US20020061848A1 - Compounds and methods for treatment and diagnosis of chlamydial infection - Google Patents
Compounds and methods for treatment and diagnosis of chlamydial infection Download PDFInfo
- Publication number
- US20020061848A1 US20020061848A1 US09/841,132 US84113201A US2002061848A1 US 20020061848 A1 US20020061848 A1 US 20020061848A1 US 84113201 A US84113201 A US 84113201A US 2002061848 A1 US2002061848 A1 US 2002061848A1
- Authority
- US
- United States
- Prior art keywords
- seq
- sequence
- trachomatis
- amino acid
- polypeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 121
- 238000011282 treatment Methods 0.000 title claims abstract description 15
- 206010061041 Chlamydial infection Diseases 0.000 title abstract description 24
- 201000000902 chlamydia Diseases 0.000 title abstract description 23
- 208000012538 chlamydia trachomatis infectious disease Diseases 0.000 title abstract description 23
- 150000001875 compounds Chemical class 0.000 title abstract description 19
- 238000003745 diagnosis Methods 0.000 title abstract description 4
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 418
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 283
- 229920001184 polypeptide Polymers 0.000 claims abstract description 257
- 239000000427 antigen Substances 0.000 claims abstract description 149
- 108091007433 antigens Proteins 0.000 claims abstract description 149
- 102000036639 antigens Human genes 0.000 claims abstract description 149
- 241000606161 Chlamydia Species 0.000 claims abstract description 91
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 25
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 239000012472 biological sample Substances 0.000 claims abstract description 21
- 238000009007 Diagnostic Kit Methods 0.000 claims abstract description 6
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 318
- 108090000623 proteins and genes Proteins 0.000 claims description 286
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 142
- 210000004027 cell Anatomy 0.000 claims description 128
- 102000004169 proteins and genes Human genes 0.000 claims description 127
- 102000040430 polynucleotide Human genes 0.000 claims description 111
- 108091033319 polynucleotide Proteins 0.000 claims description 111
- 239000002157 polynucleotide Substances 0.000 claims description 111
- 102000037865 fusion proteins Human genes 0.000 claims description 72
- 108020001507 fusion proteins Proteins 0.000 claims description 72
- 230000014509 gene expression Effects 0.000 claims description 59
- 239000013604 expression vector Substances 0.000 claims description 45
- 239000000523 sample Substances 0.000 claims description 43
- 230000002163 immunogen Effects 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 32
- 239000012634 fragment Substances 0.000 claims description 30
- 210000000612 antigen-presenting cell Anatomy 0.000 claims description 29
- 230000027455 binding Effects 0.000 claims description 26
- 230000028993 immune response Effects 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 17
- 108091034117 Oligonucleotide Proteins 0.000 claims description 16
- 125000006853 reporter group Chemical group 0.000 claims description 15
- 230000004936 stimulating effect Effects 0.000 claims description 15
- 208000007190 Chlamydia Infections Diseases 0.000 claims description 14
- 230000003308 immunostimulating effect Effects 0.000 claims description 12
- 229960001438 immunostimulant agent Drugs 0.000 claims description 11
- 239000003022 immunostimulating agent Substances 0.000 claims description 11
- 239000000969 carrier Substances 0.000 claims description 10
- 230000000638 stimulation Effects 0.000 claims description 8
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 claims description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 339
- 229960005486 vaccine Drugs 0.000 abstract description 52
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 21
- 230000000890 antigenic effect Effects 0.000 abstract description 6
- 241000606153 Chlamydia trachomatis Species 0.000 description 590
- 229940038705 chlamydia trachomatis Drugs 0.000 description 122
- 235000018102 proteins Nutrition 0.000 description 117
- 108700026244 Open Reading Frames Proteins 0.000 description 102
- 241001647372 Chlamydia pneumoniae Species 0.000 description 101
- 239000013615 primer Substances 0.000 description 101
- 239000013256 coordination polymer Substances 0.000 description 77
- 239000013598 vector Substances 0.000 description 74
- 101150077194 CAP1 gene Proteins 0.000 description 53
- 108020004414 DNA Proteins 0.000 description 53
- 238000010367 cloning Methods 0.000 description 45
- 210000004443 dendritic cell Anatomy 0.000 description 43
- 235000001014 amino acid Nutrition 0.000 description 42
- 229940024606 amino acid Drugs 0.000 description 39
- 150000001413 amino acids Chemical class 0.000 description 39
- 239000002773 nucleotide Substances 0.000 description 36
- 125000003729 nucleotide group Chemical group 0.000 description 36
- 241000498849 Chlamydiales Species 0.000 description 34
- 101100245221 Mus musculus Prss8 gene Proteins 0.000 description 34
- 238000003556 assay Methods 0.000 description 34
- 208000015181 infectious disease Diseases 0.000 description 34
- 102100035954 Choline transporter-like protein 2 Human genes 0.000 description 33
- 101000948115 Homo sapiens Choline transporter-like protein 2 Proteins 0.000 description 33
- 230000015572 biosynthetic process Effects 0.000 description 32
- 238000003786 synthesis reaction Methods 0.000 description 32
- 206010035664 Pneumonia Diseases 0.000 description 31
- 238000003752 polymerase chain reaction Methods 0.000 description 31
- 239000002671 adjuvant Substances 0.000 description 28
- 230000004044 response Effects 0.000 description 28
- 101150106828 pmpD gene Proteins 0.000 description 25
- 241000588724 Escherichia coli Species 0.000 description 24
- 102100037850 Interferon gamma Human genes 0.000 description 24
- 108010074328 Interferon-gamma Proteins 0.000 description 24
- 238000002965 ELISA Methods 0.000 description 23
- 230000004927 fusion Effects 0.000 description 23
- 125000005647 linker group Chemical group 0.000 description 23
- 230000036961 partial effect Effects 0.000 description 23
- 230000009696 proliferative response Effects 0.000 description 23
- 101000956368 Trittame loki CRISP/Allergen/PR-1 Proteins 0.000 description 22
- 101150061263 tct-1 gene Proteins 0.000 description 22
- 241000699670 Mus sp. Species 0.000 description 21
- 230000000692 anti-sense effect Effects 0.000 description 21
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 20
- 239000002953 phosphate buffered saline Substances 0.000 description 20
- 101150050161 pmpC gene Proteins 0.000 description 20
- 239000003795 chemical substances by application Substances 0.000 description 19
- 239000002299 complementary DNA Substances 0.000 description 19
- 238000002649 immunization Methods 0.000 description 19
- 230000003053 immunization Effects 0.000 description 18
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 18
- 102000009016 Cholera Toxin Human genes 0.000 description 17
- 108010049048 Cholera Toxin Proteins 0.000 description 17
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 17
- 102100034763 Peroxiredoxin-2 Human genes 0.000 description 17
- 210000001616 monocyte Anatomy 0.000 description 17
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 17
- 239000007787 solid Substances 0.000 description 17
- 108010076504 Protein Sorting Signals Proteins 0.000 description 16
- 239000012528 membrane Substances 0.000 description 15
- 101150059608 pmpE gene Proteins 0.000 description 15
- 210000002966 serum Anatomy 0.000 description 15
- 102000004127 Cytokines Human genes 0.000 description 14
- 108090000695 Cytokines Proteins 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 14
- 238000001727 in vivo Methods 0.000 description 14
- 239000002609 medium Substances 0.000 description 14
- 210000004379 membrane Anatomy 0.000 description 14
- 101150053615 pmpG gene Proteins 0.000 description 14
- 210000004899 c-terminal region Anatomy 0.000 description 13
- 230000001900 immune effect Effects 0.000 description 13
- 230000005867 T cell response Effects 0.000 description 12
- 241000700605 Viruses Species 0.000 description 12
- 239000012636 effector Substances 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 12
- 230000006698 induction Effects 0.000 description 12
- 230000035755 proliferation Effects 0.000 description 12
- 238000007792 addition Methods 0.000 description 11
- 230000003321 amplification Effects 0.000 description 11
- 238000009472 formulation Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000003199 nucleic acid amplification method Methods 0.000 description 11
- 150000007523 nucleic acids Chemical class 0.000 description 11
- 238000000746 purification Methods 0.000 description 11
- -1 rRNA Proteins 0.000 description 11
- 230000009257 reactivity Effects 0.000 description 11
- 210000004989 spleen cell Anatomy 0.000 description 11
- 206010061218 Inflammation Diseases 0.000 description 10
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 10
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 10
- 125000000539 amino acid group Chemical group 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 230000000295 complement effect Effects 0.000 description 10
- 238000012217 deletion Methods 0.000 description 10
- 230000037430 deletion Effects 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 230000004054 inflammatory process Effects 0.000 description 10
- 101150067195 pmpB gene Proteins 0.000 description 10
- 101150033274 pmpI gene Proteins 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 10
- 230000001177 retroviral effect Effects 0.000 description 10
- 238000006467 substitution reaction Methods 0.000 description 10
- 102000053602 DNA Human genes 0.000 description 9
- 101100462201 Mus musculus Opn4 gene Proteins 0.000 description 9
- 241000283973 Oryctolagus cuniculus Species 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 230000009089 cytolysis Effects 0.000 description 9
- 238000009169 immunotherapy Methods 0.000 description 9
- 239000004005 microsphere Substances 0.000 description 9
- 102000039446 nucleic acids Human genes 0.000 description 9
- 108020004707 nucleic acids Proteins 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 238000010561 standard procedure Methods 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 108091081024 Start codon Proteins 0.000 description 8
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 238000011081 inoculation Methods 0.000 description 8
- 238000013507 mapping Methods 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 101100438368 Caenorhabditis elegans cap-1 gene Proteins 0.000 description 7
- 239000003155 DNA primer Substances 0.000 description 7
- 108010028127 Dihydrolipoamide Dehydrogenase Proteins 0.000 description 7
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 7
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 7
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 7
- 201000010099 disease Diseases 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 230000005847 immunogenicity Effects 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 239000013642 negative control Substances 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 238000011735 C3H mouse Methods 0.000 description 6
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 6
- 201000005019 Chlamydia pneumonia Diseases 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 6
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 6
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 6
- 230000006052 T cell proliferation Effects 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 238000001042 affinity chromatography Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 6
- 101150052825 dnaK gene Proteins 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 101150003321 lpdA gene Proteins 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000002751 oligonucleotide probe Substances 0.000 description 6
- 210000003101 oviduct Anatomy 0.000 description 6
- 208000030773 pneumonia caused by chlamydia Diseases 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 210000004988 splenocyte Anatomy 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000014616 translation Effects 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 241000701161 unidentified adenovirus Species 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 241000713673 Human foamy virus Species 0.000 description 5
- 241000714177 Murine leukemia virus Species 0.000 description 5
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 5
- 238000012408 PCR amplification Methods 0.000 description 5
- 101710183681 Uncharacterized protein 7 Proteins 0.000 description 5
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 238000002405 diagnostic procedure Methods 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 238000001400 expression cloning Methods 0.000 description 5
- 230000028996 humoral immune response Effects 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 238000003018 immunoassay Methods 0.000 description 5
- 229940127121 immunoconjugate Drugs 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 210000001672 ovary Anatomy 0.000 description 5
- 238000007920 subcutaneous administration Methods 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 241000023308 Acca Species 0.000 description 4
- 108700028369 Alleles Proteins 0.000 description 4
- 101100130895 Bacillus subtilis (strain 168) mntA gene Proteins 0.000 description 4
- 101100087825 Bacillus subtilis (strain 168) nrdE gene Proteins 0.000 description 4
- 241001185363 Chlamydiae Species 0.000 description 4
- 101100087840 Dictyostelium discoideum rnrB-2 gene Proteins 0.000 description 4
- 108091060211 Expressed sequence tag Proteins 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 102100034349 Integrase Human genes 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 102000000588 Interleukin-2 Human genes 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- 101710149059 Large cysteine-rich periplasmic protein OmcB Proteins 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 208000029082 Pelvic Inflammatory Disease Diseases 0.000 description 4
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- 101100428373 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) POR1 gene Proteins 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- 101100443856 Streptococcus pyogenes serotype M18 (strain MGAS8232) polC gene Proteins 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229960003767 alanine Drugs 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012228 culture supernatant Substances 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000004069 differentiation Effects 0.000 description 4
- 230000003292 diminished effect Effects 0.000 description 4
- 101150008507 dnaE gene Proteins 0.000 description 4
- 101150035285 dnaE1 gene Proteins 0.000 description 4
- 101150003155 dnaG gene Proteins 0.000 description 4
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 4
- 235000013861 fat-free Nutrition 0.000 description 4
- 101150008469 flhA gene Proteins 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 101150077178 infC gene Proteins 0.000 description 4
- 230000014828 interferon-gamma production Effects 0.000 description 4
- 101150093674 lpxD gene Proteins 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 101150106833 metG gene Proteins 0.000 description 4
- 101150062025 metG1 gene Proteins 0.000 description 4
- 229940035032 monophosphoryl lipid a Drugs 0.000 description 4
- 101150067482 msbA gene Proteins 0.000 description 4
- 101150101723 nrdA gene Proteins 0.000 description 4
- 101150037566 nrdB gene Proteins 0.000 description 4
- 101150087557 omcB gene Proteins 0.000 description 4
- 210000005259 peripheral blood Anatomy 0.000 description 4
- 239000011886 peripheral blood Substances 0.000 description 4
- 108030002458 peroxiredoxin Proteins 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 235000008476 powdered milk Nutrition 0.000 description 4
- 239000002987 primer (paints) Substances 0.000 description 4
- 210000005000 reproductive tract Anatomy 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 210000003705 ribosome Anatomy 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 101150111539 ytgA gene Proteins 0.000 description 4
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 101100439426 Bradyrhizobium diazoefficiens (strain JCM 10833 / BCRC 13528 / IAM 13628 / NBRC 14792 / USDA 110) groEL4 gene Proteins 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 241001647378 Chlamydia psittaci Species 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 241000759568 Corixa Species 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 102100037840 Dehydrogenase/reductase SDR family member 2, mitochondrial Human genes 0.000 description 3
- 102000028526 Dihydrolipoamide Dehydrogenase Human genes 0.000 description 3
- 238000011510 Elispot assay Methods 0.000 description 3
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 3
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 3
- 229930182566 Gentamicin Natural products 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 3
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 3
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 108090000978 Interleukin-4 Proteins 0.000 description 3
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 3
- 101100278084 Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576) dnaK1 gene Proteins 0.000 description 3
- 108091005804 Peptidases Proteins 0.000 description 3
- 206010035226 Plasma cell myeloma Diseases 0.000 description 3
- 206010035673 Pneumonia chlamydial Diseases 0.000 description 3
- 206010036790 Productive cough Diseases 0.000 description 3
- 101710188053 Protein D Proteins 0.000 description 3
- 239000012980 RPMI-1640 medium Substances 0.000 description 3
- 208000007313 Reproductive Tract Infections Diseases 0.000 description 3
- 101710132893 Resolvase Proteins 0.000 description 3
- 102000002278 Ribosomal Proteins Human genes 0.000 description 3
- 108010000605 Ribosomal Proteins Proteins 0.000 description 3
- 241000714474 Rous sarcoma virus Species 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 101100117145 Synechocystis sp. (strain PCC 6803 / Kazusa) dnaK2 gene Proteins 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 101150109085 TSA gene Proteins 0.000 description 3
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 3
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 101710117021 Tyrosine-protein phosphatase YopH Proteins 0.000 description 3
- 206010046865 Vaccinia virus infection Diseases 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 238000001516 cell proliferation assay Methods 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 229960002518 gentamicin Drugs 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 101150077981 groEL gene Proteins 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 201000000050 myeloid neoplasm Diseases 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 235000019419 proteases Nutrition 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 210000003802 sputum Anatomy 0.000 description 3
- 208000024794 sputum Diseases 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 239000003053 toxin Substances 0.000 description 3
- 231100000765 toxin Toxicity 0.000 description 3
- 108700012359 toxins Proteins 0.000 description 3
- 229910052722 tritium Inorganic materials 0.000 description 3
- 241001430294 unidentified retrovirus Species 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- 208000007089 vaccinia Diseases 0.000 description 3
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 2
- 102100038222 60 kDa heat shock protein, mitochondrial Human genes 0.000 description 2
- 101000787132 Acidithiobacillus ferridurans Uncharacterized 8.2 kDa protein in mobL 3'region Proteins 0.000 description 2
- 101000827262 Acidithiobacillus ferrooxidans Uncharacterized 18.9 kDa protein in mobE 3'region Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 108700023418 Amidases Proteins 0.000 description 2
- 108091093088 Amplicon Proteins 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 101000811747 Antithamnion sp. UPF0051 protein in atpA 3'region Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101000827607 Bacillus phage SPP1 Uncharacterized 8.5 kDa protein in GP2-GP6 intergenic region Proteins 0.000 description 2
- 101000961975 Bacillus thuringiensis Uncharacterized 13.4 kDa protein Proteins 0.000 description 2
- 101000653197 Beet necrotic yellow vein virus (isolate Japan/S) Movement protein TGB3 Proteins 0.000 description 2
- 101000609456 Beet necrotic yellow vein virus (isolate Japan/S) Protein P26 Proteins 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 101000964407 Caldicellulosiruptor saccharolyticus Uncharacterized 10.7 kDa protein in xynB 3'region Proteins 0.000 description 2
- 108010058432 Chaperonin 60 Proteins 0.000 description 2
- 241001227713 Chiron Species 0.000 description 2
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 2
- 102100031725 Cortactin-binding protein 2 Human genes 0.000 description 2
- 241000557626 Corvus corax Species 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 241000710188 Encephalomyocarditis virus Species 0.000 description 2
- 241000672609 Escherichia coli BL21 Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010015514 Glutamate-tRNA ligase Proteins 0.000 description 2
- 229920002527 Glycogen Polymers 0.000 description 2
- 101000768777 Haloferax lucentense (strain DSM 14919 / JCM 9276 / NCIMB 13854 / Aa 2.2) Uncharacterized 50.6 kDa protein in the 5'region of gyrA and gyrB Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 2
- 108090000604 Hydrolases Proteins 0.000 description 2
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 2
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 2
- 101000607404 Infectious laryngotracheitis virus (strain Thorne V882) Protein UL24 homolog Proteins 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 101000735632 Klebsiella pneumoniae Uncharacterized 8.8 kDa protein in aacA4 3'region Proteins 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 101710197985 Probable protein Rev Proteins 0.000 description 2
- 102100026126 Proline-tRNA ligase Human genes 0.000 description 2
- 108020001027 Ribosomal DNA Proteins 0.000 description 2
- 102000004191 Ribosomal protein L1 Human genes 0.000 description 2
- 108090000792 Ribosomal protein L1 Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 241000710961 Semliki Forest virus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 101000818100 Spirochaeta aurantia Uncharacterized 12.7 kDa protein in trpE 5'region Proteins 0.000 description 2
- 101001037658 Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) Glucokinase Proteins 0.000 description 2
- 101001120268 Streptomyces griseus Protein Y Proteins 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 229940024545 aluminum hydroxide Drugs 0.000 description 2
- 102000005922 amidase Human genes 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 210000004900 c-terminal fragment Anatomy 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 239000013553 cell monolayer Substances 0.000 description 2
- 230000030570 cellular localization Effects 0.000 description 2
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 101150096566 clpX gene Proteins 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 235000017471 coenzyme Q10 Nutrition 0.000 description 2
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 239000003184 complementary RNA Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 208000029078 coronary artery disease Diseases 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 2
- 210000000172 cytosol Anatomy 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 108700004025 env Genes Proteins 0.000 description 2
- 101150030339 env gene Proteins 0.000 description 2
- 210000004700 fetal blood Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001476 gene delivery Methods 0.000 description 2
- 210000004392 genitalia Anatomy 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 229940096919 glycogen Drugs 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 229940042743 immune sera Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 208000000509 infertility Diseases 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 231100000535 infertility Toxicity 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 101150019727 malQ gene Proteins 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- 239000007764 o/w emulsion Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000013600 plasmid vector Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 101150037202 pmp20 gene Proteins 0.000 description 2
- 101150095517 pmpH gene Proteins 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229960003387 progesterone Drugs 0.000 description 2
- 239000000186 progesterone Substances 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 101150079601 recA gene Proteins 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 239000007929 subcutaneous injection Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- 229960001295 tocopherol Drugs 0.000 description 2
- 229930003799 tocopherol Natural products 0.000 description 2
- 235000010384 tocopherol Nutrition 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 201000008827 tuberculosis Diseases 0.000 description 2
- 229940035936 ubiquinone Drugs 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 229940125575 vaccine candidate Drugs 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 101150117012 yopN gene Proteins 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000024188 Andala Species 0.000 description 1
- 241000272478 Aquila Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 241000714235 Avian retrovirus Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 238000011725 BALB/c mouse Methods 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- COXVTLYNGOIATD-HVMBLDELSA-N CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O Chemical compound CC1=C(C=CC(=C1)C1=CC(C)=C(C=C1)\N=N\C1=C(O)C2=C(N)C(=CC(=C2C=C1)S(O)(=O)=O)S(O)(=O)=O)\N=N\C1=CC=C2C(=CC(=C(N)C2=C1O)S(O)(=O)=O)S(O)(=O)=O COXVTLYNGOIATD-HVMBLDELSA-N 0.000 description 1
- 108010029697 CD40 Ligand Proteins 0.000 description 1
- 101150013553 CD40 gene Proteins 0.000 description 1
- 102100032937 CD40 ligand Human genes 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 108091029430 CpG site Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- YVGGHNCTFXOJCH-UHFFFAOYSA-N DDT Chemical compound C1=CC(Cl)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(Cl)C=C1 YVGGHNCTFXOJCH-UHFFFAOYSA-N 0.000 description 1
- 108010054814 DNA Gyrase Proteins 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 108010001625 Diaminopimelate epimerase Proteins 0.000 description 1
- 208000004145 Endometritis Diseases 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 208000001860 Eye Infections Diseases 0.000 description 1
- 208000026351 Fallopian Tube disease Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 208000000666 Fowlpox Diseases 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- CEXINUGNTZFNRY-BYPYZUCNSA-N Gly-Cys-Gly Chemical group [NH3+]CC(=O)N[C@@H](CS)C(=O)NCC([O-])=O CEXINUGNTZFNRY-BYPYZUCNSA-N 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 1
- 101000599852 Homo sapiens Intercellular adhesion molecule 1 Proteins 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 101000874141 Homo sapiens Probable ATP-dependent RNA helicase DDX43 Proteins 0.000 description 1
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 101150017040 I gene Proteins 0.000 description 1
- 102000009490 IgG Receptors Human genes 0.000 description 1
- 108010073807 IgG Receptors Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102100037877 Intercellular adhesion molecule 1 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 102000000646 Interleukin-3 Human genes 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- 125000000773 L-serino group Chemical group [H]OC(=O)[C@@]([H])(N([H])*)C([H])([H])O[H] 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- 101100521429 Lactococcus lactis subsp. lactis (strain IL1403) prsA gene Proteins 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 108010031099 Mannose Receptor Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 101500006448 Mycobacterium bovis (strain ATCC BAA-935 / AF2122/97) Endonuclease PI-MboI Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- KTHDTJVBEPMMGL-VKHMYHEASA-N N-acetyl-L-alanine Chemical compound OC(=O)[C@H](C)NC(C)=O KTHDTJVBEPMMGL-VKHMYHEASA-N 0.000 description 1
- KTHDTJVBEPMMGL-UHFFFAOYSA-N N-acetyl-L-alanine Natural products OC(=O)C(C)NC(C)=O KTHDTJVBEPMMGL-UHFFFAOYSA-N 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 108091061960 Naked DNA Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 101710116435 Outer membrane protein Proteins 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 241001503524 Ovine adenovirus Species 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 201000005702 Pertussis Diseases 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 102100035724 Probable ATP-dependent RNA helicase DDX43 Human genes 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 101000762949 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Exotoxin A Proteins 0.000 description 1
- 108010007131 Pulmonary Surfactant-Associated Protein B Proteins 0.000 description 1
- 102100032617 Pulmonary surfactant-associated protein B Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 241001068263 Replication competent viruses Species 0.000 description 1
- 206010057190 Respiratory tract infections Diseases 0.000 description 1
- 101710137010 Retinol-binding protein 3 Proteins 0.000 description 1
- 102100038247 Retinol-binding protein 3 Human genes 0.000 description 1
- 241000712907 Retroviridae Species 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 108010039491 Ricin Proteins 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 208000007893 Salpingitis Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 208000019802 Sexually transmitted disease Diseases 0.000 description 1
- 108010079723 Shiga Toxin Proteins 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 108010008038 Synthetic Vaccines Proteins 0.000 description 1
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 1
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 102400001102 Tail peptide Human genes 0.000 description 1
- 101800000868 Tail peptide Proteins 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 101100310092 Thauera selenatis serD gene Proteins 0.000 description 1
- 241000906446 Theraps Species 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- UZQJVUCHXGYFLQ-AYDHOLPZSA-N [(2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-4-[(2r,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3,5-dihydroxy-6-(hy Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O)O[C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@@]1(C=O)C)C)(C)CC(O)[C@]1(CCC(CC14)(C)C)C(=O)O[C@H]1[C@@H]([C@@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O[C@H]4[C@@H]([C@@H](O[C@H]5[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O5)O)[C@H](O)[C@@H](CO)O4)O)[C@H](O)[C@@H](CO)O3)O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O UZQJVUCHXGYFLQ-AYDHOLPZSA-N 0.000 description 1
- FHICGHSMIPIAPL-HDYAAECPSA-N [2-[3-[6-[3-[(5R,6aS,6bR,12aR)-10-[6-[2-[2-[4,5-dihydroxy-3-(3,4,5-trihydroxyoxan-2-yl)oxyoxan-2-yl]ethoxy]ethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carbonyl]peroxypropyl]-5-[[5-[8-[3,5-dihydroxy-4-(3,4,5-trihydroxyoxan-2-yl)oxyoxan-2-yl]octoxy]-3,4-dihydroxy-6-methyloxan-2-yl]methoxy]-3,4-dihydroxyoxan-2-yl]propoxymethyl]-5-hydroxy-3-[(6S)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]oxy-6-methyloxan-4-yl] (2E,6S)-6-hydroxy-2-(hydroxymethyl)-6-methylocta-2,7-dienoate Chemical compound C=C[C@@](C)(O)CCC=C(C)C(=O)OC1C(OC(=O)C(\CO)=C\CC[C@](C)(O)C=C)C(O)C(C)OC1COCCCC1C(O)C(O)C(OCC2C(C(O)C(OCCCCCCCCC3C(C(OC4C(C(O)C(O)CO4)O)C(O)CO3)O)C(C)O2)O)C(CCCOOC(=O)C23C(CC(C)(C)CC2)C=2[C@@]([C@]4(C)CCC5C(C)(C)C(OC6C(C(O)C(O)C(CCOCCC7C(C(O)C(O)CO7)OC7C(C(O)C(O)CO7)O)O6)O)CC[C@]5(C)C4CC=2)(C)C[C@H]3O)O1 FHICGHSMIPIAPL-HDYAAECPSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229940024546 aluminum hydroxide gel Drugs 0.000 description 1
- SMYKVLBUSSNXMV-UHFFFAOYSA-K aluminum;trihydroxide;hydrate Chemical compound O.[OH-].[OH-].[OH-].[Al+3] SMYKVLBUSSNXMV-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229960003896 aminopterin Drugs 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 230000008350 antigen-specific antibody response Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000000823 artificial membrane Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 210000000991 chicken egg Anatomy 0.000 description 1
- 208000028512 chlamydia infectious disease Diseases 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 230000000120 cytopathologic effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 229960003699 evans blue Drugs 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 108700014844 flt3 ligand Proteins 0.000 description 1
- 210000003953 foreskin Anatomy 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 210000004754 hybrid cell Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 210000004201 immune sera Anatomy 0.000 description 1
- 238000003365 immunocytochemistry Methods 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 201000001371 inclusion conjunctivitis Diseases 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 208000037798 influenza B Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000021633 leukocyte mediated immunity Effects 0.000 description 1
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 1
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical compound NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000003810 lymphokine-activated killer cell Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 238000011392 neighbor-joining method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 210000004303 peritoneum Anatomy 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 150000004633 phorbol derivatives Chemical class 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 101150010607 pmpA gene Proteins 0.000 description 1
- 101150116202 pmpF gene Proteins 0.000 description 1
- 108700028325 pokeweed antiviral Proteins 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 210000004986 primary T-cell Anatomy 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000000601 reactogenic effect Effects 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 229940124551 recombinant vaccine Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108010025552 ribosomal protein L11 Proteins 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical group 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- HNKJADCVZUBCPG-UHFFFAOYSA-N thioanisole Chemical compound CSC1=CC=CC=C1 HNKJADCVZUBCPG-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 206010044325 trachoma Diseases 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 210000001944 turbinate Anatomy 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 108700001624 vesicular stomatitis virus G Proteins 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 1
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Chemical class 0.000 description 1
- 229910052725 zinc Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/295—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Chlamydiales (O)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4615—Dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4622—Antigen presenting cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4648—Bacterial antigens
- A61K39/464835—Chlamydiaceae, e.g. Chlamydia trachomatis or Chlamydia psittaci
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/53—DNA (RNA) vaccination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- the present invention relates generally to the detection and treatment of Chlamydial infection.
- the invention is related to polypeptides comprising a Chlamydia antigen and the use of such polypeptides for the serodiagnosis and treatment of Chlamydial infection.
- Chlamydiae are intracellular bacterial pathogens that are responsible for a wide variety of important human and animal infections. Chlamydia trachomatis is one of the most common causes of sexually transmitted diseases and can lead to pelvic inflammatory disease (PID), resulting in tubal obstruction and infertility. Chlamydia trachomatis may also play a role in male infertility. In 1990, the cost of treating PID in the US was estimated to be $4 billion. Trachoma, due to ocular infection with Chlamydia trachomatis , is the leading cause of preventable blindness worldwide.
- PID pelvic inflammatory disease
- Chlamydia pneumonia is a major cause of acute respiratory tract infections in humans and is also believed to play a role in the pathogenesis of atherosclerosis and, in particular, coronary heart disease. Individuals with a high titer of antibodies to Chlamydia pneumonia have been shown to be at least twice as likely to suffer from coronary heart disease as seronegative individuals. Chlamydial infections thus constitute a significant health problem both in the US and worldwide.
- Chlamydial infection is often asymptomatic. For example, by the time a woman seeks medical attention for PID, irreversible damage may have already occurred resulting in infertility. There thus remains a need in the art for improved vaccines and pharmaceutical compositions for the prevention and treatment of Chlamydia infections.
- the present invention fulfills this need and further provides other related advantages.
- the present invention provides compositions and methods for the diagnosis and therapy of Chlamydia infection.
- the present invention provides polypeptides comprising an immunogenic portion of a Chlamydia antigen, or a variant of such an antigen. Certain portions and other variants are immunogenic, such that the ability of the variant to react with antigen-specific antisera is not substantially diminished.
- the polypeptide comprises an amino acid sequence encoded by a polynucleotide sequence selected from the group consisting of (a) a sequence of SEQ ID NO: 358-361; (b) the complements of said sequences; and (c) sequences that hybridize to a sequence of (a) or (b) under moderate to highly stringent conditions.
- the polypeptides of the present invention comprise at least a portion of a Chlamydial protein that includes an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO:362-365 and variants thereof.
- the present invention further provides polynucleotides that encode a polypeptide as described above, or a portion thereof (such as a portion encoding at least 15 amino acid residues of a Chlamydial protein), expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.
- polynucleotide sequences encoding the above polypeptides encoding the above polypeptides, recombinant expression vectors comprising one or more of these polynucleotide sequences and host cells transformed or transfected with such expression vectors are also provided.
- the present invention provides fusion proteins comprising an inventive polypeptide, or, alternatively, an inventive polypeptide and a known Chlamydia antigen, as well as polynucleotides encoding such fusion proteins, in combination with a physiologically acceptable carrier or immunostimulant for use as pharmaceutical compositions and vaccines thereof.
- compositions that comprise: (a) an antibody, both polyclonal and monoclonal, or antigen-binding fragment thereof that specifically binds to a Chlamydial protein; and (b) a physiologically acceptable carrier.
- compositions that comprise one or more Chlamydia polypeptides disclosed herein, e.g., a polypeptide according to SEQ ID NO:362-365, 431-454 and 560-581, or a polynucleotide molecule encoding such a polypeptide, such as a polynucleotide according to SEQ ID NO:358-361, 407-430, 525-559 and 582-598, and a physiologically acceptable carrier.
- Chlamydia polypeptides disclosed herein e.g., a polypeptide according to SEQ ID NO:362-365, 431-454 and 560-581, or a polynucleotide molecule encoding such a polypeptide, such as a polynucleotide according to SEQ ID NO:358-361, 407-430, 525-559 and 582-598, and a physiologically acceptable carrier.
- the invention also provides vaccines for prophylactic and therapeutic purposes comprising one or more of the disclosed polypeptides and an immunostimulant, as defined herein, together with vaccines comprising one or more polynucleotide sequences encoding such polypeptides and an immunostimulant.
- methods for inducing protective immunity in a patient, comprising administering to a patient an effective amount of one or more of the above pharmaceutical compositions or vaccines.
- kits for the treatment of Chlamydia infection in a patient comprising obtaining peripheral blood mononuclear cells (PBMC) from the patient, incubating the PBMC with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated T cells and administering the incubated T cells to the patient.
- PBMC peripheral blood mononuclear cells
- the present invention additionally provides methods for the treatment of Chlamydia infection that comprise incubating antigen presenting cells with a polypeptide of the present invention (or a polynucleotide that encodes such a polypeptide) to provide incubated antigen presenting cells and administering the incubated antigen presenting cells to the patient.
- Proliferated cells may, but need not, be cloned prior to administration to the patient.
- the antigen presenting cells are selected from the group consisting of dendritic cells, macrophages, monocytes, B-cells, and fibroblasts.
- compositions for the treatment of Chlamydia infection comprising T cells or antigen presenting cells that have been incubated with a polypeptide or polynucleotide of the present invention are also provided.
- vaccines comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.
- the present invention further provides, within other aspects, methods for removing Chlamydial-infected cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a Chlamydial protein, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.
- methods for inhibiting the development of Chlamydial infection in a patient, comprising administering to a patient a biological sample treated as described above.
- methods and diagnostic kits are provided for detecting Chlamydia infection in a patient.
- the method comprises: (a) contacting a biological sample with at least one of the polypeptides or fusion proteins disclosed herein; and (b) detecting in the sample the presence of binding agents that bind to the polypeptide or fusion protein, thereby detecting Chlamydia infection in the biological sample.
- Suitable biological samples include whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid and urine.
- the diagnostic kits comprise one or more of the polypeptides or fusion proteins disclosed herein in combination with a detection reagent. In yet another embodiment, the diagnostic kits comprise either a monoclonal antibody or a polyclonal antibody that binds with a polypeptide of the present invention.
- the present invention also provides methods for detecting Chlamydia infection comprising: (a) obtaining a biological sample from a patient; (b) contacting the sample with at least two oligonucleotide primers in a polymerase chain reaction, at least one of the oligonucleotide primers being specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that amplifies in the presence of the oligonucleotide primers.
- the oligonucleotide primer comprises at least about 10 contiguous nucleotides of a polynucleotide sequence peptide disclosed herein, or of a sequence that hybridizes thereto.
- the present invention provides a method for detecting Chlamydia infection in a patient comprising: (a) obtaining a biological sample from the patient; (b) contacting the sample with an oligonucleotide probe specific for a polynucleotide sequence disclosed herein; and (c) detecting in the sample a polynucleotide sequence that hybridizes to the oligonucleotide probe.
- the oligonucleotide probe comprises at least about 15 contiguous nucleotides of a polynucleotide sequence disclosed herein, or a sequence that hybridizes thereto.
- SEQ ID NO: 1 is the determined DNA sequence for the C. trachomatis clone 1-B1-66.
- SEQ ID NO: 2 is the determined DNA sequence for the C. trachomatis clone 4-D7-28.
- SEQ ID NO: 3 is the determined DNA sequence for the C. trachomatis clone 3-G3-10.
- SEQ ID NO: 4 is the determined DNA sequence for the C. trachomatis clone 10-C10-31.
- SEQ ID NO: 5 is the predicted amino acid sequence for 1-B1-66.
- SEQ ID NO: 6 is the predicted amino acid sequence for 4-D7-28.
- SEQ ID NO: 7 is a first predicted amino acid sequence for 3-G3-10.
- SEQ ID NO: 8 is a second predicted amino acid sequence for 3-G3-10.
- SEQ ID NO: 9 is a third predicted amino acid sequence for 3-G3-10.
- SEQ ID NO: 10 is a fourth predicted amino acid sequence for 3-G3-10.
- SEQ ID NO: 11 is a fifth predicted amino acid sequence for 3-G3-10.
- SEQ ID NO: 12 is the predicted amino acid sequence for 10-C10-31.
- SEQ ID NO: 13 is the amino acid sequence of the synthetic peptide 1-B1-66/48-67.
- SEQ ID NO: 14 is the amino acid sequence of the synthetic peptide 1-B1-66/58-77.
- SEQ ID NO: 15 is the determined DNA sequence for the C. trachomatis serovar LGV II clone 2C7-8
- SEQ ID NO: 16 is a DNA sequence of a putative open reading frame from a region of the C. trachomatis serovar D genome to which 2C7-8 maps
- SEQ ID NO: 17 is the predicted amino acid sequence encoded by the DNA sequence of SEQ ID NO: 16
- SEQ ID NO: 18 is the amino acid sequence of the synthetic peptide CtC7.8-12
- SEQ ID NO: 19 is the amino acid sequence of the synthetic peptide CtC7.8-13
- SEQ ID NO: 20 is the predicted amino acid sequence encoded by a second putative open reading from C. trachomatis serovar D
- SEQ ID NO: 21 is the determined DNA sequence for clone 4C9-18 from C. trachomatis LGV II
- SEQ ID NO: 22 is the determined DNA sequence homologous to Lipoamide Dehydrogenase from C. trachomatis LGV II
- SEQ ID NO: 23 is the determined DNA sequence homologous to Hypothetical protein from C. trachomatis LGV II
- SEQ ID NO: 24 is the determined DNA sequence homologous to Ubiquinone Mehtyltransferase from C. trachomatis LGV II
- SEQ ID NO: 25 is the determined DNA sequence for clone 4C9-18#2 BL21 pLysS from C. trachomatis LGV II
- SEQ ID NO: 26 is the predicted amino acid sequence for 4C9-18#2 from C. trachomatis LGV II
- SEQ ID NO: 27 is the determined DNA sequence for Cp-SWIB from C. pneumonia strain TWAR
- SEQ ID NO: 28 is the predicted amino acid sequence for Cp-SWIB from C. pneumonia strain TWAR
- SEQ ID NO: 29 is the determined DNA sequence for Cp-S13 (CT509) from C. pneumonia strain TWAR
- SEQ ID NO: 30 is the predicted amino acid sequence for Cp-S13 from C. pneumonia strain TWAR
- SEQ ID NO: 31 is the amino acid sequence for a 10 mer consensus peptide from CtC7.8-12 and CtC7.8-13
- SEQ ID NO: 32 is the predicted amino acid sequence for clone 2C7-8 from C. trachomatis LGV II
- SEQ ID NO: 33 is the DNA sequence corresponding to nucleotides 597304-597145 of the C. trachomatis serovar D genome (NCBI, BLASTN search), which shows homology to clone 2C7-8
- SEQ ID NO: 34 is the predicted amino acid sequence encoded by the sequence of SEQ ID NO: 33
- SEQ ID NO: 35 is the DNA sequence for C.p. SWIB Nde (5′ primer) from C. pneumonia
- SEQ ID NO: 36 is the DNA sequence for C.p. SWIB EcoRI (3′ primer) from C. pneumonia
- SEQ ID NO: 37 is the DNA sequence for C.p. S13 Nde (5′ primer) from C. pneumonia
- SEQ ID NO: 38 is the DNA sequence for C.p. S13 EcoRI (3′ primer) from C. pneumonia
- SEQ ID NO: 39 is the amino acid sequence for CtSwib 52-67 peptide from C. trachomatis LGV II
- SEQ ID NO: 40 is the amino acid sequence for CpSwib 53-68 peptide from C. pneumonia
- SEQ ID NO: 41 is the amino acid sequence for HuSwib 288-302 peptide from Human SWI domain
- SEQ ID NO: 42 is the amino acid sequence for CtSWI-T 822-837 peptide from the topoisomerase-SWIB fusion of C. trachomatis
- SEQ ID NO: 43 is the amino acid sequence for CpSWI-T 828-842 peptide from the topoisomerase-SWIB fusion of C. pneumonia
- SEQ ID NO: 44 is a first determined DNA sequence for the C. trachomatis LGV II clone 19783.3,jen.seq(1>509)CTL2#11-3′, representing the 3′ end.
- SEQ ID NO: 45 is a second determined DNA sequence for the C. trachomatis LGV II clone 19783.4,jen.seq(1>481)CTL2#11-5′, representing the 5′ end.
- SEQ ID NO: 46 is the determined DNA sequence for the C. trachomatis LGV II clone19784CTL2 ⁇ 12consensus.seq(1>427)CTL2#12.
- SEQ ID NO: 47 is the determined DNA sequence for the C. trachomatis LGV II clone 19785.4,jen.seq(1>600)CTL2#16-5′, representing the 5′ end.
- SEQ ID NO: 48 is a first determined DNA sequence for the C. trachomatis LGV II clone 19786.3,jen.seq(1>600)CTL2#18-3′, representing the 3′ end.
- SEQ ID NO: 49 is a second determined DNA sequence for the C. trachomatis LGV II clone 19786.4,jen.seq(1>600)CTL2#18-5′, representing the 5′ end.
- SEQ ID NO: 50 is the determined DNA sequence for the C. trachomatis LGV II clone 19788CTL2 — 21consensus.seq(1>406)CTL2#21.
- SEQ ID NO: 51 is the determined DNA sequence for the C. trachomatis LGV II clone 19790CTL2 — 23consensus.seq(1>602)CTL2#23.
- SEQ ID NO: 52 is the determined DNA sequence for the C. trachomatis LGV II clone 19791CTL2 — 24consensus.seq(1>145)CTL2#24.
- SEQ ID NO: 53 is the determined DNA sequence for the C. trachomatis LGV II clone CTL2#4.
- SEQ ID NO: 54 is the determined DNA sequence for the C. trachomatis LGV II clone CTL2#8b.
- SEQ ID NO: 55 is the determined DNA sequence for the C. trachomatis LGV II clone15-G1-89, sharing homology to the lipoamide dehydrogenase gene CT557.
- SEQ ID NO: 56 is the determined DNA sequence for the C. trachomatis LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603.
- SEQ ID NO: 57 is the determined DNA sequence for the C. trachomatis LGV II clone 12-G3-83, sharing homology to the hypothetical protein CT622.
- SEQ ID NO: 58 is the determined DNA sequence for the C. trachomatis LGV II clone 12-B3-95, sharing homology to the lipoamide dehydrogenase gene CT557.
- SEQ ID NO: 59 is the determined DNA sequence for the C. trachomatis LGV II clone 11-H4-28, sharing homology to the dnaK gene CT396.
- SEQ ID NO: 60 is the determined DNA sequence for the C. trachomatis LGV II clone 11-H3-68, sharing partial homology to the PGP6-D virulence protein and LI ribosomal gene CT318.
- SEQ ID NO: 61 is the determined DNA sequence for the C. trachomatis LGV II clone 11-G1-34, sharing partial homology to the malate dehydrogenase gene CT376 and to the glycogen hydrolase gene CT042.
- SEQ ID NO: 62 is the determined DNA sequence for the C. trachomatis LGV II clone 11-G10-46, sharing homology to the hypothetical protein CT610.
- SEQ ID NO: 63 is the determined DNA sequence for the C. trachomatis LGV II clone 11-C12-91, sharing homology to the OMP2 gene CT443.
- SEQ ID NO: 64 is the determined DNA sequence for the C. trachomatis LGV II clone 11-A3-93, sharing homology to the HAD superfamily gene CT103.
- SEQ ID NO: 65 is the determined amino acid sequence for the C. trachomatis LGV II clone 14-H1-4, sharing homology to the thiol specific antioxidant gene CT603.
- SEQ ID NO: 66 is the determined DNA sequence for the C. trachomatis LGV II clone CtL2#9.
- SEQ ID NO: 67 is the determined DNA sequence for the C. trachomatis LGV II clone CtL2#7.
- SEQ ID NO: 68 is the determined DNA sequence for the C. trachomatis LGV II clone CtL2#6.
- SEQ ID NO: 69 is the determined DNA sequence for the C. trachomatis LGV II clone CtL2#5.
- SEQ ID NO: 70 is the determined DNA sequence for the C. trachomatis LGV II clone CtL2#2.
- SEQ ID NO: 71 is the determined DNA sequence for the C. trachomatis LGV II clone CtL2#1.
- SEQ ID NO: 72 is a first determined DNA sequence for the C. trachomatis LGV II clone 23509.2CtL2#3-5′, representing the 5′ end.
- SEQ ID NO: 73 is a second determined DNA sequence for the C. trachomatis LGV II clone 23509.1CtL2#3-3′, representing the 3′ end.
- SEQ ID NO: 74 is a first determined DNA sequence for the C. trachomatis LGV II clone 22121.2CtL2#10-5′, representing the 5′ end.
- SEQ ID NO: 75 is a second determined DNA sequence for the C. trachomatis LGV II clone 22121.1CtL2#10-3′, representing the 3′ end.
- SEQ ID NO: 76 is the determined DNA sequence for the C. trachomatis LGV II clone 19787.6CtL2#19-5′, representing the 5′ end.
- SEQ ID NO: 77 is the determined DNA sequence for the C. pneumoniae LGV II clone CpS13-His.
- SEQ ID NO: 78 is the determined DNA sequence for the C. pneumoniae LGV II clone Cp_SWIB-His.
- SEQ ID NO: 79 is the determined DNA sequence for the C. trachomatis LGV II clone 23-G7-68, sharing partial homology to the L11, L10 and L1 ribosomal protein.
- SEQ ID NO: 80 is the determined DNA sequence for the C. trachomatis LGV II clone 22-F8-91, sharing homology to the pmpC gene.
- SEQ ID NO: 81 is the determined DNA sequence for the C. trachomatis LGV II clone 21-E8-95, sharing homology to the CT610-CT613 genes.
- SEQ ID NO: 82 is the determined DNA sequence for the C. trachomatis LGV II clone 19-F12-57, sharing homology to the CT858 and recA genes.
- SEQ ID NO: 83 is the determined DNA sequence for the C. trachomatis LGV II clone 19-F12-53, sharing homology to the CT445 gene encoding glutamyl tRNA synthetase.
- SEQ ID NO: 84 is the determined DNA sequence for the C. trachomatis LGV II clone 19-A5-54, sharing homology to the cryptic plasmid gene.
- SEQ ID NO: 85 is the determined DNA sequence for the C. trachomatis LGV II clone 17-E11-72, sharing partial homology to the OppC — 2 and pmpD genes.
- SEQ ID NO: 86 is the determined DNA sequence for the C. trachomatis LGV II clone 17-C1-77, sharing partial homology to the CT857 and CT858 open reading frames.
- SEQ ID NO: 87 is the determined DNA sequence for the C. trachomatis LGV II clone 15-H2-76, sharing partial homology to the pmpD and SycE genes, and to the CT089 ORF.
- SEQ ID NO: 88 is the determined DNA sequence for the C. trachomatis LGV II clone 15-A3-26, sharing homology to the CT858 ORF.
- SEQ ID NO: 89 is the determined amino acid sequence for the C. pnuemoniae clone Cp_SWIB-His.
- SEQ ID NO: 90 is the determined amino acid sequence for the C. trachomatis LGV II clone CtL 2_LPDA_FL.
- SEQ ID NO: 91 is the determined amino acid sequence for the C. pnuemoniae clone CpS13-His.
- SEQ ID NO: 92 is the determined amino acid sequence for the C. trachomatis LGV II clone CtL 2_TSA_FL.
- SEQ ID NO: 93 is the amino acid sequence for Ct-Swib 43-61 peptide from C. trachomatis LGV II.
- SEQ ID NO: 94 is the amino acid sequence for Ct-Swib 48-67 peptide from C. trachomatis LGV II.
- SEQ ID NO: 95 is the amino acid sequence for Ct-Swib 52-71 peptide from C. trachomatis LGV II.
- SEQ ID NO: 96 is the amino acid sequence for Ct-Swib 58-77 peptide from C. trachomatis LGV II.
- SEQ ID NO: 97 is the amino acid sequence for Ct-Swib 63-82 peptide from C. trachomatis LGV II.
- SEQ ID NO: 98 is the amino acid sequence for Ct-Swib 51-66 peptide from C. trachomatis LGV II.
- SEQ ID NO: 99 is the amino acid sequence for Cp-Swib 52-67 peptide from C. pneumonia.
- SEQ ID NO: 100 is the amino acid sequence for Cp-Swib 37-51 peptide from C. pneumonia.
- SEQ ID NO: 101 is the amino acid sequence for Cp-Swib 32-51 peptide from C. pneumonia.
- SEQ ID NO: 102 is the amino acid sequence for Cp-Swib 37-56 peptide from C. pneumonia.
- SEQ ID NO: 103 is the amino acid sequence for Ct-Swib 36-50 peptide from C. trachomatis.
- SEQ ID NO: 104 is the amino acid sequence for Ct-S13 46-65 peptide from C. trachomatis.
- SEQ ID NO: 105 is the amino acid sequence for Ct-S13 60-80 peptide from C. trachomatis.
- SEQ ID NO: 106 is the amino acid sequence for Ct-S13 1-20 peptide from C. trachomatis.
- SEQ ID NO: 107 is the amino acid sequence for Ct-S13 46-65 peptide from C. trachomatis.
- SEQ ID NO: 108 is the amino acid sequence for Ct-S13 56-75 peptide from C. trachomatis.
- SEQ ID NO: 109 is the amino acid sequence for Cp-S13 56-75 peptide from C. pneumoniae.
- SEQ ID NO: 110 is the determined DNA sequence for the C. trachomatis LGV II clone 21-G12-60, containing partial open reading frames for hypothetical proteins CT875, CT229 and CT228.
- SEQ ID NO: 111 is the determined DNA sequence for the C. trachomatis LGV II clone 22-B3-53, sharing homology to the CT110 ORF of GroEL.
- SEQ ID NO: 112 is the determined DNA sequence for the C. trachomatis LGV II clone 22-A1-49, sharing partial homology to the CT660 and CT659 ORFs.
- SEQ ID NO: 113 is the determined DNA sequence for the C. trachomatis LGV II clone 17-E2-9, sharing partial homology to the CT611 and CT 610 ORFs.
- SEQ ID NO: 114 is the determined DNA sequence for the C. trachomatis LGV II clone 17-C10-31, sharing partial homology to the CT858 ORF.
- SEQ ID NO: 115 is the determined DNA sequence for the C. trachomatis LGV II clone 21-C7-8, sharing homology to the dnaK-like gene.
- SEQ ID NO: 116 is the determined DNA sequence for the C. trachomatis LGV II clone 20-G3-45, containing part of the pmpB gene CT413.
- SEQ ID NO: 117 is the determined DNA sequence for the C. trachomatis LGV II clone 18-C5-2, sharing homology to the S1 ribosomal protein ORF.
- SEQ ID NO: 118 is the determined DNA sequence for the C. trachomatis LGV II clone 17-C5-19, containing part of the ORFs for CT431 and CT430.
- SEQ ID NO: 119 is the determined DNA sequence for the C. trachomatis LGV II clone 16-D4-22, contains partial sequences of ORF3 and ORF4 of the plasmid for growth within mammalian cells.
- SEQ ID NO: 120 is the determined full-length DNA sequence for the C. trachomatis serovar LGV II Cap1 gene CT529.
- SEQ ID NO: 121 is the predicted full-length amino acid sequence for the C. trachomatis serovar LGV II Cap1 gene CT529.
- SEQ ID NO: 122 is the determined full-length DNA sequence for the C. trachomatis serovar E Cap1 gene CT529.
- SEQ ID NO: 123 is the predicted full-length amino acid sequence for the C. trachomatis serovar E Cap1 gene CT529.
- SEQ ID NO: 124 is the determined full-length DNA sequence for the C. trachomatis serovar 1A Cap1 gene CT529.
- SEQ ID NO: 125 is the predicted full-length amino acid sequence for the C. trachomatis serovar 1A Cap1 gene CT529.
- SEQ ID NO: 126 is the determined full-length DNA sequence for the C. trachomatis serovar G Cap1 gene CT529.
- SEQ ID NO: 127 is the predicted full-length amino acid sequence for the C. trachomatis serovar G Cap1 gene CT529.
- SEQ ID NO: 128 is the determined full-length DNA sequence for the C. trachomatis serovar Fl NII Cap1 gene CT529.
- SEQ ID NO: 129 is the predicted full-length amino acid sequence for the C. trachomatis serovar F1 NII Cap1 gene CT529.
- SEQ ID NO: 130 is the determined full-length DNA sequence for the C. trachomatis serovar Li Cap1 gene CT529.
- SEQ ID NO: 131 is the predicted full-length amino acid sequence for the C. trachomatis serovar LI Cap1 gene CT529.
- SEQ ID NO: 132 is the determined full-length DNA sequence for the C. trachomatis serovar L3 Cap1 gene CT529.
- SEQ ID NO: 133 is the predicted full-length amino acid sequence for the C. trachomatis serovar L3 Cap1 gene CT529.
- SEQ ID NO: 134 is the determined full-length DNA sequence for the C. trachomatis serovar Ba Cap1 gene CT529.
- SEQ ID NO: 135 is the predicted full-length amino acid sequence for the C. trachomatis serovar Ba Cap1 gene CT529.
- SEQ ID NO: 136 is the determined full-length DNA sequence for the C. trachomatis serovar MOPN Cap1 gene CT529.
- SEQ ID NO: 137 is the predicted full-length amino acid sequence for the C. trachomatis serovar MOPN Cap1 gene CT529.
- SEQ ID NO: 138 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #124-139 of C. trachomatis serovar L2.
- SEQ ID NO: 139 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #132-147 of C. trachomatis serovar L2.
- SEQ ID NO: 140 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-155 of C. trachomatis serovar L2.
- SEQ ID NO: 141 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #146-163 of C. trachomatis serovar L2.
- SEQ ID NO: 142 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #154-171 of C. trachomatis serovar L2.
- SEQ ID NO: 143 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #162-178 of C. trachomatis serovar L2.
- SEQ ID NO: 144 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-147 of C. trachomatis serovar L2.
- SEQ ID NO: 145 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #139-147 of C. trachomatis serovar L2.
- SEQ ID NO: 146 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #140-147 of C. trachomatis serovar L2.
- SEQ ID NO: 147 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-146 of C. trachomatis serovar L2.
- SEQ ID NO: 148 is the determined amino acid sequence for the Cap1 CT529 ORF peptide #138-145 of C. trachomatis serovar L2.
- SEQ ID NO: 149 is the determined amino acid sequence for the Cap1 CT529 ORF peptide # F140->I of C. trachomatis serovar L2.
- SEQ ID NO: 150 is the determined amino acid sequence for the Cap1 CT529 ORF peptide # #S139>Ga of C. trachomatis serovar L2.
- SEQ ID NO: 151 is the determined amino acid sequence for the Cap1 CT529 ORF peptide # #S139>Gb of C. trachomatis serovar L2.
- SEQ ID NO: 152 is the determined amino acid sequence for the peptide # 2 C7.8-6 of the 216aa ORF of C. trachomatis serovar L2.
- SEQ ID NO: 153 is the determined amino acid sequence for the peptide # 2 C7.8-7 of the 216aa ORF of C. trachomatis serovar L2.
- SEQ ID NO: 154 is the determined amino acid sequence for the peptide #2 C7.8-8 of the 216aa ORF of C. trachomatis serovar L2.
- SEQ ID NO: 155 is the determined amino acid sequence for the peptide # 2 C7.8-9 of the 216aa ORF of C. trachomatis serovar L2.
- SEQ ID NO: 156 is the determined amino acid sequence for the peptide # 2 C7.8-10 of the 216aa ORF of C. trachomatis serovar L2.
- SEQ ID NO: 157 is the determined amino acid sequence for the 53 amino acid residue peptide of the 216aa ORF within clone 2C7.8 of C. trachomatis serovar L2.
- SEQ ID NO: 158 is the determined amino acid sequence for the 52 amino acid residue peptide of the CT529 ORF within clone 2C7.8 of C. trachomatis serovar L2.
- SEQ ID NO: 159 is the determined DNA sequence for the 5′ (forward) primer for cloning full-length CT529 serovar L2.
- SEQ ID NO: 160 is the determined DNA sequence for the 5′ (reverse) primer for cloning full-length CT529 serovar L2.
- SEQ ID NO: 161 is the determined DNA sequence for the 5′ (forward) primer for cloning full-length CT529 for serovars other than L2 and MOPN.
- SEQ ID NO: 162 is the determined DNA sequence for the 5′ (reverse) primer for cloning full-length CT529 serovars other than L2 and MOPN.
- SEQ ID NO: 163 is the determined DNA sequence for the 5′ (forward) primer for cloning full-length CT529 serovar MOPN.
- SEQ ID NO: 164 is the determined DNA sequence for the 5′ (reverse) primer for cloning full-length CT529 serovar MOPN.
- SEQ ID NO: 165 is the determined DNA sequence for the 5′ (forward) primer for pBIB-KS.
- SEQ ID NO: 166 is the determined DNA sequence for the 5′ (reverse) primer for pBIB-KS.
- SEQ ID NO: 167 is the determined amino acid sequence for the 9-mer epitope peptide Cap1#139-147 from serovar L2.
- SEQ ID NO: 168 is the determined amino acid sequence for the 9-mer epitope peptide Cap1#139-147 from serovar D.
- SEQ ID NO: 169 is the determined full-length DNA sequence for the C. trachomatis pmpI (CT874) gene.
- SEQ ID NO: 170 is the determined full-length DNA sequence for the C. trachomatis pmpG gene.
- SEQ ID NO: 171 is the determined full-length DNA sequence for the C. trachomatis pmpE gene.
- SEQ ID NO: 172 is the determined full-length DNA sequence for the C. trachomatis pmpD gene.
- SEQ ID NO: 173 is the determined full-length DNA sequence for the C. trachomatis pmpC gene.
- SEQ ID NO: 174 is the determined full-length DNA sequence for the C. trachomatis pmpB gene.
- SEQ ID NO: 175 is the predicted full-length amino acid sequence for the C. trachomatis pmpI gene.
- SEQ ID NO: 176 is the predicted full-length amino acid sequence for the C. trachomatis pmpG gene.
- SEQ ID NO: 177 is the predicted full-length amino acid sequence for the C. trachomatis pmpE gene.
- SEQ ID NO: 178 is the predicted full-length amino acid sequence for the C. trachomatis pmpD gene.
- SEQ ID NO: 179 is the predicted full-length amino acid sequence for the C. trachomatis pmpC gene.
- SEQ ID NO: 180 is the predicted full-length amino acid sequence for the C. trachomatis pmpB gene.
- SEQ ID NO: 181 is the determined DNA sequence minus the signal sequence for the C. trachomatis pmpi gene.
- SEQ ID NO: 182 is a subsequently determined full-length DNA sequence for the C. trachomatis pmpG gene.
- SEQ ID NO: 183 is the determined DNA sequence minus the signal sequence for the C. trachomatis pmpE gene.
- SEQ ID NO: 184 is a first determined DNA sequence representing the carboxy terminus for the C. trachomatis pmpD gene.
- SEQ ID NO: 185 is a second determined DNA sequence representing the amino terminus minus the signal sequnce for the C. trachomatis pmpD gene.
- SEQ ID NO: 186 is a first determined DNA sequence representing the carboxy terminus for the C. trachomatis pmpC gene.
- SEQ ID NO: 187 is a second determined DNA sequence representing the amino terminus minus the signal sequence for the C. trachomatis pmpC gene.
- SEQ ID NO: 188 is the determined DNA sequence representing the C. pneumoniae serovar MOMPS pmp gene in a fusion molecule with Ra12.
- SEQ ID NO: 189 is the predicted amino acid sequence minus the signal sequence for the C. trachomatis pmpI gene.
- SEQ ID NO: 190 is subsequently predicted amino acid sequence for the C. trachomatis pmpG gene.
- SEQ ID NO: 191 is the predicted amino acid sequence minus the signal sequence for the C. trachomatis pmpE gene.
- SEQ ID NO: 192 is a first predicted amino acid sequence representing the carboxy terminus for the C. trachomatis pmpD gene.
- SEQ ID NO: 193 is a second predicted amino acid sequence representing the Amino terminus minus the signal sequence for the C. trachomatis pmpD gene.
- SEQ ID NO: 194 is a first predicted amino acid sequence representing the Carboxy terminus for the C. trachomatis pmpC gene.
- SEQ ID NO: 195 is a second predicted amino acid sequence representing the Amino terminus for the C. trachomatis pmpC gene.
- SEQ ID NO: 196 is the predicted amino acid sequence representing the C. pneumoniae serovar MOMPS pmp gene in a fusion molecule with Ra12.
- SEQ ID NO: 197 is the determined DNA sequence for the 5′ oligo primer for cloning the C. trachomatis pmpC gene in the SKB vaccine vector.
- SEQ ID NO: 198 is the determined DNA sequence for the 3′ oligo primer for cloning the C. trachomatis pmpC gene in the SKB vaccine vector.
- SEQ ID NO: 199 is the determined DNA sequence for the insertion sequence for cloning the C. trachomatis pmpC gene in the SKB vaccine vector.
- SEQ ID NO: 200 is the determined DNA sequence for the 5′ oligo primer for cloning the C. trachomatis pmpD gene in the SKB vaccine vector.
- SEQ ID NO: 201 is the determined DNA sequence for the 3′ oligo primer for cloning the C. trachomatis pmpD gene in the SKB vaccine vector.
- SEQ ID NO: 202 is the determined DNA sequence for the insertion sequence for cloning the C. trachomatis pmpD gene in the SKB vaccine vector.
- SEQ ID NO: 203 is the determined DNA sequence for the 5′ oligo primer for cloning the C. trachomatis pmpE gene in the SKB vaccine vector.
- SEQ ID NO: 204 is the determined DNA sequence for the 3′ oligo primer for cloning the C. trachomatis pmpe gene in the SKB vaccine vector.
- SEQ ID NO: 205 is the determined DNA sequence for the 5′ oligo primer for cloning the C. trachomatis pmpG gene in the SKB vaccine vector.
- SEQ ID NO: 206 is the determined DNA sequence for the 3′ oligo primer for cloning the C. trachomatis pmpG gene in the SKB vaccine vector.
- SEQ ID NO: 207 is the determined DNA sequence for the 5′ oligo primer for cloning the amino terminus portion of the C. trachomatis pmpC gene in the pET17b vector.
- SEQ ID NO: 208 is the determined DNA sequence for the 3′ oligo primer for cloning the amino terminus portion of the C. trachomatis pmpC gene in the pET17b vector.
- SEQ ID NO: 209 is the determined DNA sequence for the 5′ oligo primer for cloning the carboxy terminus portion of the C. trachomatis pmpC gene in the pET17b vector.
- SEQ ID NO: 210 is the determined DNA sequence for the 3′ oligo primer for cloning the carboxy terminus portion of the C. trachomatis pmpC gene in the pET17b vector.
- SEQ ID NO: 211 is the determined DNA sequence for the 5′ oligo primer for cloning the amino terminus portion of the C. trachomatis pmpD gene in the pET17b vector.
- SEQ ID NO: 212 is the determined DNA sequence for the 3′ oligo primer for cloning the amino terminus portion of the C. trachomatis pmpD gene in the pET17b vector.
- SEQ ID NO: 213 is the determined DNA sequence for the 5′ oligo primer for cloning the carboxy terminus portion of the C. trachomatis pmpD gene in the pET17b vector.
- SEQ ID NO: 214 is the determined DNA sequence for the 3′ oligo primer for cloning the carboxy terminus portion of the C. trachomatis pmpD gene in the pET17b vector.
- SEQ ID NO: 215 is the determined DNA sequence for the 5′ oligo primer for cloning the C. trachomatis pmpE gene in the pET17b vector.
- SEQ ID NO: 216 is the determined DNA sequence for the 3′ oligo primer for cloning the C. trachomatis pmpE gene in the pET17b vector.
- SEQ ID NO: 217 is the determined DNA sequence for the insertion sequence for cloning the C. trachomatis pmpE gene in the pET17b vector.
- SEQ ID NO: 218 is the amino acid sequence for the insertion sequence for cloning the C. trachomatis pmpE gene in the pET17b vector.
- SEQ ID NO: 219 is the determined DNA sequence for the 5′ oligo primer for cloning the C. trachomatis pmpG gene in the pET17b vector.
- SEQ ID NO: 220 is the determined DNA sequence for the 3′ oligo primer for cloning the C. trachomatis pmpG gene in the pET17b vector.
- SEQ ID NO: 221 is the amino acid sequence for the insertion sequence for cloning the C. trachomatis pmpG gene in the pET17b vector.
- SEQ ID NO: 222 is the determined DNA sequence for the 5′ oligo primer for cloning the C. trachomatis pmpI gene in the pET17b vector.
- SEQ ID NO: 223 is the determined DNA sequence for the 3′ oligo primer for cloning the C. trachomatis pmpI gene in the pET17b vector.
- SEQ ID NO: 224 is the determined amino acid sequence for the C. pneumoniae Swib peptide 1-20.
- SEQ ID NO: 225 is the determined amino acid sequence for the C. pneumoniae Swib peptide 6-25.
- SEQ ID NO: 226 is the determined amino acid sequence for the C. pneumoniae Swib peptide 12-31.
- SEQ ID NO: 227 is the determined amino acid sequence for the C. pneumoniae Swib peptide 17-36.
- SEQ ID NO: 228 is the determined amino acid sequence for the C. pneumoniae Swib peptide 22-41.
- SEQ ID NO: 229 is the determined amino acid sequence for the C. pneumoniae Swib peptide 27-46.
- SEQ ID NO: 230 is the determined amino acid sequence for the C. pneumoniae Swib peptide 42-61.
- SEQ ID NO: 231 is the determined amino acid sequence for the C. pneumoniae Swib peptide 46-65.
- SEQ ID NO: 232 is the determined amino acid sequence for the C. pneumoniae Swib peptide 51-70.
- SEQ ID NO: 233 is the determined amino acid sequence for the C. pneumoniae Swib peptide 56-75.
- SEQ ID NO: 234 is the determined amino acid sequence for the C. pneumoniae Swib peptide 61-80.
- SEQ ID NO: 235 is the determined amino acid sequence for the C. pneumoniae Swib peptide 66-87.
- SEQ ID NO: 236 is the determined amino acid sequence for the C. trachomatis OMCB peptide 103-122.
- SEQ ID NO: 237 is the determined amino acid sequence for the C. trachomatis OMCB peptide 108-127.
- SEQ ID NO: 238 is the determined amino acid sequence for the C. trachomatis OMCB peptide 113-132.
- SEQ ID NO: 239 is the determined amino acid sequence for the C. trachomatis OMCB peptide 118-137.
- SEQ ID NO: 240 is the determined amino acid sequence for the C. trachomatis OMCB peptide 123-143.
- SEQ ID NO: 241 is the determined amino acid sequence for the C. trachomatis OMCB peptide 128-147.
- SEQ ID NO: 242 is the determined amino acid sequence for the C. trachomatis OMCB peptide 133-152.
- SEQ ID NO: 243 is the determined amino acid sequence for the C. trachomatis OMCB peptide 137-156.
- SEQ ID NO: 244 is the determined amino acid sequence for the C. trachomatis OMCB peptide 142-161.
- SEQ ID NO: 245 is the determined amino acid sequence for the C. trachomatis OMCB peptide 147-166.
- SEQ ID NO: 246 is the determined amino acid sequence for the C. trachomatis OMCB peptide 152-171.
- SEQ ID NO: 247 is the determined amino acid sequence for the C. trachomatis OMCB peptide 157-176.
- SEQ ID NO: 248 is the determined amino acid sequence for the C. trachomatis OMCB peptide 162-181.
- SEQ ID NO: 249 is the determined amino acid sequence for the C. trachomatis OMCB peptide 167-186.
- SEQ ID NO: 250 is the determined amino acid sequence for the C. trachomatis OMCB peptide 171-190.
- SEQ ID NO: 251 is the determined amino acid sequence for the C. trachomatis OMCB peptide 171-186.
- SEQ ID NO: 252 is the determined amino acid sequence for the C. trachomatis OMCB peptide 175-186.
- SEQ ID NO: 252 is the determined amino acid sequence for the C. trachomatis OMCB peptide 175-186.
- SEQ ID NO: 253 is the determined amino acid sequence for the C. pneumoniae OMCB peptide 185-198.
- SEQ ID NO: 254 is the determined amino acid sequence for the C. trachomatis TSA peptide 96-115.
- SEQ ID NO: 255 is the determined amino acid sequence for the C. trachomatis TSA peptide 101-120.
- SEQ ID NO: 256 is the determined amino acid sequence for the C. trachomatis TSA peptide 106-125.
- SEQ ID NO: 257 is the determined amino acid sequence for the C. trachomatis TSA peptide 111-130.
- SEQ ID NO: 258 is the determined amino acid sequence for the C. trachomatis TSA peptide 116-135.
- SEQ ID NO: 259 is the determined amino acid sequence for the C. trachomatis TSA peptide 121-140.
- SEQ ID NO: 260 is the determined amino acid sequence for the C. trachomatis TSA peptide 126-145.
- SEQ ID NO: 261 is the determined amino acid sequence for the C. trachomatis TSA peptide 131-150.
- SEQ ID NO: 262 is the determined amino acid sequence for the C. trachomatis TSA peptide 136-155.
- SEQ ID NO: 263 is the determined full-length DNA sequence for the C. trachomatis CT529/Cap 1 gene serovar I.
- SEQ ID NO: 264 is the predicted full-length amino sequence for the C. trachomatis CT529/Cap 1 gene serovar I.
- SEQ ID NO: 265 is the determined fill-length DNA sequence for the C. trachomatis CT529/Cap 1 gene serovar K.
- SEQ ID NO: 266 is the predicted full-length amino sequence for the C. trachomatis CT529/Cap 1 gene serovar K.
- SEQ ID NO: 267 is the determined DNA sequence for the C. trachomatis clone 17-G4-36 sharing homology to part of the ORF of DNA-dirrected RNA polymerase beta subunit- CT315 in serD.
- SEQ ID NO: 268 is the determined DNA sequence for the partial sequence of the C. trachomatis CTO16 gene in clone 2E10.
- SEQ ID NO: 269 is the determined DNA sequence for the partial sequence of the C. trachomatis tRNA syntase gene in clone 2E10.
- SEQ ID NO: 270 is the determined DNA sequence for the partial sequence for the C. trachomatis clpX gene in clone 2E10.
- SEQ ID NO: 271 is a first determined DNA sequence for the C. trachomatis clone CtL2gam-30 representing the 5′end.
- SEQ ID NO: 272 is a second determined DNA sequence for the C. trachomatis clone CtL2gam-30 representing the 3′end.
- SEQ ID NO: 273 is the determined DNA sequence for the C. trachomatis clone CtL2gam-28.
- SEQ ID NO: 274 is the determined DNA sequence for the C. trachomatis clone CtL2gam-27.
- SEQ ID NO: 275 is the determined DNA sequence for the C. trachomatis clone CtL2gam-26.
- SEQ ID NO: 276 is the determined DNA sequence for the C. trachomatis clone CtL2gam-24.
- SEQ ID NO: 277 is the determined DNA sequence for the C. trachomatis clone CtL2gam-23.
- SEQ ID NO: 278 is the determined DNA sequence for the C. trachomatis clone CtL2gam-21.
- SEQ ID NO: 279 is the determined DNA sequence for the C. trachomatis clone CtL2gam-18.
- SEQ ID NO: 280 is the determined DNA sequence for the C. trachomatis clone CtL2gam-17.
- SEQ ID NO: 281 is a first determined DNA sequence for the C. trachomatis clone CtL2gam-15 representing the 5′ end.
- SEQ ID NO: 282 is a second determined DNA sequence for the C. trachomatis clone CtL2gam-15 representing the 3′ end.
- SEQ ID NO: 283 is the determined DNA sequence for the C. trachomatis clone CtL2gam-13.
- SEQ ID NO: 284 is the determined DNA sequence for the C. trachomatis clone CtL2gam-10.
- SEQ ID NO: 285 is the determined DNA sequence for the C. trachomatis clone CtL2gam-8.
- SEQ ID NO: 286 is a first determined DNA sequence for the C. trachomatis clone CtL2gam-6 representing the 5′ end.
- SEQ ID NO: 287 is a second determined DNA sequence for the C. trachomatis clone CtL2gam-6 representing the 3′ end.
- SEQ ID NO: 288 is the determined DNA sequence for the C. trachomatis clone CtL2gam-5.
- SEQ ID NO: 289 is the determined DNA sequence for the C. trachomatis clone CtL2gam-2.
- SEQ ID NO: 290 is the determined DNA sequence for the C. trachomatis clone CtL2gam-1.
- SEQ ID NO: 291 is the determined full-length DNA sequence for the C. pneumoniae homologue of the CT529 gene.
- SEQ ID NO: 292 is the predicted full-length amino acid sequence for the C. pneumoniae homologue of the CT529 gene.
- SEQ ID NO: 293 is the determined DNA sequence for the insertion sequence for cloning the C. trachomatis pmpG gene in the SKB vaccine vector.
- SEQ ID NO: 294 is the amino acid sequence of an open reading frame of clone CT603.
- SEQ ID NO: 295 is the amino acid sequence of a first open reading frame of clone CT875.
- SEQ ID NO: 296 is the amino acid sequence of a second open reading frame of clone CT875.
- SEQ ID NO: 297 is the amino acid sequence of a first open reading frame of clone CT858.
- SEQ ID NO: 298 is the amino acid sequence of a second open reading frame of clone CT858.
- SEQ ID NO: 299 is the amino acid sequence of an open reading frame of clone CT622.
- SEQ ID NO: 300 is the amino acid sequence of an open reading frame of clone CT610.
- SEQ ID NO: 301 is the amino acid sequence of an open reading frame of clone CT396.
- SEQ ID NO: 302 is the amino acid sequence of an open reading frame of clone CT318.
- SEQ ID NO: 304 is the amino acid sequence for C. trachomatis, serovar L2 rCt529c1-125 having a modified N-terminal sequence (6-His tag).
- SEQ ID NO: 305 is the amino acid sequence for C. trachomatis, serovar L2 rCt529c1-125.
- SEQ ID NO: 306 is the sense primer used in the synthesis of the PmpA(N-term) fusion protein.
- SEQ ID NO: 307 is the antisense primer used in the synthesis of the PmpA(N-term) fusion protein.
- SEQ ID NO: 308 is the DNA sequence encoding the PmpA(N-term) fusion protein.
- SEQ ID NO: 309 is the amino acid sequence of the PmpA(N-term) fusion protein.
- SEQ ID NO: 310 is the sense primer used in the synthesis of the PmpA(C-term) fusion protein.
- SEQ ID NO: 311 is the antisense primer used in the synthesis of the PmpA(C-term) fusion protein.
- SEQ ID NO: 312 is the DNA sequence encoding the PmpA(C-term) fusion protein.
- SEQ ID NO: 313 is the amino acid sequence of the PmpA(C-term) fusion protein.
- SEQ ID NO: 314 is the sense primer used in the synthesis of the PmpF(N-term) fusion protein.
- SEQ ID NO: 315 is the antisense primer used in the synthesis of the PmpF(N-term) fusion protein.
- SEQ ID NO: 316 is the DNA sequence encoding the PmpF(N-term) fusion protein.
- SEQ ID NO: 317 is the amino acid sequence of the PmpF(N-term) fusion protein.
- SEQ ID NO: 318 is the sense primer used in the synthesis of the PmpF(C-term) fusion protein.
- SEQ ID NO: 319 is the antisense primer used in the synthesis of the PmpF(C-term) fusion protein.
- SEQ ID NO: 320 is the DNA sequence encoding the PmpF(C-term) fusion protein.
- SEQ ID NO: 321 is the amino acid sequence of the PmpF(C-term) fusion protein.
- SEQ ID NO: 322 is the sense primer used in the synthesis of the PmpH (CT412) (N-term) fusion protein.
- SEQ ID NO: 323 is the antisense primer used in the synthesis of the PmpH(N-term) fusion protein.
- SEQ ID NO: 324 is the DNA sequence encoding the PmpH(N-term) fusion protein.
- SEQ ID NO: 325 is the amino acid sequence of the PmpH(N-term) fusion protein.
- SEQ ID NO: 326 is the sense primer used in the synthesis of the PmpH(C-term) fusion protein.
- SEQ ID NO: 327 is the antisense primer used in the synthesis of the PmpH(C-term) fusion protein.
- SEQ ID NO: 328 is the DNA sequence encoding the PmpH(C-term) fusion protein.
- SEQ ID NO: 329 is the amino acid sequence of the PmpH(C-term) fusion protein.
- SEQ ID NO: 330 is the sense primer used in the synthesis of the PmpB(1) fusion protein.
- SEQ ID NO: 331 is the antisense primer used in the synthesis of the PmpB(1) fusion protein.
- SEQ ID NO: 332 is the DNA sequence encoding the PmpB(1) fusion protein.
- SEQ ID NO: 333 is the amino acid sequence of the PmpB(1) fusion protein.
- SEQ ID NO: 334 is the sense primer used in the synthesis of the PmpB(2) fusion protein.
- SEQ ID NO: 335 is the antisense primer used in the synthesis of the PmpB(2) fusion protein.
- SEQ ID NO: 336 is the DNA sequence encoding the PmpB(2) fusion protein.
- SEQ ID NO: 337 is the amino acid sequence of the PmpB(2) fusion protein.
- SEQ ID NO: 338 is the sense primer used in the synthesis of the PmpB(3) fusion protein.
- SEQ ID NO: 339 is the antisense primer used in the synthesis of the PmpB(3) fusion protein.
- SEQ ID NO: 340 is the DNA sequence encoding the PmpB(3) fusion protein.
- SEQ ID NO: 341 is the amino acid sequence of the PmpB(3) fusion protein.
- SEQ ID NO: 342 is the sense primer used in the synthesis of the PmpB(4) fusion protein.
- SEQ ID NO: 343 is the antisense primer used in the synthesis of the PmpB(4) fusion protein.
- SEQ ID NO: 344 is the DNA sequence encoding the PmpB(4) fusion protein.
- SEQ ID NO: 345 is the amino acid sequence of the PmpB(4) fusion protein.
- SEQ ID NO: 346 is the sense primer used in the synthesis of the PmpC(1) fusion protein.
- SEQ ID NO: 347 is the antisense primer used in the synthesis of the PmpC(1) fusion protein.
- SEQ ID NO: 348 is the DNA sequence encoding the PmpC(1) fusion protein.
- SEQ ID NO: 349 is the amino acid sequence of the PmpC(1) fusion protein.
- SEQ ID NO: 350 is the sense primer used in the synthesis of the PmpC(2) fusion protein.
- SEQ ID NO: 351 is the antisense primer used in the synthesis of the PmpC(2) fusion protein.
- SEQ ID NO: 352 is the DNA sequence encoding the PmpC(2) fusion protein.
- SEQ ID NO: 353 is the amino acid sequence of the PmpC(2) fusion protein.
- SEQ ID NO: 354 is the sense primer used in the synthesis of the PmpC(3) fusion protein.
- SEQ ID NO: 355 is the antisense primer used in the synthesis of the PmpC(3) fusion protein.
- SEQ ID NO: 356 is the DNA sequence encoding the PmpC(3) fusion protein.
- SEQ ID NO: 357 is the amino acid sequence of the PmpC(3) fusion protein.
- SEQ ID NO: 358 is the DNA sequence of the oppA1 protein, devoid of the first trans-membrane domain.
- SEQ ID NO: 359 is the full length DNA sequence of CT139.
- SEQ ID NO: 360 is the full length DNA sequence of ORF-3.
- SEQ ID NO: 361 is the full length DNA sequence of CT611.
- SEQ ID NO: 362 is the amino acid sequence of oppA1 starting from amino acid 22.
- SEQ ID NO: 363 is the amino acid sequence of CT139.
- SEQ ID NO: 364 is the amino acid sequence of ORF-3.
- SEQ ID NO: 365 is the amino acid sequence of CT611.
- SEQ ID NO: 366 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0275, of the Chlamydia trachomatis gene CT190.
- SEQ ID NO: 367 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0407, of the Chlamydia trachomatis gene CT103.
- SEQ ID NO: 368 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0720, of the Chlamydia trachomatis gene CT659.
- SEQ ID NO: 369 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0716, of the Chlamydia trachomatis gene CT660.
- SEQ ID NO: 370 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0519, of the Chlamydia trachomatis gene CT430.
- SEQ ID NO: 371 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0520, of the Chlamydia trachomatis gene CT431.
- SEQ ID NO: 372 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0078, of the Chlamydia trachomatis gene CT318.
- SEQ ID NO: 373 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0628, of the Chlamydia trachomatis gene CT509.
- SEQ ID NO: 374 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0540, of the Chlamydia trachomatis gene CT414.
- SEQ ID NO: 375 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, pmp20, of the Chlamydia trachomatis gene CT413.
- SEQ ID NO: 376 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0081, of the Chlamydia trachomatis gene CT315.
- SEQ ID NO: 377 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0761, of the Chlamydia trachomatis gene CT610.
- SEQ ID NO: 378 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0557, of the Chlamydia trachomatis gene CT443.
- SEQ ID NO: 379 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0833, of the Chlamydia trachomatis gene CT557.
- SEQ ID NO: 380 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0134, of the Chlamydia trachomatis gene CT604.
- SEQ ID NO: 381 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0388, of the Chlamydia trachomatis gene CT042.
- SEQ ID NO: 382 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn1028, of the Chlamydia trachomatis gene CT376.
- SEQ ID NO: 383 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0875, of the Chlamydia trachomatis gene CT734.
- SEQ ID NO: 384 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0908, of the Chlamydia trachomatis gene CT764.
- SEQ ID NO: 385 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0728, of the Chlamydia trachomatis gene CT622.
- SEQ ID NO: 386 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0275, of the Chlamydia trachomatis gene CT190.
- SEQ ID NO: 387 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0407, of the Chlamydia trachomatis gene CT103.
- SEQ ID NO: 388 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0720, of the Chlamydia trachomatis gene CT659.
- SEQ ID NO: 389 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0716, of the Chlamydia trachomatis gene CT660.
- SEQ ID NO: 390 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0519, of the Chlamydia trachomatis gene CT430.
- SEQ ID NO: 391 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0520, of the Chlamydia trachomatis gene CT431.
- SEQ ID NO: 392 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0078, of the Chlamydia trachomatis gene CT318.
- SEQ ID NO: 393 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0628, of the Chlamydia trachomatis gene CT509.
- SEQ ID NO: 394 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0540, of the Chlamydia trachomatis gene CT414.
- SEQ ID NO: 395 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, pmp20, of the Chlamydia trachomatis gene CT413.
- SEQ ID NO: 396 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0081, of the Chlamydia trachomatis gene CT315.
- SEQ ID NO: 397 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0761, of the Chlamydia trachomatis gene CT610.
- SEQ ID NO: 398 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0557, of the Chlamydia trachomatis gene CT443.
- SEQ ID NO: 399 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0833, of the Chlamydia trachomatis gene CT557.
- SEQ ID NO: 400 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0134, of the Chlamydia trachomatis gene CT604.
- SEQ ID NO: 401 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0388, of the Chlamydia trachomatis gene CT042.
- SEQ ID NO: 402 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn1028, of the Chlamydia trachomatis gene CT376.
- SEQ ID NO: 403 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0875, of the Chlamydia trachomatis gene CT734.
- SEQ ID NO: 404 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0908, of the Chlamydia trachomatis gene CT764.
- SEQ ID NO: 405 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0728, of the Chlamydia trachomatis gene CT622.
- SEQ ID NO: 406 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT287.
- SEQ ID NO: 407 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT858.
- SEQ ID NO: 408 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT764.
- SEQ ID NO: 409 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT734.
- SEQ ID NO: 410 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT660.
- SEQ ID NO: 411 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT659.
- SEQ ID NO: 412 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT622.
- SEQ ID NO: 413 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT610.
- SEQ ID NO: 414 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT604.
- SEQ ID NO: 415 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT557.
- SEQ ID NO: 416 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT509.
- SEQ ID NO: 417 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT443.
- SEQ ID NO: 418 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT431.
- SEQ ID NO: 419 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT430.
- SEQ ID NO: 420 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT414.
- SEQ ID NO: 421 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT413.
- SEQ ID NO: 422 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT396.
- SEQ ID NO: 423 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT376.
- SEQ ID NO: 424 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT318.
- SEQ ID NO: 425 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT315.
- SEQ ID NO: 426 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT104.
- SEQ ID NO: 427 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT103.
- SEQ ID NO: 428 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT102.
- SEQ ID NO: 429 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT098.
- SEQ ID NO: 430 sets forth the full-length serovar D DNA sequence of the Chlamydia trachomatis gene CT042.
- SEQ ID NO: 431 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT858.
- SEQ ID NO: 432 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT764.
- SEQ ID NO: 433 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT734.
- SEQ ID NO: 434 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT660.
- SEQ ID NO: 435 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT659.
- SEQ ID NO: 436 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT622.
- SEQ ID NO: 437 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT610.
- SEQ ID NO: 438 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT604.
- SEQ ID NO: 439 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT557.
- SEQ ID NO: 440 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT509.
- SEQ ID NO: 441 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT443.
- SEQ ID NO: 442 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT431.
- SEQ ID NO: 443 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT430.
- SEQ ID NO: 444 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT414.
- SEQ ID NO: 445 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT413.
- SEQ ID NO: 446 sets forth the full-length serovar D amino acid sequence of the Chlamydia trachomatis gene CT396.
- SEQ ID NO: 447 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT376.
- SEQ ID NO: 448 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT318.
- SEQ ID NO: 449 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT315.
- SEQ ID NO: 450 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT104.
- SEQ ID NO: 451 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT103.
- SEQ ID NO: 452 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT102.
- SEQ ID NO: 453 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT098.
- SEQ ID NO: 454 sets forth the full length serovar D amino acid sequence of the Chlamydia trachomatis gene CT042.
- SEQ ID NO: 455 corresponds to the DNA sequence of CPn0894, which is the CP homologue of CT751 (amn), which was identified in clones CTL2-1, and CTL2-5.
- SEQ ID NO: 456 corresponds to the DNA sequence of CPn0074, which is the CP homologue of CT322 (tuf), which was identified in clone CTL2-2.
- SEQ ID NO: 457 corresponds to the DNA sequence of CPn0122, which is the CP homologue of CT032 (metG), which was identified in clones CTL2gam2, CTL2-3(5′) and CTL2-4.
- SEQ ID NO: 458 corresponds to the DNA sequence of CPn0121, which is the CP homologue of CT031, which was identified in clone CTL2-3(5′)(3′).
- SEQ ID NO: 459 corresponds to the DNA sequence of CPn0120, which is the CP homologue of CT030 (gmK), which was identified in clones CTL2-3(3′) and CTL2-21.
- SEQ ID NO: 460 corresponds to the DNA sequence of CPn0359, which is the CP homologue of CT064 (lepA), which was identified in clone CTL2gam5.
- SEQ ID NO: 461 corresponds to the DNA sequence of CPn0414, which is the CP homologue of CT265 (accA), which was identified in clone CTL2-6.
- SEQ ID NO: 462 corresponds to the DNA sequence of CPn0413, which is the CP homologue of CT264 (msbA), which was identified in clone CTL2-6.
- SEQ ID NO: 463 corresponds to the DNA sequence of CPn0394, which is the CP homologue of CT256 which was identified in clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 464 corresponds to the DNA sequence of CPn0395, which is the CP homologue of CT257 which was identified in clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 465 corresponds to the DNA sequence of CPn0487, which is the CP homologue of CT384 which was identified in clones CTL2gam6(3′) and CTL2-11(3′).
- SEQ ID NO: 466 corresponds to the DNA sequence of CPn0592, which is the CP homologue of CT473, which was identified in clone CTL2-8b.
- SEQ ID NO: 467 corresponds to the DNA sequence of CPn0593, which is the CP homologue of CT474, which was identified in clone CTL2-8b.
- SEQ ID NO: 468 corresponds to the DNA sequence of CPn0197, which is the CP homologue of CT139 (oppA1), which was identified in clone CTL2-8b.
- SEQ ID NO: 469 corresponds to the DNA sequence of CPn0363, which is the CP homologue of CT060 (flhA), which was identified in clone CTL2-8b.
- SEQ ID NO: 470 corresponds to the DNA sequence of CPn0301, which is the CP homologue of CT242, which was identified in clone CTL2gam8.
- SEQ ID NO: 471 corresponds to the DNA sequence of CPn0302, which is the CP homologue of CT243 (lpxD), which was identified in clone CTL2gam8.
- SEQ ID NO: 472 corresponds to the DNA sequence of CPn0324, which is the CP homologue of CT089 (lcrE), which was identified in clones CTL2-9, CTL2gam1, CTL2gam17 and CTL2-19(5′).
- SEQ ID NO: 473 corresponds to the DNA sequence of CPn0761, which is the CP homologue of CT610, which was identified in clone CTL2-10(5′)(3′).
- SEQ ID NO: 474 corresponds to the DNA sequence of CPn0760, which is the CP homologue of CT611, which was identified in clone CTL2-10(5′).
- SEQ ID NO: 475 corresponds to the DNA sequence of CPn0329, which is the CP homologue of CT154, which was identified in clones CTL2gam10 and CTL2gam21.
- SEQ ID NO: 476 corresponds to the DNA sequence of CPn0990, which is the CP homologue of CT833 (infC), which was identified in clone CTL2-12.
- SEQ ID NO: 477 corresponds to the DNA sequence of CPn0984, which is the CP homologue of CT827 (nrdA), which was identified in clones CTL2-16(3′) and CTL2gam15(3′).
- SEQ ID NO: 478 corresponds to the DNA sequence of CPn0985 which is the CP homologue of CT828 (nrdB) which was identified in clones CTL2-16(3′) CTL2gam15(3′).
- SEQ ID NO: 479 corresponds to the DNA sequence of CPn0349, which is the CP homologue of CT067 (ytgA), which was identified in clone CTL2gam18.
- SEQ ID NO: 480 corresponds to the DNA sequence of CPn0325, which is the CP homologue of CT088 (sycE), which was identified in clone CTL2-19(5′).
- SEQ ID NO: 481 corresponds to the DNA sequence of CPn0326, which is the CP homologue of CT087 (malQ), which was identified in clone CTL2-19(5′).
- SEQ ID NO: 482 corresponds to the DNA sequence of CPn0793, which is the CP homologue of CT588 (rbsu), which was identified in clone CTL2gam23.
- SEQ ID NO: 483 corresponds to the DNA sequence of CPn0199, which is the CP homologue of CT199 (oppB1), which was identified in clone CTL2gam24.
- SEQ ID NO: 484 corresponds to the DNA sequence of CPn0666, which is the CP homologue of CT545 (dnaE), which was identified in clone CTL2-24.
- SEQ ID NO: 485 corresponds to the DNA sequence of CPn0065, which is the CP homologue of CT288, which was identified in clone CTL2gam27.
- SEQ ID NO: 486 corresponds to the DNA sequence of CPn0444, which is the CP homologue of CT413 (pmpB), which was identified in clone CTL2gam30(5′)(3′).
- SEQ ID NO: 487 corresponds to the DNA sequence of CPn-ORF5, which is the CP homologue of CT-ORF3, which was identified in clones CTL2gam15(5′), CTL2-16(5′), CTL2-18(5′), and CTL2-23.
- SEQ ID NO: 488 corresponds to the DNA sequence of CPn-ORF6, which is the CP homologue of CT-ORF4, which was identified in clone CTL2-18(3′).
- SEQ ID NO: 489 corresponds to the DNA sequence of CP-ORF7, which is the CP homologue of CT-ORF5, which was identified in clone CTL2-18(3′).
- SEQ ID NO: 490 corresponds to the amino acid sequence of CPn0894, which is the CP homologue of CT751 (amn), which was identified in clones CTL2-1 and CTL2-5.
- SEQ ID NO: 491 corresponds to the amino acid sequence of CPn0074, which is the CP homologue of CT332 (tuf), which was identified in clone CTL2-2.
- SEQ ID NO: 492 corresponds to the amino acid sequence of CPn0122, which is the CP homologue of CT032 (metG), which was identified in clones CTL2gam2, CTL2-3(5′) and CTL2-4.
- SEQ ID NO: 493 corresponds to the amino acid sequence of CPn0121, which is the CP homologue of CT031, which was identified in clone CTL2-3(5′)(3′).
- SEQ ID NO: 494 corresponds to the amino acid sequence of CPn0120 which is the CP homologue of CT030 (gmK) which was identified in clones CTL2-3 (3′) and CTL2-21.
- SEQ ID NO: 495 corresponds to the amino acid sequence of CPn0359, which is the CP homologue of CT064 (lepA), which was identified in clone CTL2gam5.
- SEQ ID NO: 496 corresponds to the amino acid sequence of CPn0414, which is the CP homologue of CT265 (accA), which was identified in clone CTL2-6.
- SEQ ID NO: 497 corresponds to the amino acid sequence of CPn0413, which is the CP homologue of CT264 (msbA), which was identified in clone CTL2-6.
- SEQ ID NO: 498 corresponds to the amino acid sequence of CPn0394, which is the CP homologue of CT256, which was identified in clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 499 corresponds to the amino acid sequence of CPn0395, which is the CP homologue of CT257, which was identified in clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 500 corresponds to the amino acid sequence of CPn0487, which is the CP homologue of CT384, which was identified in clones CTL2gam6(3′) and CTL2-11(3′).
- SEQ ID NO: 501 corresponds to the amino acid sequence of CPn0592, which is the CP homologue of CT473, which was identified in clone CTL2-8b.
- SEQ ID NO: 502 corresponds to the amino acid sequence of CPn0593, which is the CP homologue of CT474, which was identified in clone CTL2-8b.
- SEQ ID NO: 503 corresponds to the amino acid sequence of CPn0197, which is the CP homologue of CT139 (oppA1), which was identified in clone CTL2-8b.
- SEQ ID NO: 504 corresponds to the amino acid sequence of CPn0363, which is the CP homologue of CT060 (flhA), which was identified in clone CTL2-8b.
- SEQ ID NO: 505 corresponds to the amino acid sequence of CPn0301, which is the CP homologue of CT242, which was identified in clone CTL2gam8.
- SEQ ID NO: 506 corresponds to the amino acid sequence of CPn0302, which is the CP homologue of CT243 (lpxD), which was identified in clone CTL2gam8.
- SEQ ID NO: 507 corresponds to the amino acid sequence of CPn0324, which is the CP homologue of CT089 (lcrE), which was identified in clones CTL2-9, CTL2gam1, CTL2gam17 and CTL2-19(5′).
- SEQ ID NO: 508 corresponds to the amino acid sequence of CPn0761, which is the CP homologue of CT610, which was identified in clone CTL2-10(5′)(3′).
- SEQ ID NO: 509 corresponds to the amino acid sequence of CPn0760, which is the CP homologue of CT611, which was identified in clone CTL2-10(5′).
- SEQ ID NO: 510 corresponds to the amino acid sequence of CPn0329, which is the CP homologue of CT154, which was identified in clones CTL2gam10 and CTL2gam21.
- SEQ ID NO: 511 corresponds to the amino acid sequence of CPn0990, which is the CP homologue of CT833 (infC), which was identified in clone CTL2-12.
- SEQ ID NO: 512 corresponds to the amino acid sequence of CPn-ORF5, which is the CP homologue of CT ORF3, which was identified in clones CTL2gam15(5′), CTL2-16(5′), CTL2-18(5′), and CTL2-23.
- SEQ ID NO: 513 corresponds to the amino acid sequence of CPn0984, which is the CP homologue of CT827 (nrdA) which was identified in clones CTL2-16(3′) and CTL2gam15(3′).
- SEQ ID NO: 514 corresponds to the amino acid sequence of CPn0985, which is the CP homologue of CT828 (nrdB) which was identified in clones CTL2-16(3′) CTL2gam15(3′).
- SEQ ID NO: 515 corresponds to the amino acid sequence of CPn0349, which is the CP homologue of CT067 (ytgA), which was identified in clone CTL2gam18.
- SEQ ID NO: 516 corresponds to the DNA sequence of CPn-ORF6, which is the CP homologue of CT-ORF4, which was identified in clone CTL2-18(3′).
- SEQ ID NO: 517 corresponds to the DNA sequence of CP-ORF7, which is the CP homologue of CT-ORF5, which was identified in clone CTL2-18(3′).
- SEQ ID NO: 518 corresponds to the amino acid sequence of CPn0326, which is the CP homologue of CT087 (malQ), which was identified in clone CTL2-19(5′).
- SEQ ID NO: 519 corresponds to the amino acid sequence of CPn0325, which is the CP homologue of CT088 (sycE), which was identified in clone CTL2-19(5′).
- SEQ ID NO: 520 corresponds to the amino acid sequence of CPn0793, which is the CP homologue of CT588 (rbsu), which was identified in clone CTL2gam23.
- SEQ ID NO: 521 corresponds to the amino acid sequence of CPn0199, which is the CP homologue of CT199 (oppB1), which was identified in clone CTL2gam24.
- SEQ ID NO: 522 corresponds to the amino acid sequence of CPn0666, which is the CP homologue of CT545 (dnaE), which was identified in clone CTL2-24.
- SEQ ID NO: 523 corresponds to the DNA sequence of CPn0065, which is the CP homologue of CT288, which was identified in clone CTL2gam27.
- SEQ ID NO: 524 corresponds to the DNA sequence of CPn0444, which is the CP homologue of CT413 (pmpB), which was identified in clone CTL2gam30(5′)(3′).
- SEQ ID NO: 525 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT751 (amn) identified from the clones CTL2-1 and CTL2-5.
- SEQ ID NO: 526 sets forth the full-length C trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT322 (tuff) identified from the clone CTL2-2.
- SEQ ID NO: 527 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT032 (metG) identified from the clones CTL2gam2, CTL2-3(5′) and CTL2-4.
- SEQ ID NO: 528 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT031 identified from the clone CTL2-3(5′)(3′).
- SEQ ID NO: 529 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT030 (gmK) identified from the clones CTL2-3(3′) and CTL2-21.
- SEQ ID NO: 530 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT064 (lepA) identified from the clone CTL2gam5.
- SEQ ID NO: 531 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT265 (accA) identified from the clone CTL2-6.
- SEQ ID NO: 532 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT624 (msbA) identified from the clones CTL2-6.
- SEQ ID NO: 533 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT256 identified from the clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 534 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT257 identified from the clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 535 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT384 identified from the clones CTL2gam6(3′) and CTL2-11(3′).
- SEQ ID NO: 536 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT473 identified from the clone CTL2-8b.
- SEQ ID NO: 537 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT474 identified from the clones CTL2-8b.
- SEQ ID NO: 538 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT139 (oppA1) identified from the clones CTL2-8b.
- SEQ ID NO: 539 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT060 (flhA) identified from the clone CTL2-8b.
- SEQ ID NO: 540 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT242 identified from the clone CTL2gam8.
- SEQ ID NO: 541 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT243 (lpxD) identified from the clone CTL2gam8.
- SEQ ID NO: 542 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT089 identified from the clones CTL2-9, CTL2gam1, CTL2gam17, and CTL2-19(5′).
- SEQ ID NO: 543 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT610 identified from the clone CTL2-10 (5′)(3′).
- SEQ ID NO: 544 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT611 identified from the clone CTL2-10(5′).
- SEQ ID NO: 545 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT154 identified from the clones CTL2gam10 and CTL2gam21.
- SEQ ID NO: 546 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT833 (infC) identified from the clone CTL2-12.
- SEQ ID NO: 547 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT827 (nrdA) identified from the clones CTL2-16(3′) and CTL2gam15(3′).
- SEQ ID NO: 548 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT828 (nrdB) identified from the clones CTL2-16(3′) and CTL2gam15(3′).
- SEQ ID NO: 549 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT067 (ytgA) identified from the clone CTL2gam18.
- SEQ ID NO: 550 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT088 (sycE) identified from the clones CTL2-19(5′).
- SEQ ID NO: 551 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT087 identified from the clone CTL2-19(5′).
- SEQ ID NO: 552 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT588 (rsbu) identified from the clone CTL2gam23.
- SEQ ID NO: 553 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT199 (oppB1) identified from the clone CTL2gam24.
- SEQ ID NO: 554 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT545 (dnaE) identified from the clone CTL2-4.
- SEQ ID NO: 555 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT288 identified from the clones CTL2gam27.
- SEQ ID NO: 556 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT413 (pmpB) identified from the clone CTL2gam30(5′)(3′).
- SEQ ID NO: 557 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT-ORF3 identified from the clones CTL2gam15(5′), CTL2-16(5′), CTL2-18(5′) and CTL2-23.
- SEQ ID NO: 558 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for pCT-ORF4 identified from the clone CTL2-18(3′).
- SEQ ID NO: 559 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT-ORF5 identified from the clones CTL2-18(3′).
- SEQ ID NO: 560 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT751 (amn) identified from the clones CTL2-1 and CTL2-5.
- SEQ ID NO: 561 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT322 (tuff) identified from the clone CTL2-2.
- SEQ ID NO: 562 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT032 (metG) identified from the clones CTL2gam2, CTL2-3(5′) and CTL2-4.
- SEQ ID NO: 563 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT031 identified from the clone CTL2-3(5′)(3′).
- SEQ ID NO: 564 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT030 (gmK) identified from the clones CTL2-3(3′) and CTL2-21.
- SEQ ID NO: 565 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT064 (lepA) identified from the clone CTL2gam5.
- SEQ ID NO: 566 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT265 (accA) identified from the clone CTL2-6.
- SEQ ID NO: 567 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT624 (msbA) identified from the clones CTL2-6.
- SEQ ID NO: 568 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT256 identified from the clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 569 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT257 identified from the clones CTL2gam6(5′) and CTL2-11(5′).
- SEQ ID NO: 570 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT384 identified from the clones CTL2gam6(3′) and CTL2-11(3′).
- SEQ ID NO: 571 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT473 identified from the clone CTL2-8b.
- SEQ ID NO: 572 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT474 identified from the clones CTL2-8b.
- SEQ ID NO: 573 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT139 (oppA1) identified from the clones CTL2-8b.
- SEQ ID NO: 574 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT060 (flhA) identified from the clone CTL2-8b.
- SEQ ID NO: 575 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT242 identified from the clone CTL2gam8.
- SEQ ID NO: 576 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT243 (lpxD) identified from the clone CTL2gam8.
- SEQ ID NO: 577 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT089 identified from the clones CTL2-9, CTL2gam1, CTL2gam17, and CTL2-19(5′).
- SEQ ID NO: 578 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT610 identified from the clone CTL2-10 (5′)(3′).
- SEQ ID NO: 579 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT611 identified from the clone CTL2-10(5′).
- SEQ ID NO: 580 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT154 identified from the clones CTL2gam10 and CTL2gam21.
- SEQ ID NO: 581 sets forth the full-length C. trachomatis serovar D amino acid sequence homologous to the C. trachomatis LGV II sequence for CT833 (infC) identified from the clone CTL2-12.
- SEQ ID NO: 582 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT-ORF3 identified from the clones CTL2gam15(5′), CTL2-16(5′), CTL2-18(5′) and CTL2-23.
- SEQ ID NO: 583 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT827 (nrdA) identified from the clones CTL2-16(3′) and CTL2gam15(3′).
- SEQ ID NO: 584 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT828 (nrdB) identified from the clones CTL2-16(3′) and CTL2gam15(3′).
- SEQ ID NO: 585 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT067 (ytgA) identified from the clone CTL2gam18.
- SEQ ID NO: 586 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for pCT-ORF4 identified from the clone CTL2-18(3′)
- SEQ ID NO: 587 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT-ORF5 identified from the clones CTL2-18(3′).
- SEQ ID NO: 588 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT087 identified from the clone CTL2-19(5′).
- SEQ ID NO: 589 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT088 (sycE) identified from the clones CTL2-19(5′).
- SEQ ID NO: 590 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT588 (rsbu) identified from the clone CTL2gam23.
- SEQ ID NO: 591 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT199 (oppB1) identified from the clone CTL2gam24.
- SEQ ID NO: 592 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT545 (dnaE) identified from the clone CTL2-4.
- SEQ ID NO: 593 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT288 identified from the clones CTL2gam27.
- SEQ ID NO: 594 sets forth the full-length C. trachomatis serovar D DNA sequence homologous to the C. trachomatis LGV II sequence for CT413 (pmpB) identified from the clone CTL2gam30(5′)(3′).
- SEQ ID NO: 595 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0406, of the Chlamydia trachomatis gene CT102.
- SEQ ID NO: 596 sets forth the DNA sequence for the Chlamydia pneumoniae homologue, CPn0315, of the Chlamydia trachomatis gene CT098.
- SEQ ID NO: 597 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0406, of the Chlamydia trachomatis gene CT102.
- SEQ ID NO: 598 sets forth the amino acid sequence for the Chlamydia pneumoniae homologue, CPn0315, of the Chlamydia trachomatis gene CT098.
- SEQ ID NO: 599 sets forth the amino acid sequence for Chlamydia trachomatis serovar D CT287 protein.
- FIG. 1 illustrates induction of INF- ⁇ from a Chlamydia-specific T cell line activated by target cells expressing clone 4C9-18#2.
- FIG. 2 illustrates retroviral vectors pBIB-KS1,2,3 modified to contain a Kosak translation initiation site and stop codons.
- FIG. 3 shows specific lysis in a chromium release assay of P815 cells pulsed with Chlamydia peptides CtC7.8-12 (SEQ ID NO: 18) and CtC7.8-13 (SEQ ID NO: 19).
- FIG. 4 shows antibody isotype titers in C57B1/6 mice immunized with C. trachomatis SWIB protein.
- FIG. 5 shows Chlamydia-specific T-cell proliferative responses in splenocytes from C3H mice immunized with C. trachomatis SWIB protein.
- FIG. 6 illustrates the 5′ and 3′ primer sequences designed from C. pneumoniae which were used to isolate the SWIB and S13 genes from C. pneumoniae.
- FIGS. 7A and 7B show induction of IFN- ⁇ from a human anti-chlamydia T-cell line (TCL-8) capable of cross-reacting to C. trachomatis and C. pneumonia upon activation by monocyte-derived dendritic cells expressing chlamydial proteins.
- TCL-8 human anti-chlamydia T-cell line
- FIG. 8 shows the identification of T cell epitopes in Chlamydial ribosomal S 13 protein with T-cell line TCL 8 EB/DC.
- FIG. 9 illustrates the proliferative response of CP-21 T-cells generated against C. pnuemoniae -infected dendritic cells to recombinant C. pneumonia -SWIBprotein, but not C. trachomatis SWIB protein.
- FIG. 10 shows the C. trachomatis -specific SWIB proliferative responses of a primary T-cell line (TCT-10 EB) from an asymptomatic donor.
- FIG. 11 illustrates the identification of T-cell epitope in C. trachomatis SWIB with an antigen specific T-cell line (TCL-10 EB).
- compositions of the subject invention include polypeptides that comprise at least one immunogenic portion of a Chlamydia antigen, or a variant thereof.
- the subject invention discloses polypeptides comprising an immunogenic portion of a Chlamydia antigen, wherein the Chlamydia antigen comprises an amino acid sequence encoded by a polynucleotide molecule disclosed herein, the complements of said nucleotide sequences, and variants of such sequences.
- polypeptide encompasses amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds.
- a polypeptide comprising an immunogenic portion of one of the inventive antigens may consist entirely of the immunogenic portion, or may contain additional sequences.
- the additional sequences may be derived from the native Chlamydia antigen or may be heterologous, and such sequences may (but need not) be immunogenic.
- polynucleotide(s), means a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases and includes DNA and corresponding RNA molecules, including HnRNA and MRNA molecules, both sense and anti-sense strands, and comprehends cDNA, genomic DNA and recombinant DNA, as well as wholly or partially synthesized polynucleotides.
- An HnRNA molecule contains introns and corresponds to a DNA molecule in a generally one-to-one manner.
- An mRNA molecule corresponds to an HnRNA and DNA molecule from which the introns have been excised.
- a polynucleotide may consist of an entire gene, or any portion thereof. Operable anti-sense polynucleotides may comprise a fragment of the corresponding polynucleotide, and the definition of “polynucleotide” therefore includes all such operable anti-sense fragments.
- an “immunogenic portion” of an antigen is a portion that is capable of reacting with sera obtained from a Chlamydia-infected individual (i.e., generates an absorbance reading with sera from infected individuals that is at least three standard deviations above the absorbance obtained with sera from uninfected individuals, in a representative ELISA assay described herein).
- Such immunogenic portions generally comprise at least about 5 amino acid residues, more preferably at least about 10, and most preferably at least about 20 amino acid residues.
- antisera and antibodies are “antigen-specific” if they specifically bind to an antigen (i.e., they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins).
- antisera and antibodies may be prepared as described herein, and using well known techniques.
- An immunogenic portion of a native Chlamydia protein is a portion that reacts with such antisera and/or T-cells at a level that is not substantially less than the reactivity of the full length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Such immunogenic portions may react within such assays at a level that is similar to or greater than the reactivity of the full length polypeptide.
- Such screens may generally be performed using methods well known to those of ordinary skill in the art, such as those described in Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988.
- a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, 125 I-labeled Protein A.
- immunogenic portions of antigens contemplated by the present invention include, for example, the T cell stimulating epitopes provided in SEQ ID NO: 9, 10, 18, 19, 31, 39, 93-96, 98, 100-102, 106, 108, 138-140, 158, 167, 168, 246, 247 and 254-256.
- Polypeptides comprising at least an immunogenic portion of one or more Chlamydia antigens as described herein may generally be used, alone or in combination, to detect Chlamydial infection in a patient.
- compositions and methods of the present invention also encompass variants of the above polypeptides and polynucleotide molecules.
- variants include, but are not limited to, naturally occurring allelic variants of the inventive sequences.
- variants include other Chlamydiae serovars, such as serovars D, E and F, as well as the several LGV serovars which share homology to the inventive polypeptide and polynucleotide molecules described herein.
- the serovar homologues show 95-99% homology to the corresponding polypeptide sequence(s) described herein.
- a polypeptide “variant,” as used herein, is a polypeptide that differs from the recited polypeptide only in conservative substitutions and/or modifications, such that the antigenic properties of the polypeptide are retained.
- variant polypeptides differ from an identified sequence by substitution, deletion or addition of five amino acids or fewer.
- Such variants may generally be identified by modifying one of the above polypeptide sequences, and evaluating the antigenic properties of the modified polypeptide using, for example, the representative procedures described herein.
- the ability of a variant to react with antigen-specific antisera may be enhanced or unchanged, relative to the native protein, or may be diminished by less than 50%, and preferably less than 20%, relative to the native protein.
- variants may generally be identified by modifying one of the above polypeptide sequences and evaluating the reactivity of the modified polypeptide with antigen-specific antibodies or antisera as described herein.
- Preferred variants include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed.
- Other preferred variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.
- a “conservative substitution” is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged.
- Amino acid substitutions may generally be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues.
- negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine.
- variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer.
- Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide. Variants may also, or alternatively, contain other modifications, including the deletion or addition of amino acids that have minimal influence on the antigenic properties, secondary structure and hydropathic nature of the polypeptide.
- a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co-translationally or post-translationally directs transfer of the protein.
- polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support.
- a polypeptide may be conjugated to an immunoglobulin Fc region.
- a polynucleotide “variant” is a sequence that differs from the recited nucleotide sequence in having one or more nucleotide deletions, substitutions or additions such that the immunogenicity of the encoded polypeptide is not diminished, relative to the native protein.
- the effect on the immunogenicity of the encoded polypeptide may generally be assessed as described herein.
- Such modifications may be readily introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis as taught, for example, by Adelman et al. ( DNA, 2:183, 1983).
- Nucleotide variants may be naturally occurring allelic variants as discussed below, or non-naturally occurring variants.
- polypeptides provided by the present invention include variants that are encoded by polynucleotide sequences which are substantially homologous to one or more of the polynucleotide sequences specifically recited herein.
- “Substantial homology,” as used herein, refers to polynucleotide sequences that are capable of hybridizing under moderately stringent conditions. Suitable moderately stringent conditions include prewashing in a solution of 5 ⁇ SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-65° C., 5 ⁇ SSC, overnight or, in the event of cross-species homology, at 45° C. with 0.5 ⁇ SSC; followed by washing twice at 65° C.
- hybridizing polynucleotide sequences are also within the scope of this invention, as are nucleotide sequences that, due to code degeneracy, encode a polypeptide that is the same as a polypeptide of the present invention.
- Two nucleotide or polypeptide sequences are said to be “identical” if the sequence of nucleotides or amino acid residues in the two sequences is the same when aligned for maximum correspondence as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity.
- a “comparison window” as used herein refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.
- Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, Wis.), using default parameters.
- This program embodies several alignment schemes described in the following references: Dayhoff, M. O. (1978) A model of evolutionary change in proteins—Matrices for detecting distant relationships. In Dayhoff, M. O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Resarch Foundaiton, Washington D.C. Vol. 5, Suppl. 3, pp. 345-358;Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 Methods in Enzymology vol.
- optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) Add. APL. Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection.
- BLAST and BLAST 2.0 are described in Altschul et al. (1977) Nuc. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively.
- BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the invention.
- cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always ⁇ 0).
- M forward score for a pair of matching residues
- N penalty score for mismatching residues; always ⁇ 0.
- a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached.
- the BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.
- the “percentage of sequence identity” is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or amino acid sequence in the comparison window may comprise additions or deletions (i.e.gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences.
- the percentage is calculated by determining the number of positions at which the identical nucleic acid bases or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (i.e. the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
- the present invention provides polynucleotide and polypeptide sequences having substantial identity to the sequences disclosed herein, for example those comprising at least 50% or more sequence identity, preferably at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide or polypeptide sequence of this invention using the methods described herein, (e.g., BLAST analyisis using standard parameters, as described below).
- BLAST analyisis using standard parameters, as described below.
- the present invention provides isolated polynucleotides or polypeptides comprising various lengths of contiguous stretches of sequence identical to or complementary to one or more of the sequences disclosed herein.
- polynucleotides and polypeptides encompassed by this invention may comprise at least about 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the disclosed sequences, as well as all intermediate lengths therebetween.
- intermediate lengths means any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through the 200-500; 500-1,000, and the like.
- polynucleotides of the present invention may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.
- illustrative DNA segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many implementations of this invention.
- alleles of the genes encoding the nucleotide sequences recited in herein are also included in the scope of the present invention.
- an “allele” or “allellic sequence” is an alternative form of the gene which may result from at least one mutation in the nucleic acid sequence. Alleles may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone or in combination with the others, one or more times in a given sequence.
- the subject invention discloses polypeptides comprising at least an immunogenic portion of a Chlamydia antigen (or a variant of such an antigen), that comprises one or more of the amino acid sequences encoded by (a) a polynucleotide sequence selected from the group consisting of SEQ ID NO: 358-361, 407-430, 525-559, 582-598; (b) the complements of such DNA sequences or (c) DNA sequences substantially homologous to a sequence in (a) or (b).
- Chlamydia antigens disclosed herein recognize a T cell line that recognizes both Chlamydia trachomatis and Chlamydia pneumoniae infected monocyte-derived dendritic cells, indicating that they may represent an immunoreactive epitope shared by Chlamydia trachomatis and Chlamydia pneumoniae.
- the antigens may thus be employed in a vaccine for both C. trachomatis genital tract infections and for C. pneumonia infections. Further characterization of these Chlamydia antigens from Chlamydia trachomatis and Chlamydia pneumonia to determine the extent of cross-reactivity is provided in Example 6.
- Example 4 describes cDNA fragments (SEQ ID NO: 15, 16 and 33) isolated from C. trachomatis which encode proteins (SEQ ID NO: 17-19 and 32) capable of stimulating a Chlamydia-specific murine CD8+T cell line.
- Chlamydia antigens and polynucleotide sequences encoding such antigens, may be prepared using any of a variety of procedures.
- polynucleotide molecules encoding Chlamydia antigens may be isolated from a Chlamydia genomic or cDNA expression library by screening with a Chlamydia-specific T cell line as described below, and sequenced using techniques well known to those of skill in the art.
- a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for Chlamydia-associated expression (i.e., expression that is at least two fold greater in Chlamydia-infected cells than in controls, as determined using a representative assay provided herein). Such screens may be performed using a Synteni microarray (Palo Alto, Calif.) according to the manufacturer's instructions (and essentially as described by Schena et al., Proc. Natl. Acad. Sci. USA 93:10614-10619, 1996 and Heller et al., Proc. Natl. Acad. Sci. USA 94:2150-2155, 1997).
- polypeptides may be amplified from cDNA prepared from cells expressing the proteins described herein.
- Such polynucleotides may be amplified via polymerase chain reaction (PCR).
- PCR polymerase chain reaction
- sequence-specific primers may be designed based on the sequences provided herein, and may be purchased or synthesized.
- Antigens may be produced recombinantly, as described below, by inserting a polynucleotide sequence that encodes the antigen into an expression vector and expressing the antigen in an appropriate host. Antigens may be evaluated for a desired property, such as the ability to react with sera obtained from a Chlamydia-infected individual as described herein, and may be sequenced using, for example, traditional Edman chemistry. See Edman and Berg, Eur. J. Biochem. 80:116-132, 1967.
- Polynucleotide sequences encoding antigens may also be obtained by screening an appropriate Chlamydia cDNA or genomic DNA library for polynucleotide sequences that hybridize to degenerate oligonucleotides derived from partial amino acid sequences of isolated antigens.
- Degenerate oligonucleotide sequences for use in such a screen may be designed and synthesized, and the screen may be performed, as described (for example) in Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y. (and references cited therein).
- Polymerase chain reaction (PCR) may also be employed, using the above oligonucleotides in methods well known in the art, to isolate a nucleic acid probe from a cDNA or genomic library. The library screen may then be performed using the isolated probe.
- An amplified portion may be used to isolate a full length gene from a suitable library (e.g., a Chlamydia cDNA library) using well known techniques.
- a library cDNA or genomic
- a library is screened using one or more polynucleotide probes or primers suitable for amplification.
- a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5′ and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5′ sequences.
- a partial sequence may be labeled (e.g., by nick-translation or end-labeling with 32 P) using well known techniques.
- a bacterial or bacteriophage library is then screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis.
- cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector.
- Restriction maps and partial sequences may be generated to identify one or more overlapping clones.
- the complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones.
- the resulting overlapping sequences are then assembled into a single contiguous sequence.
- a full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.
- amplification techniques for obtaining a full length coding sequence from a partial cDNA sequence.
- amplification is generally performed via PCR. Any of a variety of commercially available kits may be used to perform the amplification step.
- Primers may be designed using techniques well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol. 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989), and software well known in the art may also be employed.
- Primers are preferably 22-30 nucleotides in length, have a GC content of at least 50% and anneal to the target sequence at temperatures of about 68° C. to 72° C.
- the amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence.
- amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res. 16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region.
- sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known region.
- TMA Transcription-Mediated Amplification
- One primer contains a promoter sequence for RNA polymerase.
- the promoter-primer hybridizes to the target rRNA at a defined site.
- Reverse transcriptase creates a DNA copy of the target rRNA by extension from the 3′end of the promoter-primer.
- the RNA in the resulting complex is degraded and a second primer binds to the DNA copy.
- a new strand of DNA is synthesized from the end of the primer by reverse transcriptase creating double stranded DNA.
- RNA polymerase recognizes the promoter sequence in the DNA template and initiates transcription.
- RNA amplicons re-enters the TMA process and serves as a template for a new round of replication leading to the expotential expansion of the RNA amplicon.
- Other methods employing amplification may also be employed to obtain a full length cDNA sequence.
- EST expressed sequence tag
- Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence.
- Full length cDNA sequences may also be obtained by analysis of genomic fragments.
- Polynucleotide variants may generally be prepared by any method known in the art, including chemical synthesis by, for example, solid phase phosphoramidite chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis (see Adelman et al., DNA 2:183, 1983). Alternatively, RNA molecules may be generated by in vitro or in vivo transcription of DNA sequences encoding a Chlamydial protein, or portion thereof, provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7 or SP6).
- a suitable RNA polymerase promoter such as T7 or SP6
- Certain portions may be used to prepare an encoded polypeptide, as described herein.
- a portion may be administered to a patient such that the encoded polypeptide is generated in vivo (e.g., by transfecting antigen-presenting cells, such as dendritic cells, with a cDNA construct encoding a Chlamydial polypeptide, and administering the transfected cells to the patient).
- a portion of a sequence complementary to a coding sequence may also be used as a probe or to modulate gene expression.
- CDNA constructs that can be transcribed into antisense RNA may also be introduced into cells of tissues to facilitate the production of antisense RNA.
- An antisense polynucleotide may be used, as described herein, to inhibit expression of a Chlamydial protein.
- Antisense technology can be used to control gene expression through triple-helix formation, which compromises the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors or regulatory molecules (see Gee et al., In Huber and Carr, Molecular and Immunologic Approaches, Futura Publishing Co. (Mt. Kisco, N.Y.; 1994)).
- an antisense molecule may be designed to hybridize with a control region of a gene (e.g., promoter, enhancer or transcription initiation site), and block transcription of the gene; or to block translation by inhibiting binding of a transcript to ribosomes.
- a portion of a coding sequence, or of a complementary sequence, may also be designed as a probe or primer to detect gene expression.
- Probes may be labeled with a variety of reporter groups, such as radionuclides and enzymes, and are preferably at least 10 nucleotides in length, more preferably at least 20 nucleotides in length and still more preferably at least 30 nucleotides in length.
- Primers as noted above, are preferably 22-30 nucleotides in length.
- Any polynucleotide may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends; the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.
- Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques.
- a polynucleotide may be cloned into any of a variety of cloning vectors, including plasmids, phagemids, lambda phage derivatives and cosmids.
- Vectors of particular interest include expression vectors, replication vectors, probe generation vectors and sequencing vectors.
- a vector will contain an origin of replication functional in at least one organism, convenient restriction endonuclease sites and one or more selectable markers. Other elements will depend upon the desired use, and will be apparent to those of ordinary skill in the art.
- Synthetic polypeptides having fewer than about 100 amino acids, and generally fewer than about 50 amino acids may be generated using techniques well known in the art.
- such polypeptides may be synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963.
- Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division, Foster City, Calif., and may be operated according to the manufacturer's instructions.
- immunogenic portions of Chlamydia antigens may be prepared and identified using well known techniques, such as those summarized in Paul, Fundamental Immunology, 3d ed., Raven Press, 1993, pp. 243-247 and references cited therein. Such techniques include screening polypeptide portions of the native antigen for immunogenic properties.
- the representative ELISAs described herein may generally be employed in these screens.
- An immunogenic portion of a polypeptide is a portion that, within such representative assays, generates a signal in such assays that is substantially similar to that generated by the full length antigen.
- an immunogenic portion of a Chlamydia antigen generates at least about 20%, and preferably about 100%, of the signal induced by the full length antigen in a model ELISA as described herein.
- Chlamydia antigens may be generated by synthetic or recombinant means.
- Variants of a native antigen may generally be prepared using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Sections of the polynucleotide sequence may also be removed using standard techniques to permit preparation of truncated polypeptides.
- Recombinant polypeptides containing portions and/or variants of a native antigen may be readily prepared from a polynucleotide sequence encoding the polypeptide using a variety of techniques well known to those of ordinary skill in the art. For example, supernatants from suitable host/vector systems which secrete recombinant protein into culture media may be first concentrated using a commercially available filter. Following concentration, the concentrate may be applied to a suitable purification matrix such as an affinity matrix or an ion exchange resin. Finally, one or more reverse phase HPLC steps can be employed to further purify a recombinant protein.
- a suitable purification matrix such as an affinity matrix or an ion exchange resin.
- Any of a variety of expression vectors known to those of ordinary skill in the art may be employed to express recombinant polypeptides as described herein. Expression may be achieved in any appropriate host cell that has been transformed or transfected with an expression vector containing a polynucleotide molecule that encodes a recombinant polypeptide. Suitable host cells include prokaryotes, yeast and higher eukaryotic cells. Preferably, the host cells employed are E. Coli, yeast or a mammalian cell line, such as COS or CHO. The DNA sequences expressed in this manner may encode naturally occurring antigens, portions of naturally occurring antigens, or other variants thereof.
- the polypeptides disclosed herein are prepared in an isolated, substantially pure, form.
- the polypeptides are at least about 80% pure, more preferably at least about 90% pure and most preferably at least about 99% pure.
- a polypeptide may be a fusion protein that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known Chlamydial protein.
- a fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein.
- Certain preferred fusion partners are both immunological and expression enhancing fusion partners.
- Other fusion partners may be selected so as to increase the solubility of the protein or to enable the protein to be targeted to desired intracellular compartments.
- a DNA sequence encoding a fusion protein of the present invention may be constructed using known recombinant DNA techniques to assemble separate DNA sequences encoding, for example, the first and second polypeptides, into an appropriate expression vector.
- the 3′ end of a DNA sequence encoding the first polypeptide is ligated, with or without a peptide linker, to the 5′ end of a DNA sequence encoding the second polypeptide so that the reading frames of the sequences are in phase to permit mRNA translation of the two DNA sequences into a single fusion protein that retains the biological activity of both the first and the second polypeptides.
- a peptide linker sequence may be employed to separate the first and the second polypeptides by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures.
- Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art.
- Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes.
- Preferred peptide linker sequences contain Gly, Asn and Ser residues.
- linker sequence may be used in the linker sequence.
- Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8562, 1986; U.S. Pat. Nos. 4,935,233 and 4,751,180.
- the linker sequence may be from 1 to about 50 amino acids in length.
- a peptide linker sequence when desired, one can utilize non-essential N-terminal amino acid regions (when present) on the first and second polypeptides to separate the functional domains and prevent steric hindrance.
- the ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements.
- the regulatory elements responsible for expression of DNA are located only 5′ to the DNA sequence encoding the first polypeptides.
- stop codons required to end translation and transcription termination signals are only present 3′ to the DNA sequence encoding the second polypeptide.
- Fusion proteins are also provided that comprise a polypeptide of the present invention together with an unrelated immunogenic protein.
- the immunogenic protein is capable of eliciting a recall response.
- examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).
- an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926).
- a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated.
- the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E. coli (thus functioning as an expression enhancer).
- the lipid tail ensures optimal presentation of the antigen to antigen presenting cells.
- Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.
- the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion).
- LYTA is derived from Streptococcus pneumoniae, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; Gene 43:265-292, 1986).
- LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone.
- the C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of E.
- coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (see Biotechnology 10:795-798, 1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion protein. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.
- a Mycobacterium tuberculosis-derived Ra12 polynucleotide is linked to at least an immunogenic portion of a polynucleotide of this invention.
- Ra12 compositions and methods for their use inenhancing expression of heterologous polynucleotide sequences is described in U.S. Patent Application No. 60/158,585, the disclosure of which is incorporated herein by reference in its entirety. Briefly, Ra12 refers to a polynucleotide region that is a subsequence of a Mycobacterium tuberculosis MTB32A nucleic acid.
- MTB32A is a serine protease of 32 KD molecular weight encoded by a gene in virulent and avirulent strains of M. tuberculosis.
- the nucleotide sequence and amino acid sequence of MTB32A have been described (U.S. Patent Application No. 60/158,585; see also, Skeiky et al., Infection and Immun. (1999) 67:3998-4007, incorporated herein by reference.
- the Ra12 polypeptide used in the production of fusion polypeptides comprises a C-terminal fragment of the MTB32A coding sequence that is effective for enhancing the expression and/or immunogenicity of heterologous Chlamydial antigenic polypeptides with which it is fused.
- the Ra12 polypeptide corresponds to an approximately 14 kD C-terminal fragment of MTB32A comprising some or all of amino acid residues 192 to 323 of MTB32A.
- Recombinant nucleic acids which encode a fusion polypeptide comprising a Ra12 polypeptide and a heterologous Chlamydia polypeptide of interest, can be readily constructed by conventional genetic engineering techniques.
- Recombinant nucleic acids are constructed so that, preferably, a Ra12 polynucleotide sequence is located 5′ to a selected heterologous Chlamydia polynucleotide sequence. It may also be appropriate to place a Ra12 polynucleotide sequence 3′ to a selected heterologous polynucleotide sequence or to insert a heterologous polynucleotide sequence into a site within a Ra12 polynucleotide sequence.
- any suitable polynucleotide that encodes a Ra12 or a portion or other variant thereof can be used in constructing recombinant fusion polynucleotides comprising Ra12 and one or more Chlamydia polynucleotides disclosed herein.
- Preferred Ra12 polynucleotides generally comprise at least about 15 consecutive nucleotides, at least about 30 nucleotides, at least about 60 nucleotides, at least about 100 nucleotides, at least about 200 nucleotides, or at least about 300 nucleotides that encode a portion of a Ra12 polypeptide.
- Ra12 polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a Ra12 polypeptide or a portion thereof) or may comprise a variant of such a sequence.
- Ra12 polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the biological activity of the encoded fusion polypeptide is not substantially diminished, relative to a fusion polypeptide comprising a native Ra12 polypeptide.
- Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native Ra12 polypeptide or a portion thereof.
- the present invention provides methods for using one or more of the above polypeptides or fusion proteins (or polynucleotides encoding such polypeptides or fusion proteins) to induce protective immunity against Chlamydial infection in a patient.
- a “patient” refers to any warm-blooded animal, preferably a human.
- a patient may be afflicted with a disease, or may be free of detectable disease and/or infection.
- protective immunity may be induced to prevent or treat Chlamydial infection.
- the polypeptide, fusion protein or polynucleotide molecule is generally present within a pharmaceutical composition or a vaccine.
- Pharmaceutical compositions may comprise one or more polypeptides, each of which may contain one or more of the above sequences (or variants thereof), and a physiologically acceptable carrier.
- Vaccines may comprise one or more of the above polypeptides and an immunostimulant, such as an adjuvant or a liposome (into which the polypeptide is incorporated).
- Such pharmaceutical compositions and vaccines may also contain other Chlamydia antigens, either incorporated into a combination polypeptide or present within a separate polypeptide.
- a vaccine may contain polynucleotides encoding one or more polypeptides or fusion proteins as described above, such that the polypeptide is generated in situ.
- the polynucleotides may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacterial and viral expression systems. Appropriate nucleic acid expression systems contain the necessary polynucleotide sequences for expression in the patient (such as a suitable promoter and terminating signal).
- Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface.
- the polynucleotides may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, or adenovirus), which may involve the use of a non-pathogenic (defective) virus.
- a viral expression system e.g., vaccinia or other pox virus, retrovirus, or adenovirus
- a non-pathogenic virus e.g., vaccinia or other pox virus, retrovirus, or adenovirus
- a non-pathogenic virus e.g., vaccinia or other pox virus, retrovirus, or adenovirus
- Techniques for incorporating polynucleotides into such expression systems are well known to those of ordinary skill in the art.
- the polynucleotides may also be administered as “naked” plasmid vectors as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-16
- a retroviral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those of ordinary skill in the art.
- colloidal dispersion systems such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes.
- a preferred colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome (i.e., an artificial membrane vesicle).
- the uptake of naked polynucleotides may be increased by incorporating the polynucleotides into and/or onto biodegradable beads, which are efficiently transported into the cells. The preparation and use of such systems is well known in the art.
- a polynucleotide vaccine as described above may be administered simultaneously with or sequentially to either a polypeptide of the present invention or a known Chlamydia antigen.
- administration of polynucleotides encoding a polypeptide of the present invention, either “naked” or in a delivery system as described above, may be followed by administration of an antigen in order to enhance the protective immune effect of the vaccine.
- Polypeptides and polynucleotides disclosed herein may also be employed in adoptive immunotherapy for the treatment of Chlamydial infection.
- Adoptive immunotherapy may be broadly classified into either active or passive immunotherapy.
- active immunotherapy treatment relies on the in vivo stimulation of the endogenous host immune system with the administration of immune response-modifying agents (for example, vaccines, bacterial adjuvants, and/or cytokines).
- immune response-modifying agents for example, vaccines, bacterial adjuvants, and/or cytokines.
- effector cells include T lymphocytes (for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper), killer cells (such as Natural Killer cells, lymphokine-activated killer cells), B cells, or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens.
- T lymphocytes for example, CD8+ cytotoxic T-lymphocyte, CD4+ T-helper
- killer cells such as Natural Killer cells, lymphokine-activated killer cells
- B cells or antigen presenting cells (such as dendritic cells and macrophages) expressing the disclosed antigens.
- antigen presenting cells such as dendritic cells and macrophages
- the predominant method of procuring adequate numbers of T-cells for adoptive immunotherapy is to grow immune T-cells in vitro.
- Culture conditions for expanding single antigen-specific T-cells to several billion in number with retention of antigen recognition in vivo are well known in the art.
- These in vitro culture conditions typically utilize intermittent stimulation with antigen, often in the presence of cytokines, such as IL-2, and non-dividing feeder cells.
- cytokines such as IL-2
- the immunoreactive polypeptides described herein may be used to rapidly expand antigen-specific T cell cultures in order to generate sufficient number of cells for immunotherapy.
- antigen-presenting cells such as dendritic, macrophage, monocyte, fibroblast, or B-cells
- immunoreactive polypeptides such as dendritic, macrophage, monocyte, fibroblast, or B-cells
- polynucleotide sequence(s) may be introduced into antigen presenting cells, using a variety of standard techniques well known in the art.
- antigen presenting cells may be transfected or transduced with a polynucleotide sequence, wherein said sequence contains a promoter region appropriate for increasing expression, and can be expressed as part of a recombinant virus or other expression system.
- antigen presenting cell including pox virus, vaccinia virus, and adenovirus
- antigen presenting cells may be transfected with polynucleotide sequences disclosed herein by a variety of means, including gene-gun technology, lipid-mediated delivery, electroporation, osmotic shock, and particlate delivery mechanisms, resulting in efficient and acceptable expression levels as determined by one of ordinary skill in the art.
- the cultured T-cells For cultured T-cells to be effective in therapy, the cultured T-cells must be able to grow and distribute widely and to survive long term in vivo.
- the polypeptides disclosed herein may also be employed to generate and/or isolate chlamydial-reactive T-cells, which can then be administered to the patient.
- antigen-specific T-cell lines may be generated by in vivo immunization with short peptides corresponding to immunogenic portions of the disclosed polypeptides.
- the resulting antigen specific CD8+ or CD4+ T-cell clones may be isolated from the patient, expanded using standard tissue culture techniques, and returned to the patient.
- peptides corresponding to immunogenic portions of the polypeptides may be employed to generate Chlamydia reactive T cell subsets by selective in vitro stimulation and expansion of autologous T cells to provide antigen-specific T cells which may be subsequently transferred to the patient as described, for example, by Chang et al, ( Crit. Rev. Oncol. Hematol., 22(3), 213, 1996).
- Cells of the immune system such as T cells, may be isolated from the peripheral blood of a patient, using a commercially available cell separation system, such as IsolexTM System, available from Nexell Therapeutics, Inc. Irvine, Calif.
- the separated cells are stimulated with one or more of the immunoreactive polypeptides contained within a delivery vehicle, such as a microsphere, to provide antigen-specific T cells.
- a delivery vehicle such as a microsphere
- the population of antigen-specific T cells is then expanded using standard techniques and the cells are administered back to the patient.
- T-cell and/or antibody receptors specific for the polypeptides disclosed herein can be cloned, expanded, and transferred into other vectors or effector cells for use in adoptive immunotherapy.
- T cells may be transfected with the appropriate genes to express the variable domains from chlamydia specific monoclonal antibodies as the extracellular recognition elements and joined to the T cell receptor signaling chains, resulting in T cell activation, specific lysis, and cytokine release. This enables the T cell to redirect its specificity in an MHC-independent manner.
- Another embodiment may include the transfection of chlamydia antigen specific alpha and beta T cell receptor chains into alternate T cells, as in Cole, D J, et al, Cancer Res, 55(4):748-52, 1995.
- syngeneic or autologous dendritic cells may be pulsed with peptides corresponding to at least an immunogenic portion of a polypeptide disclosed herein.
- the resulting antigen-specific dendritic cells may either be transferred into a patient, or employed to stimulate T cells to provide antigen-specific T cells which may, in turn, be administered to a patient.
- the use of peptide-pulsed dendritic cells to generate antigen-specific T cells and the subsequent use of such antigen-specific T cells to eradicate disease in a murine model has been demonstrated by Cheever et al, Immunological Reviews, 157:177, 1997).
- vectors expressing the disclosed polynucleotides may be introduced into stem cells taken from the patient and clonally propagated in vitro for autologous transplant back into the same patient.
- polypeptides, polynucleotides, T cells and/or binding agents disclosed herein may be incorporated into pharmaceutical compositions or immunogenic compositions (i.e., vaccines).
- a pharmaceutical composition may comprise an antigen-presenting cell (e.g. a dendritic cell) transfected with a Chlamydial polynucleotide such that the antigen presenting cell expresses a Chlamydial polypeptide.
- Pharmaceutical compositions comprise one or more such compounds and a physiologically acceptable carrier.
- Vaccines may comprise one or more such compounds and an immunostimulant.
- An immunostimulant may be any substance that enhances or potentiates an immune response to an exogenous antigen.
- immunostimulants include adjuvants, biodegradable microspheres (e.g., polylactic galactide) and liposomes (into which the compound is incorporated; see e.g., Fullerton, U.S. Pat. No. 4,235,877).
- Vaccine preparation is generally described in, for example, M. F. Powell and M. J. Newman, eds., “Vaccine Design (the subunit and adjuvant approach),” Plenum Press (NY, 1995).
- Pharmaceutical compositions and vaccines within the scope of the present invention may also contain other compounds, which may be biologically active or inactive.
- one or more immunogenic portions of other Chlamydial antigens may be present, either incorporated into a fusion polypeptide or as a separate compound, within the composition or vaccine.
- a pharmaceutical composition or vaccine may contain DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ.
- the DNA may be present within any of a variety of delivery systems known to those of ordinary skill in the art, including nucleic acid expression systems, bacteria and viral expression systems. Numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198, 1998, and references cited therein. Appropriate nucleic acid expression systems contain the necessary DNA sequences for expression in the patient (such as a suitable promoter and terminating signal).
- Bacterial delivery systems involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope.
- the DNA may be introduced using a viral expression system (e.g., vaccinia or other pox virus, retrovirus, adenovirus, baculovirus, togavirus, bacteriophage, and the like), which often involves the use of a non-pathogenic (defective), replication competent virus.
- a viral expression system e.g., vaccinia or other pox virus, retrovirus, adenovirus, baculovirus, togavirus, bacteriophage, and the like
- viral expression vectors are derived from viruses of the retroviridae family. This family includes the murine leukemia viruses, the mouse mammary tumor viruses, the human foamy viruses, Rous sarcoma virus, and the immunodeficiency viruses, including human, simian, and feline. Considerations when designing retroviral expression vectors are discussed in Comstock et al. (1997).
- MLV murine leukemia virus
- Kim et al. found that the entire gag sequence, together with the immediate upstream region, could be deleted without significantly affecting viral packaging or gene expression. Further, it was found that nearly the entire U3 region could be replaced with the immediately-early promoter of human cytomegalovirus without deleterious effects. Additionally, MCR and internal ribosome entry sites (IRES) could be added without adverse effects. Based on their observations, Kim et al have designed a series of MLV-based expression vectors comprising one or more of the features described above.
- HFV human foamy virus
- Murakami et al. describe a Rous sarcoma virus (RSV)-based replication-competent avian retrovirus vectors, IR1 and IR2 to express a heterologous gene at a high level.
- RSV Rous sarcoma virus
- IR1 and IR2 Rous sarcoma virus
- EMCV encephalomyocarditis virus
- the IR1 vector retains the splice-acceptor site that is present downstream of the env gene while the IR2 vector lacks it.
- Murakami et al. have shown high level expression of several different heterologous genes by these vectors.
- Kafri et al. (1997) have shown sustained expression of genes delivered directly into liver and muscle by a human immunodeficiency virus (HIV)-based expression vector.
- HIV human immunodeficiency virus
- One benefit of the system is the inherent ability of HIV to transduce non-dividing cells. Because the viruses of Kafri et al. are pseudotyped with vesicular stomatitis virus G glycoprotein (VSVG), they can transduce a broad range of tissues and cell types.
- VSVG vesicular stomatitis virus G glycoprotein
- a large number of adenovirus-based expression vectors have been developed, primarily due to the advantages offered by these vectors in gene therapy applications.
- Adenovirus expression vectors and methods of using such vectors are the subject of a number of United States patents, including U.S. Pat. Nos. 5,698,202, 5,616,326, 5,585,362, and 5,518,913, all incorporated herein by reference.
- adenoviral constructs are described in Khatri et al. (1997) and Tomanin et al (1997).
- Khatri et al. describe novel ovine adenovirus expression vectors and their ability to infect bovine nasal turbinate and rabbit kidney cells as well as a range of human cell type, including lung and foreskin fibroblasts as well as liver, prostate, breast, colon and retinal lines.
- Tomanin et al. describe adenoviral expression vectors containing the T7 RNA polymerase gene. When introduced into cells containing a heterologous gene operably linked to a T7 promoter, the vectors were able to drive gene expression from the T7 promoter. The authors suggest that this system may be useful for the cloning and expression of genes encoding cytotoxic proteins.
- Poxyiruses are widely used for the expression of heterologous genes in mammalian cells. Over the years, the vectors have been improved to allow high expression of the heterologous gene and simplify the integration of multiple heterologous genes into a single molecule. In an effort to diminish cytopathic effects and to increase safety, vaccinia virus mutant and other poxyiruses that undergo abortive infection in mammalian cells are receiving special attention (Oertli et al., 1997). The use of poxyiruses as expression vectors is reviewed in Carroll and Moss (1997).
- Togaviral expression vectors which includes alphaviral expression vectors have been used to study the structure and function of proteins and for protein production purposes. Attractive features of togaviral expression vectors are rapid and efficient gene expression, wide host range, and RNA genomes (Huang, 1996). Also, recombinant vaccines based on alphaviral expression vectors have been shown to induce a strong humoral and cellular immune response with good immunological memory and protective effects (Tubulekas et al., 1997). Alphaviral expression vectors and their use are discussed, for example, in Lundstrom (1997).
- Li and Garoff used Semliki Forest virus (SFV) expression vectors to express retroviral genes and to produce retroviral particles in BHK-21 cells.
- the particles produced by this method had protease and reverse transcriptase activity and were infectious. Furthermore, no helper virus could be detected in the virus stocks. Therefore, this system has features that are attractive for its use in gene therapy protocols.
- Baculoviral expression vectors have traditionally been used to express heterologous proteins in insect cells. Examples of proteins include mammalian chemokine receptors (Wang et al., 1997), reporter proteins such as green fluorescent protein (Wu et al., 1997), and FLAG fusion proteins (Wu et al., 1997; Koh et al., 1997). Recent advances in baculoviral expression vector technology, including their use in virion display vectors and expression in mammalian cells is reviewed by Possee (1997). Other reviews on baculoviral expression vectors include Jones and Morikawa (1996) and O'Reilly (1997).
- the DNA may be introduced as “naked” DNA, as described, for example, in Ulmer et al., Science 259:1745-1749, 1993 and reviewed by Cohen, Science 259:1691-1692, 1993.
- the uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.
- a vaccine may comprise a polynucleotide and/or a polypeptide component, as desired. It will also be apparent that a vaccine may contain pharmaceutically acceptable salts of the polynucleotides and/or polypeptides provided herein. Such salts may be prepared from pharmaceutically acceptable non-toxic bases, including organic bases (e.g., salts of primary, secondary and tertiary amines and basic amino acids) and inorganic bases (e.g., sodium, potassium, lithium, ammonium, calcium and magnesium salts). While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will vary depending on the mode of administration.
- compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, intravenous, intracranial, intraperitoneal, subcutaneous or intramuscular administration.
- the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer.
- any of the above carriers or a solid carrier such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed.
- Biodegradable microspheres e.g., polylactate polyglycolate
- suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.
- compositions may also comprise buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, bacteriostats, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide), solutes that render the formulation isotonic, hypotonic or weakly hypertonic with the blood of a recipient, suspending agents, thickening agents and/or preservatives.
- buffers e.g., neutral buffered saline or phosphate buffered saline
- carbohydrates e.g., glucose, mannose, sucrose or dextrans
- mannitol proteins
- proteins polypeptides or amino acids
- proteins e.glycine
- antioxidants e.g., mannitol
- any of a variety of immunostimulants may be employed in the vaccines of this invention.
- an adjuvant may be included.
- Most adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins.
- Suitable adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, Mich.); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, N.J.); AS-2 (SmithKline Beecham, Philadelphia, Pa.); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.
- Cytokines such as GM-CSF or interleukin-2, -7, or -12, may also be used as adjuvants.
- the adjuvant composition may be designed to induce an immune response predominantly of the Thl type or Th2 type.
- High levels of Th1-type cytokines e.g., IFN- ⁇ , TNF ⁇ , IL-2 and IL-12
- Th2-type cytokines e.g., IL-4, IL-5, IL-6 and IL-10
- a patient will support an immune response that includes Th1 and Th2-type responses.
- Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines.
- the levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.
- Preferred adjuvants for use in eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A (3D-MPL), together with an aluminum salt.
- MPL adjuvants are available from Corixa Corporation (Seattle, Wash.; see U.S. Pat. Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094).
- CpG-containing oligonucleotides in which the CpG dinucleotide is unmethylated also induce a predominantly Th1 response.
- oligonucleotides are well known and are described, for examnple, in WO 96/02555 and WO 99/33488. Immunostimulatory DNA sequences are also described, for example, by Sato et al., Science 273:352, 1996.
- Another preferred adjuvant is a saponin, preferably QS21 (Aquila Biopharmaceuticals Inc., Framingham, Mass.), which may be used alone or in combination with other adjuvants.
- an enhanced system involves the combination of a monophosphoryl lipid A and saponin derivative, such as the combination of QS21 and 3D-MPL as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739.
- Other preferred formulations comprise an oil-in-water emulsion and tocopherol.
- a particularly potent adjuvant formulation involving QS21, 3D-MPL and tocopherol in an oil-in-water emulsion is described in WO 95/17210.
- Advants include Montanide ISA 720 (Seppic, France), SAF (Chiron, Calif., United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Corixa Corporation; Seattle, Wash.), RC-529 (Corixa Corporation; Seattle, Wash.) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. patent application Ser. Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties.
- AGPs aminoalkyl glucosaminide 4-phosphates
- Any vaccine provided herein may be prepared using well known methods that result in a combination of antigen, immunostimulant and a suitable carrier or excipient.
- the compositions described herein may be administered as part of a sustained release formulation (i.e., a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration).
- a sustained release formulation i.e., a formulation such as a capsule, sponge or gel (composed of polysaccharides, for example) that effects a slow release of compound following administration.
- Such formulations may generally be prepared using well known technology (see, e.g., Coombes et al., Vaccine 14:1429-1438, 1996) and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site.
- Sustained-release formulations may contain a polypeptide, polynucleotide or antibody dispersed in a carrier matrix and/or
- Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release.
- Such carriers include microparticles of poly(lactide-co-glycolide), as well as polyacrylate, latex, starch, cellulose and dextran.
- Other delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g, U.S. Pat. No.
- APCs antigen presenting cells
- APCs antigen presenting cells
- Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-Chlamydia effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype).
- APCs may generally be isolated from any of a variety of biological fluids and organs, and may be autologous, allogeneic, syngeneic or xenogeneic cells.
- Dendritic cells are highly potent APCs (Banchereau and Steinman, Nature 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic immunity (see Timmerman and Levy, Ann. Rev. Med. 50:507-529, 1999).
- dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro), their ability to take up, process and present antigens with high efficiency, and their ability to activate na ⁇ ve T cell responses.
- Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention.
- secreted vesicles antigen-loaded dendritic cells called exosomes
- exosomes antigen-loaded dendritic cells
- Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid.
- dendritic cells may be differentiated ex vivo by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNF ⁇ to cultures of monocytes harvested from peripheral blood.
- CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF ⁇ , CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.
- Dendritic cells are conveniently categorized as “immature” and “mature” cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fc ⁇ receptor and mannose receptor.
- the mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).
- cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).
- APCs may generally be transfected with a polynucleotide encoding a Chlamydial protein (or portion or other variant thereof) such that the Chlamydial polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a composition or vaccine comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo.
- In vivo and ex vivo transfection of dendritic cells may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., Immunology and cell Biology 75:456-460, 1997.
- Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the Chlamydial polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors).
- the polypeptide Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule).
- an immunological partner that provides T cell help e.g., a carrier molecule.
- a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.
- compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Between 1 and 3 doses may be administered for a 1-36 week period. Preferably, 3 doses are administered, at intervals of 3-4 months, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients.
- a suitable dose is an amount of polypeptide or DNA that, when administered as described above, is capable of raising an immune response in an immunized patient sufficient to protect the patient from Chlamydial infection for at least 1-2 years.
- the amount of polypeptide present in a dose ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 ⁇ g.
- Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.
- the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer.
- the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer.
- any of the above carriers or a solid carrier such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, glucose, sucrose, and magnesium carbonate, may be employed.
- Biodegradable microspheres e.g., polylactic galactide
- suitable biodegradable microspheres are disclosed, for example, in U.S. Pat. Nos. 4,897,268 and 5,075,109.
- an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit.
- a response can be monitored by establishing an improved clinical outcome in treated patients as compared to non-treated patients.
- Increases in preexisting immune responses to a Chlamydial protein generally correlate with an improved clinical outcome.
- Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.
- the present invention provides methods for using the polypeptides described above to diagnose Chlamydial infection.
- methods are provided for detecting Chlamydial infection in a biological sample, using one or more of the above polypeptides, either alone or in combination.
- polypeptide will be used when describing specific embodiments of the inventive diagnostic methods.
- the fusion proteins of the present invention may also be employed in such methods.
- a “biological sample” is any antibody-containing sample obtained from a patient.
- the sample is whole blood, sputum, serum, plasma, saliva, cerebrospinal fluid or urine. More preferably, the sample is a blood, serum or plasma sample obtained from a patient.
- the polypeptides are used in an assay, as described below, to determine the presence or absence of antibodies to the polypeptide(s) in the sample, relative to a predetermined cut-off value. The presence of such antibodies indicates previous sensitization to Chlamydia antigens which may be indicative of Chlamydia-infection.
- the polypeptides used are preferably complementary (i.e., one component polypeptide will tend to detect infection in samples where the infection would not be detected by another component polypeptide).
- Complementary polypeptides may generally be identified by using each polypeptide individually to evaluate serum samples obtained from a series of patients known to be infected with Chlamydia. After determining which samples test positive (as described below) with each polypeptide, combinations of two or more polypeptides may be formulated that are capable of detecting infection in most, or all, of the samples tested.
- the assay involves the use of polypeptide immobilized on a solid support to bind to and remove the antibody from the sample. The bound antibody may then be detected using a detection reagent that contains a reporter group. Suitable detection reagents include antibodies that bind to the antibody/polypeptide complex and free polypeptide labeled with a reporter group (e.g., in a semi-competitive assay).
- a competitive assay may be utilized, in which an antibody that binds to the polypeptide is labeled with a reporter group and allowed to bind to the immobilized antigen after incubation of the antigen with the sample.
- the extent to which components of the sample inhibit the binding of the labeled antibody to the polypeptide is indicative of the reactivity of the sample with the immobilized polypeptide.
- the solid support may be any solid material known to those of ordinary skill in the art to which the antigen may be attached.
- the solid support may be a test well in a microtiter plate, or a nitrocellulose or other suitable membrane.
- the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride.
- the support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Pat. No. 5,359,681.
- the polypeptides may be bound to the solid support using a variety of techniques known to those of ordinary skill in the art.
- the term “bound” refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the antigen and functional groups on the support or may be a linkage by way of a cross-linking agent). Binding by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the polypeptide, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and 1 day.
- contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of polypeptide ranging from about 10 ng to about 1 ⁇ g, and preferably about 100 ng, is sufficient to bind an adequate amount of antigen.
- a plastic microtiter plate such as polystyrene or polyvinylchloride
- Covalent attachment of polypeptide to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide.
- a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the polypeptide.
- the polypeptide may be bound to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the polypeptide (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).
- the assay is an enzyme linked immunosorbent assay (ELISA).
- ELISA enzyme linked immunosorbent assay
- This assay may be performed by first contacting a polypeptide antigen that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that antibodies to the polypeptide within the sample are allowed to bind to the immobilized polypeptide. Unbound sample is then removed from the immobilized polypeptide and a detection reagent capable of binding to the immobilized antibody-polypeptide complex is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific detection reagent.
- the polypeptide is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin (BSA) or Tween 20TM (Sigma Chemical Co., St. Louis, Mo.) may be employed.
- BSA bovine serum albumin
- Tween 20TM Sigma Chemical Co., St. Louis, Mo.
- the immobilized polypeptide is then incubated with the sample, and antibody is allowed to bind to the antigen.
- the sample may be diluted with a suitable dilutent, such as phosphate-buffered saline (PBS) prior to incubation.
- PBS phosphate-buffered saline
- an appropriate contact time i.e., incubation time
- incubation time is that period of time that is sufficient to detect the presence of antibody within an HGE-infected sample.
- the contact time is sufficient to achieve a level of binding that is at least 95% of that achieved at equilibrium between bound and unbound antibody.
- the time necessary to achieve equilibrium may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.
- Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM.
- Detection reagent may then be added to the solid support.
- An appropriate detection reagent is any compound that binds to the immobilized antibody-polypeptide complex and that can be detected by any of a variety of means known to those in the art.
- the detection reagent contains a binding agent (such as, for example, Protein A, Protein G, immunoglobulin, lectin or free antigen) conjugated to a reporter group.
- Preferred reporter groups include enzymes (such as horseradish peroxidase), substrates, cofactors, inhibitors, dyes, radionuclides, luminescent groups, fluorescent groups and biotin.
- enzymes such as horseradish peroxidase
- substrates such as horseradish peroxidase
- cofactors such as horseradish peroxidase
- inhibitors such as horseradish peroxidase
- dyes such as horseradish peroxidase
- radionuclides such as luminescent groups
- luminescent groups such as horseradish peroxidase
- biotin biotin.
- the conjugation of binding agent to reporter group may be achieved using standard methods known to those of ordinary skill in the art. Common binding agents may also be purchased conjugated to a variety of reporter groups from many commercial sources (e.g., Zymed Laboratories, San Francisco, Calif., and Pierce, Rockford, Ill.).
- the detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound antibody.
- An appropriate amount of time may generally be determined from the manufacturer's instructions or by assaying the level of binding that occurs over a period of time.
- Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group.
- the method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.
- the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value.
- the cut-off value is the average mean signal obtained when the immobilized antigen is incubated with samples from an uninfected patient.
- a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for Chlamydia-infection.
- the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., Clinical Epidemiology: A Basic Science for Clinical Medicine, Little Brown and Co., 1985, pp. 106-107. Briefly, in this embodiment, the cut-off value may be determined from a plot of pairs of true positive rates (i.e., sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result.
- the cut-off value on the plot that is the closest to the upper left-hand corner is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive.
- the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate.
- a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for Chlamydial infection.
- the assay is performed in a rapid flow-through or strip test format, wherein the antigen is immobilized on a membrane, such as nitrocellulose.
- a membrane such as nitrocellulose.
- a detection reagent e.g., protein A-colloidal gold
- a detection reagent then binds to the antibody-polypeptide complex as the solution containing the detection reagent flows through the membrane.
- the detection of bound detection reagent may then be performed as described above.
- the strip test format one end of the membrane to which polypeptide is bound is immersed in a solution containing the sample.
- the sample migrates along the membrane through a region containing detection reagent and to the area of immobilized polypeptide.
- Concentration of detection reagent at the polypeptide indicates the presence of anti-Chlamydia antibodies in the sample.
- concentration of detection reagent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result.
- the amount of polypeptide immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of antibodies that would be sufficient to generate a positive signal in an ELISA, as discussed above.
- the amount of polypeptide immobilized on the membrane ranges from about 25 ng to about 1 ⁇ g, and more preferably from about 50 ng to about 500 ng.
- Such tests can typically be performed with a very small amount (e.g., one drop) of patient serum or blood.
- the present invention further provides agents, such as antibodies and antigen-binding fragments thereof, that specifically bind to a Chlamydial protein.
- an antibody, or antigen-binding fragment thereof is said to “specifically bind” to a Chlamydial protein if it reacts at a detectable level (within, for example, an ELISA) with a Chlamydial protein, and does not react detectably with unrelated proteins under similar conditions.
- binding refers to a noncovalent association between two separate molecules such that a complex is formed. The ability to bind may be evaluated by, for example, determining a binding constant for the formation of the complex.
- the binding constant is the value obtained when the concentration of the complex is divided by the product of the component concentrations.
- two compounds are said to “bind,” in the context of the present invention, when the binding constant for complex formation exceeds about 10 3 L/mol.
- the binding constant may be determined using methods well known in the art.
- Binding agents may be further capable of differentiating between patients with and without a Chlamydial infection using the representative assays provided herein.
- antibodies or other binding agents that bind to a Chlamydial protein will generate a signal indicating the presence of a Chlamydial infection in at least about 20% of patients with the disease, and will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without infection.
- binding agent satisfies this requirement, biological samples (e.g., blood, sera, sputum urine and/or tissue biopsies) from patients with and without Chlamydial infection (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. It will be apparent that a statistically significant number of samples with and without the disease should be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.
- biological samples e.g., blood, sera, sputum urine and/or tissue biopsies
- Chlamydial infection as determined using standard clinical tests
- a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide.
- a binding agent is an antibody or an antigen-binding fragment thereof.
- Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988.
- antibodies can be produced by cell culture techniques, including the generation of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies.
- an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep or goats).
- the polypeptides of this invention may serve as the immunogen without modification.
- a superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin.
- the immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically.
- Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.
- Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed.
- the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells.
- a preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.
- Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies.
- various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse.
- Monoclonal antibodies may then be harvested from the ascites fluid or the blood.
- Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction.
- the polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.
- antigen-binding fragments of antibodies may be preferred.
- Such fragments include Fab fragments, which may be prepared using standard techniques. Briefly, immunoglobulins may be purified from rabbit serum by affinity chromatography on Protein A bead columns (Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988) and digested by papain to yield Fab and Fc fragments. The Fab and Fc fragments may be separated by affinity chromatography on protein A bead columns.
- Monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents.
- Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof.
- Preferred radionuclides include 90 y, 123 I, 25 T 131 I, 186 Re, 88 Re 211 At, and 212 Bi.
- Preferred drugs include methotrexate, and pyrimidine and purine analogs.
- Preferred differentiation inducers include phorbol esters and butyric acid.
- Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.
- a therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group).
- a direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other.
- a nucleophilic group such as an amino or sulfhydryl group
- on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.
- a linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities.
- a linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.
- a linker group which is cleavable during or upon internalization into a cell.
- a number of different cleavable linker groups have been described.
- the mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Pat. No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Pat. No.
- immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers which provide multiple sites for attachment can be used. Alternatively, a carrier can be used.
- a carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Pat. No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Pat. No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Pat. Nos. 4,429,008 and 4,873,088).
- proteins such as albumins (e.g., U.S. Pat. No. 4,507,234, to Kato et al.), peptides and polysaccharides such as aminodextran (e.g., U.S. Pat. No. 4,699,784, to Shih et al.
- Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds.
- U.S. Pat. No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis.
- a radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide.
- U.S. Pat. No. 4,673,562 to Davison et al. discloses representative chelating compounds and their synthesis.
- a variety of routes of administration for the antibodies and immunoconjugates may be used. Typically, administration will be intravenous, intramuscular, subcutaneous or in site-specific regions by appropriate methods. It will be evident that the precise dose of the antibody/immunoconjugate will vary depending upon the antibody used, the antigen density, and the rate of clearance of the antibody.
- Antibodies may be used in diagnostic tests to detect the presence of Chlamydia antigens using assays similar to those detailed above and other techniques well known to those of skill in the art, thereby providing a method for detecting Chlamydial infection in a patient.
- Diagnostic reagents of the present invention may also comprise DNA sequences encoding one or more of the above polypeptides, or one or more portions thereof.
- at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify Chlamydia-specific cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for a DNA molecule encoding a polypeptide of the present invention.
- the presence of the amplified cDNA is then detected using techniques well known in the art, such as gel electrophoresis.
- oligonucleotide probes specific for a DNA molecule encoding a polypeptide of the present invention may be used in a hybridization assay to detect the presence of an inventive polypeptide in a biological sample.
- oligonucleotide primer/probe specific for a DNA molecule means an oligonucleotide sequence that has at least about 80%, preferably at least about 90% and more preferably at least about 95%, identity to the DNA molecule in question. Oligonucleotide primers and/or probes which may be usefully employed in the inventive diagnostic methods preferably have at least about 10-40 nucleotides. In a preferred embodiment, the oligonucleotide primers comprise at least about 10 contiguous nucleotides of a DNA molecule encoding one of the polypeptides disclosed herein.
- oligonucleotide probes for use in the inventive diagnostic methods comprise at least about 15 contiguous oligonucleotides of a DNA molecule encoding one of the polypeptides disclosed herein.
- Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al. Ibid; Ehrlich, Ibid). Primers or probes may thus be used to detect Chlamydia-specific sequences in biological samples.
- DNA probes or primers comprising oligonucleotide sequences described above may be used alone or in combination with each other.
- Chlamydia antigens of the present invention were isolated by expression cloning of a genomic DNA library of Chlamydia trachomatis LGV II essentially as described by Sanderson et al. ( J. Exp. Med., 1995, 182:1751-1757) and were shown to induce PBMC proliferation and IFN- ⁇ in an immunoreactive T cell line.
- a Chlamydia-specific T cell line was generated by stimulating PBMCs from a normal donor with no history of chlamydial genital tract infection with elementary bodies of Chlamydia trachomatis LGV II.
- This T cell line referred to as TCL-8, was found to recognize both Chlamydia trachomatis and Chlamydia pneumonia infected monocyte-derived dendritic cells.
- a randomly sheared genomic library of Chlamydia trachomatis LGV II was constructed in Lambda ZAP (Stratagene, La Jolla, Calif.) and the amplified library plated out in 96 well microtiter plates at a density of 30 clones/well. Bacteria were induced to express recombinant protein in the presence of 2 mM IPTG for 3 h, then pelleted and resuspended in 200 ⁇ L of RPMI 10% FBS. 10 ⁇ l of the induced bacterial suspension was transferred to 96 well plates containing autologous monocyte-derived dendritic cells. After a 2 h incubation, dendritic cells were washed to remove free E. coli and Chlamydia-specific T cells were added. Positive E. coli pools were identified by determnining IFN- ⁇ production and proliferation of the T cells in response to the pools.
- the clone 10-C10-31 contains an open reading frame that corresponds to a previously published sequence for S13 ribosomal protein from Chlamydia trachomatis (Gu, L. et al. J. Bacteriology, 177:2594-2601, 1995).
- the predicted protein sequences for 4-D7-28 and 10-C10-31 are provided in SEQ ID NO: 6 and 12, respectively.
- Predicted protein sequences for 3-G3-10 are provided in SEQ ID NO: 7-11.
- a Chlamydia-specific T cell line (TCT-1) was derived from a patient with a chlamydial genital tract infection by stimulating patient PBMC with autologous monocyte-derived dendritic cells infected with elementary bodies of Chlamydia trachomatis LGV II.
- TCT-1 Chlamydia-specific T cell line
- lipoamide dehydrogenase (Genbank Accession No. AE001326), disclosed in SEQ ID NO: 22; a hypothetical protein CT429 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 23; and part of an open reading frame of ubiquinone methyltransferase CT428 (Genbank Accession No. AE001316), disclosed in SEQ ID NO: 24.
- a cDNA fragment containing nucleotides 1-695 of clone 4C9-18 with a cDNA sequence encoding a 6X-Histidine tag on the amino terminus was subcloned into the NdeI/EcoRI site of the pET17b vector (Novagen, Madison, Wis.), referred to as clone 4C9-18#2 BL21 pLysS (SEQ ID NO: 25, with the corresponding amino acid sequence provided in SEQ ID NO: 26) and transformed into E. coli. Selective induction of the transformed E.
- coli with 2 mM IPTG for three hours resulted in the expression of a 26 kDa protein from clone 4C9-18#2 BL21 pLysS, as evidenced by standard Coomassie-stained SDS-PAGE.
- E. coli expressing the 26 kDa protein were titered onto 1 ⁇ 10 4 monocyte-derived dendritic cells and incubated for two hours.
- TCT-1 2.5 ⁇ 10 4 T cells
- TCT-1 and TCL-8 Chlamydia-specific T-cell lines, as well as the TCP-21 T-cell line were utilized to screen the Chlamydia trachomatis LGVII genomic library.
- the TCP-21 T-cell line was derived from a patient having a humoral immune response to Chlamydia pnuemoniae.
- the TCT-1 cell line identified 37 positive pools, the TCT-3 cell line identified 41 positive pools and the TCP-21 cell line identified 2 positive pools. The following clones were derived from 10 of these positive pools.
- Clone 11-A3-93 (SEQ ID NO: 64), identified by the TCP-21 cell line, is a 1339 bp genomic fragment sharing homology to the HAD superfamily (CT103). The second insert in the same clone shares homology with the fab I gene (CT104) present on the complementary strand.
- Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of C. pnuemoniae.
- Clone 11-G10-46 (SEQ ID NO: 62), identified using the TCT-3 cell line, contains a 688 bp insert that shares homology to the hypothetical protein CT610.
- ORF partial open reading frames
- One ORF shares homology to the malate dehydrogenase gene (CT376), and the other ORF shares homology to the glycogen hydrolase gene (CT042).
- One partial ORF encodes the plasmid-encoded PGP6-D virulence protein while the second ORF is a complete ORF for the Li ribosomal gene (CT318).
- Clone 12-B3-95, (SEQ ID NO: 58), identified using the TCT-1 cell line has an insert size of 463 bp and is a part of the ORF for for the lipoamide dehydrogenase gene (CT557).
- Clones 15-G1-89 and 12-B3-95 are identical, (SEQ ID NO: 55 and 58, respectively), identified using the TCT-1 cell line, has an insert size of 463 bp and is part of the ORF for the lipoamide dehydrogenase gene (CT557).
- Clone 23-G7-68 (SEQ ID NO: 79), identified using the TCT-3 cell line, contains a 950 bp insert and contains a small part of the L11 ribosomal ORF, the entire ORF for L1 ribosomal protein and a part of the ORF for L10 ribosomal protein.
- this clone also identified the patient lines CT4, CT5, CT11, CT12, and CHH037.
- Clone 22-F8-91 (SEQ ID NO: 80), identified using the TCT-1 cell line, contains a 395 bp insert that contains a part of the pmpC ORF on the complementary strand of the clone.
- Clone 21-E8-95 (SEQ ID NO: 81), identified using the TCT-3 cell line, contains a 2,085 bp insert which contains part of CT613 ORF, the complete ORF for CT612, the complete ORF for CT611 and part of the ORF for CT610.
- Clone 19-F12-57 (SEQ ID NO: 82), identified using the TCT-3 cell line, contains a 405 bp insert which contains part of the CT 858 ORF and a small part of the recA ORF.
- Clone 19-F12-53 (SEQ ID NO: 83), identified using the TCT-3 cell line, contains a 379 bp insert that is part of the ORF for CT455 encoding glutamyl tRNA synthetase.
- Clone 19-A5-54 (SEQ ID NO: 84), identified using the TCT-3 cell line, contains a 715 bp insert that is part of the ORF3 (complementary strand of the clone) of the cryptic plasmid.
- Clone 17-E1-72 (SEQ ID NO: 85), identified using the TCT-1 cell line, contains a 476 bp insert that is part of the ORF for Opp — 2 and pmpD.
- the pmpD region of this clone is covered by the pmpD region of clone 15-H2-76.
- Clone 17-C1-77 (SEQ ID NO: 86), identified using the the patient cell lines CT3, CT1, CT4, and CT12, contains a 1551 bp insert that is part of the CT857 ORF, as well as part of the CT858 ORF.
- Clone 15-H2-76 (SEQ ID NO: 87), identified using the TCT-1 cell line, contains a 3,031 bp insert that contains a large part of the pmpD ORF, part of the CT089 ORF, as well as part of the ORF for SycE.
- Clone 15-A3-26, contains a 976 bp insert that contains part of the ORF for CT858.
- PmpC was subcloned into the JAL vector using the 5′ oligo GAT AGG CGC GCC GCA ATC ATG AAA TTT ATG TCA GCT ACT GCT G and the 3′ oligo CAG AAC GCG TTT AGA ATG TCA TAC GAG CAC CGC A, as provided in SEQ ID NO: 197 and 198, respectively.
- PCR amplification of the gene under conditions well known in the art and ligation into the 5′ ASCI/3′ MluI sites of the JAL vector was completed after inserting the short nucleotide sequence GCAATC (SEQ ID NO: 199) upstream of the ATG to create a Kozak-like sequence.
- the resulting expression vector contained the full-length pmpC gene comprising 5325 nucleotides (SEQ ID NO: 173) containing the hypothetical signal sequence, which encodes a 187 kD protein (SEQ ID NO: 179).
- the pmpD gene was subcloned into the JA4304 vaccine vector following PCR amplification of the gene using the following oligos: 5′ oligo-TGC AAT CAT GAG TTC GCA GAA AGA TAT AAA AAG C (SEQ ID NO: 200) and 3′ oligo-CAG AGC TAG CTT AAA AGA TCA ATC GCA ATC CAG TAT TC (SEQ ID NO: 201).
- the gene was ligated into the a 5′ blunted HIII/3′ MluI site of the JA4304 vaccine vector using standard techniques well known in the art.
- the CAATC (SEQ ID NO: 202) was inserted upstream of the ATG to create a Kozak-like sequence. This clone is unique in that the last threonine of the HindIII site is missing due to the blunting procedure, as is the last glycine of the Kozak-like sequence.
- the insert, a 4593 nucleotide fragment (SEQ ID NO: 172) is the full-length gene for pmpD containing the hypothetical signal sequence, which encodes a 161 kD protein (SEQ ID NO: 178).
- PmpE was subcloned into the JA4304 vector using the 5′ oligo-TGC AAT CAT GAA AAA AGC GTT TTT CTT TTT C (SEQ ID NO: 203), and the 3′ oligo-CAG AAC GCG TCT AGA ATC GCA GAG CAA TTT C (SEQ ID NO: 204).
- the gene was ligated into the 5′ blunted HIII/3′ MluI site of JA4304.
- a short nucleotide sequence, TGCAATC (SEQ ID NO: 293), was added upstream of the initiation codon for creating a Kozak-like sequence and reconstituting the HindIII site.
- the insert is the full-length pmpE gene (SEQ ID NO: 171) containing the hypothetical signal sequence.
- the pmpE gene encodes a 105 kD protein (SEQ ID NO: 177).
- the pmpG gene was PCR amplified using the 5′ oligo-GTG CAA TCA TGA TTC CTC AAG GAA TTT ACG (SEQ ID NO: 205), and the 3′ oligo-CAG AAC GCG TTT AGA ACC GGA CTT TAC TTC C (SEQ ID NO: 206) and subcloned into the JA4304 vector. Similar cloning strategies were followed for the pmpI and pmpK genes.
- primer pairs were designed to PCR amplify the full-length or overlapping fragments of the pmp genes, which were then subcloned for protein expression in the pET17b vector (Novagen, Madison, Wis.) and transfected into E. coli BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen.
- pET17b vector Novagen, Madison, Wis.
- E. coli BL21 pLysS E. coli BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen.
- Several of the genes encoding the recombinant proteins, as described below, lack the native signal sequence to facilitate expression of the protein.
- Full-length protein expression of pmpC was accomplished through expression of two overlapping fragments, representing the amino and carboxy termini.
- Subcloning of the pmpC-amino terminal portion, which lacks the signal sequence, (SEQ ID NO: 187, with the corresponding amino acid sequence provided in SEQ ID NO: 195) used the 5′ oligo-CAG ACA TAT GCA TCA CCA TCA CCA TCA CGA GGC GAG CTC GAT CCA AGA TC (SEQ ID NO: 207), and the 3′ oligo-CAG AGG TAC CTC AGA TAG CAC TCT CTC CTA TTA AAG TAG G (SEQ ID NO: 208) into the 5′ NdeI/3′ KPN cloning site of the vector.
- pmpc-carboxy terminal fragment (SEQ ID NO: 186, with the corresponding amino acid sequence provided in SEQ ID NO: 194) was subcloned into the 5′ NheI/3′ KPN cloning site of the expression vector using the following primers: 5′ oligo-CAG AGC TAG CAT GCA TCA CCA TCA CCA TCA CGT TAA GAT TGA GAA CTT CTC TGG C (SEQ ID NO: 209), and 3′ oligo-CAG AGG TAC CTT AGA ATG TCA TAC GAG CAC CGC AG (SEQ ID NO: 210). PmpD was also expressed as two overlapping proteins.
- the pmpD-amino terminal portion which lacks the signal sequence, (SEQ ID NO: 185, with the corresponding amino acid sequence provided in SEQ ID NO: 193) contains the initiating codon of the pET17b and is expressed as a 80 kD protein.
- SEQ ID NO: 185 contains the initiating codon of the pET17b and is expressed as a 80 kD protein.
- a six-histidine tag follows the initiation codon and is fused at the 28 th amino acid (nucleotide 84) of the gene.
- the following primers were used, 5′ oligo, CAG ACA TAT GCA TCA CCA TCA CCA TCA CGG GTT AGC (SEQ ID NO: 211), and the 3′ oligo-CAG AGG TAC CTC AGC TCC TCC AGC ACA CTC TCT TC (SEQ ID NO: 212), to splice into the 5′ NdeI/3′ KPN cloning site of the vector.
- the pmpD-carboxy terminus portion (SEQ ID NO: 184) was expressed as a 92 kD protein (SEQ ID NO: 192).
- methionine, alanine and serine were included, which represent the initiation codon and the first two amino acids from the pET17b vector.
- a six-histidine tag downstream of the methionine, alanine and serine is fused at the 691 st amino acid (nucleotide 2073) of the gene.
- the 5′ oligo-CAG AGC TAG CCA TCA CCA TCA CCA TCA CGG TGC TAT TTC TTG CTT ACG TGG (SEQ ID NO: 213) and the 3′ oligo-CAG AGG TAC TTn AAA AGA TCA ATC GCA ATC CAG TAT TCG (SEQ ID NO: 214) were used to subclone the insert into the 5′ NheI/3′ KPN cloning site of the expression vector.
- PmpE was expressed as a 106kD protein (SEQ ID NO: 183 with the corresponding amino acid sequence provided in SEQ ID NO: 191).
- the pmpE insert also lacks the native signal sequence.
- PCR amplification of the gene under conditions well known in the art was performed using the following oligo primers: 5′ oligo-CAG AGG ATC CAC ATC ACC ATC ACC ATC ACG GAC TAG CTA GAG AGG TTC (SEQ ID NO: 215), and the 3′ oligo-CAG AGA ATT CCT AGA ATC GCA GAG CAA TTT C (SEQ ID NO: 216), and the amplified insert was ligated into a 5′ BamHI/3′ EcoRI site of JA4304.
- the expressed protein contains the initiation codon and the downstream 21 amino acids from the pET17b expression vector, i.e., MASMTGGQQMGRDSSLVPSSDP (SEQ ID NO: 218).
- a six-histidine tag is included upstream of the sequence described above and is fused at the 28 th amino acid (nucleotide 84) of the gene, which eliminates the hypothetical signal peptide.
- the sequences provided in SEQ ID NO: 183 with the corresponding amino acid sequence provided in SEQ ID NO: 191 do not include these additional sequences.
- the pmpG gene (SEQ ID NO: 182, with the corresponding amino acid sequence provided in SEQ ID No; 190) was PCR amplified under conditions well known in the art using the following oligo primers: 5′ oligo-CAG AGG TAC CGC ATC ACC ATC ACC ATC ACA TGA TTC CTC AAG GAA TTT ACG (SEQ ID NO: 219), and the 3′ oligo-CAG AGC GGC CGC TTA GAA CCG GAC TTT ACT TCC (SEQ ID NO: 220), and ligated into the 5′ KPN/3′ NotI cloning site of the expression vector.
- the expressed protein contains an additional amino acid sequence at the amino end, namely, MASMTGGQQNGRDSSLVPHHHHHH (SEQ ID NO: 221), which comprises the initiation codon and additional sequence from the pET17b expression vector.
- the pmpI gene (SEQ ID NO: 181, with the corresponding amino acid sequence provided in SEQ ID No; 189) was PCR amplified under conditions well known in the art using the following oligo primers: 5′ oligo-CAG AGC TAG CCA TCA CCA TCA TCA TCA CCT CTT TGG CCA GGA TCC C (SEQ ID NO: 222), and the 3′ oligo-CAG AAC TAG TCT AGA ACC TGT AAG TGG TCC (SEQ ID NO: 223), and ligted into the expression vector at the 5′ NheI/3′ Spel cloning site.
- the 95 kD expressed protein contains the initiation codon plus an additional alanine and serine from the pET17b vector at the amino end of the protein.
- a six-histidine tag is fused at the 21 st amino acid of the gene, which eliminates the hypothetical signal peptide.
- Clone 14H1-4 (SEQ ID NO: 56), identified using the TCT-3 cell line, contains a complete ORF for the TSA gene, thiol specific antioxidant—CT603 (the CT603 ORF is a homolog of CPn0778 from C. pnuemoniae ).
- CT603 the CT603 ORF is a homolog of CPn0778 from C. pnuemoniae .
- the TSA open reading frame in clone 14-H1-4 was amplified such that the expressed protein possess an additional methionine and a 6x histidine tag (amino terminal end). This amplified insert was sub-cloned into the Nde/EcoRI sites of the pET17b vector.
- TCT-1 and TCT-3 T-cell lines were identified by the TCT-1 and TCT-3 T-cell lines, as described above.
- the clones identified by the TCT-1 line are: 16-D4-22, 17-C5-19, 18-C5-2, 20-G3-45 and 21-C7-66;
- clones identified by the TCT-3 cell line are: 17-C10-31, 17-E2-9, 22-A1-49 and 22-B3-53.
- Clone 21-G12-60 was recognized by both the TCT-1 and TCT-3 T cell lines.
- clone 20-G3-45 which contained sequence specific for pmpB, was identified against the patient lines CT1 and CT4.
- Clone 16-D4-22 (SEQ ID NO: 119), identified using the TCT-1 cell line contains a 953 bp insert that contains two genes, parts of open reading frame 3 (ORF3) and ORF4 of the C. trachomatis plasmid for growth within mammalian cells.
- Clone 17-C5-19 (SEQ ID NO: 118), contains a 951 bp insert that contains part of the ORF for DT431, encoding for clpP_l protease and part of the ORF for CT430 (diaminopimelate epimerase).
- Clone 18-C5-2 (SEQ ID NO: 117) is part of the ORF for S1 ribosomal protein with a 446 bp insert that was identified using the TCT-1 cell line.
- Clone 20-G3-45 (SEQ ID NO: 116), identified by the TCT-1 cell line, contains a 437 bp insert that is part of the pmpB gene (CT413).
- Clone 21-C7-8 (SEQ ID NO: 115), identified by the TCT-1 line, contains a 995bp insert that encodes part of the dnaK like protein.
- Clone 22-A1-49 (SEQ ID NO: 112), identified using the TCT-3 line, also contains two genes in a 698 bp insert. Part of the ORF for CT660 (DNA gyrase ⁇ gyrA — 2 ⁇ ) is present on the top strand where as the complete ORF for a hypothetical protein CT659 is present on the complementary strand.
- Clone 22-B3-53 (SEQ ID NO: 111), identified by the TCT-1 line, has a 267 bp insert that encodes part of the ORF for GroEL (CT110).
- Clone 21-G12-60 (SEQ ID NO: 110), identified by both the TCT-1 and TCT-3 cell lines contains a 1461 bp insert that contains partial ORFs for hypothetical proteins CT875, CT229 and CT228.
- Chlamydia antigens were obtained by screening a genomic expression library of Chlamydia trachomatis (LGV II serovar) in Lambda Screen-1 vector (Novagen, Madison, Wis.) with sera pooled from several Chlamydia-infected individuals using techniques well known in the art.
- CTL2#1 SEQ ID NO: 71
- CTL2#2 SEQ ID NO: 70
- CTL2#3-5′ SEQ ID NO: 72
- CTL2#3-3′ SEQ ID NO: 73
- CTL2#4 SEQ ID NO: 53
- CTL2#5 SEQ ID NO: 69
- CTL2#6 SEQ ID NO: 68
- CTL2#7 SEQ ID NO: 67
- CTL2#8b SEQ ID NO: 54
- CTL2#9 SEQ ID NO: 66
- CTL2#10-5′ SEQ ID NO: 74, a first determined genomic sequence representing the 5′ end
- CTL2#10-3′ SEQ ID NO: 75, a second determined genomic sequence representing the 3′ end
- CTL2#11-5′ SEQ ID NO: 74
- Chlamydia trachomatis antigens were identified by serological expression cloning. These studies used sera pooled from several Chlamydia-infected individuals, as described above, but, IgA, and IgM antibodies were used in addition to IgG as a secondary antibody. Clones screened by this method enhance detection of antigens recognized by an early immune response to a Chlamydial infection, that is a mucosal humoral immune response.
- CTL2gam-1 (SEQ ID NO: 290), CTL2gam-2 (SEQ ID NO: 289), CTL2gam-5 (SEQ ID NO: 288), CTL2gam-6-3′ (SEQ ID NO: 287, a second determined genomic sequence representing the 3′ end), CTL2gam-6-5′ (SEQ ID NO: 286, a first determined genomic sequence representing the 5′ end), CTL2gam-8 (SEQ ID NO: 285), CTL2gam-10 (SEQ ID NO: 284), CTL2gam-13 (SEQ ID NO: 283), CTL2gam-15-3′ (SEQ ID NO: 282, a second determined genomic sequence representing the 3′ end), CTL2gam-15-5′ (SEQ ID NO: 281, a first determined genomic sequence representing the 5′ end), CTL2gam-17 (SEQ ID NO: 280), CTL2gam-18 (SEQ ID NO: 279), CTL2gam-21 (SEQ ID NO: 290), CTL2gam-2 (SEQ ID NO: 289), CTL2gam-5
- Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatograph (Webb et al., J. Immunology 157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC preparations.
- PBMCs from C. trachomatis patients as well as from normal donors whose T-cells are known to proliferate in response to Chlamydia antigens are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 ⁇ g/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 ⁇ g/mL.
- IFN- ⁇ is measured using an enzyme-linked immunosorbent assay (ELISA).
- ELISA plates are coated with a mouse monoclonal antibody directed to human IFN- ⁇ (PharMingen, San Diego, Calif.) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN- ⁇ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well.
- ELISA enzyme-linked immunosorbent assay
- the plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, Mo.) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.
- FIG. 8 illustrates that the first peptide, rS13 1-20 (SEQ ID NO: 106), is 100% identical with the corresponding C. pneumoniae sequence, explaining the cross-reactivity of the T-cell line to recombinant C. trachomatis - and C. pneumoniae -rS13.
- the response to the second peptide rS13 56-75 (SEQ ID NO: 108) is C. trachomatis -specific, indicating that the rS13 response in this healthy asymptomatic donor was elicited by exposure to C. trachomatis and not to C. pneumoniae, or any other microbial infection.
- Clone 11-C12-91 (SEQ ID NO: 63), identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of C. pneumoniae, referred to as OMCB.
- OMCB 60 kDa cysteine rich outer membrane protein of C. pneumoniae
- epitope mapping was performed using a series of overlapping peptides and the immunoassay previously described. Briefly, proliferative responses were determined by stimulating 2.5 ⁇ 10 4 TCP-21 T-cells in the presence of 1 ⁇ 10 4 monocyte-derived dendritic cells with either non-infectious elementary bodies derived from C. trachomatis and C.
- the TCP-21 T-cells responded to epitopes CT-OMCB #167-186, CT-OMCB #171-190, CT-OMCB #171-186, and to a lesser extent, CT-OMCB #175-186 (SEQ ID NO: 249-252, respectively).
- the TCP-21 T-cell line also gave a proliferative response to the homologous C. pneumoniae peptide CP-OMCB #171-186 (SEQ ID NO: 253), which was equal to or greater than the response to the C. trachomatis peptides.
- TCT-3 TCT-3
- the immunoassays were performed as described above, except that only peptides from C. trachomatis were tested.
- the T-cells gave a proliferative response to two peptides, CT-OMCB #152-171 and CT-OMCB #157-176 (SEQ ID NO: 246 and 247, respectively), thereby defining an additional immunogenic epitope in the cysteine rich outer membrane protein of C. trachomatis.
- Clone 14H1-4 (SEQ ID NO: 56, with the corresponding full-length amino acid sequence provided in SEQ ID NO: 92), was identified using the TCT-3 cell line in the CD4 T-cell expression cloning system previously described, and was shown to contain a complete ORF for the, thiol specific antioxidant gene (CT603), referred to as TSA. Epitope mapping immunoassays were performed, as described above, to further define the epitope.
- the TCT-3 T-cells line exhibited a strong proliferative response to the overlapping peptides CT-TSA #96-115, CT-TSA #101-120 and CT-TSA #106-125 (SEQ ID NO: 254-256, respectively) demonstrating an immunoreactive epitope in the thiol specific antioxidant gene of C. trachomatis serovar LGVII.
- Polypeptides may be synthesized on a Millipore 9050 peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate) activation.
- HPTU O-Benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate
- a Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugating or labeling of the peptide.
- Cleavage of the peptides from the solid support may be carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3).
- the peptides may be precipitated in cold methyl-t-butyl-ether.
- the peptide pellets may then be dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC.
- TFA trifluoroacetic acid
- a gradient of 0-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides.
- the peptides may be characterized using electrospray mass spectrometry and by amino acid analysis.
- a genomic library of Chlamydia trachomatis LGV II was constructed by limited digests using BamHI, BglII, BstYi and MboI restriction enzymes. The restriction digest fragments were subsequently ligated into the BamHI site of the retroviral vectors pBIB-KS1,2,3. This vector set was modified to contain a Kosak translation initiation site and stop codons in order to allow expression of proteins from short DNA genomic fragments, as shown in FIG. 2.
- DNA pools of 80 clones were prepared and transfected into the retroviral packaging line Phoenix-Ampho, as described in Pear, W. S., Scott, M. L. and Nolan, G.
- a Chlamydia-specific, murine H2 d restricted CD8+ T-cell line was expanded in culture by repeated rounds of stimulation with irradiated C. trachomatis -infected J774 cells and irradiated syngeneic spleen cells, as described by Stambach, M., in J. Immunol., 153:5183, 1994.
- This Chlamydia-specific T-cell line was used to screen the above Chlamydia genomic library expressed by the retrovirally-transduced P815 cells. Positive DNA pools were identified by detection of IFN- ⁇ production using Elispot analysis (SEE Lalvani et al., J. Experimental Medicine 186:859-865, 1997).
- Two positive pools referred to as 2C7 and 2E10, were identified by IFN- ⁇ Elispot assays.
- Stable transductants of P815 cells from pool 2C7 were cloned by limiting dilution and individual clones were selected based upon their capacity to elicit IFN- ⁇ production from the Chlamydia-specific CTL line. From this screening process, four positive clones were selected, referred to as 2C7-8, 2C7-9, 2C7-19 and 2C7-21.
- the positive pool 2E10 was further screened, resulting in an additional positive clone, which contains three inserts.
- the three inserts are fragments of the CT016, tRNA syntase and clpX genes (SEQ ID NO: 268-270, respectively).
- Transgenic DNA from these four positive 2C7 clones were PCR amplified using pBIB-KS specific primers to selectively amplify the Chlamydia DNA insert. Amplified inserts were gel purified and sequenced.
- One immunoreactive clone, 2C7-8 (SEQ ID NO: 15, with the predicted amino acid sequence provided in SEQ ID NO: 32), is a 160 bp fragment with homology to nucleotides 597304-597145 of Chlamydia trachomatis, serovar D (NCBI, BLASTN search; SEQ ID NO: 33, with the predicted amino acid sequence provided in SEQ ID NO: 34).
- sequence of clone 2C7-8 maps within two putative open reading frames from the region of high homology described immediately above, and in particular, one of these putative open reading frames, consisting of a 298 amino acid fragment (SEQ ID NO: 16, with the predicted amino acid sequence provided in SEQ ID NO: 17), was demonstrated to exhibit immunological activity.
- CT529 and/or the Cap1 gene Full-length cloning of the 298 amino acid fragment (referred to as CT529 and/or the Cap1 gene) from serovar L2 was obtained by PCR amplification using 5′-ttttgaagcaggtaggtgaatatg (forward) (SEQ ID NO: 159) and 5′-ttaagaaattaaaaatccctta (reverse) (SEQ ID NO: 160) primers, using purified C. trachomatis L2 genomic DNA as template.
- This PCR product was gel-purified, cloned into pCRBlunt (Invitrogen, Carlsbad, CA) for sequencing, and then subcloned into the EcoRI site of pBIB-KMS, a derivative of pBIB-KS for expression.
- the Chlamydia pnuemoniae homlogue of CT529 is provided in SEQ ID NO: 291, with the corresponding amino acid sequence provided in SEQ ID NO: 292.
- PCR reactions were performed with Advantage Genomic PCR Kit (Clontech, Palo Alto, Calif.) using primers specific for serovar L2 DNA (external to the ORF).
- Primers sequences were 5′-ggtataatatctctctaaattttg (forward-SEQ ID NO: 161) and 5′-agataaaaaaggctgtttc′ (reverse-SEQ ID NO: 162) except for MoPn which required 5′-ttttgaagcaggtaggtgaatatg (forward-SEQ ID NO: 163) and 5′-tttacaataagaaaagctaagcactttgt (reverse-SEQ ID NO: 164).
- PCR amplified DNA was purified with QIAquick PCR purification kit (Qiagen, Valencia, Calif.) and cloned in pCR2.1 (Invitrogen, Carlsbad, Calif.) for sequencing.
- PCRBlunt cloned DNA coding for CT529 serovar L2 and pCR2.1 cloned DNA coding for CT529 serovar Ba, E (BOUR), E (MTW447), F (NI1), G, Ia, K, LI, L3 and MoPn were sequenced using T7 promoter primer and universal M13 forward and M13 reverse primers.
- the peptides represented in SEQ ID NO: 138-156 were synthesized, representing the translation of the L2 homologue of the serovar D open reading frame for CT529 (Cap 1 gene) and 216 amino acid open reading frame.
- peptides CtC7.8-12 SEQ ID NO: 18, also referred to as Cap1#132-147, SEQ ID NO: 139
- CtC7.8-13 SEQ ID NO: 19, also referred to as Cap1#138-155, SEQ ID NO: 140
- the overlap between these two peptides contained a predicted H2 d (K d and L d ) binding peptide.
- a 10 amino acid peptide was synthesized to correspond to this overlapping sequence (SEQ ID NO: 31) and was found to generate a strong immune response from the anti-Chlamydia CTL line by elispot assay.
- a search of the most recent Genbank database revealed no proteins have previously been described for this gene.
- the putative open reading frame encoding clone 2C7-8 defines a gene which encompasses an antigen from Chlamydia capable of stimulating antigen-specific CD8+ T-cells in a MHC-I restricted manner, demonstrating this antigen could be used to develop a vaccine against Chlamydia.
- truncated peptides (SEQ ID NO: 138-156) were made and tested for recognition by the T-cells in an IFN-g ELISPOT assay. Truncations of either Ser139 (Cap1#140-147, SEQ ID NO: 146) or Leu147 (Cap1#138-146, SEQ ID NO: 147) abrogate T-cell recognition. These results indicate that the 9-mer peptide Cap1#139-147 (SFIGGITYL, SEQ ID NO: 145) is the minimal epitope recognized by the Chlamydia-specific T-cells.
- Cap1#139-147-specific T-cell clone recognizes C. trachomatis infected cells.
- Balb-3T3 (H-2 d ) cells were infected with C. trachomatis serovar L2 and tested to determine whether these cells are recognized by a CD8+ T-cell clone specific for Cap1#139-147 epitope (SEQ ID NO: 145).
- the T-cell clone specific for Cap1#139-147 epitope was obtained by limiting dilution of the line 69 T-cells.
- the T-cell clone specifically recognized the Chlamydia infected cells.
- target cells were C. trachomatis infected (positive control) or uninfected Balb/3T3 cells, showing 45%, 36% and 30% specific lysis at 30:1, 10:1 and 3:1 effector to target ratios, respectively; or Cap1#139-147 epitope (SEQ ID NO: 145) coated, or untreated P815 cells, showing 83%, 75% and 58% specific lysis at 30:1, 10:1 and 3:1 effector to target ratios, respectively (negative controls having less than 5% lysis in all cases).
- This data suggests that the epitope is presented during infection.
- Cap1#139-147 epitope-specific T-cells are primed during murine infection with C. trachomatis.
- C. trachomatis primes a Cap1#139-147 epitope-specific T-cell response
- mice were infected i.p. with 108 IFU of C. trachomatis serovar L2. Two weeks after infection, the mice were sacrificed and spleen cells were stimulated on irradiated syngeneic spleen cells pulsed with Cap1#139-147 epitope peptide.
- Cap1#139-147 epitope-specific T-cells After 5 days of stimulation, the cultures were used in a standard 51 Cr release assay to determine if there were Cap1#139-147 epitope-specific T-cells present in the culture. Specifically, spleen cells from a C. trachomatis serovar L2 immunized mouse or a control mouse injected with PBS after a 5 days culture with Cap1#139-147 peptide-coated syngeneic spleen cells and CD8+ T-cells able to specifically recognize Cap1#139-147 epitope gave 73%, 60% and 32% specific lysis at a30:1, 10:1 and 3:1 effector to target ratios, respectively.
- the control mice had a percent lysis of approximately 10% at a 30:1 effector to target ratio, and steadily declining with lowering E:T ratios.
- Target cells were Cap1#139-147 peptide-coated, or untreated P815 cells. These data suggest that Cap1#139-147 peptide-specific T-cells are primed during murine infection with C. trachomatis.
- Cap-1 Ct529 localizes to the inclusion membrane of C. trachomatis -infected cells and is not associated with elementary bodies or reticulate bodies.
- Cap-1 was identified as a product from Chlamydia that stimulates CD8+CTL. These CTL are protective in a murine model of infection, thus making Cap-1 a good vaccine candidate.
- CTL are MHC-I restricted, the Cap-1 gene must have access to the cytosol of infected cells, which may be a unique characteristic of specific Chlamydial gene products. Therefore, determination of the cellular localization of the gene products would be useful in characterizing Cap-1 as a vaccine candidate.
- Rabbit-anti-Cap-1 polyclonal antibodies were obtained by hyper-immunization of rabbits with a recombinant polypeptide, rCt529cl-125 (SEQ ID NO: 305) encompassing the N-terminal portion of Cap-1.
- Recombinant rCt529el-125 protein was obtained from E. coli transformed with a pET expression plasmid (as described above) encoding the nucleotides 1-375 encoding the N-terminal 1-125 amino acids of Cap-1.
- Recombinant protein was purified by Ni-NTA using techniques well known in the art.
- polyclonal antisera directed against elementary bodies were made by immunization of rabbits with purified C. trachomatis elementary bodies (Biodesign, Sacco, Me.). Pre-immune sera derived from rabbits prior to immunization with the Cap-1 polypeptide was used as a negative control.
- Cap-1 localizes to the inclusion membrane of C. trachomatis -infected cells.
- the anti-elementary body antibody clearly labeled the bacterial bodies, not only within the inclusions, but those released by the fixation process.
- Specificity of the anti-Cap-1 antibody is demonstrated by the fact that it does not stain C. psittaci -infected cells.
- Specificity of the Cap-1 labeling is also shown by the absence of reactivity in pre-immune sera.
- Cap-1 gene as a potential CTL antigen in a vaccine against Chlamydia infection is further illustrated by two additional series of studies.
- CTL specific for the MHC-I epitope of Cap-1 CT529 #138-147 peptide of C. trachomatis (SEQ ID NO: 144) have been shown to be primed to a high frequency during natural infection.
- Balb/C mice were inoculated with 10 6 I.F.U. of C. trachomatis, serova L2. After 2 weeks, spleens were harvested and quantified by Elispot analysis for the number of IFN- ⁇ secreting cells in response to Cap-1#138-147 peptide-pulsed antigen presenting cells.
- Cap-1 is almost immediately accessible to the cytosol of the host cell upon infection. This is shown in a time-course of Cap-1 CT529 #138-147 peptide presentation. Briefly, 3T3 cells were infected with C. trachomatis serovar L2 for various lengths of time, and then tested for recognition by Cap-1 CT529 #138-147 peptide-specific CTL. The results show that C. trachomatis -infected 3T3 cells are targeted for recognition by the antigen-specific CTL after only 2 hours of infection. These results suggest that Cap-1 is an early protein synthesized in the development of C. trachomatis elementary bodies to reticulate bodies. A CD8+ CTL immune response directed against a gene product expressed early in infection may be particularly efficacious in a vaccine against Chlamydia infection.
- SWIB is also referred to as clone 1-B1-66 (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5)
- S13 ribosomal protein is also referred to as clone 10-C10-31 (SEQ ID NO: 4, with the corresponding amino acid sequence provided in SEQ ID NO: 12).
- FIG. 4 illustrates the SWIB-immunized group gave a humoral response that was predominantly IgG1.
- SWIB protein also referred to as clone 1-B1-66, SEQ ID NO: 5
- Antibody titers directed against the SWIB protein were determined by standard ELISA-based techniques well known in the art, demonstrating the SWIB protein formulated with Montanide adjuvant induced a strong humoral immune response.
- T-cell proliferative responses were determined by a XTT-based assay (Scudiero, et al, Cancer Research, 1988, 48:4827). As shown in FIG.
- splenocytes from mice immunized with the SWIB polypeptide plus Montanide elicited an antigen specific proliferative response.
- capacity of splenocytes from immunized animals to secrete IFN- ⁇ in response to soluble recombinant SWIB polypeptide was determined using the cytokine induction assay previously described.
- C3H mice were immunized at three separate time points at the base of the tail with 10 ⁇ g of purified SWIB or S13 protein ( C. trachomatis, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) formulated with the SBAS2 adjuvant (SmithKline Beecham, London, England).
- Antigen-specific antibody titers were measured by ELISA, showing both polypeptides induced a strong IgG response, ranging in titers from 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 5 .
- the IgGl and IgG2a components of this response were present in fairly equal amounts.
- Antigen-specific T-cell proliferative responses determined by standard 3 H-incorporation assays on spleen cells isolated from immunized mice, were quite strong for SWIB (50,000 cpm above the negative control) and even stronger for s13 (100,000 cpm above the negative control).
- the IFN ⁇ production was assayed by standard ELISA techniques from supernatant from the proliferating culture. In vitro restimulation of the culture with S13 protein induced high levels of IFN ⁇ production, approximately 25 ng/ml versus 2 ng/ml for the negative control. Restimulation with the SWIB protein also induced IFN ⁇ , although to a lesser extent.
- C3H mice were immunized at three separate time points with 10 ⁇ g of purified SWIB or S13 protein ( C. trachomatis, SWIB protein, clone 1-B1-66, SEQ ID NO: 5, and S13 protein, clone 10-C10-31, SEQ ID NO: 4) mixed with 10 ⁇ g of Cholera Toxin. Mucosal immunization was through intranasal inoculation. Antigen-specific antibody responses were determined by standard ELISA techniques.
- Antigen-specific IgG antibodies were present in the blood of SWIB-immunized mice, with titers ranging from 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 4 , but non-detectable in the S13-immunized animals.
- CT529 serovar LGVII CTL epitope defined by the CT529 10mer consensus peptide (CSFIGGITYL—SEQ ID NO: 31), which was identified as an H2-Kd restricted CTL epitope.
- BALB/c mice (3 mice per group) were immunized three times with 25 ⁇ g of peptide combined with various adjuvants.
- the peptide was administered systemically at the base of the tail in either SKB Adjuvant System SBAS-2′′, SBAS-7 (SmithKline Beecham, London, England) or Montanide.
- the peptide was also administered intranasally mixed with 10 ug of Cholera Toxin (CT). Naive mice were used as a control.
- CT Cholera Toxin
- spleen cells were restimulated with LPS-blasts pulsed with 10 ug/ml CT529 10mer consensus peptide at three different effector to LPS-blasts ratios: 6, 1.5 and 0.4 at 1 ⁇ 10 6 cell/ml.
- effector cells were tested for their ability to lyse peptide pulsed P815 cells using a standard chromium release assay.
- a non-relevant peptide from chicken egg ovalbumin was used as a negative control.
- Chlamydia pneumonia genes homologous to Chlamydia trachomatis LGV II clones 1B1-66, also referred to as SWIB (SEQ ID NO: 1) and clone 10C10-31, also referred to as S13 ribosomal Protein (SEQ ID NO: 4) HeLa 229 cells were infected with C. pneumonia strain TWAR (CDC/CWL-029).
- the C. pneumonia -infected HeLa cells were harvested, washed and resuspended in 200 ⁇ l water and heated in a boiling water bath for 20 minutes. Ten microliters of the disrupted cell suspension was used as the PCR template.
- C. pneumonia specific primers were designed for clones 1B1-66 and 10C10-31 such that the 5′ end had a 6X-Histidine tag and a Nde I site inserted, and the 3′ end had a stop codon and a BamHI site included (FIG. 6).
- the PCR products were amplified and sequenced by standard techniques well known in the art.
- the C. pneumonia -specific PCR products were cloned into expression vector pET17B (Novagen, Madison, Wis.) and transfected into E. coli BL21 pLysS for expression and subsequent purification utilizing the histidine-nickel chromatographic methodology provided by Novagen. Two proteins from C.
- CpSWIB 10-11 kDa protein referred to as CpSWIB (SEQ ID NO: 27, and SEQ ID NO: 78 having a 6 ⁇ His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 28, respectively)
- CpS13 15 kDa protein referred to as CpS13 (SEQ ID NO: 29, and SEQ ID NO: 77, having a 6 ⁇ His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 30 and 91, respectively.
- Proteins are induced by IPTG and purified by Ni-NTA agarose affinity chromatography (Webb et al., J. Immunology 157:5034-5041, 1996). The purified polypeptides are then screened for the ability to induce T-cell proliferation in PBMC preparations.
- PBMCs from C. pneumoniae patients as well as from normal donors whose T-cells are known to proliferate in response to Chlamydia antigens are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 pg/ml gentamicin. Purified polypeptides are added in duplicate at concentrations of 0.5 to 10 ⁇ g/mL.
- IFN- ⁇ was measured using an enzyme-linked immunosorbent assay (ELISA).
- ELISA plates are coated with a mouse monoclonal antibody directed to human IFN- ⁇ (PharMingen, San Diego, Calif.) in PBS for four hours at room temperature. Wells are then blocked with PBS containing 5% (W/V) non-fat dried milk for 1 hour at room temperature. The plates are washed six times in PBS/0.2% TWEEN-20 and samples diluted 1:2 in culture medium in the ELISA plates are incubated overnight at room temperature. The plates are again washed and a polyclonal rabbit anti-human IFN- ⁇ serum diluted 1:3000 in PBS/10% normal goat serum is added to each well.
- ELISA enzyme-linked immunosorbent assay
- the plates are then incubated for two hours at room temperature, washed and horseradish peroxidase-coupled anti-rabbit IgG (Sigma Chemical So., St. Louis, Mo.) is added at a 1:2000 dilution in PBS/5% non-fat dried milk. After a further two hour incubation at room temperature, the plates are washed and TMB substrate added. The reaction is stopped after 20 min with 1 N sulfuric acid. Optical density is determined at 450 nm using 570 nm as a reference wavelength. Fractions that result in both replicates giving an OD two fold greater than the mean OD from cells cultured in medium alone, plus 3 standard deviations, are considered positive.
- a human anti-Chlamydia T-cell line (TCL-8) capable of cross-reacting to C. trachomatis and C. pneumonia was used to determine whether the expressed proteins described in the example above, (i.e., CpSWIB, SEQ ID NO: 27, and SEQ ID NO: 78 having a 6 ⁇ His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 28, respectively, and the 15 kDa protein referred to as CpS13 SEQ ID NO: 29, and SEQ ID NO: 77, having a 6 ⁇ His tag, with the corresponding amino acid sequence provided in SEQ ID NO: 30 and 91, respectively), possessed T-cell epitopes common to both C. trachomatis and C. pneumonia.
- E. coli expressing Chlamydial proteins were titered on 1 ⁇ 10 4 monocyte-derived dendritic cells. After two hours, the dendritic_cells cultures were washed and 2.5 ⁇ 10 4 T cells (TCL-8) added and allowed to incubate for an additional 72 hours. The amount of INF- ⁇ in the culture supernatant was then determined by ELISA. As shown in FIGS. 7A and 7B, the TCL-8 T-cell line specifically recognized the S13 ribosomal protein from both C. trachomatis and C. pneumonia as demonstrated by the antigen-specific induction of IFN- ⁇ , whereas only the SWIB protein from C. trachomatis was recognized by the T-cell line.
- the T cell epitope of C. trachomatis SWIB was identified by epitope mapping using target cells pulsed with a series of overlapping peptides and the T-cell line TCL-8.
- 3H-thymidine incorporation assays demonstrated that the peptide, referred to as C.t.SWIB 52-67, of SEQ ID NO: 39 gave the strongest proliferation of the TCL-8 line.
- T-cell line TCL-8 only recognized the C. trachomatis peptide of SEQ ID NO: 39 and not the corresponding C. pneumoniae peptide (SEQ ID NO: 40), or the other corresponding peptides described above (SEQ ID NO; 41-43).
- Chlamydia-specific T cell lines were generated from donor CP-21 with a positive serum titer against C. pneumoniae by stimulating donor PBMC with either C. trachomatis or C. pneumoniae -infected monocyte-derived dendritic cells, respectively.
- T-cells generated against C. pneumoniae responded to recombinant C. pneumoniae -SWIB but not C. trachomatis -SWIB, whereas the T-cell line generated against C. trachomatis did not respond to either C. trachomatis - or C. pneumoniae -SWIB (see FIG. 9).
- the C. pneumoniae -SWIB specific immune response of donor CP-21 confirms the C. pneumoniae infection and indicates the elicitation of C. pneumoniae -SWIB specific T-cells during in vivo C. pneumoniae infection.
- T-cell lines were generated from donor CP1, also a C. pneumoniae seropositive donor, by stimulating PBMC with non-infectious elementary bodies from C. trachomatis and C. pneumoniae, respectively.
- proliferative responses were determined by stimulating 2.5 ⁇ 10 4 T-cells in the presence of 1 ⁇ 10 4 monocyte-derived dendritic cells and non-infectious elementary bodies derived from C. trachomatis and C. pneumoniae, or either recombinant C. trachomatis or C. pneumoniae SWIB protein.
- the T-cell response against SWIB resembled the data obtained with T-cell lines from CP-21 in that C. pneumoniae -SWIB, but not C.
- C. pneumoniae T-cell line did not proliferate in response to either C. trachomatis or C. pneumoniae SWIB, though it did proliferate in response to both CT and CP elementary bodies.
- Clone 11-C12-91 identified using the TCP-21 cell line, has a 269 bp insert that is part of the OMP2 gene (CT443) and shares homology with the 60 kDa cysteine rich outer membrane protein of C. pneumoniae, referred to as OMCB.
- epitope mapping was performed using a series of overlapping peptides and the immunoassay previously described. Briefly, proliferative responses were determined by stimulating 2.5 ⁇ 10 4 TCP-21 T-cells in the presence of 1 ⁇ 10 4 monocyte-derived dendritic cells with either non-infectious elementary bodies derived from C. trachomatis and C. pneumoniae, or peptides derived from the protein sequence of C. trachomatis or C. pneumoniae OMCB protein (0.1 ⁇ g/ml).
- the TCP-21 T-cells responded to epitopes CT-OMCB #167-186, CT-OMCB #171-190, CT-OMCB #171-186, and to a lesser extent, CT-OMCB #175-186 (SEQ ID NO: 249-252, respectively).
- the TCP-21 T-cell line also gave a proliferative response to the homologous C. pneumoniae peptide CP-OMCB #171-186 (SEQ ID NO: 253), which was equal to or greater than the response to the to the C. trachomatis peptides.
- T-cell lines were generated from a healthy female individual (CT-10) with a history of genital exposure to C. trachomatis by stimulating T-cells with C. trachomatis LGV II elementary bodies as previously described.
- C. trachomatis Although the study subject was exposed to C. trachomatis, she did not seroconvert and did not develop clinical symptoms, suggesting donor CT-10 may have developed a protective immune response against C. trachomatis.
- a primary Chlamydia-specific T-cell line derived from donor CT-10 responded to C. trachomatis -SWIB, but not C. pneumoniae -SWIB recombinant proteins, confirming the exposure of CT-10 to C.
- PBMCs from C. pneumoniae patients as well as from normal donors are cultured in medium comprising RPMI 1640 supplemented with 10% pooled human serum and 50 ⁇ g/ml gentamicin.
- trachomatis lpdA and TSA are added in duplicate at concentrations of 0.5 to 10 ⁇ g/mL.
- 50 ⁇ l of medium is removed from each well for determination of IFN- ⁇ levels, as described below.
- the plates are then pulsed with 1 ⁇ Ci/well of tritiated thymidine for a further 18 hours, harvested and tritium uptake determined using a gas scintillation counter. Fractions that result in proliferation in both replicates three fold greater than the proliferation observed in cells cultured in medium alone are considered positive.
- trachomatis Swib antigen and the C. trachomatis lpdA antigen are recognized by the asymptomatic donors, indicating these antigens were recognized during exposure to Chlamydia and an immune response elicited against them. This implies these antigens may play a role in conferring protective immunity in a human host.
- the C. trachomatis and C. pneumonia S 13 antigen is recognized equally well among the C. trachomatis patients, therefore indicating there may be epitopes shared between C. trachomatis and C. pneumonia in the S13 protein. Table III summarizes the results of these studies. TABLE III Antigen Normal Donors C.t.
- Proliferation was determined after four days with a standard 3 H-thymidine pulse for the last 18 hours. Induction of IFN- ⁇ was determined from culture supernatants harvested after four days using standard ELISA assays, as described above. The results show that all the C. trachomatis antigens tested, except for C.T. Swib, elicited a proliferative response from one or more different T-cell lines derived form C. trachomatis patients. In addition, proliferative responses were elicited from both the C. trachomatis patients and asymptomatic donors for the following Chlamydia genes, CT622, groEL, pmpD, CT610 and rS13.
- the 12G3-83 clone also contains sequences to CT734 and CT764 in addition to CT622, and therefore these gene sequence may also have immunoreactive epitopes.
- clone 21G12-60 contains sequences to the hypothetical protein genes CT229 and CT228 in addition to CT875; and 15H2-76 also contains sequences from CT812 and CT088, as well as sharing homology to the syce gene.
- Clone 11H3-61 also contains sequences sharing homology to the PGP6-D virulence protein.
- mice C3H mice (4 mice per group) were immunized three times with 100 ⁇ g of pcDNA-3 expression vector containing C. trachomatis SWIB DNA (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5). Inoculations were at the base of the tail for systemic immunization. Two weeks after the last immunization, animals were progesterone treated and infected, either thru the vagina or by injection of the inoculum in the uterus. Two weeks after infection, the mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. Inflammation level was scored (from + for very mild, to +++++ for very severe).
- mice showed no signs of tubal occlusion while negative control vaccinated groups had inflammatory cells in the lumen of the oviduct
- C3H mice (4 mice per group) were immunized three times with 50 ⁇ g of pcDNA-3 expression vector containing C. trachomatis SWIB DNA (SEQ ID NO: 1, with the corresponding amino acid sequence provided in SEQ ID NO: 5) encapsulated in Poly Lactide co-Glycolide microspheres (PLG); immunizations were made intra-peritoneally. Two weeks after the last immunization, animal were progesterone treated and infected by inoculation of C. psittaci in the vagina.
- mice Two weeks after infection, mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. Inflammation level was scored as previously described. Scores attributed to each single oviduct/ovary were summed and divided by the number of examined organs to get a mean of inflammation for the group. Negative control-immunized animals receiving PLG-encapsulated empty vector showed consistent infammation with an ovary/oviduct mean inflammation score of 7.28, versus 5.71 for the PLG-encapsulated DNA immunized group. Inflammation in the peritoneum was 1.75 for the vaccinated group versus 3.75 for the control.
- mice Two weeks after infection, the mice were sacrificed and genital tracts sectioned, stained and examined for histopathology. The degree of inflammation was scored as described above. Scores attributed to each single oviduct/ovary were summed and divided by the number of examined organs to get a mean score of inflammation for the group. In the model of uterine inoculation, negative control-immunized animals receiving cholera toxin alone showed an ovary/oviduct mean inflammation score of 4.25 (only 2 mice analyzed; 2 other died) versus 5.00 for the s13 plus cholera toxin-immunized group, and 1.00 for the SWIB plus cholera toxin. Untreated infected animals had an ovary/oviduct mean inflammation score of 7.
- mice had an ovary/oviduct mean inflammation score of 7.37 versus 6.75 for the s13 plus cholera toxin-immunized group and 5.37 for the SWIB plus cholera toxin-immunized group.
- Untreated infected animals had an ovary/oviduct mean inflammation score of 8.
- CT529/Cap1 was identified earlier as a product from Chlamydia that stimulates CD8+ CTL. In this example, we sought to confirm that immunization with Cap1 would be protective in an animal model of chlamydia infection.
- a DNA fragment containing a modified Kozak sequence and base pairs 319-530 of the cap1 gene was amplified from C. trachomatis L2 genomic DNA using PCRTM and ligated into pSC11ss (Earl PL, Koenig S, Moss B (1991) Biological and immunological properties of human immunodeficiency virus type 1 envelope glycoprotein: analysis of proteins with truncations and deletions expressed by recombinant vaccinia viruses. J Virol. 65:31-41). DNA digested with SalI and StuI.
- the portion of the capl gene ligated into pSC11ss encodes amino acids 107-176 of Cap1 protein, containing the previously identified CTL epitope of amino acids 139-147.
- the resulting plasmid was used to transfect CV-1 cells (ATCC# CCL-70; Jensen FC et al. (1964) Infection of human and simian tissue cultures with Rous Sarcoma Virus. Proc. Natl. Acad. Sci. USA 52: 53-59.) which were subsequently infected with wild-type vaccinia virus.
- vaccinia viruses which were selected on the basis of both beta-galactosidase expression and the inactivation of thymidine kinase, as described previously (Chakrabarti et al, Mol Cell Biol. 1985, 5(12):3403-9).
- Recombinant virus was plaque purified three times and titered after growth in human TK-143B cells.
- Virus preparations were treated with equal volume of 0.25 mg/ml trypsin for 30 mins. at 37° C. and diluted in PBS prior to immunization of mice. Groups of 5 mice were used for all experimental and control groups. The data presented below are representative of three independent experiments.
- mice were immunized with 10 6 of the recombinant vaccinia i.p. and was allowed to recover for 3 weeks.
- Negative control groups were immunized with either buffer alone or wild-type vaccinia.
- a positive control a group of mice was infected i.v. with 10 6 i.f.u. of C. trachomatis. The number of organisms given to the positive control group has been previously shown to be cleared within 2 weeks.
- animals in each of the groups were challenged i.v. with 10 6 i.f.u. of C. trachomatis. Three days after challenge the mice were sacrificed and the number of i.f.u. per spleen was determined.
- Various Pmp/Ra12 fusion constructs were generated by first synthesizing PCR fragments of a Pmp gene using primers containing a Not I restriction site. Each PCR fragment was then ligated into the NotI restriction site of pCRX1.
- the pCRX1 vector contains the 6HisRa12 portion of the fusion.
- the Ra12 portion of the fusion construct encodes a polypeptide corresponding to amino acid residues 192-323 of Mycobacterium tuberculosis MTB32A, as described in U.S. Patent Application No. 60/158,585, the disclosure of which is incorporated herein by reference. The correct orientation of each insert was determined by its restriction enzyme pattern and its sequence was verified.
- PmpA Fusion Proteins PmpA is 107 kD protein containing 982 aa and was cloned from serovar E. The PmpA protein was divided into 2 overlapping fragments, the PmpA(N-terminal) and (C-terminal) portions.
- PmpA(N-term) was amplified by the sense and antisense primers: GAGAGCGGCCGCTCATGTTTATAACAAAGGAAC (SEQ ID NO: 306) TTATG GAGAGCGGCCGCTTACTTAGGTGAGAAGAAGGG (SEQ ID NO: 307) AGTTTC
- the resulting fusion construct has a DNA sequence set forth in SEQ ID NO: 308, encoding a 66 kD protein (619aa) expressing the segment 1-473 aa of PmpA.
- the amino acid sequence of the fusion protein is set forth in SEQ ID NO: 309.
- PmpA(C-term) was amplified by the sense and antisense primers: GAGAGCGGCCGCTCCATTCTATTCATTTCTTTG (SEQ ID NO: 310) ATCCTG GAGAGCGGCCGCTTAGAAGCCAACATAGCCTCC (SEQ ID NO: 311)
- the resulting fusion construct has a DNA sequence set forth in SEQ ID NO: 312, encoding a 74 kD protein (691aa) expressing the segment 438-982 aa of PmpA.
- the amino acid sequence of the fusion protein is set forth in SEQ ID NO: 313.
- PmpF is 112 kD protein containing 1034 aa and was cloned from the serovar E. PmpF protein was divided into 2 overlapping fragments, the PmpF(N-term) and (C-term) portions.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
Priority Applications (39)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/841,132 US20020061848A1 (en) | 2000-07-20 | 2001-04-23 | Compounds and methods for treatment and diagnosis of chlamydial infection |
EP01959114A EP1307564B1 (de) | 2000-07-20 | 2001-07-20 | Zusammensetzungen und verfahren zur behandlung von chlamydia-infektionen |
PCT/US2001/023121 WO2002008267A2 (en) | 2000-07-20 | 2001-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
AU8070201A AU8070201A (en) | 2000-07-20 | 2001-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
MXPA03000564A MXPA03000564A (es) | 2000-07-20 | 2001-07-20 | Compuestos y metodos para el tratamiento y diagnostico de infeccion clamidial. |
DK01959114T DK1307564T3 (da) | 2000-07-20 | 2001-07-20 | Forbindelser og fremgangsmåde til behandling og diagnose af chlamydiainfektion |
CZ2003480A CZ2003480A3 (cs) | 2000-07-20 | 2001-07-20 | Sloučeniny a způsoby léčení a diagnózy chlamydiální infekce |
ES01959114T ES2294018T3 (es) | 2000-07-20 | 2001-07-20 | Compuestos y metodos para el tratamiento y diagnostico de la infeccion con clamidias. |
NZ549873A NZ549873A (en) | 2000-07-20 | 2001-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection by stimulating an immune response |
IL15390401A IL153904A0 (en) | 2000-07-20 | 2001-07-20 | Compositions containing polypeptides comprising a chlamydia antigen |
NZ523628A NZ523628A (en) | 2000-07-20 | 2001-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
CNB018148484A CN100467600C (zh) | 2000-07-20 | 2001-07-20 | 用于治疗和诊断衣原体感染的化合物和方法 |
RU2006120003/10A RU2410394C2 (ru) | 2000-07-20 | 2001-07-20 | Соединения и способы для лечения и диагностики хламидийной инфекции |
NZ541013A NZ541013A (en) | 2000-07-20 | 2001-07-20 | A composition comprising a polypeptide comprising SEQ ID NO:577 for use in treating chlamydial infection |
KR10-2003-7000885A KR20030016423A (ko) | 2000-07-20 | 2001-07-20 | 클라미디아 감염을 치료 및 진단하기 위한 화합물 및 방법 |
RU2003104976/13A RU2003104976A (ru) | 2000-07-20 | 2001-07-20 | Соединения и способ для лечения и диагностики хламидийной инфекции |
PT01959114T PT1307564E (pt) | 2000-07-20 | 2001-07-20 | ''compostos e métodos para tratamento e diagnóstico da infecção por clamídia'' |
AU2001280702A AU2001280702B8 (en) | 2000-07-20 | 2001-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
PL365951A PL209107B1 (pl) | 2000-07-20 | 2001-07-20 | Kompozycje do zastosowania w leczeniu i diagnozowaniu infekcji Chlamydia |
DE60130468T DE60130468T2 (de) | 2000-07-20 | 2001-07-20 | Zusammensetzungen und verfahren zur behandlung von chlamydia-infektionen |
JP2002514171A JP2004513622A (ja) | 2000-07-20 | 2001-07-20 | クラミジア感染の処置および診断のための化合物および方法 |
BR0112602-4A BR0112602A (pt) | 2000-07-20 | 2001-07-20 | Compostos e métodos para tratamento e diagnóstico de infecção clamidial |
AT01959114T ATE373092T1 (de) | 2000-07-20 | 2001-07-20 | Zusammensetzungen und verfahren zur behandlung von chlamydia-infektionen |
CA002418282A CA2418282A1 (en) | 2000-07-20 | 2001-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
HU0400477A HUP0400477A3 (en) | 2000-07-20 | 2001-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
IL153904A IL153904A (en) | 2000-07-20 | 2003-01-13 | Preparations containing polypeptides containing antigen to chlamydia |
NO20030252A NO20030252L (no) | 2000-07-20 | 2003-01-17 | Forbindelser og fremgangsmåter for behandling og diagnostikk av klamydiainfeksjon |
ZA200300719A ZA200300719B (en) | 2000-07-20 | 2003-01-27 | Compounds and methods for treatment and diagnosis of Chlamydial infection. |
US10/872,155 US7462357B2 (en) | 1998-12-08 | 2004-06-18 | Compounds and methods for treatment and diagnosis of chlamydial infection |
HK04107907.3A HK1067381A1 (en) | 2000-07-20 | 2004-10-14 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,665 US8052975B2 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,620 US20080181918A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,432 US20090028887A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,873 US8263089B2 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,672 US20090035296A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,855 US20080317772A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,668 US20080213264A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
CY20071101457T CY1107796T1 (el) | 2000-07-20 | 2007-11-12 | Ενωσεις και μεθοδοι για θεραπεια και διαγνωση χλαμυδιακης μολυνσης |
US13/250,137 US20120114684A1 (en) | 1998-12-08 | 2011-09-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/620,412 US6448234B1 (en) | 1998-12-08 | 2000-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US09/841,132 US20020061848A1 (en) | 2000-07-20 | 2001-04-23 | Compounds and methods for treatment and diagnosis of chlamydial infection |
Related Parent Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/208,277 Continuation-In-Part US6166177A (en) | 1998-12-08 | 1998-12-08 | Compounds and methods for the treatment and diagnosis of chlamydial infection |
US09/288,594 Continuation-In-Part US6447779B1 (en) | 1998-12-08 | 1999-04-08 | Compounds for the diagnosis of Chlamydial infection |
US09/410,568 Continuation-In-Part US6555115B1 (en) | 1998-12-08 | 1999-10-01 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US42657199A Continuation-In-Part | 1998-12-08 | 1999-10-22 | |
US45468499A Continuation-In-Part | 1998-12-08 | 1999-12-03 | |
US09/556,877 Continuation-In-Part US6432916B1 (en) | 1998-12-08 | 2000-04-19 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US09/598,419 Continuation-In-Part US6565856B1 (en) | 1998-12-08 | 2000-06-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US09/620,412 Continuation-In-Part US6448234B1 (en) | 1998-12-08 | 2000-07-20 | Compounds and methods for treatment and diagnosis of chlamydial infection |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/872,155 Continuation US7462357B2 (en) | 1998-12-08 | 2004-06-18 | Compounds and methods for treatment and diagnosis of chlamydial infection |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020061848A1 true US20020061848A1 (en) | 2002-05-23 |
Family
ID=27088713
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/841,132 Abandoned US20020061848A1 (en) | 1998-12-08 | 2001-04-23 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US10/872,155 Expired - Fee Related US7462357B2 (en) | 1998-12-08 | 2004-06-18 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,855 Abandoned US20080317772A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,432 Abandoned US20090028887A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,665 Expired - Fee Related US8052975B2 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,873 Expired - Fee Related US8263089B2 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,620 Abandoned US20080181918A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,672 Abandoned US20090035296A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US13/250,137 Abandoned US20120114684A1 (en) | 1998-12-08 | 2011-09-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/872,155 Expired - Fee Related US7462357B2 (en) | 1998-12-08 | 2004-06-18 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,855 Abandoned US20080317772A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,432 Abandoned US20090028887A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,665 Expired - Fee Related US8052975B2 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/928,873 Expired - Fee Related US8263089B2 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,620 Abandoned US20080181918A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US11/929,672 Abandoned US20090035296A1 (en) | 1998-12-08 | 2007-10-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
US13/250,137 Abandoned US20120114684A1 (en) | 1998-12-08 | 2011-09-30 | Compounds and methods for treatment and diagnosis of chlamydial infection |
Country Status (25)
Country | Link |
---|---|
US (9) | US20020061848A1 (de) |
EP (1) | EP1307564B1 (de) |
JP (1) | JP2004513622A (de) |
KR (1) | KR20030016423A (de) |
CN (1) | CN100467600C (de) |
AT (1) | ATE373092T1 (de) |
AU (2) | AU8070201A (de) |
BR (1) | BR0112602A (de) |
CA (1) | CA2418282A1 (de) |
CY (1) | CY1107796T1 (de) |
CZ (1) | CZ2003480A3 (de) |
DE (1) | DE60130468T2 (de) |
DK (1) | DK1307564T3 (de) |
ES (1) | ES2294018T3 (de) |
HK (1) | HK1067381A1 (de) |
HU (1) | HUP0400477A3 (de) |
IL (2) | IL153904A0 (de) |
MX (1) | MXPA03000564A (de) |
NO (1) | NO20030252L (de) |
NZ (3) | NZ549873A (de) |
PL (1) | PL209107B1 (de) |
PT (1) | PT1307564E (de) |
RU (2) | RU2410394C2 (de) |
WO (1) | WO2002008267A2 (de) |
ZA (1) | ZA200300719B (de) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6555115B1 (en) * | 1998-12-08 | 2003-04-29 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20040037846A1 (en) * | 2000-10-02 | 2004-02-26 | Jackson W. James | Chlamydia pmp proteins, gene sequences and uses thereof |
US20040053393A1 (en) * | 1994-04-19 | 2004-03-18 | Biocine S.P.A. | Detection of antibodies against Chlamydia trachomatis pgp3 antigen in patient sera by enzyme-linked immunoassay |
US20050232941A1 (en) * | 2000-04-21 | 2005-10-20 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080181918A1 (en) * | 1998-12-08 | 2008-07-31 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080213264A1 (en) * | 1998-12-08 | 2008-09-04 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080305112A1 (en) * | 2001-12-12 | 2008-12-11 | Novartis Vaccines And Diagnostics, Inc.G | Immunisation against chlamydia trachomatis |
US20090022755A1 (en) * | 2005-03-31 | 2009-01-22 | Glaxosmithkline Biologicals Sa | Vaccines against chlamydial infection |
US7537772B1 (en) | 2000-10-02 | 2009-05-26 | Emergent Product Development Gaithersburg Inc. | Chlamydia protein, gene sequence and the uses thereof |
US20100278854A1 (en) * | 2007-12-03 | 2010-11-04 | Higgins Darren E | Chlamydia antigens |
US20110158977A1 (en) * | 2005-05-12 | 2011-06-30 | Novartis Vaccines And Diagnostics, Inc. | Immunogenic compositions for Chlamydia trachomatis |
US8541007B2 (en) | 2005-03-31 | 2013-09-24 | Glaxosmithkline Biologicals S.A. | Vaccines against chlamydial infection |
CN113801191A (zh) * | 2021-08-18 | 2021-12-17 | 南京大学 | 一种检测衣原体的多肽探针及其应用 |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7459524B1 (en) | 1997-10-02 | 2008-12-02 | Emergent Product Development Gaithersburg Inc. | Chlamydia protein, sequence and uses thereof |
AU5366099A (en) | 1998-08-20 | 2000-03-14 | Connaught Laboratories Limited | Nucleic acid molecules encoding inclusion membrane protein of (chlamydia) |
US6686339B1 (en) | 1998-08-20 | 2004-02-03 | Aventis Pasteur Limited | Nucleic acid molecules encoding inclusion membrane protein C of Chlamydia |
AU5365999A (en) | 1998-08-20 | 2000-03-14 | Connaught Laboratories Limited | Nucleic acid molecules encoding pomp91a protein of (chlamydia) |
US6649370B1 (en) | 1998-10-28 | 2003-11-18 | Aventis Pasteur Limited | Chlamydia antigens and corresponding DNA fragments and uses thereof |
US6607730B1 (en) | 1998-11-02 | 2003-08-19 | Aventis Pasteur Limited/Aventis Pasteur Limitee | Chlamydia antigens and corresponding DNA fragments and uses thereof |
JP2002531093A (ja) | 1998-12-01 | 2002-09-24 | アベンティス、パストゥール、リミテッド | クラミジア抗原および対応するdna断片ならびにその使用 |
WO2000034483A2 (en) | 1998-12-08 | 2000-06-15 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
GB9828000D0 (en) | 1998-12-18 | 1999-02-10 | Chiron Spa | Antigens |
US7297341B1 (en) | 1998-12-23 | 2007-11-20 | Sanofi Pasteur Limited | Chlamydia antigens and corresponding DNA fragments and uses thereof |
US6808713B1 (en) | 1998-12-28 | 2004-10-26 | Aventis Pasteur Limited | Chlamydia antigens and corresponding DNA fragments and uses thereof |
CA2356057A1 (en) | 1998-12-28 | 2000-07-06 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
GB9902555D0 (en) | 1999-02-05 | 1999-03-24 | Neutec Pharma Plc | Medicament |
MXPA01009256A (es) | 1999-03-12 | 2003-07-14 | Aventis Pasteur | Antigenos de chlamydia y fragmentos de acido desoxirribonucleico correspondientes y usos de los mismos. |
WO2000066739A2 (en) | 1999-05-03 | 2000-11-09 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
ATE384793T1 (de) | 1999-09-20 | 2008-02-15 | Aventis Pasteur | Chlamydia antigene und entsprechende dna- fragmente und ihre verwendungen |
US6632663B1 (en) | 1999-09-22 | 2003-10-14 | Aventis Pasteur Limited | DNA immunization against chlamydia infection |
CA2395499C (en) | 1999-12-22 | 2011-10-25 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
DE60133190T2 (de) | 2000-04-21 | 2009-04-02 | CORIXA CORP., Wilmington | Verbindungen und verfahren zur behandlung und diagnose von chlamydia-infektionen |
CA2408199A1 (en) | 2000-05-08 | 2001-11-15 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
WO2002002606A2 (en) | 2000-07-03 | 2002-01-10 | Chiron S.P.A. | Immunisation against chlamydia pneumoniae |
US20030059896A1 (en) * | 2000-12-21 | 2003-03-27 | Shire Biochem Inc. | Novel chlamydia antigens and corresponding DNA fragments |
GB2370838A (en) * | 2001-01-06 | 2002-07-10 | Benedikt Timmerman | Immunogenic complex |
GB0203403D0 (en) | 2002-02-13 | 2002-04-03 | Chiron Spa | Chlamydia cytotoxic-T cell epitopes |
MXPA05013260A (es) * | 2003-06-26 | 2006-03-09 | Chiron Corp | Composiciones inmunogenicas para chlamydia trachomatis. |
US20080019994A1 (en) * | 2003-11-20 | 2008-01-24 | Robert Brunham | Immunization Against Chlamydia Infection |
WO2007030879A1 (en) * | 2005-09-13 | 2007-03-22 | Diatech Pty Ltd | Diagnostic markers and uses therefor |
US9259463B2 (en) * | 2006-01-16 | 2016-02-16 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Chlamydia vaccine |
EP1970708A1 (de) * | 2007-03-07 | 2008-09-17 | Mikrogen Molekularbiologische Entwicklungs-GmbH | Biochip und Verfahren zum selektiven Nachweis von Chlamydia trachomatis-Infektionen |
WO2008156729A2 (en) * | 2007-06-14 | 2008-12-24 | Emergent Product Development Gaithersburg Inc. | Vaccines against chlamydia infection |
CA2695421A1 (en) | 2007-08-03 | 2009-02-12 | President And Fellows Of Harvard College | Chlamydia antigens |
JP2012519482A (ja) | 2009-03-06 | 2012-08-30 | ノバルティス アーゲー | クラミジア抗原 |
US9458513B2 (en) | 2010-03-23 | 2016-10-04 | Wako Pure Chemical Industries, Ltd. | Primer and probe for detecting chlamydia trachomatis, and method for detecting chlamydia trachomatis using same |
JP2013545448A (ja) * | 2010-10-20 | 2013-12-26 | ジェノセア バイオサイエンシーズ, インコーポレイテッド | クラミジア抗原及びその使用 |
US20130095487A1 (en) * | 2011-10-18 | 2013-04-18 | University Of South Florida | Interferon-Gamma Response as a Diagnostic Test for Persistent Chlamydial Infections |
CN109535228B (zh) * | 2012-12-05 | 2020-09-11 | 生控基因疫苗股份有限公司 | 用作诱发抗原特异性t细胞反应的免疫原性增强剂的融合蛋白 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4118469A (en) * | 1976-04-27 | 1978-10-03 | Research Corporation | Antigen for trachoma lymphogranuloma venereum (LGV) and non-gonococcal urethritis (NGU) |
US4497863A (en) * | 1984-03-07 | 1985-02-05 | Milliken Research Corporation | Laminated weft insertion fabric |
US5166053A (en) * | 1990-02-23 | 1992-11-24 | Miles Inc. | Specimen adequacy control for chlamydia assays |
US5318892A (en) * | 1990-05-08 | 1994-06-07 | Hitachi Chemical Co., Ltd. | Method for assaying antibody against Chlamydia trachomatis and diagnostic preparation for chlamydia trachomatis infection |
US5725963A (en) * | 1992-10-30 | 1998-03-10 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element |
Family Cites Families (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4497900A (en) | 1982-04-12 | 1985-02-05 | Abbott Laboratories | Immunoassay for Neisseria gonorrhoeae antigens |
US4497899A (en) | 1982-04-12 | 1985-02-05 | Abbott Laboratories | Immunoassay for Chlamydia trachomatis antigens |
EP0192033B1 (de) | 1985-01-14 | 1996-09-25 | Chiron Corporation | Hauptprotein der Aussenmembran von Chlamydia |
US5785973A (en) * | 1988-02-01 | 1998-07-28 | Praxis Biologics, Inc. | Synthetic peptides representing a T-cell epitope as a carrier molecule for conjugate vaccines |
EP0348725A3 (de) | 1988-06-29 | 1990-10-24 | Miles Inc. | Sorten-spezifische Epitode von Chlamydia trachomatis und Antikörper, die diese erkennen |
DK0458841T3 (da) | 1989-02-17 | 1995-11-20 | Chiron Mimotopes Pty Ltd | Fremgangsmåde til anvendelse og fremstilling af peptider |
US5869608A (en) | 1989-03-17 | 1999-02-09 | The United States Of America As Represented By The Department Of Health And Human Services | Nucleotide and amino acid sequences of the four variable domains of the major outer membrane proteins of Chlamydia trachomatis |
US5725863A (en) | 1991-09-06 | 1998-03-10 | The United States Of America As Represented By The Secretary Of Agriculture | Polypeptides useful in prevention of chlamydia infection |
NZ253137A (en) * | 1992-06-25 | 1996-08-27 | Smithkline Beecham Biolog | Vaccine comprising antigen and/or antigenic composition, qs21 (quillaja saponaria molina extract) and 3 de-o-acylated monophosphoryl lipid a. |
WO1994006827A1 (en) | 1992-09-18 | 1994-03-31 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Synthetic peptide vaccine for chlamydia trachomatis |
US5629167A (en) | 1994-04-19 | 1997-05-13 | Biocine S.P.A. | Detection of antibodies against Chlamydia trachomatis pgp3 antigen in patient sera by enzyme-linked immunosorbent assay |
CN100365017C (zh) | 1994-09-20 | 2008-01-30 | 日立化成工业株式会社 | 肺炎衣原体抗原多肽 |
GB9626864D0 (en) | 1996-12-24 | 1997-02-12 | Smithkline Beecham Biolog | Vaccine |
GB9506863D0 (en) * | 1995-04-03 | 1995-05-24 | Smithkline Beecham Biolog | Vaccines |
GB9516293D0 (en) | 1995-08-09 | 1995-10-11 | Immunova Ltee | Novel peptides and their use as vaccines |
CN1223589A (zh) * | 1996-05-06 | 1999-07-21 | 美国拜尔公司 | 包含鹦鹉热衣原体的猫疫苗及其制备方法 |
WO1998002546A2 (en) | 1996-07-12 | 1998-01-22 | University Of Manitoba | Dna immunization against chlamydia infection |
US6464979B1 (en) | 1996-09-12 | 2002-10-15 | Aventis Pasteur Limited | Chlamydial vaccines and methods of preparation thereof |
US7459524B1 (en) | 1997-10-02 | 2008-12-02 | Emergent Product Development Gaithersburg Inc. | Chlamydia protein, sequence and uses thereof |
JP4249279B2 (ja) | 1997-10-22 | 2009-04-02 | デンカ生研株式会社 | クラミジア・トラコマティス主要外膜蛋白質及びその製造方法、並びにクラミジア・トラコマティスの抗体測定方法及び抗体測定試薬 |
DE69841894D1 (de) * | 1997-11-21 | 2010-10-21 | Merck Serono Biodevelopment Sa | Äusseres Membranpolypeptid von Chlamydia pneumoniae sowie Fragmente davon und deren Verwendung, insbesondere zur Diagnose, Prävention und Behandlung einer Infektion |
BR9814878A (pt) | 1997-11-21 | 2000-10-03 | Genset Sa | Sequência genÈmica e polipeptìdeos de chlamydia pneumoniae, fragmentos dos mesmos e usos dos mesmos, em particular para o diagnóstico, a prevenção e o tratamento de infecção |
US7041490B1 (en) * | 1997-11-28 | 2006-05-09 | Serono Genetics Institute, S.A. | Chlamydia trachomatis polynucleotides and vectors, recombinant host cells, DNA chips or kits containing the same |
WO1999028475A2 (en) * | 1997-11-28 | 1999-06-10 | Genset | Chlamydia trachomatis genomic sequence and polypeptides, fragments thereof and uses thereof, in particular for the diagnosis, prevention and treatment of infection |
KR100797876B1 (ko) | 1998-04-07 | 2008-01-24 | 코릭사 코포레이션 | 마이코박테리움 튜베르쿨로시스 항원의 융합 단백질 및이의 용도 |
CA2347099C (en) * | 1998-10-16 | 2014-08-05 | Smithkline Beecham Biologicals S.A. | Adjuvant systems comprising an immunostimulant adsorbed to a metallic salt particle and vaccines thereof |
US6607730B1 (en) | 1998-11-02 | 2003-08-19 | Aventis Pasteur Limited/Aventis Pasteur Limitee | Chlamydia antigens and corresponding DNA fragments and uses thereof |
EP1133572A4 (de) | 1998-11-12 | 2005-06-15 | Univ California | Genomsequenz von chlamydia pneumoniae |
US20020061848A1 (en) * | 2000-07-20 | 2002-05-23 | Ajay Bhatia | Compounds and methods for treatment and diagnosis of chlamydial infection |
US6166177A (en) * | 1998-12-08 | 2000-12-26 | Corixa Corporation | Compounds and methods for the treatment and diagnosis of chlamydial infection |
US6447779B1 (en) * | 1998-12-08 | 2002-09-10 | Corixa Corporation | Compounds for the diagnosis of Chlamydial infection |
US6565856B1 (en) * | 1998-12-08 | 2003-05-20 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US6555115B1 (en) * | 1998-12-08 | 2003-04-29 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US6432916B1 (en) * | 1998-12-08 | 2002-08-13 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US6448234B1 (en) * | 1998-12-08 | 2002-09-10 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
WO2000034483A2 (en) * | 1998-12-08 | 2000-06-15 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080213264A1 (en) * | 1998-12-08 | 2008-09-04 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
GB9828000D0 (en) | 1998-12-18 | 1999-02-10 | Chiron Spa | Antigens |
GB9902555D0 (en) | 1999-02-05 | 1999-03-24 | Neutec Pharma Plc | Medicament |
MXPA01009256A (es) | 1999-03-12 | 2003-07-14 | Aventis Pasteur | Antigenos de chlamydia y fragmentos de acido desoxirribonucleico correspondientes y usos de los mismos. |
WO2000066739A2 (en) | 1999-05-03 | 2000-11-09 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
US6811783B1 (en) * | 1999-09-07 | 2004-11-02 | Aventis Pasteur Limited | Immunogenic compositions for protection against chlamydial infection |
ATE384793T1 (de) * | 1999-09-20 | 2008-02-15 | Aventis Pasteur | Chlamydia antigene und entsprechende dna- fragmente und ihre verwendungen |
US6632663B1 (en) | 1999-09-22 | 2003-10-14 | Aventis Pasteur Limited | DNA immunization against chlamydia infection |
EP2322666A3 (de) | 1999-09-28 | 2011-08-10 | Geneohm Sciences Canada, Inc. | Hochkonserviertes Gen und benutzung dieses Gens zur herstellung Species-, Genus-, Familien- und Gruppen-spezifischer Primer sowie von universellen Nukleinsäureproben zur bestimmung von Mikroorganismen. |
EP1221051A4 (de) * | 1999-10-14 | 2003-03-05 | Univ Utah Res Found | Resonierende optische kavitäten für hochsensitive hochdurchsatz-biosensoren und entsprechende verfahren |
AU1481001A (en) | 1999-11-19 | 2001-05-30 | Michigan State University | Recombinant chlamydia vaccine |
CA2395499C (en) | 1999-12-22 | 2011-10-25 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
US20010048927A1 (en) * | 2000-02-01 | 2001-12-06 | Richard Stephens | Porin B (PorB) as a therapeutic target for prevention and treatment of infection by chlamydia |
US6919187B2 (en) * | 2000-04-21 | 2005-07-19 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20020146776A1 (en) * | 2000-04-21 | 2002-10-10 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
DE60133190T2 (de) | 2000-04-21 | 2009-04-02 | CORIXA CORP., Wilmington | Verbindungen und verfahren zur behandlung und diagnose von chlamydia-infektionen |
CA2408199A1 (en) | 2000-05-08 | 2001-11-15 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
WO2001099156A1 (en) * | 2000-06-16 | 2001-12-27 | Applied Materials, Inc. | Configurable single substrate wet-dry integrated cluster cleaner |
WO2002002606A2 (en) | 2000-07-03 | 2002-01-10 | Chiron S.P.A. | Immunisation against chlamydia pneumoniae |
US6827189B2 (en) * | 2000-07-20 | 2004-12-07 | Zf Friedrichshafen Ag | Electromagnetically actuated, single-surface friction coupling, without a rotor slip ring |
US7537772B1 (en) * | 2000-10-02 | 2009-05-26 | Emergent Product Development Gaithersburg Inc. | Chlamydia protein, gene sequence and the uses thereof |
US7731980B2 (en) * | 2000-10-02 | 2010-06-08 | Emergent Product Development Gaithersburg Inc. | Chlamydia PMP proteins, gene sequences and uses thereof |
GB0103169D0 (en) * | 2001-02-08 | 2001-03-28 | Smithkline Beecham Biolog | Vaccine composition |
AU2002306849A1 (en) * | 2001-03-21 | 2002-10-08 | Elitra Pharmaceuticals, Inc. | Identification of essential genes in microorganisms |
WO2002079244A2 (en) | 2001-03-30 | 2002-10-10 | University Of Manitoba | Chlamydial protease-like activity factor responsible for degradation of host transcription factor |
US20030199438A1 (en) * | 2001-04-09 | 2003-10-23 | Shaw Allan Christian | Method for identification of proteins from intracellular bacteria |
US20040029129A1 (en) * | 2001-10-25 | 2004-02-12 | Liangsu Wang | Identification of essential genes in microorganisms |
NZ546711A (en) * | 2001-12-12 | 2008-06-30 | Chiron Srl | Immunisation against chlamydia trachomatis |
US7105171B2 (en) * | 2002-03-07 | 2006-09-12 | The Regents Of The University Of California | Porin B (PorB) as a therapeutic target for prevention and treatment of infection by Chlamydia |
MXPA05013260A (es) * | 2003-06-26 | 2006-03-09 | Chiron Corp | Composiciones inmunogenicas para chlamydia trachomatis. |
FR2869057B1 (fr) * | 2004-04-16 | 2006-06-02 | Piscines Desjoyaux Sa Sa | Dispositif pour la realisation d'un haut de chainage d'un escalier |
EP2314314A3 (de) * | 2004-10-25 | 2011-05-11 | Statens Serum Institut | Chlamydia trachomatis antigene zur impfung und diagnostische verwendung |
US8541007B2 (en) * | 2005-03-31 | 2013-09-24 | Glaxosmithkline Biologicals S.A. | Vaccines against chlamydial infection |
EA014527B1 (ru) | 2005-03-31 | 2010-12-30 | Глаксосмитклайн Байолоджикалс С.А. | Вакцины против хламидиоза |
JP2008544745A (ja) * | 2005-05-12 | 2008-12-11 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス, インコーポレイテッド | Chlamydiatrachomatisのための免疫原性組成物 |
AU2006341122B2 (en) * | 2005-12-22 | 2013-08-22 | Novartis Vaccines And Diagnostics, Srl. | Chlamydial antigens |
US9259463B2 (en) * | 2006-01-16 | 2016-02-16 | The United States Of America, As Represented By The Secretary, Department Of Health & Human Services | Chlamydia vaccine |
US20080124338A1 (en) * | 2006-09-22 | 2008-05-29 | The Scripps Research Institute | Methods for treatment of inflammatory disease and chlamydia infectious disease |
CA2664236A1 (en) * | 2006-10-04 | 2008-04-10 | Glaxosmithkline Biologicals S.A. | Vaccines against chlamydial infection |
US7892567B2 (en) * | 2007-10-01 | 2011-02-22 | Board Of Regents, The University Of Texas System | Methods and compositions for immunization against chlamydial infection and disease |
US9068007B2 (en) * | 2008-10-09 | 2015-06-30 | Board Of Regents, The University Of Texas System | Methods and compositions for chlamydial antigens for diagnosis and treatment of chlamydial infection and disease |
US20110293664A1 (en) * | 2008-12-17 | 2011-12-01 | Genocea Biosciences, Inc. | Chlamydia antigens and uses thereof |
JP2012519482A (ja) * | 2009-03-06 | 2012-08-30 | ノバルティス アーゲー | クラミジア抗原 |
EP2544715A2 (de) * | 2010-03-09 | 2013-01-16 | Board Of Regents, University Of Texas System | Verfahren und zusammensetzung für chlamydia-antigen zur diagnose und behandlung einer chlamydieninfektion und -erkranung |
-
2001
- 2001-04-23 US US09/841,132 patent/US20020061848A1/en not_active Abandoned
- 2001-07-20 MX MXPA03000564A patent/MXPA03000564A/es active IP Right Grant
- 2001-07-20 EP EP01959114A patent/EP1307564B1/de not_active Expired - Lifetime
- 2001-07-20 PT PT01959114T patent/PT1307564E/pt unknown
- 2001-07-20 WO PCT/US2001/023121 patent/WO2002008267A2/en active IP Right Grant
- 2001-07-20 NZ NZ549873A patent/NZ549873A/xx not_active IP Right Cessation
- 2001-07-20 AU AU8070201A patent/AU8070201A/xx active Pending
- 2001-07-20 CA CA002418282A patent/CA2418282A1/en not_active Abandoned
- 2001-07-20 DK DK01959114T patent/DK1307564T3/da active
- 2001-07-20 AT AT01959114T patent/ATE373092T1/de active
- 2001-07-20 NZ NZ523628A patent/NZ523628A/en not_active IP Right Cessation
- 2001-07-20 DE DE60130468T patent/DE60130468T2/de not_active Expired - Lifetime
- 2001-07-20 ES ES01959114T patent/ES2294018T3/es not_active Expired - Lifetime
- 2001-07-20 BR BR0112602-4A patent/BR0112602A/pt not_active Application Discontinuation
- 2001-07-20 JP JP2002514171A patent/JP2004513622A/ja active Pending
- 2001-07-20 IL IL15390401A patent/IL153904A0/xx unknown
- 2001-07-20 PL PL365951A patent/PL209107B1/pl not_active IP Right Cessation
- 2001-07-20 KR KR10-2003-7000885A patent/KR20030016423A/ko not_active Application Discontinuation
- 2001-07-20 HU HU0400477A patent/HUP0400477A3/hu unknown
- 2001-07-20 NZ NZ541013A patent/NZ541013A/xx not_active IP Right Cessation
- 2001-07-20 CZ CZ2003480A patent/CZ2003480A3/cs unknown
- 2001-07-20 RU RU2006120003/10A patent/RU2410394C2/ru not_active IP Right Cessation
- 2001-07-20 CN CNB018148484A patent/CN100467600C/zh not_active Expired - Fee Related
- 2001-07-20 AU AU2001280702A patent/AU2001280702B8/en not_active Ceased
- 2001-07-20 RU RU2003104976/13A patent/RU2003104976A/ru not_active Application Discontinuation
-
2003
- 2003-01-13 IL IL153904A patent/IL153904A/en not_active IP Right Cessation
- 2003-01-17 NO NO20030252A patent/NO20030252L/no not_active Application Discontinuation
- 2003-01-27 ZA ZA200300719A patent/ZA200300719B/en unknown
-
2004
- 2004-06-18 US US10/872,155 patent/US7462357B2/en not_active Expired - Fee Related
- 2004-10-14 HK HK04107907.3A patent/HK1067381A1/xx not_active IP Right Cessation
-
2007
- 2007-10-30 US US11/928,855 patent/US20080317772A1/en not_active Abandoned
- 2007-10-30 US US11/928,432 patent/US20090028887A1/en not_active Abandoned
- 2007-10-30 US US11/929,665 patent/US8052975B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/928,873 patent/US8263089B2/en not_active Expired - Fee Related
- 2007-10-30 US US11/929,620 patent/US20080181918A1/en not_active Abandoned
- 2007-10-30 US US11/929,672 patent/US20090035296A1/en not_active Abandoned
- 2007-11-12 CY CY20071101457T patent/CY1107796T1/el unknown
-
2011
- 2011-09-30 US US13/250,137 patent/US20120114684A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4118469A (en) * | 1976-04-27 | 1978-10-03 | Research Corporation | Antigen for trachoma lymphogranuloma venereum (LGV) and non-gonococcal urethritis (NGU) |
US4497863A (en) * | 1984-03-07 | 1985-02-05 | Milliken Research Corporation | Laminated weft insertion fabric |
US5166053A (en) * | 1990-02-23 | 1992-11-24 | Miles Inc. | Specimen adequacy control for chlamydia assays |
US5318892A (en) * | 1990-05-08 | 1994-06-07 | Hitachi Chemical Co., Ltd. | Method for assaying antibody against Chlamydia trachomatis and diagnostic preparation for chlamydia trachomatis infection |
US5725963A (en) * | 1992-10-30 | 1998-03-10 | Kabushiki Kaisha Toshiba | Magnetoresistance effect element |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7070791B2 (en) * | 1994-04-19 | 2006-07-04 | Chiron Srl | Detection of antibodies against Chlamydia trachomatis pgp3 antigen in patient sera by enzyme-linked immunoassay |
US7485313B2 (en) | 1994-04-19 | 2009-02-03 | Novartis Ag | Recombinant Chlamydia trachomatis pgp3 protein suitable for enzyme-linked immunoassay, and used of the protein in eliciting and diagnosing an immune response |
US20040053393A1 (en) * | 1994-04-19 | 2004-03-18 | Biocine S.P.A. | Detection of antibodies against Chlamydia trachomatis pgp3 antigen in patient sera by enzyme-linked immunoassay |
US20060147474A1 (en) * | 1994-04-19 | 2006-07-06 | Biocine S.P.A. | Detection of antibodies against chamydia trachomatis PGP3 antigen in patient sera by enzyme-linked immunoassay |
US20090035296A1 (en) * | 1998-12-08 | 2009-02-05 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20090028887A1 (en) * | 1998-12-08 | 2009-01-29 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US8263089B2 (en) | 1998-12-08 | 2012-09-11 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US8052975B2 (en) * | 1998-12-08 | 2011-11-08 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080181918A1 (en) * | 1998-12-08 | 2008-07-31 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20110142872A1 (en) * | 1998-12-08 | 2011-06-16 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080213264A1 (en) * | 1998-12-08 | 2008-09-04 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080299142A1 (en) * | 1998-12-08 | 2008-12-04 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US6555115B1 (en) * | 1998-12-08 | 2003-04-29 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20090047283A1 (en) * | 2000-04-21 | 2009-02-19 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20050232941A1 (en) * | 2000-04-21 | 2005-10-20 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20080199456A1 (en) * | 2000-04-21 | 2008-08-21 | Corixa Corporation | Compounds and methods for treatment and diagnosis of chlamydial infection |
US20070292425A1 (en) * | 2000-10-02 | 2007-12-20 | Emergent Product Development Gaithersburg Inc. | Chlamydia PMP Proteins, Gene Sequences and Uses Thereof |
US7851609B2 (en) | 2000-10-02 | 2010-12-14 | Emergent Product Development Gaithersburg Inc. | Chlamydia PMP proteins, gene sequences and uses thereof |
US7537772B1 (en) | 2000-10-02 | 2009-05-26 | Emergent Product Development Gaithersburg Inc. | Chlamydia protein, gene sequence and the uses thereof |
US7731980B2 (en) | 2000-10-02 | 2010-06-08 | Emergent Product Development Gaithersburg Inc. | Chlamydia PMP proteins, gene sequences and uses thereof |
US7803388B2 (en) | 2000-10-02 | 2010-09-28 | Emergent Product Development Gaithersburg, Inc. | Chlamydia PMP proteins, gene sequences and uses thereof |
US20070292437A1 (en) * | 2000-10-02 | 2007-12-20 | Emergent Product Development Gaithersburg Inc. | Chlamydia PMP Proteins, Gene Sequences and Uses Thereof |
US20040037846A1 (en) * | 2000-10-02 | 2004-02-26 | Jackson W. James | Chlamydia pmp proteins, gene sequences and uses thereof |
US20080305112A1 (en) * | 2001-12-12 | 2008-12-11 | Novartis Vaccines And Diagnostics, Inc.G | Immunisation against chlamydia trachomatis |
US7842297B2 (en) * | 2001-12-12 | 2010-11-30 | Novartis Vaccines And Diagnostics Srl | Immunisation against chlamydia trachomatis |
US20090022755A1 (en) * | 2005-03-31 | 2009-01-22 | Glaxosmithkline Biologicals Sa | Vaccines against chlamydial infection |
US8541007B2 (en) | 2005-03-31 | 2013-09-24 | Glaxosmithkline Biologicals S.A. | Vaccines against chlamydial infection |
US20110158977A1 (en) * | 2005-05-12 | 2011-06-30 | Novartis Vaccines And Diagnostics, Inc. | Immunogenic compositions for Chlamydia trachomatis |
US8133973B2 (en) * | 2005-05-12 | 2012-03-13 | Novartis Vaccines And Diagnostics, S.R.L. | Immunogenic compositions for Chlamydia trachomatis |
US20100278854A1 (en) * | 2007-12-03 | 2010-11-04 | Higgins Darren E | Chlamydia antigens |
US8637053B2 (en) | 2007-12-03 | 2014-01-28 | President And Fellows Of Harvard College | Chlamydia antigens |
CN113801191A (zh) * | 2021-08-18 | 2021-12-17 | 南京大学 | 一种检测衣原体的多肽探针及其应用 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8052975B2 (en) | Compounds and methods for treatment and diagnosis of chlamydial infection | |
EP1144642B1 (de) | Verbindungen und verfahren zur behandlung und diagnose von chlamydia-infektionen | |
AU1815901A (en) | Compounds and methods for treatment and diagnosis of chlamydial infection | |
ZA200104414B (en) | Compounds and methods for treatment and diagnosis of chlamydial infection. | |
US20080213264A1 (en) | Compounds and methods for treatment and diagnosis of chlamydial infection | |
ZA200204359B (en) | Compounds and methods for treatment and diagnosis of chlamydial infection. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CORIXA CORPORATION, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BHATIA, AJAY;SKEIKY, YASIR A.W.;PROBST, PETER;REEL/FRAME:012062/0397;SIGNING DATES FROM 20010604 TO 20010614 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |