US20040037765A1 - Treatment of nickel-containing waste water on phosphating - Google Patents
Treatment of nickel-containing waste water on phosphating Download PDFInfo
- Publication number
- US20040037765A1 US20040037765A1 US10/416,103 US41610303A US2004037765A1 US 20040037765 A1 US20040037765 A1 US 20040037765A1 US 41610303 A US41610303 A US 41610303A US 2004037765 A1 US2004037765 A1 US 2004037765A1
- Authority
- US
- United States
- Prior art keywords
- phosphating
- exchanger
- ion
- ions
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 39
- 239000002351 wastewater Substances 0.000 title description 9
- 239000000243 solution Substances 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 51
- 230000002378 acidificating effect Effects 0.000 claims abstract description 37
- 239000008237 rinsing water Substances 0.000 claims abstract description 37
- 239000002253 acid Substances 0.000 claims abstract description 28
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims abstract description 17
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910001453 nickel ion Inorganic materials 0.000 claims abstract description 17
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 10
- 229910001413 alkali metal ion Inorganic materials 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 9
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 34
- 238000001728 nano-filtration Methods 0.000 claims description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- 238000005374 membrane filtration Methods 0.000 claims description 13
- 230000008929 regeneration Effects 0.000 claims description 13
- 238000011069 regeneration method Methods 0.000 claims description 13
- 239000012487 rinsing solution Substances 0.000 claims description 13
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000012141 concentrate Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- 238000001223 reverse osmosis Methods 0.000 claims description 6
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical group OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 claims description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- 239000013543 active substance Substances 0.000 claims description 4
- 238000005238 degreasing Methods 0.000 claims description 3
- 238000000108 ultra-filtration Methods 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 239000012465 retentate Substances 0.000 claims description 2
- 238000009288 screen filtration Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 description 17
- 239000011701 zinc Substances 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 15
- -1 ammonium ions Chemical class 0.000 description 14
- 150000001768 cations Chemical class 0.000 description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 11
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 229910001415 sodium ion Inorganic materials 0.000 description 10
- 238000005342 ion exchange Methods 0.000 description 9
- 238000000354 decomposition reaction Methods 0.000 description 8
- 239000011572 manganese Substances 0.000 description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229960004838 phosphoric acid Drugs 0.000 description 6
- 235000011007 phosphoric acid Nutrition 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 5
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical group [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 238000005352 clarification Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical group [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 3
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 229910001437 manganese ion Inorganic materials 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 229940023913 cation exchange resins Drugs 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004973 alkali metal peroxides Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- WTDHULULXKLSOZ-UHFFFAOYSA-N hydroxylamine hydrochloride Substances Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 1
- XBUFCZMOAHHGMX-UHFFFAOYSA-N hydroxylamine;phosphoric acid Chemical class ON.ON.ON.OP(O)(O)=O XBUFCZMOAHHGMX-UHFFFAOYSA-N 0.000 description 1
- WCYJQVALWQMJGE-UHFFFAOYSA-M hydroxylammonium chloride Chemical compound [Cl-].O[NH3+] WCYJQVALWQMJGE-UHFFFAOYSA-M 0.000 description 1
- CRJZNQFRBUFHTE-UHFFFAOYSA-N hydroxylammonium nitrate Chemical compound O[NH3+].[O-][N+]([O-])=O CRJZNQFRBUFHTE-UHFFFAOYSA-N 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/86—Regeneration of coating baths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/04—Processes using organic exchangers
- B01J39/07—Processes using organic exchangers in the weakly acidic form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J45/00—Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
Definitions
- This invention pertains to the field constituted by the phosphating of metallic surfaces, as is implemented as a widespread corrosion-preventive measure in the metalworking industry, such as in the automobile industry and the household-appliance industry, for example, but sometimes also in steelworks. It relates to a process for treating the overflow of the phosphating baths and/or the rinsing water after phosphating with nickel-bearing phosphating solutions. In preferred embodiments the process enables the recycling of bath ingredients into the phosphating bath, the re-use of active substances for the purpose of producing replenishing solutions for phosphating baths, and the use of the solution that has been depleted of metal ions as rinsing water.
- the phosphating of metals pursues the aim of generating layers of metal phosphate which are firmly fused on the surface of the metal and which, in themselves, already improve corrosion resistance and, in conjunction with lacquers and other organic coatings, contribute to a substantial enhancement of the adhesion and the resistance to infiltration in the event of corrosive stress.
- Such phosphating processes have been known for a long time in the state of the art.
- Suitable in particular for the pretreatment prior to lacquering are the low-zinc phosphating processes, in which the phosphating solutions have comparatively low contents of zinc ions amounting to, e.g., 0.5 to 2 g/l.
- a significant parameter in these low-zinc phosphating baths is the weight ratio of phosphate ions to zinc ions, which conventionally lies in the range >12 and may take values up to 30.
- phosphate layers can be formed having distinctly improved corrosion-prevention and lacquer-adhesion properties.
- low-zinc processes with addition of, e.g., 0.5 to 1.5 g/l manganese ions and, e.g., 0.3 to 2.0 g/l nickel ions find wide application as so-called tri-cation processes for the preparation of metallic surfaces for lacquering, for example for the cathodic electrophoretic lacquering of automobile bodies.
- a phosphating solution contains layer-forming components such as, e.g., zinc ions and optionally further divalent metal ions as well as phosphate ions.
- a phosphating solution contains non-layer-forming components such as alkali-metal ions for neutralising the free acid and, in particular, accelerators and decomposition products thereof.
- the decomposition products of the accelerator arise by virtue of the fact that the latter reacts with the hydrogen that is formed on the metallic surface by corrosive reaction.
- the non-layer-forming components accumulating with time in the phosphating bath can only be removed from the phosphating solution by a portion of the phosphating solution being discharged and discarded and being continuously or discontinuously replaced by new phosphating solution.
- Phosphating solution can, for example, be discharged by the phosphating bath being operated with an overflow and by the overflow being discarded. As a rule, however, an overflow is not required, since by virtue of the phosphated metal parts a sufficient quantity of phosphating solution is discharged in the form of adherent liquid film.
- the phosphating solution adhering to the phosphated parts is rinsed off with water. Since the phosphating solution contains heavy metals and, optionally, further ingredients that are not permitted to be released into the environment in uncontrolled manner, the rinsing water has to be subjected to a water treatment. This has to take place in a separate step prior to introduction into a biological clarification plant, since otherwise the operational capability of the clarification plant would be endangered.
- German Patent Application DE 198 13 058 describes a process for treating phosphating-bath overflow and/or rinsing water after phosphating, wherein the phosphating-bath overflow and/or the rinsing water is subjected to a nanofiltration.
- the concentrate of the nanofiltration can be resupplied to the phosphating bath.
- the filtrate of the nanofiltration constitutes waste water which has to be subjected to further treatment, optionally prior to being introduced into a biological clarification plant.
- German Patent Application DE 198 54 431 describes a process for saving rinsing water in the course of phosphating.
- the phosphating-bath overflow and/or the rinsing water after phosphating is subjected to a treatment process such as, for example, a reverse osmosis, an ion-exchange process which is not characterised in any detail, a nanofiltration, an electrodialysis and/or a heavy-metal precipitation, and the aqueous phase which in each given case has been depleted of metal ions is employed as rinsing water for the purpose of rinsing the metal parts to be phosphated after they have been cleaned.
- a treatment process such as, for example, a reverse osmosis, an ion-exchange process which is not characterised in any detail, a nanofiltration, an electrodialysis and/or a heavy-metal precipitation, and the aqueous phase which in each given case has been depleted of metal ions is employed as rinsing water for the purpose of rinsing the metal parts to be phosphated after they have been
- DE 199 18 713 describes an improved process for treating phosphating-bath overflow and/or rinsing water after phosphating.
- this process it is at least intended to be guaranteed that a waste water for disposal ultimately arises, the contents of which in respect of zinc ions and/or nickel ions lie below the permissible waste-water limits.
- the waste water is also intended to be capable of being used for the purpose of rinsing the metal parts to be phosphated after the degreasing thereof.
- the process is preferably to be operated in such a way that layer-forming components of the phosphating bath, in particular zinc ions and/or nickel ions, can be recovered and employed again for phosphating purposes.
- the object that is formulated in the aforementioned patent is achieved by a process for treating phosphating-bath overflow and/or rinsing water after phosphating, phosphating being effected with an acidic aqueous phosphating solution that contains 3 to 50 g/l phosphate ions, reckoned as PO 4 3 ⁇ , 0.2 to 3 g/l zinc ions, optionally further metal ions as well as, optionally, accelerators, whereby the phosphating-bath overflow and/or the rinsing water after phosphating is conducted across a weakly acidic ion-exchanger after a membrane filtration or without upstream membrane filtration.
- Lewatit R TP 207 or TP 208 produced by Bayer AG.
- Lewatit R — Selektivizationer, Morris und für von Lewatit TM 207 it is reported that in the majority of cases Lewatit TP 207 is employed after pre-exhaustion (conditioning) with alkali ions or alkaline-earth ions. In a few exceptional cases, which do not involve nickel, the use of the hydrogen form is also possible.
- the decomplexing pH value for nickel is specified as 2.1.
- This pH value indicates the hydrogen-ion concentration at which the metal ion is just desorbed from the Lewatit TP 207.
- This company publication further states that the maximum of the exchange capacity is attained in general if the pH value of the exhausting solution is at least 2 units above the decomplexing pH value. Accordingly, as reported in this statement, nickel is only bound to a sufficient extent at a pH value above 4.1. Consequently in the embodiment examples of the already cited DE-A-199 18 713 the ion-exchanger is employed in the monosodium form. According to the aforementioned company publication produced by Bayer AG, the outflow of the ion-exchanger in the monosodium form has a pH value that lies between 6 and 9.
- Japanese Patent Application P 62287100 (cited as stated in Derwent Abstract 1988-0-25811) describes the binding of nickel ions from phosphoric-acid solution to an ion-exchanger, the acidic groups of which are neutralised with sodium ions to an extent amounting to 25 to 75%.
- Japanese Patent Application JP 63057799 A2 discloses that nickel from a plating solution can also be bound to the H-form of an ion-exchanger with chelating iminodiacetic-acid groups (which constitute weakly acidic groups). This cannot be applied to the problem as formulated in the present invention, since plating solutions have substantially higher contents of metal ions than phosphating-bath overflow diluted with rinsing water or rinsing water after phosphating.
- the nickel contents of the last-named solutions lie, as a rule, within the range between 5 and 100, in particular between 10 and 50 ppm. These solutions have to be treated in such a way that the nickel contents of the treated solutions are below 1 ppm.
- this process has the disadvantage that when the ion-exchanger is employed for the purpose of treating the stated phosphating-bath waste waters a waste water arises that has been subjected to an increase in salinity by virtue of sodium salts and that can only be re-used to a limited extent.
- a waste water arises that has been subjected to an increase in salinity by virtue of sodium salts and that can only be re-used to a limited extent.
- a nickel-bearing solution of valuable material is preferably to be ejected
- residual sodium in the ion-exchanger is likewise eluted.
- the nickel-bearing solution of valuable material is therefore contaminated with sodium ions and so can only be re-used to a limited extent.
- the present invention sets itself the object of avoiding the aforementioned disadvantages. It is based on the surprising perception that weakly acidic ion-exchangers of the type represented by Lewatit R TP 207, contrary to what is stated by the manufacturer, bind nickel from dilute solutions (nickel contents between 5 and 100, in particular between 10 and 50 ppm) to a sufficient extent and in particular selectively in relation to manganese and, partially, zinc, also at a pH value no higher than 4.
- the invention accordingly provides a process for treating a nickel-bearing aqueous solution consisting of phosphating-bath overflow and/or of rinsing water after phosphating, wherein phosphating is effected with an acidic aqueous phosphating solution that contains 3 to 50 g/l phosphate ions, reckoned as PO 4 3 ⁇ , 0.2 to 3 g/l zinc ions, 0.01 to 2.5 g/l nickel ions, optionally further metal ions as well as, optionally, accelerators, whereby the phosphating-bath overflow and/or the rinsing water after phosphating is conducted across a weakly acidic ion-exchanger, characterised in that the acid groups of the ion-exchanger are neutralised with alkali-metal ions to an extent amounting to no more than 15% and in that when it is fed to the ion-exchanger the nickel-bearing aqueous solution has a pH value within the range from 2.5 to
- a weakly acidic ion-exchanger is to be employed, the acid groups of which are neutralised with alkali-metal ions to an extent amounting to no more than 10%.
- the aim is that the acid groups of the ion-exchanger are neutralised with alkali-metal ions to an extent amounting to no more than 5%, preferably no more than 3% and in particular no more than 1%.
- the ion-exchanger contains no alkali-metal ions at all.
- equilibrium processes play a role in the regeneration of an exhausted ion-exchanger, this desired ideal state of the ion-exchanger cannot always be obtained.
- a simple criterion as to whether the acid groups have been neutralised with alkali-metal ions to a sufficiently small extent is constituted by the bed volume (abbreviated as BV in the following) of the ion-exchanger.
- bed volume is to be understood to mean the total volume of the ion-exchange particles together with the liquid between the particles.
- the bed volume of weakly acidic ion-exchangers usually depends on the degree of neutralisation of the acid groups.
- the bed volume of the monosodium form amounts to around 450 ml.
- Such an ion-exchanger is in the state to be used in accordance with the invention if the bed volume of the ion-exchanger, which in the disodium form amounts to 500 ml, is not above 415 ml.
- phosphating baths which are conventional in the state of the art, the bath overflow or rinsing water of which can be treated with the process according to the invention:
- the zinc contents preferably lie within the range from 0.4 to 2 g/l and in particular from 0.5 to 1.5 g/l, as conventional for low-zinc processes.
- the weight ratio of phosphate ions to zinc ions in the phosphating baths may fluctuate within wide limits, provided that it lies within the range between 3.7 and 30. A weight ratio between 10 and 20 is particularly preferred.
- the phosphating baths contain 0.01 to 2.5 g/l, preferably 0.3 to 2.0 g/l, nickel ions.
- the phosphating solution may contain 0.1 to 4 g/ml, in particular 0.5 to 1.5 g/l, manganese ions, as is conventional for tri-cation processes.
- the phosphating solution may contain by way of further metal ions: 0.2 to 2.5 g/l magnesium (II), 0.2 to 2.5 g/l calcium (II), 0.002 to 0.2 g/l copper (II), 0.1 to 2 g/l cobalt (II).
- the form in which the cations are introduced into the phosphating baths is basically of no importance.
- One possibility which presents itself in particular is to use oxides and/or carbonates as a cation source.
- salts of acids other than phosphoric acid should preferably be avoided.
- phosphating baths additionally contain, as a rule, sodium ions, potassium ions and/or ammonium ions for the purpose of adjusting the free acid.
- Phosphating baths that serve exclusively to treat galvanised material do not necessarily have to contain a so-called accelerator.
- accelerators that are required in the phosphating of non-galvanised steel surfaces are also frequently employed concomitantly in the state of the art in the phosphating of galvanised material.
- Accelerator-containing phosphating solutions have the additional advantage that they are suitable both for galvanised materials and for non-galvanised materials. This is particularly important in the phosphating of automobile bodies, since the latter frequently contain both galvanised and non-galvanised surfaces.
- the phosphating solution may contain one or more of the following accelerators: 0.3 to 4 g/l chlorate ions 0.01 to 0.2 g/l nitrite ions 0.1 to 10 g/l hydroxylamine 0.001 to 0.15 g/l hydrogen peroxide in free or bound form 0.5 to 80 g/l nitrate ions.
- chlorate ions are formed from chloride ions
- nitrate ions and ammonium ions are formed from nitrite ions
- ammonium ions are formed from nitrate ions
- ammonium ions are formed from hydroxylamine
- water is formed from hydrogen peroxide.
- the anions or ammonium ions that are formed are able to pass through a nanofiltration membrane, so that in the process according to the invention they are discharged at least partially from the phosphating-bath overflow or from the rinsing water after phosphating.
- An accelerator that is likewise preferably to be used within the scope of the process according to the invention is hydroxylamine. If the latter is added to the phosphating bath in free form or in the form of hydroxylammonium phosphates, hydroxylammonium nitrate and/or hydroxylammonium chloride, likewise only decomposition products or by-products are formed that are able to penetrate a nanofiltration membrane.
- the process according to the invention can be operated in such a way that the phosphating-bath overflow and/or the rinsing water after phosphating is conducted directly (optionally after removal of sludge and/or of organic constituents, which can be effected, for example, by a screen filtration or bag filtration or a filtration across a particle bed such as a sand filter, for example) across the weakly acidic ion-exchanger.
- the phosphating-bath overflow and/or the rinsing water after phosphating may be subjected to a membrane filtration in the form of an ultrafiltration, a nanofiltration or a reverse osmosis.
- a membrane filtration in the form of an ultrafiltration, a nanofiltration or a reverse osmosis.
- the aqueous solution is subsequently conducted across the weakly acidic ion-exchanger.
- the weakly acidic ion-exchanger metal ions that constitute valuable materials of a phosphating solution are removed selectively from the aqueous solution.
- these cations can be employed again for phosphating purposes after regeneration of the ion-exchanger.
- membranes are available in the state of the art for an ultrafiltration, a nanofiltration or a reverse osmosis. Since phosphating baths and also the corresponding rinsing waters react acidically, the membrane that is employed should be acid-resistant. Suitable, for example, are inorganic membranes such as, e.g., ceramic membranes. Moreover, organic polymer membranes can be employed. In particular, a polyamide membrane is suitable as a nanofiltration membrane.
- the process is preferably operated in such a way that the retentate of the membrane filtration is recycled into the phosphating solution.
- the process is preferably operated in such a way that the retentate of the membrane filtration is recycled into the phosphating solution.
- Organic constituents in the phosphating bath can be removed by activated carbon or by synthetic resins. Suitable by way of activated carbon is, for example, the type Lofsorb LA 40 E-3-01 produced by Loeffler GmbH.
- activated carbon is, for example, the type Lofsorb LA 40 E-3-01 produced by Loeffler GmbH.
- organic resins use may be made of Lewatit VP 0C 1066 or Dowex OPTL 285, for example, with a view to removing organic constituents.
- weakly acidic ion-exchanger preferably such a type is employed that is selective in respect of nickel ions and/or zinc ions. Under operational conditions the weakly acidic ion-exchanger preferably binds nickel ions more strongly than zinc ions. This means that nickel ions from the solution that has been fed are able to displace zinc ions from the ion-exchanger. Monovalent cations are to be bound as little as possible.
- weakly acidic ion-exchangers are suitable that bear chelate-forming iminodiacetic-acid groups.
- a suitable product is Lewatit R TP 207 or TP 208 produced by Bayer.
- Other suitable ion-exchangers are IRC 718/748 produced by Rohm & Haas, as well as S-930 produced by Purolite.
- the process is preferably operated in such a way that the weakly acidic ion-exchanger is regenerated with a weakly acidic acid after exhaustion.
- the selectively bound nickel ions, optionally together with zinc ions still remaining, are eluted in the process and can be re-used for phosphating purposes.
- these cations do not have to be disposed of in the form of heavy-metal-containing sludge but can—optionally after suitable treatment—be employed again for phosphating. As a result, resources are spared.
- Phosphoric acid is particularly suitable. Phosphoric acid may contain, relative to the overall quantity of acid, up to a total of 10 mol. % nitric acid, hydrochloric acid and/or hydrofluoric acid.
- caustic-soda solution may be dispensed with entirely. However, this presupposes an appropriately long rinsing with water.
- the rinsing operation can be shortened if a quantity of lye is admixed to the rinsing water that corresponds to a maximum of 0.5 bed volumes of 4-% caustic-soda solution. With this quantity of lye the residual acid in the free volume between the ion-exchange particles is neutralised, but the acid groups of the exchanger itself are not. This means that sodium ions scarcely bind to the ion-exchanger with this low quantity of lye. Rather, sodium ions are predominantly present between the ion-exchange particles in the form of dissolved salts in the aqueous phase and are therefore rapidly displaced in the course of feeding the solution to be treated to the exchanger.
- the procedure is preferably such that a concentrate fraction is ejected that contains at least 0.5 wt. % nickel ions, and said fraction is re-used immediately or after replenishment with further active substances for the purpose of replenishing a phosphating solution.
- a concentrate fraction is ejected that contains at least 0.5 wt. % nickel ions, and said fraction is re-used immediately or after replenishment with further active substances for the purpose of replenishing a phosphating solution.
- This replenishing solution can then be used as conventionally for the purpose of replenishing the phosphating bath.
- the solution that has been depleted of cations and that leaves the weakly acidic cation-exchanger in the exhaustion phase thereof can, depending on ingredients, be supplied to a simplified waste-water treatment or introduced directly into a biological clarification plant. However, it is more economical to use this solution as rinsing water for the metal parts to be phosphated after the degreasing thereof.
- This embodiment of the process according to the invention has the additional advantage that rinsing water is saved.
- the outflow from the ion-exchanger can be employed directly for rinsing purposes. If the membrane filtration arranged upstream is dispensed with, it is advisable to subject the outflow from the ion-exchanger to a membrane filtration before it is used as rinsing water. A nanofiltration is particularly suitable for these processes.
- Table 1 indicates the exhaustion volumes and the corresponding nickel concentrations.
- Example 2 In a manner analogous to Example 1, the activity of the weakly acidic cation-exchanger according to the invention Lewatit TP 207 (di-Na + form) was investigated. To this end, the resin was conditioned after the regeneration with 2.4 BV NaOH (4%) and subsequently rinsed with 2.0 BV of desalinated water (in each case with 4 BV/h). The phosphating rinsing solutions that were employed corresponded to the data in Example 1. Table 2 indicates the exhaustion volumes and the corresponding nickel concentrations. The breakthrough behaviour for nickel is virtually identical in both Examples.
- Example 4 shows that nickel is more firmly bound to Lewatit R TP 207 than zinc and manganese.
- the initially high nickel contents are based on residual nickel in the experimental arrangement, as a result of a preceding experimental cycle.
- Manganese is only bound initially by the column but runs freely through after exhaustion with approximately 500 bed volumes of solution. In the course of this exhaustion the breakthrough of zinc also begins, whereas nickel is still almost completely bound up to approximately 1,000 bed volumes.
- nickel is bound increasingly poorly above this degree of exhaustion, it is still clearly bound, whereas the zinc content of the emerging solution is higher than that of the solution that has been fed. This means that not only no further zinc is bound but that nickel in the solution displaces the zinc that is bound to the exchanger.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Chemical Treatment Of Metals (AREA)
- Removal Of Specific Substances (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10056629A DE10056629C1 (de) | 2000-11-15 | 2000-11-15 | Verfahren zur Aufbereitung von nickelhaltigem Abwasser bei der Phosphatierung |
DE10056629.4 | 2000-11-15 | ||
PCT/EP2001/012814 WO2002040405A2 (fr) | 2000-11-15 | 2001-11-06 | Traitement d'eaux residuaires renfermant du nickel lors d'une phosphatation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040037765A1 true US20040037765A1 (en) | 2004-02-26 |
Family
ID=7663411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/416,103 Abandoned US20040037765A1 (en) | 2000-11-15 | 2001-11-06 | Treatment of nickel-containing waste water on phosphating |
Country Status (9)
Country | Link |
---|---|
US (1) | US20040037765A1 (fr) |
EP (1) | EP1337471A2 (fr) |
JP (1) | JP2004514055A (fr) |
CN (1) | CN1498193A (fr) |
AU (1) | AU2002219077A1 (fr) |
BR (1) | BR0115363A (fr) |
CA (1) | CA2429156A1 (fr) |
DE (1) | DE10056629C1 (fr) |
WO (1) | WO2002040405A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111470717A (zh) * | 2020-04-15 | 2020-07-31 | 河南恒安环保科技有限公司 | 一种新能源汽车电泳涂装废水处理回用方法 |
CN111809048A (zh) * | 2020-07-19 | 2020-10-23 | 河南科技大学 | 一种去除硫酸钴电解中痕量镍的方法 |
CN112125457A (zh) * | 2020-09-10 | 2020-12-25 | 黄河三角洲京博化工研究院有限公司 | 一种热电反渗透浓水结晶分盐的处理方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003266307A1 (en) * | 2002-08-31 | 2004-04-30 | Henkel Kommanditgesellschaft Auf Aktien | Multi-stage method for reprocessing waste water from a phosphating process, using a subacid ion exchanger |
DE10257074B4 (de) | 2002-12-06 | 2018-07-26 | Henkel Ag & Co. Kgaa | Verfahren zum Aufbereiten von Phosphatierbadüberlauf oder Spülwasser nach einer Phosphatierung |
DE10308426B4 (de) * | 2003-02-27 | 2005-03-03 | Henkel Kgaa | Verfahren zur Aufbereitung von Phosphatierbadüberlauf und/oder von Spülwasser nach der Phosphatierung |
DE102005043031A1 (de) * | 2005-09-10 | 2007-03-15 | Mauer, Dieter, Dr. | Verfahren zum Entfernen von Phosphaten aus Acetat-gepufferten Lösungen |
WO2008038740A1 (fr) * | 2006-09-28 | 2008-04-03 | Kurita Water Industries Ltd. | Procédé et équipement pour récupérer l'acide phosphorique dans de l'eau contenant de l'acide phosphorique |
CN101624248B (zh) * | 2009-07-29 | 2011-08-24 | 深圳市天骄科技开发有限公司 | 镍钴锰酸锂生产废水的处理方法 |
CN103663774A (zh) * | 2013-02-27 | 2014-03-26 | 苏州信望膜技术有限公司 | 利用膜分离技术处理低浓度含氨废水的方法 |
CN103588325A (zh) * | 2013-11-22 | 2014-02-19 | 大连碧城环保科技有限公司 | 酸洗磷化工业废水的再生循环方法 |
CN103588326A (zh) * | 2013-11-22 | 2014-02-19 | 大连碧城环保科技有限公司 | 金属磷化加工清洁生产工艺 |
DE102016215233A1 (de) * | 2016-08-16 | 2018-02-22 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Vorrichtung zum Entfetten eines Bauteils |
CN114436481A (zh) * | 2022-04-02 | 2022-05-06 | 山东凤鸣桓宇环保有限公司 | 一种磷化废水资源化回收工艺 |
CN114477665B (zh) * | 2022-04-14 | 2022-07-22 | 山东凤鸣桓宇环保有限公司 | 一种涂装废水资源化处理工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130446A (en) * | 1976-04-19 | 1978-12-19 | Nippon Paint Co., Ltd. | Process for phosphate conversion coating with treatment of rinse water by reverse osmosis and ion exchange |
US6464879B1 (en) * | 1997-12-05 | 2002-10-15 | Henkel Kommanditgesellschaft Auf Aktien | Treatment of phosphatizing waste water |
US6645316B1 (en) * | 1999-05-28 | 2003-11-11 | Henkel Kommanditgesellschaft Auf Aktien | Post-passivation of a phosphatized metal surface |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357799A (ja) * | 1986-08-25 | 1988-03-12 | Kurita Water Ind Ltd | メツキ液の処理方法 |
DE4226080A1 (de) * | 1992-08-06 | 1994-02-10 | Henkel Kgaa | Aufbereitung wäßriger Spüllösungen aus Zinkphosphatierungsprozessen |
DE4435774C1 (de) * | 1994-10-06 | 1996-03-14 | Rimmel Gmbh | Verfahren zum Abtrennen von Zink aus Zink und Chrom enthaltenden Lösungen oder Schlämmen wie Abwässern, Prozeßbädern oder Galvanikschlämmen |
DE19854431A1 (de) * | 1998-11-25 | 2000-05-31 | Henkel Kgaa | Phosphatierverfahren mit Spülwasser-Einsparung |
DE19813058A1 (de) * | 1998-03-25 | 1999-09-30 | Henkel Kgaa | Abwasseraufbereitung bei der Phosphatierung |
DE19918713C5 (de) * | 1999-04-26 | 2005-09-15 | Henkel Kgaa | Abwasseraufbereitung bei der Phosphatierung |
DE19958775A1 (de) * | 1999-05-28 | 2000-11-30 | Henkel Kgaa | Nachpassivierung einer phosphatierten Metalloberfläche |
-
2000
- 2000-11-15 DE DE10056629A patent/DE10056629C1/de not_active Expired - Fee Related
-
2001
- 2001-11-06 CA CA002429156A patent/CA2429156A1/fr not_active Abandoned
- 2001-11-06 JP JP2002542739A patent/JP2004514055A/ja active Pending
- 2001-11-06 EP EP01996515A patent/EP1337471A2/fr not_active Withdrawn
- 2001-11-06 CN CNA018188478A patent/CN1498193A/zh active Pending
- 2001-11-06 US US10/416,103 patent/US20040037765A1/en not_active Abandoned
- 2001-11-06 WO PCT/EP2001/012814 patent/WO2002040405A2/fr not_active Application Discontinuation
- 2001-11-06 AU AU2002219077A patent/AU2002219077A1/en not_active Abandoned
- 2001-11-06 BR BR0115363-3A patent/BR0115363A/pt not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130446A (en) * | 1976-04-19 | 1978-12-19 | Nippon Paint Co., Ltd. | Process for phosphate conversion coating with treatment of rinse water by reverse osmosis and ion exchange |
US6464879B1 (en) * | 1997-12-05 | 2002-10-15 | Henkel Kommanditgesellschaft Auf Aktien | Treatment of phosphatizing waste water |
US6645316B1 (en) * | 1999-05-28 | 2003-11-11 | Henkel Kommanditgesellschaft Auf Aktien | Post-passivation of a phosphatized metal surface |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111470717A (zh) * | 2020-04-15 | 2020-07-31 | 河南恒安环保科技有限公司 | 一种新能源汽车电泳涂装废水处理回用方法 |
CN111809048A (zh) * | 2020-07-19 | 2020-10-23 | 河南科技大学 | 一种去除硫酸钴电解中痕量镍的方法 |
CN112125457A (zh) * | 2020-09-10 | 2020-12-25 | 黄河三角洲京博化工研究院有限公司 | 一种热电反渗透浓水结晶分盐的处理方法 |
Also Published As
Publication number | Publication date |
---|---|
DE10056629C1 (de) | 2002-04-04 |
WO2002040405A2 (fr) | 2002-05-23 |
BR0115363A (pt) | 2003-08-26 |
CN1498193A (zh) | 2004-05-19 |
EP1337471A2 (fr) | 2003-08-27 |
WO2002040405A3 (fr) | 2002-07-25 |
CA2429156A1 (fr) | 2002-05-23 |
AU2002219077A1 (en) | 2002-05-27 |
JP2004514055A (ja) | 2004-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040037765A1 (en) | Treatment of nickel-containing waste water on phosphating | |
US6645316B1 (en) | Post-passivation of a phosphatized metal surface | |
US4130446A (en) | Process for phosphate conversion coating with treatment of rinse water by reverse osmosis and ion exchange | |
AU2011248353B2 (en) | Method for purifying water by cyclic ionic exchange | |
AU2011248353A1 (en) | Method for purifying water by cyclic ionic exchange | |
DE19918713C5 (de) | Abwasseraufbereitung bei der Phosphatierung | |
CA2059246C (fr) | Processus d'extraction pour bain de metallisation | |
JP2004514055A5 (fr) | ||
EP1567689A1 (fr) | Procede de phosphatation de surfaces metalliques presentant un meilleur taux de recuperation de phosphate | |
US6464879B1 (en) | Treatment of phosphatizing waste water | |
JP2020503458A (ja) | ハイブリッドイオン交換沈殿プロセスによる電気セラミックコーティング浴浄化 | |
DE19854431A1 (de) | Phosphatierverfahren mit Spülwasser-Einsparung | |
EP1392887B1 (fr) | Procede permettant d'empecher l'encrassement de la membrane lors du traitement des eaux usees resultant de la phosphatation | |
KR20010106235A (ko) | 금속 표면-처리 방법 | |
US20040054017A1 (en) | Fractional regeneration of a weakly acidic ion exchanger loaded with bivalent metallic ions | |
JP4429474B2 (ja) | 金属表面処理方法 | |
CA2141841A1 (fr) | Traitement des solutions aqueuses de rincage provenant de procedes de phosphatation du zinc | |
JP6670308B2 (ja) | 金属部材の連続表面処理におけるアルカリ浴溶液からの亜鉛イオンの選択的除去のための方法 | |
JP2002212751A (ja) | 金属表面処理方法 | |
DE10254952A1 (de) | Mehrstufiges Verfahren zur Aufarbeitung von Phosphatierabwasser unter Einsatz eines schwach sauren Ionenaustauschers | |
WO1999048819A1 (fr) | Traitement des eaux usees lors de la phosphatation | |
WO2002079541A2 (fr) | Post-passivation d'une surface metallique phosphatee par processus en bande | |
WO2003078684A1 (fr) | Procede de phosphatation de surfaces metalliques assurant un recyclage ameliore des matieres revalorisables | |
DE10257074B4 (de) | Verfahren zum Aufbereiten von Phosphatierbadüberlauf oder Spülwasser nach einer Phosphatierung | |
WO2004063424A2 (fr) | Procede pour traiter de l'eau de rinçage phosphatee au moyen de membranes bi- ou multicouches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HENKEL KOMMANDITGESELLSCHAFT AUF AKTIEN (HENKEL KG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEPA, KLAUS;KROEMER, JENS;DRONIOU, PATNCK;AND OTHERS;REEL/FRAME:013918/0815;SIGNING DATES FROM 20030506 TO 20030507 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |