl, pyrimidyl, or pyrazyl groups.
  • Pentacene derivatives of the present invention may also include, for example, compounds of the formula:
  • R 5 and R 6 are independently aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups.
  • R 5 and R 6 are unsubstituted, alkyl-substituted or aryl-substituted phenyl, naphthyl, anthracenyl, biphenyl, furyl, thienyl, pyridyl, oxazoly, isoxazoly, thiazoly, isothiazoly, pyridyl, pyridazyl, pyrimidyl, or pyrazyl groups.
  • Pentacene derivatives may also include compounds of the following formulae:
  • R 7 -R 56 are independently aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups and wherein preferably, R 7 -R 56 are unsubstituted, alkyl-substituted or aryl-substituted. phenyl, naphthyl, anthracenyl, biphenyl, furyl, thienyl, pyridyl, oxazoly isoxazoly, thiazoly isothiazoly, pyridyl, pyridazyl, pyrimidyl, or pyrazyl groups.
  • the reason for providing a large number of pentacene derivatives in the present invention is to provide a large number of choices in terms of emission wavelengths within the red region. Each derivative is expected to have a slightly different electronic structure and a slightly different emission spectrum. Thus, with a large number of choices, a person skilled in the art may fine-tune an electroluminescent device by selecting a derivative that meets a particular emission requirement.
  • pentacene derivative that exhibits a very narrow emission within the desired range of the red spectrum is 6,13-diphenylpentacene.
  • the pentacene derivatives of the present invention may be synthesized by any method known in the art for attaching other aromatic or heteroaromatic groups to a polycyclic aromatic hydrocarbon.
  • the pentacene derivatives may be synthesized by starting with a pentacene quinone derivative, such as pentacene-5,7,12,14-tetraone or 6,13-pentacenequinone and then treating the pentacene quinone derivative with an excess of an organolithium compound containing the side group (RLi).
  • RLi organolithium compound containing the side group
  • R is the desired substituent.
  • This method of attaching an R group to a polycyclic ring is described generally in the following publication incorporated herein by reference: Maulding et al “Electronic Absorption and Fluorescence of Phenylethynyl-Substituted Acenes” Journal of Organic Chemistry, Vol. 34, No. 6, Jun. 1969, pp 1734-1736.
  • the organic light emitting device of the present invention can have the same configuration as any host-dopant-containing electroluminescent device known in the art.
  • a typical organic light emitting device such as is described, for example, in U.S. Pat. No. 5,409,783 and other patents and publications referenced above, includes an anode separated from a cathode by an electroluminescent medium.
  • the anode is typically a high work function, hole injecting material such as, for example indium tin oxide (ITO).
  • the cathode is typically a low work function, electron-injecting material such as, for example, magnesium-silver alloy (Mg:Ag).
  • the anode and the cathode are connected by conductors to an external power source, which can be a continuous direct current or alternating current voltage source or an intermittent current voltage source. Any convenient conventional power source, including any desired switching circuitry, can be employed which is capable of positively biasing the anode with respect to the cathode. Either the anode or cathode can be at ground potential.
  • the electroluminescent device can be viewed as a diode which is forward biased when the anode is at a higher potential than the cathode. Under these conditions, the anode injects holes (positive charge carriers), into the luminescent medium while the cathode injects electrons into the luminescent medium. The portion of the luminescent medium adjacent to the anode thus forms a hole injecting and transporting zone while the portion of the luminescent medium adjacent to the cathode forms an electron injecting and transporting zone. The injected holes and electrons each migrate toward the oppositely charged electrode, which eventually leads to hole-electron recombination within the organic luminescent medium.
  • the host receives the hole/electron recombination energy and then by Förster or Dexter (i.e. radiationless) energy transfer processes, transfers that excitation energy to the dopant compound, which in turn radiates to produce visible radiation in the desired wavelength.
  • Förster or Dexter i.e. radiationless
  • Reverse biasing of the electrodes interrupts charge injection, reverses the direction of mobile charge migration, and terminates light emission.
  • the most common mode of operating the organic electroluminescent device is to employ a forward biasing DC power source and to rely on external current interruption or modulation to regulate light emission.
  • the term “heterostructure” refers to a device having a layered structure including at least an anode, hole transporting layer, electron transporting layer and a cathode, as described above. In such a device, the host/dopant composition may be part of the hole transporting layer or the electron transporting layer.
  • the term “heterostructure” also includes any variations on the basic device, such as a device having a separate emissive layer between the hole transport layer and the electron transport layer. Examples of devices of the present invention are illustrated in FIGS. 1 and 2.
  • FIG. 1 depicts a device having a substrate 10 having deposited thereon successive layers of an anode 20, a hole transporting layer 30, an electron transporting layer 40 and a cathode 50.
  • FIG. 1 depicts a device having a substrate 10 having deposited thereon successive layers of an anode 20, a hole transporting layer 30, an electron transporting layer 40 and a cathode 50.
  • FIG. 2 depicts a device having a substrate 100 having deposited thereon successive layers of an anode 200, a hole transporting layer 300, and active emitting layer 600 and an electron transporting layer 400 and a cathode 500.
  • Other configurations are possible, such as devices having separate layers for red, blue and green emitting material, as described, for example in International Publication No. WO 98/06242 (Forrest et al).
  • pre-cleaned glass substrates patterned with indium tin oxide (ITO) stripes can be used.
  • the hole transport layer, the emissive layer (if present as a separate layer) and the electron transport layer can be prepared by consecutive vapor deposition of each layer.
  • the layers can be prepared from solution by spin casting or by other means of creating a thin film layer on a substrate.
  • the host/dopant composition, whether it be part of the hole transport layer, a separate emissive layer or the electron transport layer is formed by co-evaporation of the host material and the pentacene derivative.
  • the vapor deposition is carried out in a vacuum chamber under a base pressure of 2 ⁇ 10 ⁇ 7 Torr.
  • a Mg:Ag alloy top layer is deposited through a shadow mask forming metal stripes perpendicular to the indium tin oxide stripes.
  • Photoluminescence and electroluminescence spectra are measured inside a glove box purged with dry nitrogen.
  • the excitation laser beam for photoluminescence is brought into the glove box through an optical fiber.
  • the luminescence is collected and brought out through another optical fiber.
  • Voltage-current-luminance measurements are performed with a high current source and luminance meter.
  • Device performance is evaluated based on the external quantum efficiency defined as the ratio of the number of emitted photons to the number of injected carriers.
  • OLEDs Organic light emitting devices
  • OLEDs were fabricated in high vacuum (10 ⁇ 7 Torr) by sequentially depositing thin films of a hole transport layer, an active emissive layer, an electron transport layer followed by a metal film cathode (reflective) onto an indium tin oxide (transparent anode) patterned glass substrate.
  • the active emissive layer consisted of a derivative of pentacene doped into a hole or an electron transport material that serves as the host.
  • the electroluminescence spectrum of a device where the active layer is 6,13-diphenylpentacene doped into ALQ 3 exhibits a very narrow emission peak in the visible red region centered at 625 nm.
  • a device wherein the active emissive layer consists of a host doped with an optimal concentration of 6,13-diphenylpentacene shows an electroluminescence quantum efficiency of 2.5% at 100 A/m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Pentacene derivatives substituted with two or more aromatic, substituted aromatic, heteroaromatic, or substituted heteroaromatic groups are dopants for organic electroluminescent devices. When combined with host materials and incorporated into an organic light emitting devices, the pentacene derivatives are red emitters with narrow spectra.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to red-emitting organic electroluminescent materials and devices in general and in particular to compositions and devices comprising host materials doped with pentacene derivatives.
2. Description of the Related Art
Organic electroluminescent devices have been the subject of considerable research because of their potential applications in a wide variety of flat panel displays, especially ultra thin flat panel displays. Organic electroluminescent devices are very competitive with liquid crystal displays because of their very bright self-emission, low power consumption, low cost of organic materials, ease of color tunability and processability. The present technology will be competing with liquid crystal displays, which are replacing cathode ray tubes as a means of displaying visual information.
One effective approach for achieving color tunability in OLEDs, as well as improving device efficiency and durability, is by doping of fluorescent materials into organic host materials. Organic electroluminescent devices that include organic host materials and dopants are disclosed, for example, in the following patents and publications incorporated herein by reference: U.S. Pat. No. 3,172,862 to Gurnee et al; U.S. Pat. No. 3,173,050 to Gurnee; U.S. Pat. No. 3,710,167 to Dresner et al; U.S. Pat. No. 4,356,429 to Tang; U.S. Pat. No. 4,769,292 to Tang et al; U.S. Pat. No. 5,059,863 to Toshiro et al; U.S. Pat. No. 5,126,214 to Tokailin et al; U.S. Pat. No. 5,382,477 to Saito et al; U.S. Pat. No. 5,409,783 to Tang et al; U.S. Pat. No. 5,554,450 to Shi et al; U.S. Pat. No.5,635,307 to Takeuchi et al; U.S. Pat. No. 5,674,597 to Fujii et al; U.S. Pat. No. 5,709,959 to Adachi et al; U.S. Pat. No. 5,747,183 to Shi et al; U.S. Pat. No. 5,756,224 to Börner et al; U.S. Pat. No.5,861,219 to Thompson et al; U.S. Pat. No. 5,908,581 to Chen et al; U.S. Pat. No. 5,932,363 to Hu et al; U.S. Pat. No. 5,935,720 to Chen et al; U.S. Pat. No. 5,935,721 to Shi et al; U.S. Pat. No.5,948,941 to Tamano et al; U.S. Pat. No. 5,989,737 to Xie et al; International Publication No. WO 98/06242 (Forrest et al); C. W. Tang et al “Electroluminescence of Doped Organic Thin Films”, J. Appl. Phys. 65(9), May 1969, pp 3610-3616; C. W. Tang and S. A. VanSlyke, “Organic Electroluminescent Diodes”, Appl. Phys. Lett. 51(12), Sep. 21, 1987, pp. 913-915; C. W. Tang, “Organic Electroluminescent Materials and Devices” Information Display, Oct. 1996, pp. 16-19; J. Shi and C. W. Tang, “Doped Organic Electroluminescent Devices with Improved Stability”, Appl. Phys. Lett 70(13) Mar. 31, 1997, pp. 1665-1667; Shoustikov et al, “Electroluminescence Color Tuning by Dye Doping in Organic Light-Emitting Diodes”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 1 Jan./Feb. 1998, pp 3-13; Baldo et al, “Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices”, Nature, Vol.395, Sep. 10, 1998, pp 151—153; O'Brien et al “Improved Energy Transfer in Electrophosphorescent Devices”, Applied Physics Letters, Vol. 74, No. 3, Jan. 18, 1999, pp. 442-444.
Full color electroluminescent displays require efficient red, green and blue electroluminescent materials. Currently, there is a need for more efficient red emitting materials, particularly for compounds with excellent color purity, chemical stability, including photochemical stability and electrochemical stability, high photoluminescence and electroluminescence quantum efficiencies and an extended device lifetime. U.S. Pat. No. 4,769,292 to Tang et al, U.S. Pat. No.5,908,581 to Chen et al; and U.S. Pat. No.5,935,720 to Chen et al. describe compounds such as the DCM/DCJ class of red emitters (4-(dicyanomethylene)-2methyl-6-(p-dimethylaminostyryl)4H-pyran and julolidyl derivatives). These compounds typically exhibit broad emission spectra that reduce the red color purity at lower red wavelengths, giving them an orange hue. At higher red wavelengths, the broad emission band results in reduced luminance, since much of the emission is in the long wavelength region where the eye is less sensitive. Moreover, the synthesis of DCM/DCJ compounds results in a by-product that quenches fluorescence. The by-product is difficult to remove during purification and its presence reduces the electroluminescent efficiency of devices using the compounds. U.S. Pat. No. 5,409,783 to Tang et al describes a phthalocyanine compound that has a peak emission in the deep red wavelength region of 660 nm-780 nm. This compound, while useful for photographic printing processes, is less useful in display applications, since the eye has a low response to emission in these wavelengths.
SUMMARY OF THE INVENTION
It has now been discovered that pentacene derivatives exhibit very narrow emission spectra and produce a very pure red color in a region of the spectrum that is useful for display applications. When pentacene derivatives are doped into the active emissive layer of organic light-emitting devices, efficient energy transfer from the host material to the pentacene derivatives and/or carrier recombination on the pentacene derivatives takes place, resulting in red electroluminescence predominantly from the pentacene derivatives.
Accordingly, the present invention is directed to an electroluninescent composition comprising a host material and a red dopant, wherein the red dopant is a pentacene derivative substituted with two or more aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups.
Further, the present invention is directed to a heterostructured organic light emitting device for producing electroluminescence, the heterostructure having an emissive layer comprised of a host material and a red dopant, wherein the red dopant is a pentacene derivative substituted with two or more aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups.
The pentacene derivatives of the present invention have the advantages that they are relatively easy to synthesize and that the synthesis process does not produce a by-product that quenches fluorescence (which is a recurring problem in some fluorescent red dyes such as DCM/DCJ compounds). Moreover, the pentacene derivatives have narrow emission spectra in the red visible spectral region appropriate for display applications.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional representation of a first embodiment of an organic light emitting device of the present invention.
FIG. 2 is a cross-sectional representation of a second embodiment of an organic light emitting device of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The materials of the present invention are red-emitting electroluminescent composites comprising host materials and red dopants, the red dopants being pentacene derivatives as described below.
The host material may be any compound or mixture of compounds typically used or capable of being used in the active emitting layer and/or carrier transporter of an electroluminescent device. Typically, the host material is a material that has good electron transport and/or hole transport properties, has good morphological properties so that it forms thin amorphous films by vacuum evaporation and has good electrochemical stability. The photoluminescence spectra of the host material should overlap with the absorption spectra of the guest material so that efficient Fürster/Dexter energy transfer takes place. The host material should not quench the emission from the guest material, should have a bandgap greater than the guest material so that carrier trapping can occur, should have a larger ionization potential than that of the guest material so that hole trapping can occur and should have a smaller electron affinity than that of the guest material so that electron trapping can occur.
Typical host materials include hole transport materials such as N,N′-diphenyl-N,N′-bis(3-methylphenyl)1,1′-biphenyl-4,4′diamine (TPD), N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB), N,N,N,N ′-tetrakis(4-methylphenyl)(1,1′-biphenyl)-4,4′diamine (TTB) and starburst compounds such as 4,4′,4′-tris(1-naphthylphenylamino)triphenylamine(1-TNATA). Typical host materials also include electron transport materials such as metal chelate compounds such as tris(8-hydroxyquinolinato)aluminum (ALQ3), tris(8-hydroxyquinolinato) gallium III (Gaq3), tris-(4-methyl-8-hydroxyquinolinato) aluminum (III) (Almq3), bis(10-hydroxybenzo[h]quinolinato) beryllium (BeBq2), tris(4-phenanthridinolato) aluminum III (Alph3), and bis(2-styryl-8-quinolinato) zinc II (Znsq2). Also, typical electron transport materials include 1,3,4-oxadiazole derivatives such as 1,3,[5-(4-tert-butylphenyl)-1,3,4-oxadiazole-2-yl] benzene (OXD7), 2-(4-biphenylyl)-5-(4-tert-butylphenyl-oxadiazole (butyl-PBD), 1,2,4-triazoles (TAZs) and 5,5′-bis(dimesitylboryl)-2,2′-bithiophene (BMB-2T).
The pentacene derivatives of the present invention are compounds comprising a pentacene backbone substituted in two or more positions with aromatic groups, substituted aromatic groups, heteroaromatic groups and substituted heteroaromatic groups. In general, bulky or hindered substituents such as aromatic groups, substituted aromatic groups, heteroaromatic groups and substituted heteroaromatic groups on a pentacene derivative contribute to more efficient electroluminescence due to increase of photoluminescence by the reduction of the aggregation of individual molecules of the pentacene derivative. Further, heteroaromatic substituents or substituents that have longer conjugation may cause a red-shift of the spectra. Suitable heteroaromatic substituents include furyl, thienyl, pyridyl, oxazoly, isoxazoly, thiazoly, isothiazoly, pyridyl, pyridazyl, pyrimidyl and pyrazyl groups. Suitable groups with longer conjugation include styryl groups and styryl groups substituted with alkyl, phenyl, naphthyl, anthracenyl and biphenyl. Another reason for using aromatic and heteroaromatic substituents is that it has been shown that aromatic and heteroaromatic substituents attached to polycyclic aromatic hydrocarbons such as tetracene reduce intersystem crossing between singlet(S1) to triplet (Tn) states, resulting in higher photoluminescent efficiency. See, for example, C. Burgkorff, T. Dircher and H. G. Lohmannsroben, Spectrochim. Acto, 44A, 1137 (1988), incorporated herein by reference. The present inventors believe that similar principles would apply to pentacene derivatives and that this phenomenon would provide for greater efficiency in an electroluminescent device.
Pentacene derivatives of the present invention include, for example, compounds of the formula:
Figure USH0002084-20031007-C00001
wherein R1, R2, R3, and R4 are independently aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups. Preferably, R1, R2, R3 and R4 are unsubstituted, alkyl-substituted or aryl-substituted phenyl, naphthyl, anthracenyl, biphenyl, furyl, thienyl, pyridyl, oxazoly, isoxazoly, thiazoly, isothiazoly, pyridyl, pyridazyl, pyrimidyl, or pyrazyl groups.
Pentacene derivatives of the present invention may also include, for example, compounds of the formula:
Figure USH0002084-20031007-C00002
wherein R5 and R6 are independently aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups. Preferably, R5 and R6 are unsubstituted, alkyl-substituted or aryl-substituted phenyl, naphthyl, anthracenyl, biphenyl, furyl, thienyl, pyridyl, oxazoly, isoxazoly, thiazoly, isothiazoly, pyridyl, pyridazyl, pyrimidyl, or pyrazyl groups.
Pentacene derivatives may also include compounds of the following formulae:
Figure USH0002084-20031007-C00003
Figure USH0002084-20031007-C00004
wherein R7-R56 are independently aromatic, substituted aromatic, heteroaromatic or substituted heteroaromatic groups and wherein preferably, R7-R56 are unsubstituted, alkyl-substituted or aryl-substituted. phenyl, naphthyl, anthracenyl, biphenyl, furyl, thienyl, pyridyl, oxazoly isoxazoly, thiazoly isothiazoly, pyridyl, pyridazyl, pyrimidyl, or pyrazyl groups.
The reason for providing a large number of pentacene derivatives in the present invention is to provide a large number of choices in terms of emission wavelengths within the red region. Each derivative is expected to have a slightly different electronic structure and a slightly different emission spectrum. Thus, with a large number of choices, a person skilled in the art may fine-tune an electroluminescent device by selecting a derivative that meets a particular emission requirement.
An example of a pentacene derivative that exhibits a very narrow emission within the desired range of the red spectrum is 6,13-diphenylpentacene.
The pentacene derivatives of the present invention may be synthesized by any method known in the art for attaching other aromatic or heteroaromatic groups to a polycyclic aromatic hydrocarbon. For example, the pentacene derivatives may be synthesized by starting with a pentacene quinone derivative, such as pentacene-5,7,12,14-tetraone or 6,13-pentacenequinone and then treating the pentacene quinone derivative with an excess of an organolithium compound containing the side group (RLi). In a typical synthesis, after the mixture is refluxed for four hours, it is acidified with an excess of aqueous acetic acid (AcOH) and stirred overnight at room temperature. The intermediate product, an alcohol, is isolated and reduced with an excess of tin chloride dihydrate (SnCl2.2H2O) dissolved in aqueous acetic acid at room temperature in the presence of nitrogen gas. Dilution with water precipitates the final pentacene derivative product. The general reaction may be illustrated by the following reaction scheme for creating a 6,13 di-substituted pentacene derivative:
Figure USH0002084-20031007-C00005
wherein R is the desired substituent. This method of attaching an R group to a polycyclic ring is described generally in the following publication incorporated herein by reference: Maulding et al “Electronic Absorption and Fluorescence of Phenylethynyl-Substituted Acenes” Journal of Organic Chemistry, Vol. 34, No. 6, Jun. 1969, pp 1734-1736.
The organic light emitting device of the present invention can have the same configuration as any host-dopant-containing electroluminescent device known in the art. A typical organic light emitting device, such as is described, for example, in U.S. Pat. No. 5,409,783 and other patents and publications referenced above, includes an anode separated from a cathode by an electroluminescent medium. The anode is typically a high work function, hole injecting material such as, for example indium tin oxide (ITO). The cathode is typically a low work function, electron-injecting material such as, for example, magnesium-silver alloy (Mg:Ag). The anode and the cathode are connected by conductors to an external power source, which can be a continuous direct current or alternating current voltage source or an intermittent current voltage source. Any convenient conventional power source, including any desired switching circuitry, can be employed which is capable of positively biasing the anode with respect to the cathode. Either the anode or cathode can be at ground potential.
The electroluminescent device can be viewed as a diode which is forward biased when the anode is at a higher potential than the cathode. Under these conditions, the anode injects holes (positive charge carriers), into the luminescent medium while the cathode injects electrons into the luminescent medium. The portion of the luminescent medium adjacent to the anode thus forms a hole injecting and transporting zone while the portion of the luminescent medium adjacent to the cathode forms an electron injecting and transporting zone. The injected holes and electrons each migrate toward the oppositely charged electrode, which eventually leads to hole-electron recombination within the organic luminescent medium. In a device that contains a host/dopant composition, the host receives the hole/electron recombination energy and then by Förster or Dexter (i.e. radiationless) energy transfer processes, transfers that excitation energy to the dopant compound, which in turn radiates to produce visible radiation in the desired wavelength. Reverse biasing of the electrodes interrupts charge injection, reverses the direction of mobile charge migration, and terminates light emission. The most common mode of operating the organic electroluminescent device is to employ a forward biasing DC power source and to rely on external current interruption or modulation to regulate light emission.
As used herein, the term “heterostructure” refers to a device having a layered structure including at least an anode, hole transporting layer, electron transporting layer and a cathode, as described above. In such a device, the host/dopant composition may be part of the hole transporting layer or the electron transporting layer. The term “heterostructure” also includes any variations on the basic device, such as a device having a separate emissive layer between the hole transport layer and the electron transport layer. Examples of devices of the present invention are illustrated in FIGS. 1 and 2. FIG. 1 depicts a device having a substrate 10 having deposited thereon successive layers of an anode 20, a hole transporting layer 30, an electron transporting layer 40 and a cathode 50. FIG. 2 depicts a device having a substrate 100 having deposited thereon successive layers of an anode 200, a hole transporting layer 300, and active emitting layer 600 and an electron transporting layer 400 and a cathode 500. Other configurations are possible, such as devices having separate layers for red, blue and green emitting material, as described, for example in International Publication No. WO 98/06242 (Forrest et al).
For the fabrication of the organic light emitting devices, pre-cleaned glass substrates patterned with indium tin oxide (ITO) stripes can be used. The hole transport layer, the emissive layer (if present as a separate layer) and the electron transport layer can be prepared by consecutive vapor deposition of each layer. Alternatively, the layers can be prepared from solution by spin casting or by other means of creating a thin film layer on a substrate. For films prepared by vapor deposition, the host/dopant composition, whether it be part of the hole transport layer, a separate emissive layer or the electron transport layer is formed by co-evaporation of the host material and the pentacene derivative. Typically, the vapor deposition is carried out in a vacuum chamber under a base pressure of 2×10−7 Torr. A Mg:Ag alloy top layer is deposited through a shadow mask forming metal stripes perpendicular to the indium tin oxide stripes.
Photoluminescence and electroluminescence spectra are measured inside a glove box purged with dry nitrogen. The excitation laser beam for photoluminescence is brought into the glove box through an optical fiber. The luminescence is collected and brought out through another optical fiber. Voltage-current-luminance measurements are performed with a high current source and luminance meter. Device performance is evaluated based on the external quantum efficiency defined as the ratio of the number of emitted photons to the number of injected carriers.
Having described the invention, the following examples are given to illustrate specific applications of the invention, including the best mode now known to perform the invention. These specific examples are not intended to limit the scope of the invention described in this application.
EXAMPLE
Organic light emitting devices (OLEDs) were fabricated in high vacuum (10−7 Torr) by sequentially depositing thin films of a hole transport layer, an active emissive layer, an electron transport layer followed by a metal film cathode (reflective) onto an indium tin oxide (transparent anode) patterned glass substrate. The active emissive layer consisted of a derivative of pentacene doped into a hole or an electron transport material that serves as the host. In the devices that were fabricated, 6,13-diphenylpentacene was used as the guest molecule, and N,N′-diphenyl-N,N′-bis(3-methylphenyl) 1,1′-biphenyl-4,4′diamine (TPD) or tris(8-hydroxyquinolinato)aluminum (ALQ3) was used as the host.
The electroluminescence spectrum of a device where the active layer is 6,13-diphenylpentacene doped into ALQ3 exhibits a very narrow emission peak in the visible red region centered at 625 nm. The CIE coordinates of the device are X=0.64, y=0.34. These coordinates lie within the desired range of the color gamut that is used for color television. A device wherein the active emissive layer consists of a host doped with an optimal concentration of 6,13-diphenylpentacene shows an electroluminescence quantum efficiency of 2.5% at 100 A/m2. The efficiency for this unoptimized device structure is comparable to that of the best-published data to date for red OLEDs that use a porphine-based phosphor as the dopant in an optimized device structure. (see O'Brien et al “Improved Energy Transfer in Electrophosphorescent Devices”, Applied Physics Letters, Vol. 74, No. 3, Jan. 18, 1999, pp. 442-444.)
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

Claims (1)

What is claimed is:
1. A compound of the formula:
Figure USH0002084-20031007-C00006
wherein R5 and R6 are phenyl groups.
US09/464,090 1999-12-16 1999-12-16 Pentacene derivatives as red emitters in organic light emitting devices Abandoned USH2084H1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/464,090 USH2084H1 (en) 1999-12-16 1999-12-16 Pentacene derivatives as red emitters in organic light emitting devices
AU19502/01A AU1950201A (en) 1999-12-16 2000-11-30 Pentacene derivatives as red emitters in organic light emitting devices
PCT/US2000/033087 WO2001045469A1 (en) 1999-12-16 2000-11-30 Pentacene derivatives as red emitters in organic light emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/464,090 USH2084H1 (en) 1999-12-16 1999-12-16 Pentacene derivatives as red emitters in organic light emitting devices

Publications (1)

Publication Number Publication Date
USH2084H1 true USH2084H1 (en) 2003-10-07

Family

ID=23842516

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/464,090 Abandoned USH2084H1 (en) 1999-12-16 1999-12-16 Pentacene derivatives as red emitters in organic light emitting devices

Country Status (3)

Country Link
US (1) USH2084H1 (en)
AU (1) AU1950201A (en)
WO (1) WO2001045469A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020067124A1 (en) * 2000-11-29 2002-06-06 Kafafi Zakya H. Universal host for RG or RGB emission in organic light emitting devices
US20030116755A1 (en) * 2000-02-29 2003-06-26 Tamotsu Takahashi Polyacene derivatives and production thereof
US20040108047A1 (en) * 2002-12-09 2004-06-10 International Business Machines Corporation System and method of transfer printing an organic semiconductor
US20050240061A1 (en) * 2002-03-26 2005-10-27 Japan Science And Technology Agency Functional thin film
US20110130593A1 (en) * 2009-11-30 2011-06-02 Miller Glen P Soluble, persistent nonacene derivatives
US20110130594A1 (en) * 2009-11-30 2011-06-02 Miller Glen P Class of soluble, photooxidatively resistant acene derivatives

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE331304T1 (en) 2001-09-27 2006-07-15 3M Innovative Properties Co SEMICONDUCTOR BASED ON SUBSTITUTED PENTACENE
US20030097010A1 (en) 2001-09-27 2003-05-22 Vogel Dennis E. Process for preparing pentacene derivatives
US7368659B2 (en) 2002-11-26 2008-05-06 General Electric Company Electrodes mitigating effects of defects in organic electronic devices
US7063900B2 (en) 2002-12-23 2006-06-20 General Electric Company White light-emitting organic electroluminescent devices
JP5175102B2 (en) 2004-11-05 2013-04-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for patterning an organic material to form both an insulator and a semiconductor
US7319153B2 (en) 2005-07-29 2008-01-15 3M Innovative Properties Company 6,13-Bis(thienyl)pentacene compounds
US20070257251A1 (en) * 2006-05-05 2007-11-08 Lucent Technologies Inc. Acene compositions and an apparatus having such compositions

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172862A (en) 1960-09-29 1965-03-09 Dow Chemical Co Organic electroluminescent phosphors
US3173050A (en) 1962-09-19 1965-03-09 Dow Chemical Co Electroluminescent cell
DE1910630A1 (en) * 1968-02-28 1970-10-15 Emi Ltd Photoconductive arrangement
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US5281489A (en) * 1990-03-16 1994-01-25 Asashi Kasei Kogyo Kabushiki Kaisha Electroluminescent element
US5409783A (en) 1994-02-24 1995-04-25 Eastman Kodak Company Red-emitting organic electroluminescent device
JPH08311442A (en) * 1995-05-17 1996-11-26 Tdk Corp Organic el element
US5747183A (en) 1996-11-04 1998-05-05 Motorola, Inc. Organic electroluminescent light emitting material and device using same
US5908581A (en) 1997-04-07 1999-06-01 Eastman Kodak Company Red organic electroluminescent materials
US5935720A (en) 1997-04-07 1999-08-10 Eastman Kodak Company Red organic electroluminescent devices
US5935721A (en) 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
US5989737A (en) 1997-02-27 1999-11-23 Xerox Corporation Organic electroluminescent devices
US6165383A (en) * 1998-04-10 2000-12-26 Organic Display Technology Useful precursors for organic electroluminescent materials and devices made from such materials

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19711714A1 (en) * 1997-03-20 1998-10-01 Hoechst Ag Spiro compounds and their use

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172862A (en) 1960-09-29 1965-03-09 Dow Chemical Co Organic electroluminescent phosphors
US3173050A (en) 1962-09-19 1965-03-09 Dow Chemical Co Electroluminescent cell
DE1910630A1 (en) * 1968-02-28 1970-10-15 Emi Ltd Photoconductive arrangement
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US5281489A (en) * 1990-03-16 1994-01-25 Asashi Kasei Kogyo Kabushiki Kaisha Electroluminescent element
US5409783A (en) 1994-02-24 1995-04-25 Eastman Kodak Company Red-emitting organic electroluminescent device
JPH08311442A (en) * 1995-05-17 1996-11-26 Tdk Corp Organic el element
US6203933B1 (en) * 1995-05-17 2001-03-20 Tdk Corporation Organic EL element
US5747183A (en) 1996-11-04 1998-05-05 Motorola, Inc. Organic electroluminescent light emitting material and device using same
US5989737A (en) 1997-02-27 1999-11-23 Xerox Corporation Organic electroluminescent devices
US5908581A (en) 1997-04-07 1999-06-01 Eastman Kodak Company Red organic electroluminescent materials
US5935720A (en) 1997-04-07 1999-08-10 Eastman Kodak Company Red organic electroluminescent devices
US5935721A (en) 1998-03-20 1999-08-10 Eastman Kodak Company Organic electroluminescent elements for stable electroluminescent
US6165383A (en) * 1998-04-10 2000-12-26 Organic Display Technology Useful precursors for organic electroluminescent materials and devices made from such materials

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C. Burgdorff, T. Kircher and H.G. Lohmannsroben, "Photophysical Properties of Tetracene Derivatives in Solution" Spectrochim. Acto, 44A, (1988) pp. 1137-1141. (no month).
C.W. Tang and S.A. VanSlyke, "Organic Electroluminescent Diodes", Appl. Phys. Lett. 51(12), Sep. 21, 1987, pp. 913-915.
C.W. Tang et al "Electroluminescence of Doped Organic Thin Films", J. Appl. Phys. 65(9), May 1969, pp. 3610-3616.
C.W. Tang, "Organic Electroluminescent Materials and Devices" Information Display, Oct. 1996, pp. 16-19.
Maulding et al "Electronic Absorption and Fluorescence of Phenylethynyl-Substituted Acenes" Journal of Organic Chemistry, vol. 34, No. 6, Jun. 1969, pp. 1734-1736.
Shoustikov et al, "Electroluminescence Color Tuning by Dye Doping in Organic Light-Emitting Diodes", IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, No. 1 Jan./Feb. 1998, pp. 3-13.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030116755A1 (en) * 2000-02-29 2003-06-26 Tamotsu Takahashi Polyacene derivatives and production thereof
US7901594B2 (en) * 2000-02-29 2011-03-08 Japan Science And Technology Corporation Polyacene derivatives and production thereof
US20020067124A1 (en) * 2000-11-29 2002-06-06 Kafafi Zakya H. Universal host for RG or RGB emission in organic light emitting devices
US7221088B2 (en) * 2000-11-29 2007-05-22 The United States Of America As Represented By The Secretary Of The Navy Universal host for RG or RGB emission in organic light emitting devices
US20050240061A1 (en) * 2002-03-26 2005-10-27 Japan Science And Technology Agency Functional thin film
US20040108047A1 (en) * 2002-12-09 2004-06-10 International Business Machines Corporation System and method of transfer printing an organic semiconductor
US6918982B2 (en) * 2002-12-09 2005-07-19 International Business Machines Corporation System and method of transfer printing an organic semiconductor
US20110130593A1 (en) * 2009-11-30 2011-06-02 Miller Glen P Soluble, persistent nonacene derivatives
US20110130594A1 (en) * 2009-11-30 2011-06-02 Miller Glen P Class of soluble, photooxidatively resistant acene derivatives
US8513466B2 (en) 2009-11-30 2013-08-20 University Of New Hampshire Class of soluble, photooxidatively resistant acene derivatives
US8822731B2 (en) 2009-11-30 2014-09-02 University Of New Hampshire Soluble, persistent nonacene derivatives

Also Published As

Publication number Publication date
AU1950201A (en) 2001-06-25
WO2001045469A1 (en) 2001-06-21

Similar Documents

Publication Publication Date Title
US6030715A (en) Azlactone-related dopants in the emissive layer of an OLED
US7674531B2 (en) Phosphorescent organic light emitting devices
US6413656B1 (en) Reduced symmetry porphyrin molecules for producing enhanced luminosity from phosphorescent organic light emitting devices
KR100687666B1 (en) Electroluminescent Material, Electroluminescent Element and Color Conversion Filter
US6303238B1 (en) OLEDs doped with phosphorescent compounds
US6451455B1 (en) Metal complexes bearing both electron transporting and hole transporting moieties
US6479172B2 (en) Electroluminescent (EL) devices
US5861219A (en) Organic light emitting devices containing a metal complex of 5-hydroxy-quinoxaline as a host material
US6333521B1 (en) Oleds containing thermally stable glassy organic hole transporting materials
US20060008672A1 (en) Hole-trapping materials for improved OLED efficiency
JPH10183112A (en) Electroluminescent element
USH2084H1 (en) Pentacene derivatives as red emitters in organic light emitting devices
US20040151945A1 (en) Binaphthol based chromophores for the fabrication of blue organic light emitting diodes
JPH10284252A (en) Organic el element
US6830834B2 (en) Organic light emitting devices with host-guest bonding
KR100670185B1 (en) 1,5-Diaminonaphthalene and its derivatives
Murata et al. PTIC QUALITY DEFECTED i
KR100697332B1 (en) Red luminescent organic compound and organic light-emitting diode including the same
KR100714827B1 (en) Red luminescent organic compound and organic light-emitting diode including the same
JP3525434B2 (en) Organic electroluminescence device
KR100700425B1 (en) Blue luminescent organic compound and organic light-emitting diode including the same
Kido Thompson et al.(15) Date of Patent:* Oct. 9, 2007

Legal Events

Date Code Title Description
AS Assignment

Owner name: SECRETARY OF THE NAVY, UNITED STATES OF AMERICA, A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PICCIOLO, LISA A. CRISAFULLI;MURATA, HIDEYUKI;KAFAFI, ZAKYA;REEL/FRAME:011526/0988;SIGNING DATES FROM 20001121 TO 20010131

STCF Information on status: patent grant

Free format text: PATENTED CASE